Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DISPLAY SYSTEM AND METHOD
Document Type and Number:
WIPO Patent Application WO/2017/037266
Kind Code:
A1
Abstract:
The present disclosure relates to a display system (1) for generating a view of a region behind a vehicle (V) towing a trailer (T). A rear-facing camera (C2) is provided for outputting first rear image data corresponding to a first rear image (IMG2), the rear-facing camera (C2) being configured to be mounted in a rear-facing orientation to the trailer (T). An image processor (5) receives said rear image data. The image processor (5) is configured to select a sub-section (P1) of said rear image (IMG2) in dependence on a determined hitch angle (θ) of the trailer (T).

Inventors:
GREENWOOD JEREMY (GB)
STRANO GIOVANNI (GB)
Application Number:
PCT/EP2016/070777
Publication Date:
March 09, 2017
Filing Date:
September 02, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
JAGUAR LAND ROVER LTD (GB)
International Classes:
B60R1/00
Foreign References:
US20140085472A12014-03-27
GB2515800A2015-01-07
US20090005932A12009-01-01
Attorney, Agent or Firm:
CHANG, Seon-Hee (GB)
Download PDF:
Claims:
CLAIMS:

1 . A display system for generating a view of a region behind a trailer coupled to a vehicle, the display system comprising:

a rear-facing camera for outputting rear image data corresponding to a rear image, the rear-facing camera being configured to be mounted in a rear-facing orientation to the trailer; and

an image processor for receiving said rear image data;

wherein the image processor is configured to select a sub-section of said rear image in dependence on a determined hitch angle of the trailer.

2. A display system as claimed in claim 1 comprising:

a first lateral camera for outputting first lateral image data corresponding to a first lateral image; and

a second lateral camera for outputting second lateral image data corresponding to a second lateral image;

wherein the image processor is configured to combine the selected sub-section with the first and/or second lateral images to form a composite image. 3. A display system as claimed in 1 or claim 2, wherein the image processor is configured to select the sub-section of said rear image in dependence on a negative equivalent of the hitch angle.

4. A display system as claimed in claim 3, wherein the rear image has a first vertical centreline and the sub-section has a second vertical centreline;

the image processor being configured to select the sub-section such that a horizontal offset between the first and second vertical centrelines is directly proportional to the negative of the hitch angle. 5. A display system as claimed in any one of claims 1 to 4, wherein the image processor is configured to select the sub-section of said rear image in dependence on a negative equivalent of a determined pitch angle of the trailer.

6. A display system as claimed in claim 5, wherein the rear image has a first horizontal centreline and the sub-section has a second horizontal centreline; and the image processor being configured to select the sub-section such that a vertical offset between the first and second horizontal centrelines is directly proportional to the negative of the pitch angle. 7. A display system as claimed in any one of the preceding claims, wherein the subsection has a predefined horizontal dimension and/or a predefined vertical dimension.

8. A display system as claimed in any one of claims 1 to 6, wherein the sub-section has a horizontal dimension which is determined in dependence on the hitch angle; and/or a vertical dimension which is determined in dependence on the pitch angle.

9. A display system as claimed in claim 8, wherein the horizontal dimension is varied symmetrically about a vertical centreline of the sub-section; and/or the vertical dimension is varied symmetrically about a horizontal centreline of the sub-section.

10. A display system as claimed in any one of the preceding claims comprising a further rear-facing camera configured to be mounted in a rear-facing orientation to the vehicle; wherein the further rear-facing camera configured to be mounted to the vehicle is a first rear- facing camera for outputting first rear image data corresponding to a first rear image; and the rear-facing camera configured to be mounted to the trailer is a second rear-facing camera for outputting second rear image data corresponding to a second rear image.

1 1 . A display system as claimed in claim 10, wherein at least a portion of said first rear image is overlaid as a semi-transparent image onto the selected sub-section of the second rear image.

12. A rig comprising a vehicle and a trailer, wherein the rig comprises a display system as claimed in any one of the preceding claims. 13. A rig as claimed in claim 12, wherein the first lateral camera and the second lateral camera are mounted to the vehicle; or to the trailer.

14. An image processor for receiving: first lateral image data corresponding to a first lateral image, second lateral image data corresponding to a second lateral image, rear image data corresponding to a rear image, and a determined hitch angle;

wherein the image processor is configured to select a sub-section of said first rear image in dependence on the determined hitch angle.

15. A rig comprising a vehicle and a trailer, wherein the vehicle comprises the image processor claimed in claim 14; and the determined hitch angle represents an angle between the vehicle and the trailer.

16. A method of generating a view of a region behind a trailer coupled to a vehicle, the method comprising:

receiving rear image data corresponding to a rear image from a rear-facing camera mounted to the trailer; and

selecting a sub-section of said rear image in dependence on a determined hitch angle of the trailer.

17. A method as claimed in claim 16 comprising:

receiving first lateral image data corresponding to a first lateral image from a first lateral camera;

receiving a second lateral image data corresponding to a second lateral image from a second lateral camera; and

combining the selected sub-section with the first and second lateral images to form a composite image.

18. A method as claimed in 16 or claim 17 comprising selecting the sub-section of said rear image in dependence on a negative equivalent of the hitch angle.

19. A method as claimed in claim 18 comprising selecting the sub-section such that a horizontal offset between a first vertical centreline of the rear image and a second vertical centreline of the sub-section is directly proportional to the negative equivalent of the hitch angle.

20. A method as claimed in any one of claims 16 to 19 comprising selecting the sub- section of said rear image in dependence on a negative equivalent of a determined pitch angle of the trailer.

21 . A method as claimed in claim 20 comprising selecting the sub-section such that a vertical offset between a first horizontal centreline of the rear image and a second horizontal centreline of the sub-section is directly proportional to the negative equivalent of the pitch angle.

