Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DISTRIBUTED ANTENNA SYSTEM CONTINUITY
Document Type and Number:
WIPO Patent Application WO/2015/151086
Kind Code:
A1
Abstract:
Technologies are described for using optical (a.k.a. Radio over fiber, RoF) and electrical transmission of a plurality of communications services from a plurality of outside sources to a network of users via a distributed antenna system (e. g. for a wireless LAN system). The systems and methods disclosed herein provide a programmable switching matrix for distribution of the communications services and for re-routing the services when a failure occurs. These systems and methods detect when there is a failure of the service to the network or within the network, where the failure has occurred, and how to redistribute the services via a switching network or matrix.

Inventors:
HAREL DROR (IL)
RADIN BORIS (IL)
Application Number:
PCT/IL2015/050313
Publication Date:
October 08, 2015
Filing Date:
March 25, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CORNING OPTICAL COMM WIRELESS LTD (IL)
International Classes:
H04W24/04; H04B7/02; H04B10/00; H04Q3/00; H04W84/12; H04W88/08
Domestic Patent References:
WO2013009283A12013-01-17
Foreign References:
US20060094470A12006-05-04
US20130051278A12013-02-28
Other References:
WAKE D ET AL: "Radio over fiber for mobile communications", MICROWAVE PHOTONICS, 2004. MWP'04. 2004 IEEE INTERNATIONAL TOPICAL MEE TING ON OGUNQUIT, ME, USA 4-6 OCT. 2004, PISCATAWAY, NJ, USA,IEEE, US, 4 October 2004 (2004-10-04), pages 157 - 160, XP010771546, ISBN: 978-0-7803-8491-0, DOI: 10.1109/MWP.2004.1396863
Attorney, Agent or Firm:
FRIEDMAN, Mark (Moshe Aviv tower 54th Floor7 Jabotinski St, 07 Ramat-Gan, IL)
Download PDF:
Claims:
WHA T IS CLAIMED IS:

1. A distributed antenna system (DAS), comprising:

a first plurality of radio distribution/combiners (RDCs) configured for connecting to a plurality of 'Communications services, each of the plurality of communications services provided through at least one sector;

a second plurality of radio distribution/combiner' (RDCs) connected with the first plurality of RDCs, the second plurality of RDCs configured for connecting to a plurality of Optical input Modules (OIMs) for receiving the plurality of communications services, each of the second plurality of RDCs connected with one of the first plurality of RDCs;

a first switching matrix of a first plurality of switches connected at a first end to the plurality of communications services and at a second end to the first, plurality of RDCs for routing the plurality of communications services to the first plurality of RDCs, each of the second plurality of RDCs separately addressable by one RDC of the first plurality of RDCs: a second switching matrix of a second plurality of switches connected at a first end to the second plurality of RDCs and at second end to the OIMs for routing the plurality of communications services to the pluralit of OIMs, each of the OIMs separately addressable by each RDC of the second plurality of RDCs; and

a control module configured for routing the plurality of communications services to the first plurality of RDCs and for routing the plurality of communications services to the plurality of OIMs, wherein

the control module is configured, in the event of a failure of a first communications service, for controlling routing of a second communications service through the RD modules and the switching matrices to at least one of the plurality of optical input modules (OIMs) to provide a substitute service for the first failed service.

2. The system of claim 1 , further comprising a plurality of detectors confi ured to detect that the first communications sen'ice of the pluralit of communications services has failed.

3. The system of claim 1 , wherein the control module further comprises hardware and software for controlling the routing, and the controlled routing disables first communication path for the first failed communications service and connects a second communication path for the second communications service of the plurality of communications services t provide the substitute service.

4. The system of claim 3. wherein the switching matrix is further configured far eontrolling routing of a second of the plurality of communications services through the RDC modules to the plurality of optical input modules (OIMs) to provide a substitute service for a second failed service,

5. The system of claim Ϊ , wherein the plurality of R DC modules comprises a first plurality of RDC modules connected to a second plurality of RDC modules, the distributed antenna system further comprising:

a head end unit (HEtJ) module including the first plurality of RDC- modules and a first switching matrix of the plurality of programmable switches, the HEli configured for connecting the plurality of communications services to the first plurality of RDC modules through the first switching matrix; and

an optical interface unit (OIU) module including the second plurality of RDC modules and a second switching matrix of the plurality of programmable switches, the OH.) configured for connecting the second plurality of RDC modules to the plurality of OIMs through the second switching matrix.

6. The -system of claim 1, wherein the plurality of O!Ms are connected to a plurality of clients, wherein the plurality of clients are wireless devices selected from the group consisting of cellular phones, smart phones, wireless lap-top computers, tablet computers, pad computers and sensor networks.

7. The system according to any of claims 1 through 6, wherein the pluralit of communications, services comprises at least two services selected from the grou consisting of WiFi, Ethernet, DSL, LTE, Wireless Access Points (WAPs), PCS. 2G, 3G, 4G, Remote Radio Heads (RKH), Radio over Fiber Optic Cable (RoF), WiMax, LAN, CDMA, TDM A, GSM. WDM and WL N.

8* The system according t any of claims 1 through 7, wherein the distributed antenna system is configured to serve a geographic area selected from, the group consisting of a building, an area of a building and one or more rooms. of a building.

9. The system of claim .2, further comprising a network' configured for providing the plurality of communications services, wherein the control module is in communication with the network, and wherein, the detection by the plurality of detectors that the first of the plurality of communications services has failed further comprises the steps of:

detecting at the network whether the first of the plurality of communications services has failed; and

communicating the detected failure at the network to the control module.

10. The system of claim 2, wherein:

each of the plurality of DC modules, each of the plurality of Q1M modules and each of the plurality of communications services are in communication with at least one of the pluralit of detectors; and

the detection by the plurality of detectors that the first communications service has failed comprises the step of detecting with at the at least one detector whether a current,, voltage or power level of the first communications service has dropped below a predetermined level, th predetenrnned level being indicative of a failure of the first communications service.

1 1. The system of claim 1, wherein the control module is configured for determining- that at least one .communications service of the plurality of communications- services is operational by:

determining available bandwidth of the at least one communications service; and controlling switching t provide a path of the least one operational setyi.ce to the first OIM of the plurality of OIMs based upon the available bandwidth.

12. The system of claim 1 1 , wherein, the step of providing the path based upon the available bandwidth further comprises the steps of:

obtaining configuration data associated with a client;

determining one or more communications services connected to the OIM thai the client is authorized to access; and

controlling switching to provide a path of the least one operational service to the first OIM of the plurality of OiMs based upon the access authorization of the client.

13. distributed antenna system (DAS), comprising:

a first plurality of radio distribution/combiners (RDCs) configured for connecting to a plurality of communications services, each of the pluralit of -communications- services provided through at least one sector;

-a second plurality of radio distribution/combiner (RDCs) connected with the first plurality of RDCs, the second plurality of RDCs configured for connecting to a plurality of Optical Input 'Modules (OiMs) for receiving the plurality of communications services, each of the second plurality of RDCs connected with one of the first-plurality of RDCs;

a first switching matrix of a first plurality of switches connected at a first end to the plurality of communications services and at a second end to the first plurality of RDCs tor routing the plurality of communications services to the first plurality of RDCs,. each of the second plurality of RDCs separately addressable by one RDC of the first plurality of RDCs; a second switching matrix of a second plurality of switches connected at a first end to the second plurality of RDCs and at a second end to the O! s for routin the plurality of communications services to the plurality of OlMs, each of the OlMs separately addressable by each RDC of the second plurality of RDCs; and

a control module configured for routing the plurality of communications services to. the first plurality of RDCs and for routin the plurality of communications sendees to the plurality of OlMs;

wherein the control module is configured, in the event of a failure of a first communications service, for controlling routing of a second communications service through the RDC modules and the switching matrices to at least on of. the plurality of optical input modules (GIMs) to provide a substitute service for the first failed service.

1 . The distributed antenna system of claim 13, further comprising a head end unit (HEU), the HEU including the first plurality of RDCs and the first switching matrix and an optical input unit (QUI), the OIU including the second plurality of RDCs and the second switching matrix, the first plurality of RDCs further configured for combining the plurality of communications services into a broadband communication signal or for expanding the broadband communication signal into a plurality of communications services.

