Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DOSING DEVICE
Document Type and Number:
WIPO Patent Application WO/2006/133843
Kind Code:
A1
Abstract:
Disclosed is a dosing device for metering agents in washing or cleaning processes. Said dosing device comprises a receptacle as well as a) a first active substance composition which is placed in said receptacle and contains at least one carrier material and at least one agent, and b) a second active substance composition that is arranged in said receptacle and also contains at least one carrier material and at least one agent but differs from the first active substance composition regarding at least one of the ingredients thereof. The inventive dosing device is characterized in that the carrier material in at least one active substance composition is water-insoluble while being suitable for releasing different active substances and distinguishing itself from conventional dosing devices by an improved releasing profile.

Inventors:
KESSLER ARND (DE)
HARDACKER INGO (DE)
BERARDO FEDERICA (IT)
Application Number:
PCT/EP2006/005455
Publication Date:
December 21, 2006
Filing Date:
June 08, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL KGAA (DE)
KESSLER ARND (DE)
HARDACKER INGO (DE)
BERARDO FEDERICA (IT)
International Classes:
C11D17/04; C11D3/50; D06L4/75
Domestic Patent References:
WO2002009779A12002-02-07
WO2002090479A12002-11-14
Foreign References:
EP0287132A21988-10-19
US4511495A1985-04-16
EP0145438A21985-06-19
EP1479757A12004-11-24
US6235705B12001-05-22
EP0287132A21988-10-19
EP0145438A21985-06-19
Other References:
See also references of EP 1891198A1
Download PDF:
Claims:
Patentansprüche:
1. Dosiervorrichtung zur Dosierung von Wirkstoffen in Wasch der Reinigungsverfahren, umfassend einen Behalter und a) eine erste in diesem Behälter befindliche Wirkstoffzusammensetzung, die mindestens ein Trägermaterial und mindestens einen Wirkstoff enthält ; sowie b) eine zweite in diesem Behälter befindliche, Wirkstoffzusammensetzung, die ebenfalls mindestens ein Trägermaterial und mindestens einen Wirkstoff enthält, sich jedoch hinsichtlich mindestens einer ihrer Inhaltsstoffe von der ersten Wirkstoffzusammensetzung unterscheidet, dadurch gekennzeichnet, dass das Trägermaterial in mindestens einer Wirkstoffzusammensetzung wasserunlöslich ist.
2. Dosiervorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Behältnis aus einem wasserunlöslichen Material, vorzugsweise aus einem textilen Material oder einem Polymer oder einem Polymergemisch gefertigt ist.
3. Dosiervorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Behältnis mindestens zwei voneinander getrennte Aufnahmekammern aufweist, welche jeweils mit mindestens einer Wirkstoffzusammensetzung befüllt sind, wobei sich diese Wirkstoffzusammensetzungen mindestens hinsichtlich eines ihrer Inhaltsstoffe unterscheiden.
4. Dosiervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mindestens zwei Wirkstoffzusammensetzungen unterschiedliche Trägermaterialien aufweisen.
5. Dosiervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass alle Wirkstoffzusammensetzungen die gleichen Trägermaterialien aufweisen.
6. Dosiervorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass alle eingesetzten Trägermaterialien wasserunlöslich sind.
7. Dosiervorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Trägermaterial in mindestens einer der Wirkstoffzusammensetzungen in Partikelform vorliegt, wobei diese Partikel vorzugsweise einen mittleren Durchmesser von 0,5 bis 20 mm, bevorzugt von 1 bis 10 mm und insbesondere von 3 bis 6 mm aufweisen.
8. Dosiervorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es sich bei mindestens einem der Trägermaterialien um ein polymeres Material, vorzugsweise um eine Substanz aus der Gruppe umfassend Ethylen/Vinylacetat Copolymere, Polyethylen niederer oder hoher Dichte (LDPE, HDPE) oder Gemische derselben, Polypropylen, Polyethylen/PolypropylenCopolymere, Polyether/PolyamidBlock copolymere, Styrol/Butadien(Block)Copolymere, Styrol/lsopren(Block)Copolymere, Styrol/Ethylen/ButylenCopolymere, Acrylnitril/Butadien/StyrolCopolymere, Acrylnitril/ButadienCopolymere, Polyetherester, Polyisobuten, Polyisopren, Ethylen/EthylacrylatCopolymere, Polyamide, Polycarbonat, Polyester, Polyacrylnitril, Polymethylmethacrylat, Polyurethane, Polyvinylalkohole handelt.
9. Dosiervorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ein polymeres Trägermaterial mindestens 10 Gew.%, vorzugsweise mindestens 30 Gew.%, besonders bevorzugt mindestens 70 Gew.% Ethylen/VinylacetatCopolymer enthalt, vorzugsweise vollständig aus Ethylen/VinylacetatCopolymer hergestellt ist.
10. Dosiervorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als polymeres Trägermaterial Ethylen/VinylacetatCopolymer eingesetzt wird und dieses Copolymer 5 bis 50 Gew.% Vinylacetat, vorzugsweise 10 bis 40 Gew.% Vinylacetat und insbesondere 20 bis 30 Gew.% Vinylacetat, jeweils bezogen auf das Gesamtgewicht des Copolymers, enthält.
11. Dosiervorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß mindestens ein polymeres Trägermaterial einen Schmelz oder Erweichungspunkt zwischen 40 und 125CC, vorzugsweise zwischen 60 und 1000C, besonders bevorzugt von 70 bis 90°C und insbesondere zwischen 75 und 800C aufweist.
12. Dosiervorrichtung nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass es sich bei mindestens einem der Trägermaterialien um ein anorganisches Trägermaterial, vorzugsweise um ein Silikat, Phosphat oder Borat handelt.
13. Dosiervorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass mindestens einer der Wirkstoffe ausgewählt ist aus der Gruppe der Duftstoffe, Duftfänger, Farbstoffe, Glaskorrosionsinhibitoren, Silberschutzmittel, Bleichkatalysatoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, wasch oder reinigungsaktiven Polymeren oder Tensiden.
14. Dosiervorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Gewichtsanteil des/der Wirkstoffe 1 bis 70 Gew.%, vorzugsweise 10 bis 60 Gew.%, besonders bevorzugt 20 bis 50 Gew.%, insbesondere 30 bis 40 Gew.%, jeweils bezogen auf das Gesamtgewicht des/der Wirkstoffzusammensetzung(en) beträgt.
15. Wasch oder Reinigungsverfahren, bei welchem eine Dosiervorrichtung nach einem der Ansprüche 1 bis 14 zur Dosierung von Wirkstoffen eingesetzt wird.
16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß die Dosiervorrichtung auf Temperaturen zwischen 30 und 15O0C erwärmt wird.
17. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Dosierung der Wirkstoffe in Innenräumen von Gebäuden, Fahrzeugen oder technischen Geräten, vorzugsweise in Innenräume von Textilwaschmaschinen, Textiltrocknern oder Geschirrspülmaschinen handelt.
Description:
Dosiervorrichtung

Die vorliegende Erfindung liegt auf dem Gebiet der Dosiervorrichtungen für wasch- oder reinigungsaktive Substanzen, insbesondere betrifft die vorliegende Erfindung Dosiervorrichtungen für die gleichzeitige Dosierung unterschiedlicher wasch- oder reinigungsaktiver Substanzen.