22. A method as claimed in any one of claims 16 to 21 , wherein the sub-section has a predefined horizontal dimension and/or a predefined vertical dimension.

23. A method as claimed in any one of claims 16 to 21 comprising determining a horizontal dimension of the sub-section in dependence on the hitch angle; and/or a vertical dimension of the sub-section in dependence on the pitch angle.

24. A method as claimed in claim 23 comprising varying the horizontal dimension symmetrically about a vertical centreline of the sub-section; and/or varying the vertical dimension symmetrically about a horizontal centreline of the sub-section.

25. A method as claimed in any one of the claims 16 to 24 comprising receiving further rear image data corresponding to a rear image from a further rear-facing camera mounted to the vehicle; wherein the further rear-facing camera mounted to the vehicle is a first rear- facing camera for outputting first rear image data corresponding to a first rear image; and the rear-facing camera mounted to the trailer is a second rear-facing camera for outputting second rear image data corresponding to a second rear image.

26. A method as claimed in claim 25 overlaying at least a portion of said first rear image as a semi-transparent image onto the selected sub-section of the second rear image.

27. A display system substantially as herein described with reference to the accompanying figures. 28. A method substantially as herein described with reference to the accompanying figures.

29. A vehicle and a trailer substantially as herein described with reference to the accompanying figures.

Description:
DISPLAY SYSTEM AND METHOD

TECHNICAL FIELD

The present disclosure relates to a display system for a vehicle towing a trailer, to a method of generating an image, and to a rig comprising a vehicle and a trailer.

BACKGROUND

It is common practice to tow a trailer behind a vehicle. A particular problem encountered while towing is the reduced visibility behind the vehicle. In particular, the trailer presents an obstacle which partially secures the driver's field of view behind the vehicle. Large and small trailers typically reduce visibility and create a blind spot behind the vehicle. The resulting lack of visibility can, for example, compromise the following manoeuvres: lane changes, overtaking, parking, joining a motorway (highway) and pulling out of junctions. In order to mitigate the aforementioned problems, it is common practice to fit a so-called towing mirror to the side mirrors of the vehicle. The towing mirrors extend laterally outwardly to provide improved visibility along the side of the trailer. However, towing mirrors have several disadvantages, notably they increase the vehicle width and may reduce manoeuvrability in confined spaces. Moreover, towing mirrors are not well suited to providing a view of other vehicles positioned directly behind the trailer. Towing mirrors can also suffer from vibration and hence blurring of the image.

It is known to provide a rear-facing camera on a vehicle to enable a rear-view image to be displayed in the vehicle cabin, for example on an electronic display. However, when a trailer is being towed behind the vehicle, the image generated by the rear-facing camera will be at least partially obscured. As a consequence the image may include blind spots, for example in lateral regions alongside the trailer.

It is against this backdrop that the present invention has been conceived. At least in certain embodiments, the present invention seeks to overcome or ameliorate at least some of the aforementioned problems associated with prior art devices.

SUMMARY OF THE INVENTION

Aspects of the present invention relate to display system for a vehicle towing a trailer, to a method of generating an image, and to a rig comprising a vehicle and a trailer. According to a further aspect of the present invention there is provided a display system for generating a view of a region behind a trailer coupled to a vehicle, the display system comprising:

a rear-facing camera for outputting rear image data corresponding to a rear image, the rear-facing camera being configured to be mounted in a rear-facing orientation to the trailer; and

an image processor for receiving said rear image data;

wherein the image processor is configured to select a sub-section of said rear image in dependence on a determined hitch angle of the trailer. The sub-section is a sub-set of the first rear image data. The sub-section can be selected, for example, to compensate for changes in the hitch angle and/or the pitch angle of the trailer. By compensating for these angular changes, a composite image can be formed by the image processor to provide a substantially continuous view of the image behind the vehicle. At least in certain embodiments the composite image can be formed such that discontinuities can be reduced.

The display system may comprise a display screen, such as a liquid crystal display. The image processor may be configured to output said sub-section of the rear image to the display screen for display. The display system may comprise a first lateral camera for outputting first lateral image data corresponding to a first lateral image; and a second lateral camera for outputting second lateral image data corresponding to a second lateral image. The image processor may be configured to combine the selected sub-section with the first and second lateral images to form a composite image. The composite image may be output to the display screen for display.

The image processor may be configured to select the sub-section of said rear image in dependence on a negative equivalent of the hitch angle. The negative equivalent of the hitch angle is calculated by multiplying the hitch angle by -1 . The selected sub-section may correspond to an image reflected about a vertical plane coincident with a centreline of the trailer. In dependence on a positive hitch angle, the image processor may apply a corresponding negative shift within the rear image to select the sub-section. In dependence on the equivalent negative of the hitch angle, the image processor may apply a positive image shift within the rear image to select the sub-section.

The rear image may have a first vertical centreline and the sub-section may have a second vertical centreline. It will be understood that the first and second vertical centrelines are virtual reference lines which bisect the rear image and the sub-section respectively. The image processor may be configured to select the sub-section such that a horizontal offset between the first and second vertical centrelines is directly proportional to the negative equivalent of the hitch angle.

The image processor may be configured to select the sub-section of said rear image in dependence on a negative equivalent of a determined pitch angle of the trailer. The negative equivalent of the pitch angle is calculated by multiplying the pitch angle by -1 . The selected sub-section may correspond to an image reflected about a horizontal plane coincident with a centreline of the trailer.

The rear image may have a first horizontal centreline and the sub-section may have a second horizontal centreline. It will be understood that the first and second horizontal centrelines are virtual reference lines which bisect the rear image and the sub-section respectively. The image processor may be configured to select the sub-section such that a vertical offset between the first and second horizontal centrelines is directly proportional to the negative equivalent of the pitch angle.

The sub-section may have a predefined horizontal dimension and/or a predefined vertical dimension.

In certain embodiments the sub-section may have a horizontal dimension which is determined in dependence on the hitch angle; and/or a vertical dimension which is determined in dependence on the pitch angle.