15. The distributed antenna system of claim 13, wherein each of the plurality of communications services has a number of redundant paths through the first switching matrix equal to a quantity of communications sectors times a quantity of the first plurality of RDCs.

16. The distributed antenna system of claim 15, wherein each of the plurality of GIMs has a quantity of redundant paths through the second switching matrix equal to a quantity of communications sectors times the second plurality of RDCs.

17. A method for controlling a distributed antenna system (DAS), the method comprising:

arranging a. plurality of radio distributor/combiner (RDC) modules for connecting a pluralit of communications services with a plurality of optical input modules (OiMs), each of the plurality of communications services provided through one or more sectors;

providin a plurality of primary communication paths for the plurality of communications services through the plurality of RDC modules to tire plurality of OlMs; detecting, a failure of at least one first communications service of the. pluralit of communications services; and controlling routing of at least one second communications service of the plui'ality of communications services from' the plurality of primary eonimuriieation paths to at least one secondary redundant path to provide a substitute service for the failed first communications service.

18. The method of claim 17, wherein:

the plurality of RDC modules comprises a first plurality of radio distrihutor/comhiner (RDC) modules and a second plurality of RDC modules

the first pluralit of RDC modules are configured for connecting the plurality of communications services with the second plurality of RDC modules and for combining the plurality of communications services into a broadband communication signal or for expanding the broadband communication signal into a plurality of communications services; and

the second plurality of RDC modules are configured for connecting the broadband communication signal with the plurality of OlMs.

1.9. The method of claim 17, further comprising;

restoring the at least one first failed communications service;

controlling switching of the at least one second communications service from the at least one secondary redundant communication path back to the plurality of primary communication paths; and

controlling switching of the at ieast one first failed communications, services on the plurality of primary communication paths,

20. The method of claim .17, further comprising disconnecting the at least one failed first communications sen ce, wherein the step of controlling routing, of at least one second communications service of the plurality of communications services from the plurality of primary communication paths to at. least one secondary redundant path further comprises the steps of:

determining an: operational, substitute communications service for use as the at least one second, communications service from among the plurality of comrn uni cati ons seryi ees :

configuring the at least one secondary redundant .communication path using the operational substitute communications service in. place of the at least one tailed first communications service; and connecting the substitute service to the secondary redundant communication path.

21. The method of claim 17. wherein the plurality of communications services throug the plurality of RDC modules to the pmrality of OlMs further includes a third communications service to the first 01M of the plurality of OI s, aid further comprising: detecting an. occurrence that the third communications service has failed, and controlling routing of the at least one second communications services from the plurality of primary communication paths to the plurality of secondary paths to provide a substitute service for the failed third communications service.

22. The method of claim 39, further comprising:

determining' available bandwidth of a plurality of communications services remainin operational after the fi st communications service has failed; and

selecting the at least one second communications services for routing to the plurality of secondary communication paths based .upon, the available bandwidth,

23. The method of claim: 22, wherein, the step of determining the available bandwidth further comprises the steps of:

obtaining configuration dat associated with a remote antenna unit, and a client of the failed first communications services;

•determining the one or more communications services connected to the second plurality of RDC modules that the client is authorized to access; and

selecting at least a second of the plurality of communications- services for routing to the plurality of secondary communication paths based upon the available bandwidth and based upon the access authorization of the client of the at least one failed communications service.

24. The method of claim 23, wherein the -step; of detecting the occurrence of the failure of the at. least one first communications services further .comprises detecting whether the at least one first communications service ha tailed at a network input

25. The method of claim 24, wherein the step of detecting the occurrence of the failure of at the least one first communications service is accomplished by a customer complaint.

Description:
DISTRIBUTED ANTENNA SYSTEM CONTINUITY

RELATED APPLICATIONS

fOO I] This application claims the benefit of priority under 35 U.S.C, § 1 19 of U.S. Provisional Application No. 61/972,659 filed. on March 31, 2034, the content of which is relied upon and incorporated herein by reference in its entirety.

TECHNICAL FIELD

{001 ) 2} The technology of this disclosure relates generall to reliability of antenna distribution systems using both optical fiber and metallic conductors, and more particularly to distribution and re-routing of communications services when a failure occurs.

.BACKGROUND

[0OO3J Wireless communications services are expanding rapidly into an ever-wider array of communications media. WiFi or wireless fidelity systems, for example, are now commonplace and being used in a variety of commercial and public settings, such as homes, offices, shops, malls, libraries, airports,, and the like. Distributed antenn systems are commonly used to improve coverage and communicati n of WiFi communication systems. Distributed antenna systems typically include a plurality of spatially separated antennas. The distributed antennas systems communicate with a variet of such commercial cominmiieations systems to distribute their services to clients within range of the distributed antenna system.

[00041 One approach to deploying a distributed antenna system involves the deployment, in a location of multiple radio frequency (RF) antenna coverage areas, such as multiple access points, also referred to as "antenna coverage areas," Antenna coverage areas can have a radius in the range from a few meters u to twent meters, as an example. Combining a number of access point devices creates an array of antenna coverage areas within the location. Because each of the antenna coverage areas covers a small area, there are typically only a ew users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in many locations of a building or throughout a building or other facility to provide distributed antenna system access to clients within the building or facility, (0005) These antenna systems provide efficient distribution of communications services to clients, or a set of client devices, in. a desired, area of a location, such as a building or an array of buildings. Within the client area, distribution of the services may be provided by an internal distribution network that is a part of the distributed antenna system. The network may include optical fibers and conventional wired cables for distributing a variety of communications services. The more widely these services are distributed, the greater the chance fo a failure. The failure may be caused by a broken connection, a component failure or the failure of the service itself from the service provider.

(Ό006] There is a need for improvement in the reliability of the distributio systems that provide these communications services. What is needed is a better way to detect failures to communicate and to overcome the failures that may occur in large networks of users.

SUMMARY

[000-71 Technologies are described for using optical and electrical transmission of a plurality of communications services from a plurality of outside sources to a network of users via a distributed antenna system. The systems and methods disclosed herein provide for distribution of the communications services and for re-routing the services when a failure occurs. These systems and methods detect when there is a failure of the service to the network or within the network, where the failure has occurred, and how to redistribute the services via a switching network or matrix to overcome the failure.

|0008] in a first embodiment of the present disclosure a distributed antenna system (DAS) includes a switching matrix of a plurality of programmable switches configured for connecting a pluralit of communications services to a plurality of optical input modules (OIMs). Each of the plurality of services is provided througli at least one sector. A plurality of radio distributor/combiner (RDC) modules is configured for combining the pluralit of communications services into a broadband . -communication signal or for splitting a broadband communication signal into a plurality of communications services. A control module is configured for controlling routing of a second communications: service of the plurality of communications services through the switching matrix to the plurality of QIMs to provide a substitute service for a first failed communications service o f the pl urali ty of communi cations services.