In Wasch- oder Reinigungsverfahren kommen in der Regel neben den eigentlich wasch- oder reinigungsaktiven Wirkstoffen, wie beispielsweise den Gerüststoffen, Seifen oder Tensiden, zusätzliche Additive und Hilfsstoffe zum Einsatz. Zu den gebräuchlichsten Hilfsstoffen zählen dabei neben den Duftstoffe weiterhin die Korrosionsinhibitoren für den Schutz von Silber oder Glaswaren, Klarspüler oder Bleichaktivatoren beim maschinellen Geschirrspülen ebenso wie Bügelhilfsmittel, optische Aufheller oder Antistatika bei der maschinellen Textilreinigung.

Diese Additive oder Hilfsstoffe können als integraler Bestandteil der eingesetzten Wasch- oder Reinigungsmittel vorliegen, können diesen Reinigungsmitteln jedoch auch in Form eines Spezialwaschmittels oder Spezialreinigungsmittels zugesetzt werden. Eine weitere Möglichkeit zur Dosierung dieser Hilfsstoffe sind die im Markt erhältlichen Mehrfachdosiervorrichtungen beispielsweise zur Beduftung von Geschirrspülmaschinen. Diese Geschirrspülmaschinendeos haben die Aufgabe, Schlechtgerüche in der Geschirrspülmaschine, welche sich beispielsweise durch die Lagerung verschmutzten Geschirrs ergeben können, oder Laugengerüche nach Abschluß des Reinigungsverfahrens zu beseitigen oder zu verringern.

Diese Deos können auf sehr unterschiedliche Weise konfektioniert werden. Für den Verbraucher ist es dabei wünschenswert, einen Artikel zur Desodorierung von Geschirrspülmaschinen oder anderen geschlossenen Räumen zu erhalten, der bei seiner Bereitstellung einen intensiven Produktduft aufweist, welcher nicht nur die Produktidentifikation gewährleistet, sondern gleichzeitig den Eindruck hoher Wirkstärke vermittelt und welcher dann im Verlaufe seiner Lebensdauer eine möglichst verläßliche Freisetzung konstanter Duftstoffmengen gewährleistet. Weiterhin sollten diese Deodorantien ihre Wirkung zudem unabhängig von äußeren Faktoren wie (Luft)-Feuchtigkeit, Temperatur oder Alkalinität erzielen. Eine Reihe verschiedener Deodorantien für Geschirrspülmaschinen sind im Stand der Technik beschrieben.

Ein gattungsgemäßes Duftabgabesystem ist aus WO 02/09779 A1 (Procter&Gamble) bekannt. Dieses bekannte Duftabgabesystem weist einen Behälter auf, in welchem eine Mehrzahl von kleinen mit Duftstoffen beladenen Partikeln aufgenommen sind. Der Behälter ist dabei mit einer Mehrzahl von Öffnungen versehen, deren Größe so dimensioniert ist, dass die kleinen Partikel durch die Öffnungen nicht austreten können. Andererseits sind die Öffnungen so dimensioniert,

dass eine Emittierung der Duftstoffe der Partikel vom Aufnahmeraum des Behälters nach außen möglich ist.

Auch Deodorantien für den Gebrauch in Waschetrocknern sind dem Stand der Technik zu entnehmen.

So beschreibt das US-Patent 6,235,705 (Bath & Body Works Inc.) ein Produkt zur Beduftung im

Wäschetrockner, welches aus duftstoffhaltigen Kunststoffperlen in einem Netzbeutel besteht. Die

Beduftung der Perlen geschieht während ihrer Herstellung bei erhöhter Temperatur.

Der vorliegenden Anmeldung lag die Aufgabe zugrunde, Dosiervorrichtung für wasch- oder reinigungsaktive Wirkstoffe bereitzustellen, die sich zur gleichzeitigen Freisetzung unterschiedlicher Wirksubstanzen eignen und sich gegenüber herkömmlichen Dosiervorrichtungen durch ein verbessertes Freisetzungsprofil dieser Wirkstoffe auszeichnen. Insbesondere sollten die Dauer die Wirkstofffreisetzung verlängert und gleichzeitig einer gleichmäßige Freisetzung der Wirkstoff erreicht werden.

Zur Lösung dieser Aufgabe wurde eine Dosiervorrichtung mit zwei unterschiedlichen Wirkstoffzusammensetzungen bereitgestellt, von denen mindestens eine ein wasserunlösliches Trägermaterial aufweist.

Ein erster Gegenstand der vorliegenden Anmeldung ist daher eine Dosiervorrichtung zur Dosierung von Wirkstoffen in Wasch- der Reinigungsverfahren, umfassend einen Behälter und a) eine erste in diesem Behälter befindliche Wirkstoffzusammensetzung, die mindestens ein Trägermaterial und mindestens einen Wirkstoff enthält ; sowie b) eine zweite in diesem Behälter befindliche, Wirkstoffzusammensetzung, die ebenfalls mindestens ein Trägermaterial und mindestens einen Wirkstoff enthält, sich jedoch hinsichtlich mindestens einer ihrer Inhaltsstoffe von der ersten Wirkstoffzusammensetzung unterscheidet, dadurch gekennzeichnet, dass das Trägermaterial in mindestens einer Wirkstoffzusammensetzung wasserunlöslich ist.

Die erfindungsgemäße Dosiervorrichtung eignet sich zur Dosierung einer Vielzahl wasch- oder reinigungsaktiver Substanzen. Insbesondere eignet sich diese Dosiervorrichtung zur getrennten Konfektionierung und Dosierung unterschiedlicher Wirkstoffzusammensetzungen. In einer bevorzugten Ausführungsform ist die erfindungsgemäße Dosiervorrichtung insbesondere zur Mehrfachdosierung dieser Wirkstoffzusammensetzungen geeignet.

In einer bevorzugten Ausführungsform eignet sich die erfindungsgemäße Dosiervorrichtung zur Mehrfachdosierung der in ihr enthaltenen Wirkstoffe. Mit anderen Worten setzt die

erfindungsgemäße Dosiervorrichtung diese Wirkstoffe vorzugsweise über einen Zeitraum frei, der ein Mehrfaches des Zeitraums eines Wasch- oder Reinigungsverfahrens beträgt. In einer bevorzugten Ausführungsform eignet sich die erfindungsgemäße Dosiervorrichtung zur Dosierung eines oder mehrerer Wirkstoffe in 10 bis 100, vorzugsweise 20 bis 90 und insbesondere 30 bis 80 Reinigungsgängen einer Geschirrspülmaschine, einer Textilwaschmaschine oder eines Textiltrockners.