The horizontal dimension may be varied symmetrically about a vertical centreline of the subsection; and/or the vertical dimension may be varied symmetrically about a horizontal centreline of the sub-section. The display system may comprise a rear-facing camera configured to be mounted in a rear- facing orientation to the vehicle. The rear-facing camera configured to be mounted to the vehicle may be a first rear-facing camera for outputting first rear image data corresponding to a first rear image; and the rear-facing camera configured to be mounted to the trailer may be a second rear-facing camera for outputting second rear image data corresponding to a second rear image. At least a portion of said first rear image may be overlaid as a semi-transparent image onto the selected sub-section of the second rear image.

According to a still further aspect of the present invention there is provided a rig comprising a vehicle and a trailer, wherein the rig comprises a display system as described herein.

The first lateral camera and the second lateral camera may be mounted to the vehicle; or to the trailer. According to a still further aspect of the present invention there is provided an image processor for receiving first lateral image data corresponding to a first lateral image, second lateral image data corresponding to a second lateral image, rear image data corresponding to a rear image and a determined hitch angle;

wherein the image processor is configured to select a sub-section of said first rear image in dependence on the determined hitch angle.

According to a further aspect of the present invention there is provided a rig comprising a vehicle and a trailer, wherein the vehicle comprises the image processor described herein; and the determined hitch angle represents an angle between the vehicle and the trailer.

According to a still further aspect of the present invention there is provided a method of generating a view of a region behind a trailer coupled to a vehicle, the method comprising: receiving rear image data corresponding to a rear image from a rear-facing camera mounted to the trailer; and

selecting a sub-section of said rear image in dependence on a determined hitch angle of the trailer.

The method may comprise receiving first lateral image data corresponding to a first lateral image from a first lateral camera; receiving a second lateral image data corresponding to a second lateral image from a second lateral camera; and combining the selected sub-section with the first and second lateral images to form a composite image.

The method may comprise selecting the sub-section of said rear image in dependence on a negative equivalent of the hitch angle. The method may comprise selecting the sub-section such that a horizontal offset between a first vertical centreline of the rear image and a second vertical centreline of the sub-section is directly proportional to the negative equivalent of the hitch angle. The method may comprise selecting the sub-section of said rear image in dependence on a negative equivalent of a determined pitch angle of the trailer. The method may comprise selecting the sub-section such that a vertical offset between a first horizontal centreline of the rear image and a second horizontal centreline of the sub-section is directly proportional to the negative equivalent of the pitch angle.

The sub-section may have a predefined horizontal dimension and/or a predefined vertical dimension.

In certain embodiments the method may comprise determining a horizontal dimension of the sub-section in dependence on the hitch angle; and/or a vertical dimension of the sub-section in dependence on the pitch angle. The method may comprise varying the horizontal dimension symmetrically about a vertical centreline of the sub-section; and/or varying the vertical dimension symmetrically about a horizontal centreline of the sub-section. The method may comprise receiving rear image data corresponding to a rear image from a rear-facing camera mounted to the vehicle; wherein the rear-facing camera mounted to the vehicle may be a first rear-facing camera for outputting first rear image data corresponding to a first rear image; and the rear-facing camera mounted to the trailer may be a second rear-facing camera for outputting second rear image data corresponding to a second rear image.

The method may comprise overlaying at least a portion of said first rear image as a semi- transparent image onto the selected sub-section of the second rear image. The term processor is used herein to refer to one or more electronic processors. Similarly, the term system memory is used herein to refer to one or more storage devices. The processor can be a general purpose computational device configured to execute a set of software instructions to perform the method(s) described herein. As used herein the term "processor" will be understood to include both a single processor and a plurality of processors collectively operating to provide any stated control functionality. To configure a processor, a suitable set of instructions may be provided which, when executed, cause said processor to implement the control techniques specified herein. The set of instructions may suitably be embedded in said one or more processors. Alternatively, the set of instructions may be provided as software saved on one or more memory associated with said processor to be executed on said processor. The instructions can be provided on a non-transitory computer readable media.

Within the scope of this application it is expressly intended that the various aspects, embodiments, examples and alternatives set out in the preceding paragraphs, in the claims and/or in the following description and drawings, and in particular the individual features thereof, may be taken independently or in any combination. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination, unless such features are incompatible. The applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the present invention will now be described, by way of example only, with reference to the accompanying figures, in which:

Figure 1 shows a vehicle and a trailer incorporating a rear-view display system in accordance with an embodiment of the present invention;

Figure 2 shows a schematic representation of the components of the rear-view display system shown in Figure 1 ;

Figure 3A shows a first image from a first camera disposed on the vehicle;

Figure 3B shows a second image from a second camera disposed on the trailer;

Figure 3C shows a composite image generated by combining the first and second images shown in Figures 3A and 3B;

Figure 4 shows an augmented composite image generated by the rear-view display system shown in Figure 1 ;

Figure 5 shows a vehicle and a trailer incorporating an alternate arrangement of the rear-view display system;

Figure 6 illustrates the formation of a composite image incorporating image data from the cameras in the alternate arrangement shown in Figure 5;

Figure 7 illustrates an alternate formation of a composite image incorporating image data from the cameras in the alternate arrangement shown in Figure 5;

Figure 8 illustrates the formation of a composite image incorporating image data from the cameras in the alternate arrangement shown in Figure 5; and Figure 9 illustrates the composition of the composite image using the formation shown in Figure 8.

DETAILED DESCRIPTION

A rear-view display system 1 in accordance with an embodiment of the present invention will now be described with reference to the accompanying figures. The rear-view display system 1 is intended for use in a vehicle V towing a trailer T (referred to in combination as a rig) to generate a composite image for providing improved visibility for the vehicle driver of the region behind the vehicle V. The vehicle V in the present embodiment is an automobile or a utility vehicle. However, it will be appreciated that the rear-view display system 1 may be incorporated into other types of vehicle, such as a tractor unit.