[00093 In another embodiment of the present disclosure, a distributed antenna system (DAS) includes a first plurality of radio di stribution/combiners (RDCs) configured for connecting t a pluralit of communications services, each of the plurality of communications services provided through at least one sector, A second plurality of radio distribution Combiner (RDCs) is connected with the first pluralit of RDCs. The second plurality of RDCs is W configured for connecting to a plurality of Optical input Modules (OIMs) for receiving the plurality of communications services. Each of the second plurality of RDCs is connected with one of the first plurality of RDCs. A first switching matrix of a first, plurality of programmable switches is connected at a first end to the plurality of communications services and at a second end to the first plurality of RDCs for routing the plurality of ' .communications services to the first plurality of RDCs. Each of the second plurality of RDCs is separately addressable by each RDC of the first plurality of RDCs. A second switching matrix of a second plurality of switches is connected at a first end to the second plurality of RDCs and at a second end to the OIM for routing the plurality of communications services to the plurality of OIMs. Each of the OIMs is separately addressable by eacli RDC of the second plurality of RDCs. A control module is configured for routing the plurality of communications services to the first plurality of RDCs through the first switching matrix and for routing the plurality of communications services to the plurality of OIMs- through the second switching matrix:. The control module is configured, in the event of a failure of a firs communications service, for controlling routing of a second communications, service through ' the RDC: modules and the switchin matrices to at leas one of the plurality of optical input modules (OIMs) to provide a substitute service for the first failed service,

{Ο0ΊΟ] Another embodiment of the present disclosure is a method for controlling a distributed antenna system. The method includes a step of arranging a plurality of radio distnbufor/combiner (RDC) modules for connecting a plurality of communications services with a plurality of optical input modules (OIMs). Each of the plurality of communications services is provided through one or more sectors. The method also includes providing a plurality of primary communication paths for the plurality of .communications services through the plurality of RDC modules to the plurality of OIMs, detecting a failure of at least one first . communications sen'ice of the plurality of communications services, and controlling routing of at least one second communications service of the plurality of communications services from the plurality of primary communication paths to at least one secondary redundant path to provide a substitute service for the failed first communications service. |0011 | The foregoing summary is illustrative only and is not intended to be in any way limiting, in addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description. BRIEF DESCRIPTION OF THE FIGURES

1.00-12 J The foregoing and other Features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction wit the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to he considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:

10013] FIG. 1 depicts a schematic diagram of an exemplary distributed antenna system configured to distribute communications signals within an installation, such a a building. The communications signals illustratively includes digital data;

[001.4) FIG. 2 depicts an alternate schematic view of a distributed antenna system for providing a plurality of communications services to a plurality of users;

[0015} FIG. 3 is a block diagram of two functional blocks tor a distributed antenna system (DAS), a head end unit (HEU) and an optical input unit (CMU);

[0016] FIG. 4 depicts schema for communications services-, such as for a building, using building blocks for services (s) and sectors (e);

(0017) FIG. 5 depicts an implementatio of a distributed antenna system for a building, using the structure of FIG. 3, a head end unit and an optical input unit, and the schema of FIG.4;

[0018) FIG. 6 uses the implementation of FIG. 5 to depict an example of a failure in a single service/sector and a possible recovery scheme to minimize any interruption of communications services to the affected service/sector; '

[0019] FIG. 7 is a schema for communications service that continues with the example of the failure depicted in ' FIG. 6, depicting a change in the head end unit RF matrices switching scheme following the failure;

J 0020) FIG. 8 depicts another example of a failure, this time a broader failure of a .combination of services for an area, and a possible recovery scheme t -minimize interruption of communications services to the entire sector;

[0021) FIG. continues with the example of the failure of FIG. 8, depicting the change in switching scheme following this wider failure;

[0022] FIG. 10 depicts possible locations of power detectors to detect failures within the distributed antenna system, so as to indicate whether a single service, a single sector, or a combination of services sectors has failed; [0023] FIG. 11 is a -flowchart depicting one method for minimizing communications interruptions according to the present disclosure; and

{002 j FIG. 12 is an additional flowchart depicting an alternate method for minimizing communications interruptions according to the present, disclosure; all figures are arranged according to at least some embodiments presented herein.

DETAILED DESCRIPTION

10025] m the following detailed description, reference is made to the accompanying drawings, which form, a part hereof, in the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings., and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein, it will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, can be arranged, substituted, combined, separated, and designed in. a wide variety of different configurations, all of which are explicitly contemplated herein,.

j0026| The technology of this disclosure relates generally to reliability of antenn distribution systems using both optical fiber and metallic conductors, and more particularl to distribution and re-routing of communications services when a failure occurs,

[0027] Briefly stated, technologies are generall described for -using optical and electrical transmission of a plurality of ' communications services from a plurality of outside sources ' to- a. network of users via a distributed antenna system. A distributed antenna system (DAS) includes a switching matrix of a plurality of programmable switches configured for connecting a plurality of communications services to a plurality of optical input modules (OIMs). Each of the plurality of services is provided through at least one sector, A plurality of radio distributor/combiner (RDC) modules is configured for combining the plurality of communications services into a broadband communication signal or for splittin a broadband communication signal into a plurality of communications services. A control module is configured for controlling routing of a second communications service of the plurality of communications services through the switching matrix to the plurality of OIMs to provide a substitute service for a first failed communications service of the plurality of communications services.

10028] In describing more fully this disclosure, we make reference to the following definitions. By the term '"communication service ' ' is meant digital data services including but not limited to Ethernet, WLAN, Worldwide Interoperability for Microwave Access (WiMax), Radio over Fiber (RoF), Wireless Fidelity (WiFi), PCS band, 2G, ,3G, 4G, GSM, Digital Subscriber line (DSL), and Long Term Evolution (LTE), etc.

1002-9} By the term "distributed antenna system" or DAS is meant an antenna system including a plurality of spatially separated antennas. The DAS may communicate with a variety of such commercial communications systems to distribute the services to clients within range of the distributed antenna system. The distributed antenna system may be an optical fiber-based distributed antenna system, but such is not required, and such systems may include both optical fibers and standard wired communications cables, such as those with copper conductors. It will be appreciated that the distributed antenna system may be a wire-based or a wireless system.

{ ' 00301 By the term "head end unit (HEU)" is meant a plurality of RDCs and a switching matrix for combining a plurality of communications signals into a broad band signal for further transmission, such as to an optical input unit, and for splitting a broadband signal from an optical input unit into individual communication signals, thus allowing, two-way eommuni cat i cms .

10031 ] By the term "optical input unit (OIU)" is. meant a plurality of RDCs and a switching matrix for transmitting a broadband electrical signal from a head end unit to a destination, such as t a plurality of optical input modules. The optical input unit also receives a plurality- of broadband electrical signals from the plurality of optica! input modules and transmits them in the opposite direction, such as to the head end unit, thus allowing for two-way communications.

(0032J By- the term "radio distribution/combiner (RDC) is meant a device that combines narrowband signals into broadband signals and splits broadband signals into nan-owband signals. The signals are illustratively electrical signals but may be an optical or other signal. The RDCs may be RDC cards, e.g., circuit boards with the appropriate combining and splitting functionality well known in the art

[0033] B the term "optical input module" is meant a device ' that converts broadband electrical signals into broadband optical signals -and -vice versa,

10034} B the term '"remote antenna unit (RAU)' ? is meant a device connected to an optical input module that converts and filters a broadband optical signal int a narrow electrical signal and vice versa. [0035| By the term "narrowband communication signals '* is meant a specific band of frequencies of operation of a communication service that a provider is permitted to transmit under communication guidelines and permissions.

[01)36] By the term "broadband communication signals" is meant a band of communication signals that is made up of two or more narrow bands of communication signals,

[0037] By the term "clients or recipients of these services" is meant devices such as cellular phones, smart phones, wireless computers, wireless lap-top computers, mobile devices such as tablet computers, pad computers, personal digital assistant, and wireless sensors or networks of sensors, such as mesh network sensors. These examples are not intended t be limiting, and the present, disclosure is not limited to these examples of client devices.

jO038) This disclosure is generally drawn, inter alia, to methods, apparatus, systems, devices, and computer program products related to insuring the reliability of communications systems. In particular, the disclosure concerns the input and distribution of a wide variety of radio- frequenc and digital communications to an area,, such as a building. The area may be sufficiently large to require sub-division into a plurality of sectors, such as floors of the building, or other suitable subdivision.

{00-39} In -the present disclosure, each of these communications services is separatel considered, as a "service. ' ' As discussed below; the provision, and distribution of each service is monitored to insure its reliability. The distribution of each service to one or more areas or "sectors" is monitored so that if a failure occurs, service to the affected sector can be quickly restored. Thus, the present disclosure concerns providing; services to a plurality of "service/sectors,." Le.„ each service to each sector is considered separately, tracked and. monitored. As will be seen in the discussion below, a first service, such as a iFi service, may be labeled SI. The service may be provided to one or more areas or sectors, e.g., CI or C2, such as the first and second floors of a building. In this disclosure, the provision of service S i to : the sector associated with th first floor is thus termed *'S1 ' CV e.g. * WiFi service to the first floor of the building, which may be a -centrally-located hot spot. " The same service may also be provided to the second floor, and thus would be termed <? S1C2. ?? These labels aid in discussing switching schemes and methods for tracking reliability, detecting failures, and restoring services to the affected sectors.