Eine solche langanhaltende Freisetzung der Wirkstoffe lässt sich beispielsweise realisieren indem die eingesetzten Wirkstoffe durch eine entsprechende Konfektionierung löseverzögert werden, wobei hierbei insbesondere die Wahl des Trägermaterials und die Verarbeitung von Trägermaterials und Wirkstoff zur letztendlichen Wirkstoffzusammensetzung die Freisetzungskinetik des Wirkstoffs beeinflussen. Eine weitere Möglichkeit, die Freisetzung der Wirkstoffe zu verzögern bzw. zeitlich auszudehnen basiert auf der räumlichen Gestaltung des Behälters.

In einer bevorzugten Ausführungsform weist die den Behälter nach außen begrenzende Wandung eine Mehrzahl von Öffnungen auf. Diese Öffnungen ermöglichen einerseits den Austritt flüchtiger Wirkstoffe, wie beispielsweise den weiter unten beschriebenen Duftstoffen, und ermöglicht andererseits den Zutritt wässriger Flotten, sofern die erfindungsgemäßen Dosiervorrichtungen während ihres Einsatz in Wasch- oder Reinigungsverfahren mit derartigen Wasch- oder Reinigungsflotten in Kontakt kommen.

Dosiervorrichtungen, dadurch gekennzeichnet, dass das Behältnis mindestens zwei voneinander getrennte Aufnahmekammern aufweist, welche jeweils mit mindestens einer Wirkstoffzusammensetzung befüllt sind, wobei sich diese Wirkstoffzusammensetzungen mindestens hinsichtlich eines ihrer Inhaltsstoffe unterscheiden, sind erfindungsgemäß besonders bevorzugt.

In einer weiteren bevorzugten Ausführungsform weist die Dosiervorrichtung eine Befestigungsvorrichtung auf.

Die erfindungsgemäßen Dosiervorrichtungen können selbstverständlich auch mehr als die zwei genannten Wirkstoffzubereitungen umfassen. Dosiervorrichtungen mit drei, vier, fünf oder mehr Wirkstoffzubereitungen, welche sich voneinander hinsichtlich mindestens eines ihrer Inhaltsstoffe unterscheiden, sind erfindungsgemäß bevorzugt.

Neben dem zuvor beschriebenen Behälter umfassen die erfindungsgemäßen Dosiervorrichtungen wieterhin ein oder mehrere Trägermaterialien, von denen mindestens eines wasserunlöslich ist.

Als wasserunlösliche Trägermaterialen werden mit besonderem Vorzug textile Materialien oder Polymere eingesetzt. Eine Dosiervorrichtung, dadurch gekennzeichnet, dass das Behältnis aus einem wasserunlöslichen Material, vorzugsweise aus einem textilen Material oder einem Polymer oder einem Polymergemisch gefertigt ist, ist erfindungsgemäß bevorzugt.

Als Polymere, insbesondere wasserunlösliche Polymere, werden vorzugsweise synthetische Polymere eingesetzt. Erfindungsgemäße Dosiervorrichtungen, dadurch gekennzeichnet, dass es sich bei mindestens einem der Trägermaterialien um ein polymeres Material, vorzugsweise um eine Substanz aus der Gruppe umfassend Ethylen/Vinylacetat- Copolymere, Polyethylen niederer oder hoher Dichte (LDPE, HDPE) oder Gemische derselben, Polypropylen, Polyethylen/Polypropylen-Copolymere, Polyether/Polyamid-Blockcopolymere, Styrol/Butadien- (Block-)Copolymere, Styrol/lsopren-(Block-)Copolymere, Styrol/Ethylen/Butylen-Copolymere, Acrylnitril/Butadien/Styrol-Copolymere, Acrylnitril/Butadien-Copolymere, Polyetherester,

Polyisobuten, Polyisopren, Ethylen/Ethylacrylat-Copolymere, Polyamide, Polycarbonat, Polyester, Polyacrylnitril, Polymethyl-methacrylat, Polyurethane, Polyvinylalkohole handelt, sind erfindungsgemäß bevorzugt.

Polyethylen (PE) ist eine Sammelbezeichnung für zu den Polyolefinen gehörende Polymere mit Gruppierungen des Typs CH 2 -CH 2 als charakteristische Grundeinheit der Polymerkette.

Polypropylen (PP) ist die Bezeichnung für thermoplastische Polymere des Propylens mit der allg. Formel -(CH 2 -CH[CH3]) n -.

Polyether ist eine auf dem Gebiet der Makromolekularen Chemie übergreifende Bezeichnung für Polymere, deren organische Wiederholungseinheiten durch Ether-Funktionalitäten (C-O-C) zusammengehalten werden. Nach dieser Definition gehört eine Vielzahl strukturell sehr unterschiedlicher Polymerer zu den Polyethern, z. B. die Polyalkylenglykole (Polyethylenglykole, Polypropylenglykole und Polyepichlorhydrine) als Polymere von 1 ,2-Epoxiden, Epoxidharze, Polytetrahydrofurane (Polytetramethylenglykole), Polyoxetane, Polyphenylenether (s. Polyarylether) oder Polyetheretherketone (s. Polyetherketone). Nicht zu den Polyethern werden Polymere mit seitenständigen Ether-Gruppen gerechnet, wie u. a. die Celluloseether, Stärkeether und Vinylether-Polymere.

Zur Gruppe der Polyether zählen weiterhin auch funktionalisierte Polyether, d. h. Verbindungen mit einem Polyether-Gerüst, die an ihren Hauptketten seitlich angeheftet noch andere funktionelle Gruppen tragen wie z. B. Carboxy-, Epoxy-, AIIyI- oder Amino-Gruppen usw. Vielseitig verwendbar sind Block-Copolymere von Polyethern und Polyamiden (sog. Polyetheramide oder Polyether- Blockamide, PEBA).

Als Polyamide (PA) werden Polymere bezeichnet, deren Grundbausteine durch Amid-Bindungen (- NH-CO-) zusammengehalten werden. Natürlich vorkommende Polyamide sind Peptide, Polypeptide und Proteine (Beisp.: Eiweiß, Wolle, Seide). Die synthetischen Polyamide sind bis auf wenige Ausnahmen thermoplastische, kettenförmige Polymere.

Neben den Homopolyamiden haben auch einige Co-Polyamide Bedeutung erlangt. Üblich ist bei diesen eine qualitative und quantitative Angabe der Zusammensetzung z. B. PA 66/6 (80:20) für aus 1 ,6-Hexandiamin, Adipinsäure und ε-Caprolactam im Molverhältnis 80:80:20 hergestellte

Polyamide.