The vehicle V has a first longitudinal axis and the trailer T has a second longitudinal axis X 2 , as shown in Figure 1 . The terms "front" and "rear" are used herein in their conventional sense when defining the relative position of features on the vehicle V and the trailer T. The terms "rear-facing" and "rear-view" are used herein to refer to a position or orientation which is in a direction towards the back of the vehicle V or the trailer T.

As shown in Figure 1 , the rear-view display system 1 is in the form of a vehicle-mounted unit and a trailer-mounted unit. The vehicle-mounted unit comprises a central processing unit 3 connected to a first camera C1 . As shown in Figure 2, the central processing unit 3 comprises an image processor 5 coupled to system memory 7, and a wireless receiver 9 having a first antenna 11 . The image processor 5 can be a digital image processor. The image processor 5 is configured to execute a set of software instructions held in the system memory 7. The image processor 5 is connected to a communication bus 13, such as the vehicle CAN bus, for communicating with other vehicle systems. The vehicle V comprises a display screen 15 on which the images received from the first and second cameras C1 , C2 can be selectively displayed. The trailer-mounted unit comprises a second camera C2 connected to a wireless transmitter 17 having a second antenna 19.

The first and second cameras C1 , C2 are both rear-facing digital cameras for generating video images. The first and second cameras C1 , C2 each comprise a wide-angle lens to provide a viewing angle of approximately 130°. The first camera C1 is mounted centrally at the rear of the vehicle V above a rear license plate (not shown) and, in the present embodiment, can selectively function as a reversing camera to provide a parking aid when there is no trailer T coupled to the vehicle V. The second camera C2 is mounted centrally at the rear of the trailer T. The first camera C1 has a first field of view FOV1 (shown in Figure 1 ) having a line of sight (i.e. a centreline) substantially coincident with the first longitudinal axis X The second camera C2 has a second field of view FOV2 (shown in Figure 1 ) having a line of sight (i.e. a centreline) substantially coincident with the second longitudinal axis X 2 , for example above a license plate on the trailer T. The first and second cameras C1 , C2 are arranged at approximately the same vertical height above ground level. In alternate arrangements, the first and second cameras C1 , C2 can be offset from each other in a vertical and/or transverse direction. The image processor 5 can be configured to correct for any such positional offset. Equally, the image processor 5 can be configured to correct for an angular offset between the first and second cameras C1 , C2, for example if one or both of the first and second cameras C1 , C2 is angularly offset from the respective first and second longitudinal axes X 2 .

The first camera C1 outputs a first signal S1 comprising first image data corresponding to a first image IMG1 . The first signal S1 is published to the communication bus 13 and provides a first input for the image processor 5. The second camera C2 outputs a second signal S2 comprising the second image data corresponding to a second image IMG2. The second signal S2 is transmitted by the wireless transmitter 17 to the wireless receiver 9 to provide a second input for the image processor 5. The wireless transmitter 17 can transmit the second signal S2 using a suitable wireless communication standard, such as Wi-Fi®.

As outlined above, the first camera C1 is rear-facing and, when the vehicle V is towing the trailer T, the first image IMG1 contains the trailer T which partially obstructs the view afforded to the driver in a rearwards direction. The second camera C2 is mounted to the trailer T and the second image IMG2 provides an unobstructed view of the scene behind the trailer T. The image processor 5 is configured to combine the first image data and the second image data to generate composite image data. The composite image data corresponds to a composite image IMG3 formed from said first and second images IMG1 , IMG2. The image processor 5 modifies the first image data such that the first image IMG1 will be rendered as a semi-transparent image. For example, the image processor 5 can modify an alpha channel or an index transparency of the first image data. The first image data can be modified to provide a transparency of 25%, for example. The first image data and the second image data are combined to form a composite image IMG3. The image processor 5 can be configured to perform other image-manipulation techniques, for example to modify the colour and/or contrast of one or more image, for example to highlight an outline of the trailer T. The image processor 5 may also be configured to implement an edge-recognition algorithm to identify an outline of the trailer T for display in the composite image IMG3. The resulting composite image IMG3 comprises the second image IMG2 as a background element over which the first image IMG1 is overlaid. Significantly, the trailer T (which is present in the first image IMG1 , but not the second image IMG2) is partially visible in the composite image IMG3 to facilitate determining its relative position to objects and/or other vehicles. The image processor 5 can perform additional blending or smoothing functions to obscure the transition between the first and second images IMG1 , IMG2 in the composite image IMG3. The rear- view display system 1 may be configured to allow the user to select the modification to the first image data, for example to adjust a transparency setting of the first image data, to allow customisation of the composite image IMG3.

When the vehicle V and the trailer T are aligned with each other (such that the first and second longitudinal axes X 2 are coincident), the first and second images IMG1 , IMG2 are in respect of the same scene albeit offset from each other due to the longitudinal offset between the first and second cameras C1 , C2. Moreover, there may be a lateral offset and/or a vertical offset due to the positioning of the first and second cameras C1 , C2 on the vehicle V and the trailer T. Accordingly, the first image IMG1 cannot be overlaid directly onto the second image IMG2. Rather, the image processor 5 is configured to implement an image matching procedure to align the first image IMG1 with the second image IMG2. The image processor 5 can implement a cross-correlation technique automatically to match features common to both the first image IMG1 and the second image IMG2. The image processor 5 can, for example, use a Hough transform feature extraction technique. The relative position and/or orientation of the identified features can be compared in the first and second images IMG1 , IMG2. Alternatively, or in addition, the image processor 5 can identify the centroid of one or more image features and compare their relative position in the first and second images IMG1 , IMG2. Other image analysis techniques that may be included are point mapping and/or edge-recognition. The image processor 5 can optionally perform image processing techniques with respect to time in order to track movement of the identified features in the first and second images. The image processor 5 may retrieve vehicle dynamic data published to the communication bus 13 to refine analysis of the image data. For example, the image processor 5 may optionally utilise the vehicle speed and/or turning angle during analysis of the image data. The image processor 5 may also be configured to determine the relative orientation of the trailer T by analysing a target 21 provided on the front of the trailer T. In the illustrated arrangement, the target 21 comprises three circles arranged in a triangular formation. The relative orientation of the trailer T can be characterised as a hitch angle Θ defining the angular orientation of the centrelines of the vehicle V and the trailer T in a horizontal plane. The image processor 5 may also be configured to compensate for differences in the first and second images IMG1 , IMG2 due to different specifications of the first and second cameras C1 , C2.