[0040] Turning ' now to the drawings, FIG, 1 depicts an example of a prior art distributed antenna system (DAS) 100 for a first 10L a second. 102 and a third 103 floor, .respectively, of a building 105, in this example a pluralit of communications services 1 10 are provided, such communications coming rom first, second and third base stations 1 12a, 112b 1 12c over cables 1 13a, 1 13b, 1 13c respectively. The services are input to a head end u it (H . EU) 120 for routing through distributed antenna system TOO ' . The distributed antenna system 100 is controlled by a computer- 360 with operator input device 1 62, The computer may include local memory and may have access to remote memory, as well as computer programs stored on at least one non-transitory medium, either locally o remotely. The computer 160 may be connected directly to the head end unit 120 and may be in control of othe elements of the distributed antenna system vi wired connections or remotely, as shown. The computer system may also control an optical interface unit 125. which has been previously defined, [0041] The communication services are illustratively routed through distributed antenna system 100 as shown in FIG. 1. Cable or hard wire outputs 118 from the head end unit 120 may connect to the optical input unit 125 and the to interconnect units 130, 140, 1 0 for serving the firs second and third floors 101> 102, 103 of building 105, Interconnect units 130, 140, 150 provide mechanical interlaces and power to the cable outputs from the interconnect units.

[0042} The computer 160 ma be used to control the head end unit, the optical input unit and the interconnect units of the system. The computer may. also control or monitor switches and switch matrices of the head end unit and optical input unit useful in operation of distributed antenna systems. The computer may he supplied with a non-transitory memory and a computer program useful for routing the signals through the system,

10 3- Within each floor, the sen-ices are then provided separately, as shown. Thus, the first floor 101 may be provided, through it interconnect unit 130, with an Ethernet wire distribution 132, a Wi-Fi hot spot 134, and a telecommunications antenna 136. in this example, similar services may he provided to the second and third, floors 102, 103; through their interconnect units 140. 150 with Ethernet lines 142, 152, ' Wi-Fi hot spots 144, 154 and telecommunications antennas 146, 156.

[0044J FIG. 2 depicts an alternate view of a prior art distributed antenna system 200. In this view, head end unit 230 receives communications services inputs 234a, 234b, 234c. which are applied over cables 235a, 235b 235c to a plurality of radio distributor combiners/splitters (RDCs) 236a,b,c. These services are provided by base stations of service providers (not shown). The head .end unit may ' also include a power supply or power source 220. The head end unit includes the plurality of radio distributor/ combiners/splitters (RDCs) 236a, 236b, 236c for combining the signals into a broadband, output signal 242 in one direction. RDCs may be RDC cards, e.g,, circui boards with the appropriate functions well known in the art. The RDCs also provide for splitting of a broadband input in the other direction, in other words, the RDCs split the broadband signal into its narrow band component parts for transmission in the opposite direction, thereby allowing for two-way communication,

100451 In this embodiment, the broadband signal 242 is transmitted via cable (shown as element M B in FIG. 1 ) to the optica! input unit 250, which ma also be equipped with a power source or power supply 255. Opticai input unit 250 includes a second plurality of radio/ distributor combiners (RDCs) 256a, 256b, 256c, which may be RDC ca ds* e.g., circui boards with the appropriate functions well known in the art. In this embodiment, the RDC cards of the optical input unit 250 typically do not perform signal combihirsg or splitting, although they may be capable of such action. The optical input unit 250 passes the broadband signal 25 to a plurality 260 of optical input modules (OlMs) 261a, 261b, 261c. As shown in FIG. 2, each GI may sendee three remote antenna units (RAUs) with a broadband signal 265. Hence, the OIMs in this embodiment may serve up to nine clients. {0046] As- shown in FIG. 2, optical input ' module 261 a has three outputs, 271a, 271b, 271c for sending broadband signal 265 to three remote antenna units 286a, 286b, 286c. Each opticai input module further has an electrical to opticai and an optica! to electrical switching pair (not shown). More specifically, the broadband electrical signal 259 that is generated by RDC 250 and applied to optical input modules (OIMs) 263 a, 261 b, 261 c is converted by the optica! input modules into broadband optical signals 265 for transmission to the remote antenna units (RAUs).

[0047} At the " RAUs the broadband optical signal is co verted back into an electrical signal and filtered into a - narrowband ' · electrical signal whjch¼ transmitted, to the clients. To effect the conversion at the RAUs of the optical signal t electrical signal and vice-versa., each remote antenna .unit is likewise provided with an electrical to optical and an optical to- electrical switching pair (not shown). Hence, the broadband opticai signal 265 which is applied to each remote antenna unit is converted by the RAUs into a filtered electrical signal for transmission to clients 292, 294, 296 as shown. With client 292, which is illustratively a personal computer, the remote antenna unit provides the electrical signal as an Ethernet service. With clients 294 and 296 the electrical signal is wireless. These and other ways for delivering communication services to clients through a distributed antenna service are well known in the art,

[0048| As previously described, the communication services may be narrow band electrical signals provided by service providers over different hands: of frequencies such as 400 MHz to 2700 MHz frequency range, such as 400-700 MH 700 M.Hz-1 GHz, 1 GHz- i .6 GHz, and 1.6 GHz-2.7 GHz, as examples. Radio Input Modules may be used as part of the: service input.

0 491 The number of communication services, the number of OlMs, and the number RAUs are a matter of design.

£0050] Having thus provided an overview of a distributed antenna system, we now turn to features that are provided by this disclosure.

{0051 J FIG. 3 shows a distributed antenna system (DAS) 300 of this disclosure. DAS 300 comprises a head end unit 301 with a first plurality of radio distribution/combiners (RDCs) 309a, 309b, 309c and a first switching matrix 305 of a first plurality of programmable switches 306a, The distributed antenna system .of FIG- 3 also includes an optical input unit 302 with a second plurality of radio distribution'combmers (RDCs) 31 la, 311 b, 3 H c and a second switching matrix 307 of a second plurality of switches 306b. Head end unit 301 also includes a : plurality of service communications services 304 applied to input ports (not shown), and a pluralit of outputs 316 applied to optical input modules (OIMs) 320, Head end unit. 301 also includes a primary control module 330, including a microprocessor 332 in communication 334 with memory 336, for managing, the head end unit and operating the switch matrix 305. Optical input unit (GIU) 302 also includes a secondary control module 350 with a microprocessor 352 in. communication 354 with a memory-' 356 for controlling the optical input unit and its switching matrix 307. There is a hard-wire connections (not shown for simplicity) amon each of the RDCs of the head end unit and among each of the RDCs of the optical input unit. These connections make it possible for additional routing: of signals and services in the event of failures. Controllers 330, 350 may be hard wired 340 together a shown or may have a wireless connection in order to allow cross-talk between the controllers. The controllers manage the distributed antenna system and the switching matrices to work around failures and to provide reliable services. An IP connection protocol is used to govern the operation of the system, in some embodiments.

10052} The first plurality of radio di stribution/combiners (RDCs) 309a, 309b, 309c is configured for connecting to a plurality of communication services. The services are shown as 3044 through 304-12. RDCs 309a, 309b, 309c may be RDC cards- . (circuit, boards) capable of combining and splitting signals of the plurality of services ' as previously described. In one embodiment, combining signals may be accomplished by superposition of the narrowband channels info a broadband output signal. Splitting of signals (in the opposite direction) may be accomplished by demultiplexing or filtering. Eac of the plurality of communications services is provided through at least one sector as previously described. RDCs 309a, 309b, 309c are in communication with. controller 330 via hard- wired connections 310a, 310b, 310c.

[0053] The second plurality of radio ' distribution/combiner ' (RDCs) 311a, 31 1 b, 3 1c is connected with the first plurality of RDCs and are configured for connecting to a. plurality of Optical input Modules (OIMs) 316-1 through 316-12 for receiving the plurality of communications services, Each of the second plurality of RDCs is connected wi th one of the first plurality of RDCs, as shown later in the drawings. RDCs 31 la, 31 1b, 31 ic are in eommuni cation With controller 350 via hard-wired connections 3.12a, 312b, 312c.