Wegen ihrer besonderen Eigenschaften werden Polyamide, die ausschließlich aromatische Reste enthalten (z. B. solche aus p-Phenylendiamin und Terephthalsäure), unter der Gattungsbez.

Aramide oder Polyaramide zusammengefaßt (Beisp.: Nomex®).

Die am häufigsten verwendeten Polyamid-Typen (v. a. PA 6 und PA 66) bestehen aus unverzweigten Ketten mit mittleren Molmassen von 15 000 bis 50 000 g/mol. Sie sind im festen Zustand teilkristallin und haben Kristallisationsgrade von 30-60%. Eine Ausnahme bilden Polyamide aus Bausteinen mit Seitenketten oder Co-Polyamide aus stark unterschiedlichen Komponenten, die weitgehend amorph sind. Im Gegensatz zu den im allgemeinen milchig-opaken, teilkristallinen Polyamiden sind diese fast glasklar. Die Erweichungstemperatur der gebräuchlichsten Homo-Polyamide liegen zwischen 200 und 260 0 C (PA 6: 215-220 0 C, PA 66: 255-260 0 C).

Polyester ist die Sammelbezeichnung für Polymere, deren Grundbausteine durch Ester-Bindungen (-CO-O-) zusammengehalten werden. Nach ihrem chemischen Aufbau lassen sich die sogenannte Homopolyester in zwei Gruppen einteilen, die Hydroxycarbonsäure-Typen (AB- Polyester) und die Dihydroxy-Dicarbonsäure-Typen (AA-BB-Polyester). Erstere werden aus nur einem einzigen Monomer durch z. B. Polykondensation einer ω-Hydroxycarbonsäure 1 oder durch Ringöffnungspolymerisation cyclischer Ester (Lactone) 2 hergestellt.

Verzweigte und vernetzte Polyester werden bei der Polykondensation von drei- oder mehrwertigen Alkoholen mit polyfunktionellen Carbonsäuren erhalten. Zu den Polyestem werden allgemein auch die Polycarbonate (Polyester der Kohlensäure) gerechnet.

AB-Typ-Polyester (I) sind u. a. Polyglykolsäuren, Polymilchsäuren, Polyhydroxybuttersäure [Poly(3- hydroxybuttersäure), Poly(ε-caprolacton)e und Polyhydroxybenzoesäuren.

Rein aliphatische AA-BB-Typ-Polyester (II) sind Polykondensate aus aliphatischen Diolen und Dicarbonsäuren, die u. a. als Produkte mit endständigen Hydroxy-Gruppen (als Polydiole) für die Herstellung von Polyesterpolyurethanen eingesetzt werden [z. B. Polytetramethylenadipat]. Mengenmäßig die größte technische Bedeutung haben AA-BB-Typ-Polyester aus aliphatischen

Diolen und aromatischen Dicarbonsäuren, insbesondere die Polyalkylenterephthalate, mit Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT) und PoIy(1 , 4- cyclohexandimethylenterephthalat)e (PCDT) als wichtigste Vertreter. Diese Typen von Polyestern können durch Mitverwenden anderer aromatischer Dicarbonsäuren (z. B. Isophthalsäure) bzw. durch Einsatz von Diol-Gemischen bei der Polykondensation in ihren Eigenschaften breit variiert und unterschiedlichen Anwendungsgebieten angepaßt werden.

Rein aromatische Polyester sind die Polyarylate, zu denen u. a. die Poly(4-hydroxybenzoesäure) gehören. Zusätzlich zu den bisher genannten gesättigten Polyestern lassen sich auch ungesättigte Polyester aus ungesättigten Dicarbonsäuren herstellen, die als Polyesterharze, insbesondere als ungesättigte Polyesterharze (UP-Harze), technische Bedeutung erlangt haben.

Als Polyurethane (PUR) werden Polymere bezeichnet, in deren Makromolekülen die Wiederholungseinheiten durch Urethan-Gruppierungen -NH-CO-O- verknüpft sind. Polyurethane werden im allgemeinen durch Polyaddition aus zwei- oder höherwertigen Alkoholen und Isocyanaten erhalten.

Je nach Wahl und stöchiometrischem Verhältnis der Ausgangsstoffe entstehen so Polyurethane mit sehr unterschiedlichen mechanischen Eigenschaften, die als Bestandteile von Klebstoffen und Lacken (Polyurethan-Harze), als lonomere, als thermoplastisches Material für Lagerteile, Rollen, Reifen, Walzen verwendet werden und als mehr oder weniger harte Elastomere in Faserform (Elastofasern, Kurzz. PUE für diese Elastan- oder Spandex-Fasern) oder als Polyether- bzw. Polyesterurethan-Kautschuk (EU bzw. AU)

Polyvinylalkohole (PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur

die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs

OHo OH OH OHo OH OH

enthalten.

Handelsübliche Polyvinylalkohole werden als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.

Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure oder Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.

Vorzugsweise werden als Trägermaterialien Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß der wasserlösliche oder wasserdispergierbare Behälter einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol "1 , vorzugsweise von 11.000 bis 90.000 gmol '1 , besonders bevorzugt von 12.000 bis 80.000 gmol "1 und insbesondere von 13.000 bis 70.000 gmol "1 liegt.

In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung besteht das polymere Trägermaterial der Partikel wenigstens anteilsweise aus Ethylen/Vinylacetat-Copolymer. Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist daher eine Dosiervorrichtung, dadurch gekennzeichnet, daß ein polymeres Trägermaterial mindestens 10 Gew.-%, vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindestens 70 Gew.-% Ethylen/Vinylacetat-Copolymer enthält, vorzugsweise vollständig aus Ethylen/Vinylacetat- Copolymer hergestellt ist.

Ethylen/Vinylacetat-Copolymere ist die Bezeichnung für Copoylmere aus Ethylen und Vinylacetat. Die Herstellung dieses Polymers erfolgt grundsätzlich in einem der Herstellung von Polyethylen mit niedriger Dichte (LDPE; low density polyethylene) vergleichbaren Verfahren. Mit einem zunehmenden Anteil an Vinylacetat wird die Kristallinität des Polyethylens unterbrochen und auf diese Weise die Schmelz- und Erweichungspunkte bzw. die Härte der resultierenden Produkte herabgesetzt. Das Vinylacetat macht das Copolymer zudem polarer und verbessert damit dessen Adhäsion an polare Substrate.

Die vorstehend beschriebenen Ethylen/Vinylacetat-Copolymere sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Elvax ® (Dupont). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Elvax ® 265, Elvax ® 240, Elvax ® 205 W, Elvax ® 200 W sowie Elvax ® 360.