The image processor 5 utilises the results of the cross-correlation to perform image registration such that the first and second images IMG1 , IMG2 are aligned with each other. The image registration can comprise one or more of the following transforms: image rotation, scaling, cropping, magnification (zooming), skew correction and translation. It will be appreciated that the transform(s) required to match the first and second images IMG1 , IMG2 depend on the relative positioning of the first and second cameras C1 , C2. The transform(s) may be applied in two dimensions (2D) or three dimensions (3D), for example to compensate for an angular offset between the first and second longitudinal axes X 2 (in a horizontal plane and/or a vertical plane). As outlined above, the first image IMG1 data is modified such that the first image IMG1 appears semi-transparent when displayed. The first image IMG1 is then overlaid onto the second image IMG2 to form the composite image IMG3 (for example using alpha-compositing techniques). The image processor 5 can optionally edit the first image IMG1 such that only a portion thereof is overlaid onto the second image IMG2. A cropping function may be applied to a predefined region of the first image IMG1 , for example having a predefined width and height. Alternatively, the image processor 5 may be configured to identify the trailer T within the first image IMG1 to generate a mask which is overlaid onto the second image IMG2.

The operation of the rear-view display system 1 in accordance with an embodiment of the present invention will now be described with reference to Figures 3A, 3B and 3C. The first camera C1 generates first image data corresponding to a first image IMG1 which includes the trailer T being towed behind the vehicle V, as shown in Figure 3A. The second camera C2 generates second image data corresponding to a second image IMG2 which is an unobstructed view of the region behind the trailer T, as shown in Figure 3B. The image processor 5 implements an image matching procedure to match (align) the first and second images IMG1 , IMG2, as described herein. The image processor 5 modifies the first image data such that the first image IMG1 will be displayed as a partially transparent image. The first image data and the second image data is then combined to form composite image data. The composite image data corresponds to a composite image IMG3 comprising the first image IMG1 overlaid onto the second image IMG2, as shown in Figure 3C. The trailer T appears as a 'ghost' image or grind of the composite image IMG3. The resulting composite image IMG3 provides a clear view of the region behind the trailer T whilst retaining sufficient details of the trailer T to enable the driver to determine its relative position to obstacles and other vehicles. The composite image IMG3 is output for display on a display screen, such as a liquid-crystal display, provided in the vehicle. The display screen can, for example, be provided in a centre console or in an instrument cluster. Alternatively, or in addition, the display screen can be incorporated into a rear view mirror, for example to display the composite image IMG3 alongside a reflective image.

If the angular offset between the first and second longitudinal axes X 2 becomes excessive, for example during a turning manoeuvre, the image processor 5 may be unable to match the first and second images. The image processor 5 may be configured to activate one or more side-mounted cameras (on the vehicle V and/or the trailer T) to obtain different images for processing. If this function is not available, the image processor 5 can output a notification to the vehicle driver that the rear-view display function is not available. The rear-view display system 1 described herein can be modified to display additional information. By way of example, the composite image IMG3 can be augmented by displaying a projected path P which the trailer T will follow during a reversing procedure. The projected path P can be overlaid onto the composite image IMG3 when the vehicle V is placed in reverse and the trailer T is detected. The driver can use the projected path P to control the trailer T when the vehicle V is being reversed. An illustration of an augmented composite image IMG4 is shown in Figure 4 by way of example. Moreover, the rear-view display system 1 may be modified to display driver instructions, for example to provide vehicle control instructions (steering angle and/or transmission selection) for guiding the trailer T to an identified parking area. Further details of a vehicle control system for controlling a vehicle to facilitate parking a trailer are known from the applicant's earlier UK patent application GB2515800A filed on 04th July 2013), the contents of which are incorporated herein in their entirety by reference.

In the illustrated example, the vehicle V is an automobile (for example a sports utility vehicle) and the trailer T is a caravan. It will be appreciated, however, that the apparatus and method(s) described herein are not limited in this respect and may be implemented in other types and categories of vehicle and to other types of trailer. The apparatus and method(s) could, for example, be applied to an articulated vehicle, a semi-trailer or a tractor-trailer. It will be appreciated that further changes and modifications can be made to the apparatus and method described herein without parting from the scope of the present invention. A rear- view display system 1 has been described herein with reference to a single first camera C1 disposed on the vehicle V and a single second camera C2 disposed on the trailer T. It will be appreciated that more than one rear-facing camera may be provided on the vehicle V and/or the trailer T. By providing more than one camera, the composite image IMG3 may provide a greater sense of depth perception.

The rear-view display system 1 can be configured to overlay the first image IMG1 onto the second image IMG2 when the vehicle V is travelling in a forwards direction such that the composite image IMG3 is displayed to enable the driver to identify other vehicles behind the trailer T. Alternatively, the rear-view display system 1 may be configured to overlay the first image IMG1 onto the second image IMG2 only when the vehicle is parked or during a parking operation, for example when the transmission of the vehicle V is placed in reverse.