[0 54J hi one embodiment RDCs 31 l a, 31 lb, 31.1c may also be RDC cards (circuit boards) but these RDCs unlike their counterpart RDCs 309a, 309b, 309c, do not have or do not use their capability to combine signals or split them out since the signal 360 applied to RDCs 31 . la, 3 ί lb, 31 lc is a broadband signal as are any signals being applied to the RDCs 3 1 1a, 31 l b, 3 l ie from the OIMs 316. In. the distributed antenna system, the optical input unit 302 transmits a broadband input signal to and from the head end unit and it passes a broadband signal to and from the plurality of OIMs 316-1 through 16- 1 .

(0055] Each OIM may service a plurality of remote antenna units (RAUs}. As shown in Fig. 3, each OIM in this embodiment services three RAUs, 320-1 through 320-36. Other combinations may b used, in the event of failures, the OIMs and the RAUs may be tasked to provide additional services, up to their capacity, through the switching matrixes. This advantage of capacity steering of the distributed antenna system is explained later.

f0056»l As indicated above, the head end unit .301 includes the first switching matrix 305 of a first plurality of programmable switches 306a for routing the plurality of communications services to the first plurality of RDCs. As also previously explained, the optical input module 302 further includes the second switching matrix 307 of a second plurality of programmable switches 306b for routin the plurality of communications services from the second plurality of RDCs 31.1a, 3 M b, 31 lc to the plurality of OIMs, each of the OIMs separately addressable by each RDC of the second plurality of RDCs,

|0057J The programmable switches 306a, 306b are managed by control modules 330, 350. More specifically, the memory 336, 367, in control modules 330, 350, respectively, include a program of instructions for managing which of the plurality of programmable switches 306a,b are. on or off at any point in time. The switches of the plurality of switches, that, are turned on by the program of instructions at a point of time will define the route that the communication signals 304 will take through the head end unit and the optical input unit at that one point in time. j 0S8] In particular, the distributed antenna system 300 is configured such that in the event of a failure of a first communications service, the control modules 330, 350 control routing of a second communications service through the switching matrices and ' RDC modules to at least one of the plurality of optical input modules (OIMs) to provide a substitute service for the- first failed service. Specifically, the control modules will detect the failure of the first communication service based o signals provided by a. detector as explained below, and in response turn off the switches that were previously set to route the first communication signal through the system, Illustratively, the control modules will then turn on programmable switches to allow the second communication service to be routed to the optical input modules (OIMs) that were previously provided with the first communication service. In this way, on. failure of the first communication service this disclosure redistributes the second communication service such that it illustratively sendees not only to the OIMs previously serviced, but also the OIMs that were affected by fee failure of the first communication service.

[0059} in the distributed antenna system 300 of this disclosure, each of the plurality of communications services and sector 304-1 through 304-12 may be routed in accordance with a primary path in addition to a number of redundant paths as explained below that may be stored in registers stored in memory 336, 356, respectively, in the control modules 3:3.0, 350. When the control module detects a failure of the first communication signal, the control module determines to use the second communication signal, for example, as the substitute communication for the failed communication signal. The program of instructions in memory then determine the redundant path tor the second communication signal that will allow the second communication signal to also be provided to the OIMs experiencing the failed service. The program of instructions then sets the programmable switches in order to activate the redundant path so as to allow the second communication signal to be . routed to the OIMs experiencing the failed service in addition to the continued routing of the second communication signal to the OIMs prior to the failure.

J0060| Before turning to specific examples of the routing and rerouting of communication services by this disclosure in response to a failure, we . first explain furthe detail about the services and sectors that are distributed by the DAS of this disclosure so that the specific examples of using this disclosure are more readil apparent.

{006.1 } " Hie distributed antenna system of the present disclosure is capable of providing a number of services, where each service S- is an electrical signal for transferring data. Data may encompass voice and non-voice communications using a particul r wireless technology, e.g. CDMA, in a particular frequency channel. It is understood that, each Service uses its own channel with no overlap: between channels, Each, of the services may be provided through a number of sectors C, for example, as shown above, floors of a building, or portions of a floor, , and so forth.

[0062] A sector C is an allocation of the service S into a manageable unit with all the sectors of a service being allocated throughout the system on a sector by sector basis. The sector C ma be defined as a "sub-service" since it provides wireless connectivity using a certain wireless technology (e.g. CDMA) in a certain frequency channel. All sectors that belong to the same service use the same wireless technology (e.g. CDMA) but are usually separated by frequency or by code or by time or by other interference mitigation mechanism.

( ' 0 631 The distributed, antenn system of this disclosure uses a plurality of antennas distributed across the building or other area for which service is being provided. The antennas may be grouped so that each: group may serve a different area out of a number of areas of the building. Each group may serve different set of sectors belonging to different services "Service/sector, * ' which may be abbreviated as Service /SectorN or SmCn, e.g., S lCi, S2C2, and so forth, in which, the Sendee (type of communication) is designated as S and the particular sector e.g., floor or other area) is designated as C.

In one example, a large building is divided to three areas. Each area is served by a different group of antennas and each group of antennas is serving a different Set of Service/Sectors. Fo example: the antennas in floors 1 -5 may form a group Al serving service 1 sector! and service 2 sector 1 (S i CI : S2C 1 ), the antennas in floors 6-10 may form a group A2 serving service 1 seetor2 and service 2 sector 3 (S1 C2; S1 C2), the antennas in floors 1 1 - 15 may form a group A3 serving service I sector3 and: service 2 sector 3 (S 1C3; S1 C3),

10065} hi terms of the architecture to. implement the foregoing allocation of services/sectors, a system according to the present disclosure may use two modules shown in FIG. 3; namely, the head end unit 301: and its switch matrix 305 and the optical input unit 302 and its switch matrix 307. Head end unit 301 may be located near the communications base station service inputs, a shown,- for example, for head end unit 120 in FIG. 1 , The head end unit may comprise a plurality of RDC elements, as previously discussed, for example an RDC element in communication with .-an optical input unit and an interconnection unit on each floor or near each service area. The head end unit is used for connecting: the distributed, antenna system to the base stations or more specifically to the Service/Sector ' ports to which communicatio services. . 3-04-1 to 304-12 are applied. The Service/Sector ports are connected to Radio Distributer/Combiner (RDC) elements 308 , 308b, 308c.

[ 66| The number of RDC's that the HEU and the OR ) include determines the number of the different basic ''service sector" combinations that the DAS supports. According to the example provide in FIG, 3, three RDC's are used in the HEU and in the OIU, which enables the creation of three basic "service/sector" combinations (M). Wi th basic ways to order the RDCs in deliverin service/sector combinations, it is . possible to create ! or six different ways in which to order the RDCs, that is, configure the order of the RDCs, to deliver services to Areas i , 2, 3 (shown in FIG. 5). Each "Service/Sector" 104 ma be connected through a software controlled switch 306a, 306b to each of the RDC's. This allows to route to each of the RDC's any combination of " service/sectors '

[0067] With the foregoing background on delivery of communications services/sectors throughout a building and stilt referring to FIG. 3, we turn now to control modules 330, 350, respectively and more particularly to the program of instructions for managing which of the pluralit of programmable switches 306a, 306b are o or off at any point in time. FIG, 4 depicts an illustrative schema for communications services, such as for a building, using building blocks fo sen- ices (s) and sectors (c). in this schema, the building is divided into three areas where each area is served by twelve RAUs, The three areas may be, for example, floors of a three-floor building. Each of the RAUs at each of the areas is serving four services SI , S2, S3 and S4, However in each area different sectors of these services are provided. At area 1 : and at area 3: S jCi+SsC-i+SjCi- $ 4 Cj . One head end unit 301 and one optical input unit 302 are illustratively used to build this distributed antenna system.