Einige besonders geeignete Copolymere und deren physikalische Eigenschaften sind der nachstehenden Tabelle zu entnehmen:

Im Rahmen der vorliegenden Erfindung, insbesondere im Bereich der Beduftung der Innenräume von maschinellen Geschirrspülmaschinen sind Dosiervorrichtungen besonders bevorzugt, in welchen als polymeres Trägermaterial Ethylen/Vinylacetat-Copolymer eingesetzt wird und dieses Copolymer 5 bis 50 Gew.-% Vinylacetat, vorzugsweise 10 bis 40 Gew.-% Vinylacetat und insbesondere 20 bis 30 Gew.-% Vinylacetat, jeweils bezogen auf das Gesamtgewicht des Copolymers, enthält.

In einer weiteren bevorzugten Ausführungsform enthält mindestens eine der Wirkstoffzusammensetzungen der Dosiervorrichtung ein Polyether-Ester-Amid Polymers (PEEA- Polymer) der allgemeinen Formel HO[C(O)-PA-C(O)-O-PE-O] n H. Erfindungsgemäße Dosiervorrichtungen, dadurch gekennzeichnet, dass mindestens eine der Wirkstoffzusammensetzungen ein Polyether-Ester-Amid Polymers (PEEA-Polymer) der allgemeinen Formel HO[C(O)-PA-C(O)-O-PE-O] n H enthält, in der PA für eine Polyamidgruppe

steht, PE für eine Polyethergruppe steht und n für eine ganze Zahl steht, sind besonders bevorzugt.

Entsprechende PEEA-Polymere sind beispielsweise durch Copolymerisation des Polyamids einer Dicarbonsäure, welches eine endständige Säuregruppe trägt und eine mittlere Molmasse zwischen 300 und 15000 aufweist, mit einem linearen oder verzweigten aliphatischen Polyalkylenglycol, welches eine endständige Hydrxoylgruppe trägt und eine mittlere Molmasse zwischen 200 und 6000 aufweist, erhältlich. Die Copolymerisation erfolgt dabei vorzugsweise in einer Schmelze bei Temperaturen zwischen 100 und 400 0 C.

Entsprechende PEEA-Polymere sind kommerziel unter der Bezeichnung Pebax ® erhältlich. Während grundsätzlich der vorgenannten PEEA-Polymere als Inhaltsstoff der erfindungsgemäß dosierten Wirkstoffzusammensetzungen geeignet sind, werden solche

Wirkstoffzusammensetzungen besonders bevorzugt, welche mindestens das 2,3-fache, vorzugsweise das 5-fache ihres Eigengewichts an Duftstoffen aufzunehmen vermögen. Geeignete PEEA-Polymere sind beispielsweise Pebax ® 2533, Pebax ® 3533 oder Pebax ® 4033.

In einer weiteren bevorzugten Ausführungsform handelt es sich bei mindestens einer der Wirkstoffzusammensetzungen um ein Wirkstoff-haltiges Gel. Besonders bevorzugt werden Gele, umfassend a) 70 bis 98 Gew.-% mindestens eines Wirkstoffes, vorzugsweise eines Duftstoffs und b) 2 bis 30 Gew.-% eines Polyether-Ester-Amid Polymers (PEEA-Polymer) der allgemeinen Formel HO[C(O)-PA-C(O)-O-PE-O] n H, in der PA für eine Polyamidgruppe steht, PE für eine Polyethergruppe steht und n für eine ganze Zahl steht.

In einer weiteren bevorzugten Ausführungsform umfasst die erfindungsgemäße Dosiervorrichtung als Trägermaterial Aktivkohle. Als Aktivkohle werden dabei schwarze, leichte, trockene, geruch- und geschmacklose Pulver oder Granulate aus kleinsten Graphit-Kristallen und amorphem Kohlenstoff mit poröser Struktur und sehr großen inneren Oberflächen (vorzugsweise zwischen 500-1500 m 2 /g) verstanden. Es wird zwischen Pulver-Aktivkohle, Korn-Aktivkohle und z.B. zylindrisch geformter Form-Aktivkohle unterschieden. Aktivkohle kann bis zu 25 Gewichts-% mineralische Anteile enthalten. Die Aktivkohle kann in einer besonders bevorzugten Ausführungsform als Duftfänger fungieren und ist damit gleichzeitig Trägermaterial und Wirkstoff.

Weitere geeignete Trägermaterialien sind die Cyclodextrine.

Alternativ oder in Ergänzung zu den vorgenannten Trägermaterialien werden mit Vorzug weiterhin anorganische Trägermaterialien eingesetzt. Insbesondere bevorzugt werden Dosiervorrichtungen,

dadurch gekennzeichnet, dass es sich bei mindestens einem der Trägermaterialien um ein anorganisches Trägermaterial, vorzugsweise um ein Silikat, Phosphat oder Borat handelt.

Die Silikate, Phosphate oder Borate liegen dabei vorzugsweise in Form eines Glases, besonders beovorzugt in Form eines wasserlöslichen Glases vor. Besonders bevorzugte anorganische Trägermaterialien sind beispielsweise Zeolithe, vorzugsweise sauer modifizierte Zeolithe.

Die vorgenannten Trägermaterialien können alleine oder in Kombination mit anderen Trägermaterialien eingesetzt werden.

Im Rahmen der vorliegenden Anmeldung werden insbesondere thermoplastische Trägermaterialien bzw. Trägermaterialien, die sich unter Einwirkung der bei Gebrauch auftretenden Umgebungstemperaturen plastisch verformen, besonders bevorzugt. Durch die plastische Verformung der Trägermaterialien im Verlaufe einer oder mehrerer Anwendungen wird eine Änderung der Trägermaterialoberfläche, insbesondere eine Änderung der Größe der Trägermaterialoberfläche, erreicht, welche sich wiederum vorteilhaft auf das Freisetzungsprofil und die Freisetzungskinetik der in den Wirkstoffzusammensetzungen enthaltenen wasch- oder reinigungsaktiven Wirkstoffe auswirkt. Dosiervorrichtungen, dadurch gekennzeichnet, daß mindestens ein polymeres Trägermaterial einen Schmelz- oder Erweichungspunkt zwischen 40 und 125°C, vorzugsweise zwischen 60 und 100 0 C, besonders bevorzugt von 70 bis 9O 0 C und insbesondere zwischen 75 und 80 0 C aufweist, sind erfindungsgemäß bevorzugt.

Die erfindungsgemäßen Dosiervorrichtungen eignen sich insbesondere zur Mehrfachdosierung der in ihnen umfassten Wirkstoffe. Um eine solche Mehrfachdosierung über eine Vielzahl von Waschoder Reinigungsverfahren zu gewährleisten, hat es sich als vorteilhaft erwiesen, ausschließlich wasserunlösliche Trägermaterialien einzusetzen. Diese wasserunlöslichen Trägermaterialien vereinfachen zudem die Herstellung erfindungsgemäßer Dosiervorrichtungen. Bevorzugte Dosiervorrichtung sind daher dadurch gekennzeichnet, dass alle eingesetzten Trägermaterialien wasserunlöslich sind.