Furthermore, rather than overlaying the first image onto the second image, a graphical representation of the trailer (for example a silhouette or an outline of the trailer T, or a graphical indicia) may be overlaid onto the second image. Alternatively, a mask of the trailer T may be generated based on a static image generated by the first camera C1 and overlaid onto the second image generated by the second camera C2.

The rear-view display system 1 has been described with reference to a first camera C1 mounted to the rear of the vehicle V. In an alternate arrangement, the rear-view display system 1 can comprise a first side-mounted camera mounted to a first side of the vehicle and/or a second side-mounted camera mounted to a second side of the vehicle V. The first and second side-mounted cameras would be rearward-facing, for example mounted to the side (wing) mirrors. The first side-mounted camera and/or the second side-mounted camera may be used in conjunction with the vehicle-mounted first camera C1 and/or the trailer- mounted second camera C2. In particular, the image processor 5 can be arranged to combine the first image IMG1 and/or the second image IMG2 with an image generated by the first side-mounted camera and/or the second side-mounted camera. The image processor 5 may utilise the image(s) from the first side-mounted camera and/or the second side-mounted camera to provide a partially transparent overlay on the first image IMG1 and/or the second image IMG2. In this arrangement, the partially transparent overlay can comprise a side view of the vehicle V, for example a view of a rear quarter of the vehicle V. It will be appreciated that this arrangement may be used when the vehicle V is not towing a trailer T, so the second camera C2 may be omitted. The resulting composite image IMG3 may be used during parking or reversing manoeuvres to provide a substantially uninterrupted view of the area behind the vehicle V. By displaying the image from the first side-mounted camera and/or the second side-mounted camera as a partially transparent overlay, the driver can be provided with an indication of the extent of the vehicle V to facilitate judgement of distances and/or position. The composite image IMG3 may be output to a display provided, for example, in the centre console, the instrument cluster, the rear view mirror or a side mirror display.

The alternate arrangement of the rear-view display system 1 is illustrated in Figure 5; and the formation of a composite image from the image data generated by the cameras is shown in Figure 6. The rear-view display system 1 comprises a first side-mounted camera C3 mounted to a first side of the vehicle V; and a second side-mounted camera C4 mounted to a second side of the vehicle V. The first and second side-mounted cameras C3, C4 are mounted to the side (wing) mirrors and have respective third and fourth fields of vision FOV 3 , FOV 4 . As shown in Figure 5, the third and fourth fields of vision FOV 3 , FOV 4 extend along the respective sides of the vehicle V. This arrangement is advantageous since it can provide coverage of the lateral regions of the trailer T. This is particularly relevant since the front of the trailer T may obscure portions of the images generated by the first camera C1 . Similarly, the images generated by the second camera C2 do not provide coverage along the sides of the trailer T. Consequently, there may be regions along the sides of the trailer T, particularly towards the rear, which are not covered by either of the first and second cameras C1 , C2. The composite image IMG3 may therefore include blind spots. Furthermore, the presence of these blind spots may not be immediately apparent when viewing the composite image IMG3 since the trailer T is displayed as a semi-transparent 'ghost' image which may give the impression of an uninterrupted view. The first and second side-mounted cameras C3, C4 generate first and second lateral images IMG1 L, IMG2L which can provide improved coverage on each side of the trailer T. As illustrated in Figure 5, the third and fourth fields of vision FOV 3 , FOV 4 can extend along each side of the trailer T at least when the vehicle V is travelling in a straight line.

As illustrated in Figure 6, a second composite image IMG5 is formed comprising the first and second lateral images IMG1 L, IMG2L and the first and second images IMG1 , IMG2. The components of the second composite image IMG5 are illustrated in Figure 6. The first and second lateral images IMG1 L, IMG2L are combined with the second image IMG2, for example by stitching the first and second lateral images IMG1 L, IMG2L and the second image IMG2. The image processor 5 can be configured to join the first and second lateral images IMG1 L, IMG2L and the second image IMG2 at predefined boundaries or at dynamically determined boundaries, for example determined in dependence on identification of one or more common feature in the images. In the present embodiment, the first and second lateral images IMG1 L, IMG2L are stitched to the left and right hand sides respectively of the second image IMG2 along vertical boundaries. As illustrated in Figure 6, the first and second lateral images IMG1 L, IMG2L extend vertically for the full height of the second composite image IMG5. The first image IMG1 is then overlaid onto an intermediate composite image formed by combining the second image IMG2 and the first and second lateral images IMG1 L, IMG2L. As in the previous embodiment, the first image IMG1 is overlaid as a semi-transparent image onto the intermediate composite image. In particular, the image processor 5 modifies the first image data such that the first image IMG1 is displayed as a partially transparent image which overlies a portion of each of the second image IMG2 and the first and second lateral images IMG1 L, IMG2L. In a variant, the first image IMG1 may be overlaid onto the second image IMG2 which is then combined with the first and second lateral images IMG1 L, IMG2L.

In a variant of the arrangement described above with reference to Figures 5 and 6, the first and second side-mounted cameras C3, C4 each comprise a wide-angle lens, for example a fish-eye lens, and are arranged to generate respective first and second lateral images IMG1 L, IMG2L extending along the sides of the vehicle V and the trailer T. The first and second side-mounted cameras C3, C4 can have a view angle of 200° or more. The first and second side-mounted cameras C3, C4 are arranged such that their respective focal centrelines are directed downwardly. The first and second side-mounted cameras C3, C4 are mounted to the side (wing) mirrors and have respective third and fourth fields of vision FOV 3 , FOV 4 . The third and fourth fields of vision FOV 3 , FOV 4 extend along the respective sides of the vehicle V. The resulting first and second lateral images IMG1 L, IMG2L encompass a region extending from the front to the rear of the vehicle V. The resulting first and second lateral images IMG1 L, IMG2L can be used by other vehicle systems, for example to assist with vehicle parking and/or to identify other vehicles at a road junction. Due to the arrangement of the first and second side-mounted cameras C3, C4, the first and second lateral images IMG1 L, IMG2L typically only comprise a low-level region alongside the trailer T, for example a region below a horizontal plane in which the first and second side-mounted cameras C3, C4 are disposed. A third composite image IMG6 is formed taking account of this limitation of the vertical extent of the first and second lateral images IMG1 L, IMG2L.