[0068) FIG. 5 shows the interconnection between a head end unit (HEU) 301 and an optical input unit OIU 302 and the constellation of the HEU and the OIU switch matrixes 305, 306 required for structuring the distributed antenna system DAS 300 according to the schema of FIG. 4. The distributed antenna system 300 interconnections between the head end unit 301 and the optical input unit 302 and the head end unit and optical input unit .switch matrixes 305, 307, The elements in FIG. 5 are very similar to like elements in FIG. 3, except . for the individual connections 501 , 502, 503 between RDCs 3-08a-31 1c, 308b-3.Ho and 308c-31 1 a. The connections are also labeled with the particular Service/Sectors that are broadband connected through these connections.- Note that in this embodiment, each RDC connected pair handles a broadband signal, but each is different. Each broadband signal includes communication services S I , S2, S3, and $4; however, the sectors C found in the communication services for each broadband signal is different. For example, broadband signal 309a includes sector C3, broadband signal 309b includes sector C2, and broadband signal 309c includes sector CI . These particular Services/ Sectors that are connected for combining in the particular DC are selected by a controller 330 or 350 (shown in FIG. 4). In one embodiment, the connections between RDCs 308a, 308b, 308c and RDC 311 a. 31 lb, 31 1c are made by metallic lines, e.g., copper.

[0069] The distributed antenna system DAS 300 in FIG. 5 serves three areas: namely, Area 1 is served by four OlMs, 316-1 through 316-4; Area 2 by four OlMs; and Area 3 by four OIMs, Each ΟΊΜ can handle three remote antenna units, for a total of twelve RAUs for Area 1 : twelve RAUs for Area 2; and twelve RAUs for Area 3, There are 36.RAU's possible by the illustrated architecture of ' FIG, 6. The twelve RAUs in each Area recei ve a broadband optical signal made up of four narrow band optical signals. For example, the broadband signal delivered, to each of the twelve RAUs in Area 1 may contain S C3, S2C3, S3C3, S.4C3.. Each of the twelve RAUs in Area: 1 will be configured to filter out all but one of the narrow band signals so that only one of S 1C3, S2C3, S3C3, and S4C4 will be delivered to the portion of the Area associated with an RAU. Of course, the RAU will convert the optical signal to an electrical signal s that: the signal delivered to the portion of the Area associated with the .RAU is an electrical signal,

|0070J So long as all of the services, and sectors transmitted to each OIM 316 is delivering services adequate for their use, there may be no problem with distributed antenna system DAS 300. But if there is a failure in one of the signals being transmitted to each ΟΪ 36, the result, may be dropped calls, poor reception, and other communication, efficiencies.. These failures may include the cessation of a service altogether. Alternatively, it may include the inability of the bandwidth provided to an Area to support the communication requirements of that Area. For example, if a conference -with many .attendees ' is scheduled for Area 1 , if there is not enough bandwidth to enough bandwidth to serve, all the attendees, the distributed antenna system DAS 300 will have failed.

[0071] The control modules 330, 350 of thi disclosure monitor failures of this and other kinds that are detected b devices described below and provide capacity steering to reroute one or more other communication signals to the Area of the failure in. order to offset the communication deficiencies attributed by the failure and to preferably provide as uninterrupted a service to the Area of the failure as may be possible.

[00721 FIG. 6 illustrates one way in which capacity steering of this disclosure may be used to address a failure. In particular, FIG, 6 shows ' a group of services- shown in a schema 602 being transmitted to: Areas 1, 2, 3. lit this schema, control modules; 330, 350 and more particularly the program of instructions for managing which of the plurality of programmable switches 306a, 306b are on or off at any point in time have set the programmable ..switches- 306a 1 -4 of switching matrices 306a and programmable switches 306b 1 -4 of switching matrices 306b to provide a route of services S1C3, S.2C3, S3C3, and S3C4 to Area 1 at time t ~ tO. Note that RDC 308c which is connected to the programmable switches 306al-306a4 is connected to RDC 31 la which is connected to programmable switches 306bl -306b4 in this example. Also, as previously indicated, these narrowband services of each of S1 C3 and S2C3 and S3C3 and S4C3 will be combined by RDG 308c in this example into a broadband electrical signal SI C3+S2C +S3C3+S4G3 and delivered as a broadband electrical signal to each of the four OlMs that sen-ice Area 1. Each OIM will convert the broadband electrical signal to a broadband optical signal and apply that broadband signal to each RAU connected thereto. Each RAU will in turn filter the narrowband optical signal that it is programmed to deliver and convert that optical signal to an electrical signal. Each RAU will then transmit- that electrical signal to the portion of the area it is designed to cover.

{0073] illustratively, at all o substantially all times, the control modules 330, 350 are monitoring the foregoing services. ' While at time- t~t0, all communication services S 1C2, S2C3, S3C3, and S4C3 are operational as shown in schem 602 in FIG. 6, at time t-tl a failure of service S1C3 has occurred as shown in schema 604. More specifically, schema 604 in. FIG. 6 shows that at time t ~ il, the control modules have detected a failure of service S :1C3. in response, as shown in schema 606, at time t - t2, the control: modules 330. 350 disconnects service S1C3 and connects service: S 1.C2 in its place. Hence, whereas at time t-tl there was a failure in the communication services being provided by the DAS, at time t - t2, the DAS of this; disclosure has corrected that failure b replacing the broadband electrical signal ;S 1 C3+ S2C3 -S ' 3C3*S4C3 that included the failed S1 G3 commurii cation signal with a new broadband signal of S iC2-H-S2C3+S3C3+S4C3 that includes an operational -service S 1C2 to deliver to the clients in Area 1, By this disclosure, the failure of service S1 C3 was detected by control modules 330, 350 and the broadband services transmitted to Area 1 was reconfigured by programmin switch 306a4 .OFF at time t=t2 as shown in: FIG. 5 for the purposes of disconnecting service S 1 C3 from the communication path to Area S , and programming switch 306a5 ON at time t=t2 as also shown in FIG. 5 for the pmposes of connecting service S2C3 to a communication path to Area 1 as shown in FIG. 5. Hence, by this disclosure,- operational ' service S1C2 was used to replace the failed service S1 C3 in the broadband service delivered to Area 1 after the fail ure. 10074] FIG. 7 shows the interconnection between a head end unit (HEU) 301 and an optical input unit OIU 302 and the constellation of the H EU and the OIU switch matrixes 305, 307 required for structuring the distributed antenna system DAS 300 according to another schema shown in FIG. 8. The distributed antenna system 300 interco.nnections between the head end unit 301 and the optical input unit 302 and the head end unit and optica! input unit switch matrixes 305, 307 in FIG. 7 are very similar to like elements in FIG. 5.

[0075} FIGS. 7 and 8 illustrate another way in which capacity steering of this disclosure may be used, to address a failure. In particular, FIG.. 8 shows a group of services shown in a schema 802 being transmitted to Areas 1, 2, 3. In this schema, control modules 330, 350 (shown in FIG. 5} and more particularly the program of instructions for managing which of the plurality of programmable switches 306a, 306b are on or off at any point in time have set programmable switches of switching matrices 306a and programmable switches of switching matrices 306b to provide a route of services S 1C3, S2C3, S3C3, and S3C4 to Area 1 at time ί - tO. Note that RDC 308c which is connected to a cluster of programmable switches 706al is connected to RDC 31 l a which is connected to a cluster of programmable switch 706b Ho this example. Also, as previously- indicated,, .these narrowband services of each of SIC3 and S2C3 and S3C3 and S4C3 will be combined by RDC 308c in this example into a broadband electrical signal S1C3+S2C3 f-S3C3÷S4C3 and delivered as a broadband electrical signal to each of the four OIMs that service Area 1. Each. OI will convert the broadband electrical signal to a broadband optical signal and. apply that broadband signal t each. ' RAU connected thereto. Each RAU will in turn filter the narrowband optical signal that it is programmed to deliver and convert that optical signal to an electrical signal, for transmission to the portion of the area it is designed to cover,

0076j illustratively, at all or substantially times, the control modules 330, 350 are monitorin the foregoing sen-ices. Schema 802 shown in FIG, 8 shows that at time t-tO all service are operational. Schema 804 shows that at time t = tl , the control modules have detected a failure of all four narrowband services SlC3- ; -S2C3+S3C3+S4C3. In response, at time t~t2, the control modules 330, 350 disconnect all four of the failed services S 1.C3+S2C3+S3C3+S4C3 and connect services Si C2+S2C2÷S3C2+S4C2 m their place as shown in schema 806, Hence, at. time t = t2, the broadband optical signal is no longer -S ί C3+S2C3+S3.C3-+S C3. Rather, the broadband optical signal is ow made up of narrow bands S1C3+S2C3+S3C3+S C3. This is shown in FIG, 7 of the DAS of this disclosure by turning OFF the cluster of programmable switches 706a l at. time t-t2 (i.e., the switches that connect S1 C3÷S2C3+S3C3+S4C3 to Area 1} and turning ON the cluster of programmable switches 706a2 (i.e., the switches that connect S1C2+S2C2+S.3C2+S4C2 to Area 1): to provide the substitute service.