Die Wirkstoffzusammensetzungen können grundsätzlich alle, in Abhängigkeit von der chemischen und physikalischen Eigenschaften der Trägermaterialien realisierbaren Aggregatzustände und/oder Raumformen einnehmen.

In einer ersten bevorzugten Ausführungsform liegt mindestens eine der Wirkstoffzusammensetzungen als Gel vor.

In einer weiteren bevorzugten Ausführungsform liegt mindestens eine der Wirkstoffzusammensetzungen als Feststoff vor. Mit besonderem Vorzug werden

Wirkstoffzusammensetzungen in Form einzelner, eine gesamte Wirkstoffzusammensetzungen umfassender Blöcke eingesetzt. Alternativ können die Wirkstoffzusammensetzungen in partikulärer Form vorliegen, wobei Dosiervorrichtung, bei denen dass das Tragermaterial mindestens einer der Wirkstoffzusammensetzungen in Partikelform vorliegt, wobei diese Partikel vorzugsweise einen mittleren Durchmesser von 0,5 bis 20 mm, bevorzugt von 1 bis 10 mm und insbesondere von 3 bis 6 mm aufweisen, besonders bevorzugt werden.

In einer weiteren bevorzugten Ausführungsform umaßt die erfindungsgemäße Dosiervorrichtung mindestens zwei Wirkstoffzusammensetzungen, von denen ein wasserunlösliches Trägermaterial in Partikelform umfasst, wobei dieses Trägermaterial in einer gelförmigen Wirkstoffzubereitung dispergiert vorliegt.

Besonders bevorzugt werden erfindungsgemäße Dosiervorrichtungen, die mindestens eine gefärbte Wirkstoffzusammensetzung umfasst. Durch die Einfärbung mindestens einer der Wirkstoffzusammensetzungen kann eine optische Differenzierung dieser Zusammensetzungen erreicht und der Mehrfachnutzen dieser unterschiedlichen Zusammensetzungen in einfacher Weise verdeutlicht werden. Weiterhin eignen sich die Farbstoffe aber auch als Indikator, insbesondere als Verbrauchsindikator für die eingefärbten Wirkstoffzusammensetzungen.

Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.

Bei der Wahl des Färbemittels muss beachtet werden, dass die Färbemittel eine hohe Lagerstabilität und Unempfindlichkeit gegenüber Licht sowie keine zu starke Affinität gegenüber Glas, Keramik oder Kunststoffgeschirr aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, dass Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, dass wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln werden typischerweise Färbemittel- Konzentrationen im Bereich von einigen 10 "2 bis 10 '3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10 ~3 bis 10 '4 Gew.-%.

Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe.

Als weiteren Inhaltsstoff umfassen die erfindungsgemäßen Dosiervorrichtungen einen oder mehrere Wirkstoffe. Bei diese Wirkstoffen handelt es sich um wasch- oder reinigungsaktive Wirkstoffe. Bevorzugte erfindungsgemäße Dosiervorrichtungen sind dadurch gekennzeichnet, dass mindestens einer dieser Wirkstoffe ausgewählt ist aus der Gruppe der Duftstoffe, Duftfänger, Farbstoffe, Glaskorrosionsinhibitoren, Silberschutzmittel, Bleichkatalysatoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, wasch- oder reinigungsaktiven Polymeren oder Tenside.

Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang- Ylang-Öl.

Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.

Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.

Als Duftfänger sind beispielsweise die bekannten Ricenolate, insbesondere die Zinkricenoleate einsetzbar. Mit besonderem Vorzug werden weiterhin Aktivkohle und/oder Cyclodextrine und/oder Zeolithe, vorzugsweise sauer modifizierte Zeolithe, eingesetzt.

Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.

Das Spektrum der erfindungsgemäß bevorzugten Zinksalze, vorzugsweise organischer Säuren, besonders bevorzugt organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/l, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkeitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.

Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkeitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.

Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn 2+ ) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.

Als Silberschutzmittel einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der

Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Erfindungsgemäß bevorzugt werden 3-Amino-5-alkyl- 1 ,2,4-triazole bzw. ihre physiologisch verträglichen Salze eingesetzt, wobei diese Substanzen mit besonderem Vorzug in einer Konzentration von 0,001 bis 10 Gew.-%, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt werden. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-lsononyl-, 5-Versatic-10-säurealkyl-3-amino- 1 ,2,4-triazole sowie Mischungen dieser Substanzen.

Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.

Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.

Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z.B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z.B. Stearat.

Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO 4 , Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co(NO 3 ) 2 , Ce(NO 3 ) 3 , sowie deren Gemische, so dass die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO 4 , Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1-

diphosphonat], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co(NO 3 ) 2 , Ce(NO 3 ) 3 mit besonderem Vorzug eingesetzt werden.

Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Camaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren.

Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte Mittel enthalten.

Bei den Bleichkatalysatoren handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod- Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden erfindungsgemäß bevorzugt.

Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenoimercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.

Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.

„Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyl-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon-Methoimidazoliniumchlorid- Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.

„Amphotere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.

Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie ein Polymer a) enthalten, welches Monomereinheiten der Formel R 1 R 2 C=CR 3 R 4 aufweist, in der jeder Rest R 1 , R 2 , R 3 , R 4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, C 1-30 linearen oder verzweigten Alkylgruppen, Aryl, Aryl substituierten C 1-30 linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH-Bereichs von 2 bis 11, oder Salze hiervon, mit der Maßgabe, dass mindestens ein Rest R 1 , R 2 , R 3 , R 4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist.

Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel

bei der R 1 und R 4 unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R 2 und R 3 unabhängig voneinander für

eine Alkyl-, Hydroxyalkyl-, oder Aminoalkylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X " repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, lodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p- Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat oder deren Mischungen.

Bevorzugte Reste R 1 und R 4 in der vorstehenden Formel sind ausgewählt aus -CH 3 , -CH 2 -CH 3 , - CH 2 -CH 2 -CH 3 , -CH(CH 3 )-CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH(OH)-CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 - CH(OH)-CH 3 , -CH(OH)-CH 2 -CH 3 , und -(CH 2 CH 2 -O) n H.

Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R 1 und R 4 für H stehen, R 2 und R 3 für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel

H 2 C =C H-(C H 2 )-N + (C H3) 2 -(C H 2 )-C H=C H 2

werden im Falle von X ' = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet.

Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel

R1HC=CR2-C(O)-NH-(CH 2 )-N + R3R4R5

X " in der R 1 , R 2 , R 3 , R 4 und R 5 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigen Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH 3 , -CH 2 -CH 3 , -CH 2 - CH 2 -CH 3 , -CH(CH 3 )-CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH(OH)-CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 - CH(OH)-CH 3 , -CH(OH)-CH 2 -CH 3 , und -(CH 2 CH 2 -O) n H steht und x für eine ganze Zahl zwischen 1 und 6 steht.

Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R 1 für H

und R 2 , R 3 , R 4 und R 5 für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel

H 2 C=C(CH3)-C(O)-NH-(CH 2 ) X -N + (CH3)3

werden im Falle von X " = Chlorid auch als MAPTAC (Methyacrylamidopropyl-trimethylammonium- Chlorid) bezeichnet.

Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.

Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionischen Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Phosphonate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten oder ungesättigten Sulfonate. Bevorzugte Monomereinheiten sind die Acrylsäure, die (Meth)acrylsäure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Allylessigsäure, die Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.

Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkyl- aminoalkyl(meth)acrylsäure-Copolymere, der

Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acry lsäure-Copolymere, der

Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth )acrylsäure-Copolymere, der Alkylacryl- amid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacr ylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.

Bevorzugt einsetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymer e sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copol ymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.

Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(diallyl)ammoniumchlorid umfassen.

Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyl- trialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acr ylsäure-Copolymere, der Methacryl- amidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumc hlorid/Methacrylsäure-Copolymere und der Methacrylamidoalkyltrialkylammoniumchlorid/DimethyKdiallyOam moniumchlorid/Alkyl-

(meth)acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.

Insbesondere bevorzugt werden amphotere Polymere aus der Gruppe der

Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(dia llyl)ammoniumchlorid/Acrylsäure-

Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/DimethyKdiallyO ammonium- chlorid/Acrylsäure-Copolymere und der Methacrylamidopropyltrimethylammonium- chlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)acrylsä ure-Copolymere sowie deren Alkali- und Ammoniumsalze.

Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.

Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel

R 1 (R 2 )C=C(R 3 )COOH

bevorzugt, in der R 1 bis R 3 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.

Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R 1 = R 2 = R 3 = H), Methacrylsäure (R 1 = R 2 = H; R 3 = CH 3 ) und/oder Maleinsäure (R 1 = COOH; R 2 = R 3 = H) bevorzugt.

Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel

R 5 (R 6 )C=C(R 7 )-X-SO 3 H

bevorzugt, in der R 5 bis R 7 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoff rest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH 2 J n - mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 ) 2 - und - C(O)-NH-CH(CH 2 CH 3 )-.

Unter diesen Monomeren bevorzugt sind solche der Formeln

H 2 C=CH-X-SO 3 H

H 2 C=C(CH 3 J-X-SO 3 H

HO 3 S-X-(R 6 )C=C(R 7 )-X-SO 3 H

in denen R 6 und R 7 unabhängig voneinander ausgewählt sind aus -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CHz) n - mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 J 2 - und -C(O)-NH- CH(CH 2 CH 3 J-.

Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1- propansulfonsäure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2- hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propeni-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3- Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie wasserlösliche Salze der genannten Säuren.

Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R 1 (R 2 )C=C(R 3 )COOH und Monomeren der Formel R 5 (R 6 )C=C(R 7 )-

X-SO 3 H.

Zusammenfassend sind Copolymere aus i) ungesättigten Carbonsäuren der Formel R 1 (R 2 )C=C(R 3 )COOH in der R 1 bis R 3 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, ii) Sulfonsäuregruppen-haltigen Monomeren der Formel R 5 (R 6 )C=C(R 7 )-X-SO 3 H in der R 5 bis R 7 unabhängig voneinander für -H, -CH 3 , einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH 2 , -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR 4 steht, wobei R 4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH 2 ),,- mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH-C(CH 3 ) 2 - und -C(O)-NH-CH(CH 2 CH 3 )- ii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren besonders bevorzugt.

Weitere besonders bevorzugte Copolymere bestehen aus i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure,

Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln:

H 2 C=CH-X-SO 3 H

H 2 C=C(CHa)-X-SO 3 H

HO 3 S-X-(R 6 )C=C(R 7 )-X-SO 3 H

in der R 6 und R 7 unabhängig voneinander ausgewählt sind aus -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 J 2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH 2 ) n - mit n = O bis 4, -COO-(CH 2 ) k - mit k = 1 bis 6, -C(O)-NH- C(CH 3 ) 2 - und -C(O)-NH-CH(CH 2 CH 3 )- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.

Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden

können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.

So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel

-[CH 2 -CHCOOH] m -[CH 2 -CHC(O)-Y-SO 3 H] p -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )-, für -NH-C(CHa) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -CHC(O)-Y-SO 3 H] p -

in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )- , für -NH-C(CHs) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel

-[CH 2 -CHCOOH] m -[CH 2 -C(CH 3 )C(O)-Y-SO 3 H] p -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )- , für -NH-C(CH 3 ) 2 - oder -NH-CH(CH 2 CH 3 )- steht, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel

-[CH 2 -C(CH 3 )COOH] n -[CH 2 -C(CH 3 )C(O)-Y-SO 3 H] P -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 )„- mit n = O bis 4, für -0-(C 6 H 4 )-, für -NH-C(CH 3 ) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel

-[HOOCCH-CHCOOH] n -[CH 2 -CHC(O)-Y-SO 3 H] P -

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder aliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )-, für -NH-C(CH 3 ) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel

-[HOOCCH-CHCOOH] m -[CH 2 -C(CH 3 )C(O)O-Y-SO 3 H]p-

enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )-, für -NH-C(CHs) 2 - oder -NH-CH(CH 2 CH 3 )- steht.

Zusammenfassend sind erfindungsgemäß solche Copolymere bevorzugt, die Struktureinheiten der Formeln

-[CH 2 -CHCOOH] m -[CH 2 -CHC(O)-Y-SO 3 H]p-

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -CHC(O)-Y-SO 3 H] p -

-[CH 2 -CHCOOH] m -[CH 2 -C(CH 3 )C(O)-Y-SO 3 H] p -

-[CH 2 -C(CH 3 )COOH] m -[CH 2 -C(CH 3 )C(O)-Y-SO 3 H] p -

-[HOOCCH-CHCOOH] m -[CH 2 -CHC(O)-Y-SO 3 H] p -

-[HOOCCH-CHCOOH] m -[CH 2 -C(CH 3 )C(O)O-Y-SO 3 H] p -

enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH 2 ) n - mit n = 0 bis 4, für -0-(C 6 H 4 )-, für -NH-C(CHs) 2 - oder -NH-CH(CH 2 CH 3 )- steht, bevorzugt sind.

In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.

Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.

Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.

Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol '1 , vorzugsweise von 4000 bis 25.000 gmol '1 und insbesondere von 5000 bis 15.000 gmol '1 aufweisen.