The third composite image IMG6 comprises the first and second lateral images IMG1 L, IMG2L and the first and second images IMG1 , IMG2. The components of the third composite image IMG6 are illustrated in Figure 7. The first and second lateral images IMG1 L, IMG2L are combined with the second image IMG2 to form an intermediate composite image. The combination can, for example, comprise stitching the first and second lateral images IMG1 L, IMG2L and the second image IMG2. The region in the third composite image IMG6 vertically above the first and second lateral images IMG1 L, IMG2L is formed from the second image IMG2. The first image IMG1 is then overlaid onto the intermediate composite image formed by combining the second image IMG2 and the first and second lateral images IMG1 L, IMG2L. The first image IMG1 is overlaid as a semi-transparent image. In particular, the image processor 5 modifies the first image data such that the first image IMG1 is displayed as a partially transparent image which overlies a portion of each of the second image IMG2 and the first and second lateral images IMG1 L, IMG2L. The present invention has been described with reference to first and second side-mounted cameras C3, C4 mounted to the wing mirrors. It will be appreciated that the first and second side-mounted cameras C3, C4 may be incorporated into towing mirrors for mounting to the wing mirrors of the vehicle V. Alternatively, the first and second side-mounted cameras C3, C4 may be mounted in other locations on the vehicle, for example on left and right sides of a rear bumper of the vehicle. Alternatively, the first and second rear-mounted cameras C3, C4 may be incorporated into a lamp housing, for example a side indicator housing or a rear lamp housing.

In a further variant of the present invention, the first and second side-mounted cameras C3, C4 may be mounted to the trailer T rather than to the vehicle V. For example, the first and second side-mounted cameras C3, C4 may be mounted at the front of the trailer T in a rearwards-facing orientation. It will be appreciated that the first and second lateral images IMG1 L, IMG2L may be used by other vehicle systems, for example to facilitate manoeuvring and/or parking of the trailer T.

In a still further variant, the vehicle V can comprise first and second rear-mounted cameras for generating first and second rear images. The first and second rear-mounted cameras could, for example, be disposed in a rear quarter of the vehicle V. The first and second rear- mounted cameras may be mounted in the rear bumper of the vehicle V; within left and right rear-light clusters; within left and right roof bars; or at the outer ends of a roof spoiler. The first and second rear-mounted cameras have respective fields of view directed behind the vehicle V. The first and second rear images may be combined with the second image IMG2 generated by the second camera C2 disposed at the rear of the trailer T. In this arrangement, the fields of view of the first and second rear-mounted cameras may encompass at least a portion of the front of the trailer T. The image processor 5 can be configured to render the portion of the first and second rear images corresponding to the trailer T as a semi-transparent image which is overlaid onto the second image IMG2. The extent of the first rear image IMG1 which is overlaid as a semi-transparent image could, for example, be determined in dependence on a determined hitch angle Θ of the trailer T. Alternatively, or in addition, the image processor 5 may implement an edge-locating algorithm or a shape-recognition algorithm to determine the extent of the trailer T. It will be appreciated that the composite image may be formed in conjunction with the first image IMG1 , or without the first image IMG1 . Thus, in certain arrangements, the first camera C1 may be omitted.

A variant of the embodiment above in which the first and second side-mounted cameras C3, C4 are used to generate first and second lateral images IMG1 L, IMG2L will now be described with references to Figures 8 and 9. Like references will be used for like components when describing this variant.

The image processor 5 is configured to generate a fourth composite image IMG7 in dependence on a hitch angle Θ and optionally also a pitch angle a of the trailer T. The hitch angle Θ and the pitch angle a define the angular orientation of the trailer T relative to the vehicle V. Specifically, the hitch angle Θ and the pitch angle a are defined with reference to a reference frame of the vehicle V. The hitch angle Θ defines the angular offset between the first longitudinal axis X^nd the second longitudinal axis X 2 in a horizontal plane. The pitch angle a defines the angular offset between the first longitudinal axis X^nd the second longitudinal axis X 2 in a vertical plane. In the present embodiment, the hitch angle Θ and the pitch angle a are determined by tracking a target 21 disposed on the front of the trailer T. Specifically, the image processor 5 analyses the first image IMG1 to identify the target 21 and to determine its position and orientation relative to the vehicle V. The hitch angle Θ and the pitch angle a can thereby be determined using image processing techniques.