10077} By this disclosure, the failure of services SI C3+S2C3-f S3C3+S4C3 was detected by control modules 330, 350 and the broadband services that were transmitted to Area I wer reconfigured by programming OFF of the switches that routed S I +S2C3+S3C3+S4C3 to Area I and programmin ON of the switches that caused sen-ices S I C2+S2C2- ; -S.3C2+S4C2 to be rerouted to provide services to Area 1 in place of the failed services in addition to continuing to service Area 2.

{0078} FIG. 9 shows the interconnection between a head end unit (HEU) 301 and an optical input unit OIU 302 and the constellation of the H EU and the OIU switch matrixes 305, 306 required for structuring the distributed antenna system DAS 300 according to another schema. The distributed antenna system 300 interconnection ' s ' .between the: head end unit 301 and the optical input unit 302 and the head end unit and optical input unit switch matrixes 305, 306 in FIG. 9 are. very similar to like elements in. FIG, 7,

[0079 j FIGS. 9 and 10 illustrate another way in which capacity steering of this disclosure may be used to address a failure. In particular, FIG. 9 shows the group of sendees shown in schema 802 shown in .FIG. 8 being transmitted to Areas 1 , 2, 3, Here, the failure occurs in the switching matrices " of ' the optical input, unit OIU 307.

Ί0080} Illustratively, at all or substantially all times, the control modules: 330, 350 are monitorin the foregoing services. On detection by the control module of the failure of the broadband services SI C3+S2C3+S3C3+S4C3, the control modules 330, 350 turns off programmable switches 902 and turns oft programmable switches 904 so that the broadband optical services of S 1 C2+S.2C2+ S3.C2.+S402 may be applied to the Oi s servicing Area 1 to provide for illustratively uninterrupted service in its place as shown in schema 804. Hence, at time t - t:2 s the broadband optical signal, is no longer S1C3+S2C3+S3C3+.S4C3. Rather, the broadband optical signal is made up of narrow bands S.l C3+S2C.3 -*-S3.C3+S4C3.. By this disclosure, the failure of services S 1C3 +S2C3+S3C3+S4C3 in the optical input unit OIU 307 were detected by control modules 330, 350 and the broadband sendee transmitted to Area 1 reconfigured by programming OFF of switches 902 which routed services S1C3+S2C3+S3C3+S4C3 to Area 1 and programming ON switches 904 which caused services STC2+S2C2+S3C2-HS4C2 to be rerouted to provide services to Area 1 in place of the failed services in addition to continuing to sendee Area 2.

f ' 0081.] FIG. 10 depicts one embodiment of a distributed antenna system 1000 with detectors. Distributed antenn system 1000 includes one head end unit (HEU) 301 and an optical input unit (OIU) 302, each of which includes a switching matrix, as described above but not shown in FIG. 10. In this embodiment, each Service/Sector input 304-1 through 304-12 also includes a detector 306- ί through 306-12, as shown. The detectors are shown: in series with the sendee/sector inputs. The head end uni 301 is depicted as connected through its RDCs 308-a, 308-b, 308-c and also with detectors 309% 309b, 309c for detecting a failure in the RDCs. The optical input unit 302 includes detectors 313a, 313b, and 313c for detecting failures in RDCs 3.12a, 312b, 312c. In a similar manner, detectors 312-21. through 312-32 are depicted in series with optical input modules 316-1 through 316-12 of the optical input unit 3G2<

(0082] One straightforward way to detect connection failure for the optical input modules is to simply adapt the ' detectors as power detectors. If no power is consumed at all, there has been a failure of connection or of input, since normal polling or checking will reveal a problem. For example, operation of the E O and O/E converters requires operation of lasers to create an optical signal in the E/O conversion. Conversion the othe way, from optical to electrical, requires a photodetector. If no power is consumed either way, there is likely a failure. The system can also use periodic checks to -insure that all connections are up and running,

10.083 ' ] The same situation applies to the service/sector detectors 304-1 to 304-12. If there is no communication at. all between the signal inputs to the building and the Service /Sector input to the head end unit, there is likely a problem, either a broken connection or a failure of the inpu communications mode. For optical portions, a photodetector can determine whether optical inputs or outputs are operable. For electrical portions, a powe meter or a detection circuit on the lasers may be: sufficient. Other ways may be used to detect, such as the presence or absence of a voltage on a line to determine whether a signal is. connected or is active.

10084} Two flowcharts are presented to illustrate ways in which the distributed antenna system of the present disclosure may be used. The first flowchart is depicted in FIG. 1 1 , for a method 1 1.00 of minimizing communications interruptions and insuring reliability. The method .arranges- a plurality of communications services to: . aft area, such as a building or a particular business or entity. The communications services may be prov ded through over- the-air antennas, wired or optica! cable, or a combination of these. A first step 1 101 of the method is to arrange a pluralit of radio distributor/combiner modules to connect, with a plurality of optical input modules (OI ' s) to provide a plurality of communications services through one or more sectors. The second ste 1 102 of the method is to provide a plurali ty of primary communications paths for the plurality of communications services through the RDCs to the OIMs. A failure is detected 1 1.03 of at least one communications service of the plurality of communications services. The routing of a secondary communications service to at least one secondary path is then used 1 104 to provide a substitute sendee fo the failed service.

$.085 Ϊ Another method is di sclosed in. the flowchart of FIG. 12. in this method 1200, a first step 1201 is to disconnect at least one failed first communications ' service. In order to restore service, one then determines 1202 an operational substitute communications service for use as the at least one second communications service from among the plurality of communications services. Before restoring a failed service, a suitable substitute service mus be determined, as described, herein. In order to - rovide this service, one the configures 1203 the at least one secondary redundant communication path using the operational substitute communications service in place of the at least one failed first comimmications service. With everything -ready, the substitute communications service is then connected 1204 to the secondar redundant con munieations path. There are many other ways to operate the distributed- - antenna, system to provide reliable communications sendees,

| 086| The RDC of this disclosure may combine or split, their input electrical signals in any practical and desirable manner. These include all possible multiplexing methods, such as frequency division, code division, time division, hybrid fre uency/time based multiplexing, and .so forth. Several such techniques are well known in the art. There same techniques may be- used in the remote antenna units to combine, and split the optical signals for uplink, or downlink transmission, respectively

00871 In view of this disclosure, it will be seen that technologies are generally described to improving the reliability- of communications services within .an area or a building served by a distributed antenna system.

j ' 0088 ' J There are -many embodiments -of the- present disclosure, of which a few additional are presented here. A first embodiment, as described above, includes a distributed antenna system with a first plurality of RDCs, a second plurality of RDCs, a .first -switching matrix and a second switching matrix-. This first embodiment- also includes a control module configured for routing the plurality- of -communications services to the first, plural i ty of RDCs and for routing the plurality of communications sendees to. the plurality of OIMs,. wherein the control module is configured, in ' the event of a failure of a first communications service, for controlling routing of a second communications service through the RDC modules and the switching matrices, to at least one of the plurality of optical input modules (OIMs) to provide a substitute service for the first failed service.. Another embodiment pi " the system further includes a plurality of detectors configured to detect that the first communications service of the plurality of communications sen-ices has failed.

[0089] In another embodiment, the failure of the first communications service of the plurality of communications services is a failure of a connection of the first communications service of the plurality of communications- sen-ices to at least one of the plurality of OI s. in another embodiment, the control module further includes hardware and software fo controlling the routing; in this embodiment. The controlled routing disables a first communication path for the first failed communications service and connects a second communication path for the second communications service of the pluralit of communications services to provide the substitute service, hi this embodiment, the switching matrix is further, configured for controlling routing of a second of the plurality of communications services through the RDC modules to the plurality of optical input modules (OIMs) to provide a substitute service for a second failed service.