As shown in Figure 8, the second camera C2 is mounted to the trailer T in a rear-facing orientation, typically at the rear of the trailer T. The second image IMG2 encompasses a region behind the trailer T and is referred to as a rear image. As shown in Figure 9, the second image IMG2 has a horizontal dimension DH and a vertical dimension DV. The second image IMG2 has a first horizontal centreline CLH1 and a first vertical centreline CLV1 . The first horizontal centreline CLH1 and the first vertical centreline CLV1 are virtual reference lines which bisect the second image IMG2 horizontally and vertically. The second camera C2 is fixedly mounted to the trailer T and has a central focal axis CX2. The second camera C2 is arranged such that the central focal axis CX2 is arranged substantially parallel to the second longitudinal axis X 2 , but corrections can be applied to the second image IMG2 to allow for any angular offset and/or translational offset from said second longitudinal axis X 2 . A virtual origin O is defined by the first horizontal centreline CLH1 and the first vertical centreline CLV1 . The virtual origin O is coincident with the central focal axis CX2 of the second camera C2. It will be appreciated that the orientation of the central focal axis CX2 relative to the reference frame defined for the vehicle V varies in dependence on the hitch angle Θ and the pitch angle a of the trailer T. Thus, the content of the second image IMG2 varies in dependence on the orientation of the trailer T. As a result, there can be a discrepancy between the second image IMG2 and the first and second lateral images IMG1 L, IMG2L (which are generated by the side-mounted third and fourth cameras C3, C4 mounted to the vehicle V). In order to compensate for this discrepancy, the image processor 5 is configured to select a sub-section P1 of the second image IMG2 for incorporation into the fourth composite image IMG7. The sub-section P1 is selected from within the second image IMG2 to compensate for changes in the hitch angle Θ and the pitch angle a. By compensating for these angular changes, the fourth composite image IMG7 formed by the image processor 5 can provide a substantially continuous view of the image behind the vehicle V. The subsection P1 has a second horizontal centreline CLH2 and a second vertical centreline CLV2. The second horizontal centreline CLH2 and the second vertical centreline CLV2 are virtual reference lines which bisect the sub-section P1 horizontally and vertically. If a predefined section of the second image IMG2 was used to form the fourth composite image IMG7, discontinuities would be introduced into the fourth composite image IMG7 as the hitch angle Θ and/or the pitch angle a changed. Due to the overlaying technique described herein to display a portion of the first image IMG1 as a semi-transparent image, any such discontinuities may potentially be obscured, which may result in the formation of one or more blind spot in the resulting composite image.

The selection of the sub-section P1 will now be described in more detail with reference to Figure 9. In the present arrangement, the horizontal dimension DH and the vertical dimension DV of the sub-section P1 are fixed, i.e. the sub-section P1 has a predefined size. However, the image processor 5 is configured to vary the position of the sub-section P1 within the second image IMG2 in dependence on the hitch angle Θ and the pitch angle a. The image processor 5 determines a negative equivalent of the hitch angle Θ and the pitch angle a (by multiplying by -1 ), thereby changing the sign of the respective angles. The image processor 5 determines the location of the sub-section P1 within the second image IMG2 in dependence on the determined negative of the hitch angle Θ and the pitch angle a. Specifically, the image processor 5 modifies the offset between the first and second horizontal centrelines CLH1 , CLH2 in dependence on the determined negative of the hitch angle Θ; and between the first and second vertical centrelines CLV1 , CLV2 in dependence on the determined negative of the pitch angle a. A horizontal offset ΔΗ between the first vertical centreline CLV1 and the second vertical centreline CLV2 is determined in direct proportion to the determined negative of the hitch angle Θ. Similarly, a vertical offset AV between the first horizontal centreline CLH1 and the second vertical horizontal centreline CLH2 is determined in direct proportion to the determined negative of the pitch angle a. When the hitch angle Θ is zero, the first and second vertical centrelines CLV1 , CLV2 are aligned. When the pitch angle a is zero, the first and second horizontal centrelines CLH1 , CLH2 are aligned. The extent of the horizontal and/or vertical translation of the sub-section P1 for a given angular change can be determined with reference to a virtual image plane. The virtual image plane can be defined at a known position along the central focal axis CX2 of the second camera C2. The image processor 5 can then combine the selected subsection P1 with the first and second lateral images IMG1 L, IMG2L. The first image IMG1 is overlaid as a semi-transparent image to form the fourth composite image IMG7. In certain embodiments, the fourth composite image IMG7 may be formed without overlaying the first image IMG1 .

To compensate for the angular change, the image processor 5 can also apply one or more image correction transform to the sub-section P1 , for example to de-skew the image or to correct a perspective shift. The image correction transform can also be dependent on the hitch angle Θ and/or the pitch angle a. An image correction transform may also be applied to compensate for optical distortion within the third camera C3.

In the above variant, the transverse and vertical dimensions of the sub-section P1 are predefined. However, the image processor 5 may be modified also to vary a horizontal dimension DH and/or a vertical dimension DV of the sub-section P1 in dependence on the hitch angle Θ and/or the pitch angle a. Specifically, the horizontal dimension DH may be varied in direct proportion to the hitch angle Θ; and/or the vertical dimension DV may be varied in direct proportion to the pitch angle a. By varying the dimensions of the sub-section P1 , regions of the first and second lateral images IMG1 L, IMG2L generated by the second and third cameras C2, C3 which might otherwise be obscured by the trailer T (for example as the hitch angle Θ increases) can be incorporated into sub-section P1 . The changes in the horizontal dimension DH can be symmetrical about a first vertical reference line corresponding to the negative equivalent of the hitch angle Θ; and/or the changes in the vertical dimension DV can be symmetrical about a first horizontal reference line corresponding to the negative equivalent of the pitch angle a. Alternatively, the changes in the horizontal dimension DH can be asymmetrical about the first vertical reference line corresponding to the negative equivalent of the hitch angle Θ; and/or the changes in the vertical dimension DV can be asymmetrical about the first horizontal reference line corresponding to the negative equivalent of the pitch angle a. It will be appreciated that the extent of the variations in the horizontal dimension DH and/or the vertical dimension DV may vary depending on the trailer configuration, for example its external dimensions and/or axle location.

A similar technique may be applied to modify the first image IMG1 prior to overlaying the first image IMG1 . For example, the first image IMG1 may be cropped in a transverse direction in dependence on the hitch angle Θ.

A modification of the above embodiment may comprise changing the horizontal dimension DH of the sub-section P1 about the first vertical centre line CLV1 ; and/or changing the vertical dimension DV of the sub-section P1 about the first horizontal centre line CLH1 . The changes in the horizontal dimension DH and/or the vertical dimension DV can be symmetrical. Alternatively, the changes can be implemented asymmetrically.

It will be appreciated that other techniques can be used to determine the hitch angle Θ, for example by directly measuring the angular orientation of a trailer hitch relative to a ball joint mounted to the vehicle. For example, the image processor 5 may be configured to select sub-sections of the first and second lateral images IMG1 L, IMG2L in dependence on the hitch angle Θ of the trailer T.