101190} In another embodiment, the pluralit of RDC modules includes a first pluralit of RDC modules connected to a second plurality of RDC modules. The distributed antenna system further includes head end unit (HEU) module including the first plurality of RDC modules and the first switching matrix of the plurality of programmable switches. The HEU is configured for connecting the plurality of communications services to the first plurality of RDC modules through the first switching matri and an optical interface unit (OIU) module including the second pluralit of RDC modules and the second switching matrix of the plurality of programmable switches. The OIU is configured for connecting the second plurality of RDC modules to the plurality of OIMs through the second switching matrix, in another embodiment, the plurality of OIMs are connected to a plurality of clients, in one embodiment, the plurality of clients are wireless devices selected from the group consisting of cellular phones, smart phones, wireless lap-top computers, tablet computers, pad computers and sensor networks. In yet -.another ' embodiment, the plurality of communications services comprises at least two services selected from the group consisting of WiPi, Ethernet, DSL, L.TE, Wireless Access Points (WAPs), PCS, 2G f 3G, 4G, Remote Radio Heads (RRH), Radio over Fiber Optic Cable (RoP), WIMax, LAN, CDMA, TDMA, GSM, WDM and

WLA:N.

1 091) In another embodiment, the distributed antenna system is configured to serve a geographic area selected from the group consisting of a building, an are of a building and one or more room of a building. Another embodiment that include the plurality of detectors described above, further ' includes a network -configured for providing the plurality of communications- services, wherein the control module is in communication with the network. In this embodiment, the detection by the plurality of detectors that the first of the plurality of cottununieations services has failed farther include detecting: at the network whether the first of the plurality of communications servi ces has failed and communicating the detected failure at the network to the control module. In another embodiment that includes the detectors, each of the plurality of RDC modules, each of the plurality of QIM modules and each of the plurality of communications services- are in communication ith at least one of the plurality of detectors. In this embodiment, the detection by the plurality of detectors that the first communications service has failed includes the step of detecting with at the at least one detector whether a current, voltage or power level of the first communications service has dropped below a predetermined level the predetermined level being indicative of a failure of the first communications service,

$092] In another embodi ment, the control module is configured for .determining that at least one communi cat tons service of the plurality of communications services is operational by determining available bandwidth of the at least one communications service and controlling switching to provide a path of the least one operational service to the first OIM of the pluralit of OIMs baaed upon " the available bandwidth. In this: system, the step of providing the path based upon the available bandwidth further includes obtaining configuration data associated with a client, determining one or more communications services connected to the OIM that the client is authorized to access, and controlling switching to provide a path of the least one operational service to the first OIM of the plurality of OIMs based upon the access authorization of the client.

|0093] Already described above is another illustrative embodiment of a distributed antenna system. This illustrative embodiment, include a first plurality o RDCS, a second plurality of RDCs, -first and second switching matrices, and a control module, hi another- embodiment, further includes a head end unit (HBU), the HBU including the first plurality of RDCs arid the first switching matrix and an optical input unit (OUi), the OI ' U including the second plurality of R-DCs and the second switching matrix, the first plurality of RDCs are iiirther confi ured fo combining the plurality of communications- services into a broadband communication signal or for expanding the broadband communication signal into a. plurality of communications: services, in another embodiment, each of the plurality of communications services, has a .number of redundant paths through the firs switching matrix equal to a quantity of communications sectors times a quantity of the first plurality of RDCs,. In this embodiment, each, of .the plurality of OIMs has a quantity of redundant paths through the second switching matrix equal to a quantity of communications sectors tiroes the second plurality of RDCs.

ί 0.094} Another embodiment described above is a method for controlling a distributed antenna system. The method includes steps of arranging a plurality of radio distributor/ combines modules, providing a plurality of primary communications paths, detecting a failure of at least one first, communications service of the plurality of communications services, and controlling routing of at least one second communications service of the plurality of communications services from the plurality of primary communication paths to at least one secondary redundant path to provide a substitute- service for the failed first communications service, hi another embodiment, the plurality of RDC modules includes a first plurality of radio distributor/combiner (RDC) modules and a second plurality of RDC modules, wherein the first plurality of RDC modules are configured for connecting the plurality of communications services with the second plurality of RD modules and for combining the plurality of communications services: into a: broadband communication signal or for expanding the broadband communication signal into a plurality of communications services and wherein the second pluralit of RDC modules are configured for connecting the broadband communication signal with the plurality of OIMs,

[0095] in another embodiment, the method further includes restoring the at least one first failed communications service, controlling switching of the at least one second communicatioiis service from the at least one- secondary- redundant communication path back to the plurality of primary communication paths, and controlling switching of the at least one first failed communications -services on the plurality of primary .communication paths. This method optionall ma include steps of disconnecting the at least one failed first communications service, wherein the step of controlling routing of at least one second, communications service of the plurality of communications sen-ice fro the pluralit of primary communication paths to at least one secondary redundant path furthe includes determining an operational substitute communications -service; for use a the at least one second -communicatioiis service from among the plurality of communications services, configuring the at least one secondary redundant communication path using the operational substitute communications service in place of the at least one failed first communications service and connecting the substitute service to the secondary redundant commxmi cation path . [β096| In another embodiment, the plurality of communications services through the plurality of ' RDC ' modules to the pl urality of OIMs further includes a third communications service to the first OIM of the plurality of OIMs; this embodiment of the method further includes detecting an occurrence that the third communications service has failed and controlling routing of the at least one second communications services from the plurality of primary communication paths to the plurality of secondary paths to provide a substitute service for the failed third com unications service,

{0097) Another embodiment includes additional steps of determining available bandwidth of a plurality of communications services remaining operational after the first communications service has tailed and selecting the at least one second communications services for routing to the plurality of secondary -communication paths based upon the available bandwidth, In this embodiment, the ste of determining the available bandwidth, optionally further includes obtaining configuration data associated with a remote antenna, unit and a client of the failed first communications services, determining- the one or more communications services connected to the second plurality of RDC modules that the client is authorized to access and selecting at least a second of the plurality of communications, services for routing to the plurality of secondary communication paths based upon the available bandwidth and based, upon the access authorization of the client of the at least one tailed communications service. In this method, the step of detecting the occurrence of the failure of the at least one first communications services optionally further comprises detecting whether the at least one first communications service has failed at a network input. In an alternative method, the step of detecting the occurrence of the failure of at the least one first communications service is accomplished by a customer complaint.

[0098] The embodiments disclosed herein are. also applicable to other remote antenna clusters and distributed antenna systems, including those that include othe forms of communications media for distribution of communications signals, including electrical conductors and wireless transmission. The embodiments disclosed herein may also be applicable to remote antenna clusters: and distributed antenna, systems and may also include more than one communications media for distribution of communications signals (e.g., digital data services, RF communications services).

10099| . Additional features and advantage will be set forth in the detailed description which follows, and in part will be readily apparent to. those skilled in the art. from thai description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings. It is to be understood W that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specifi cation, The drawings illustrate various emfebdiments, and together with the description serve to explain the principles and operation of the concepts disclosed

[001001 These methods include operating the distributed antenna system (DAS) and insuring that connectivity and .service are restored as soon as. possible after any and all interruptions. Thus, the system includes ways to overcome and correct failure of the distributed antenna system using a software based recovery application. The software program contains non-transitory instructions for detecting failures and operating switching matrices within the head end unit 120 and the remote optical input units (Oil!) that are more fully described below.

jOOIDlj The present disclosure is not t be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the disclosure, in addition to those enumerated- herein, will be apparent to those skilled in the ait from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited onl by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled, it is to be understood that this disclosure is not limited to particular methods, reagents, compounds compositions or biological systems, which can, of course, vary. I is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. 0Q1( 2| in addition, where features or aspects of the disclosure are described in terms of Markush groups, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group.

[00103] While variou aspects and embodiments have been disclosed herein, other aspect and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes ' of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.