Die erfindungsgemäßen Dosiervorrichtungen können als weiteren Wirkstoff Tenside enthalten. Als Tenside sind grundsätzlich alle dem Fachmann bekannten Tenside aus den Gruppen der nichtionischen, anioschen, kationischen oder amphoteren Tenside geeignet, wobei jedoch insbesondere die nichtionischen Tenside bevorzugt werden.

In einer besonders bevorzugten Ausführungsvariante liegen die Tenside, insbesondere die nichtionischen Tenside in an ein Trägermaterial chemisch gebundener Form vor. In einer solchen Ausführungsform kann das Tensid im Verlaufe der Wasch- oder Reinigungsverfahren beispielsweise durch Hydrolyse oder oxidative Spaltung einer chemischen Bindung freigesetzt werden.

Die Wirkstoffe können in den Wirkstoffzubereitungen grundsätzlich in beliebigen Mengen enthalten sein. Besonders bevorzugt werden jedoch Dosiervorrichtungen, bei denen der Gewichtsanteil des/der Wirkstoffe 1 bis 70 Gew.-%, vorzugsweise 10 bis 60 Gew.-%, besonders bevorzugt 20 bis 50 Gew.-%, insbesondere 30 bis 40 Gew.-%, jeweils bezogen auf das Gesamtgewicht des/der Wirkstoffzusammensetzung(en) beträgt.

Die erfindungsgemäßen Dosiervorrichtungen umfassen mindestens zwei Wirkstoffzusammensetzungen, die sich hinsichtlich mindestens einer ihrer Inhaltsstoffe voneinander unterscheiden.

In einer ersten bevorzugten Ausführungsform unterscheiden sich die beiden Wirkstoffzusammensetzungen hinsichtlich der in ihnen enthaltenen Trägermaterialien.

In einer besonders bevorzugten Variante dieser bevorzugten Ausgestaltung erfindungsgemäßer Dosiervorrichtungen unterscheiden sich die beiden Wirkstoffzusammensetzungen dabei lediglich hinsichtlich der enthaltenen Trägermaterialien, nicht jedoch hinsichtlich der enthaltenen Wirkstoffe. Durch den Einsatz unterschiedlicher Trägermaterialien für den gleichen Wirkstoff ist es möglich, das Freisetzungsprofil für diesen Wirkstoff in vorteilhafter Weise zu modifizieren und so beispielsweise die Wirkdauer der erfindungsgemäßen Dosiervorrichtung zu verlängern.

In einer weiteren besonders bevorzugten Ausführungsform der erfindungsgemäßen Dosiervorrichtung unterscheiden sich die beiden Wirkstoffzusammensetzungen sowohl hinsichtlich mindestens eines der in ihnen enthaltenen Trägermaterialien als auch hinsichtlich mindestens eines der in ihnen enthaltenen Wirkstoffe.

Erfindungsgemäße Dosiervorrichtungen, dadurch gekennzeichnet, daß mindestens zwei Wirkstoffzusammensetzungen unterschiedliche Trägermaterialien aufweisen, sind erfindungsgemäß bevorzugt.

Dosiervorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass alle Wirkstoffzusammensetzungen die gleichen Trägermaterialien aufweisen.

Besonders bevorzugte Ausführungsformen erfindungsgemäßer Dosiervorrichtungen mit zwei Wirkstoffzubereitungen unterschiedlicher Zusammensetzung werden in der nachfolgenden Tabelle offenbart:

Die unterschiedlichen Wirkstoffzubereitungen erfindungsgemäßer Dosiervorrichtungen können nebeneinander, das heißt in unmittelbarem Kontakt miteinander, in dem Behälter der Dosiervorrichtung vorliegen. In einer weiteren bevorzugten Ausführungsform weist die Dosiervorrichtung jedoch mindestens zwei, vorzugsweise drei oder vier, voneinander getrennte Aufnahmekammern auf. Besonders bevorzugt werden dabei solche erfindungsgemäßen Dosiervorrichtungen, die mindestens zwei voneinander getrennte Aufnahmekammern aufweisen, von denen mindestens eine Aufnahmekammer mindestens eine weitere Aufnahmekammer wenigstens anteilsweise umgibt. Besonders vorteilhaft sind dabei Dosiervorrichtungen, welche eine erste Aufnahmekammer in Form eines muldenförmigen Hohlkörpers aufweisen, dessen Mulde durch ein geeignetes Verschlusselement unter Ausbildung einer weiteren Aufnahmekammer verschlossen ist. Als Verschlusselemente werden dabei mit besonderem Vorzug Deckel oder eigenständige Behälter eingesetzt. Die muldenförmige Aufnahmekammer wird mit dem Deckel bzw. dem eigenständigen Behälter vorzugsweise mittels einer Haft-, Rast-, Steck- oder Schnappverbindung verbunden.

Besonders bevorzugte Ausführungsformen erfindungsgemäßer Dosiervorrichtungen mit zwei Aufnahmekammern werden in der nachfolgenden Tabelle offenbart:

Weitere besonders bevorzugte Ausführungsformen erfindungsgemäßer Dosiervorrichtungen mit drei Aufnahmekammern offenbart die nachfolgende Tabelle:

Die erfindungsgemäßen Dosiervorrichtungen eignen sich zur Dosierung wasch- oder reinigungsaktiver Wirkstoffe in Wasch- oder Reinigungsverfahren. Wasch- oder Reinigungsverfahren, bei welchem eine erfindungsgemäße Dosiervorrichtung zur Dosierung von Wirkstoffen eingesetzt wird, sind daher ein weiterer Gegenstand der vorliegenden Anmeldung, wobei der Einsatz erfindungsgemäßer Dosiervorrichtungen in maschinellen Reinigungsverfahren besonders bevorzugt wird.

Aufgrund der speziellen Konfektionierung der wasch- oder reinigungsaktiven Wirkstoffe auf spezielle abgestimmten Trägermaterialien, eignen sich die erfindungsgemäßen Dosiervorrichtungen insbesondere zur Dosierung von wasch- oder reinigungsaktiven Wirkstoffen Wasch- oder Reinigungsverfahren, bei denen die Dosiervorrichtung und die in ihr enthaltenen Wirkstoffzusammensetzungen auf Temperaturen zwischen 30 und 150°C erwärmt werden. Verfahren zur Dosierung von Wirkstoffen, dadurch gekennzeichnet, daß eine erfindungsgemäße Dosiervorrichtung auf Temperaturen zwischen 30 und 15O 0 C erwärmt wird, sind daher bevorzugt. Die erfindungsgemäßen Dosiervorrichtungen werden vorzugsweise in Innenräumen von Gebäuden, Fahrzeugen oder technischen Geräten eingesetzt. Ein erfindungsgemäßes Verfahren, dadurch gekennzeichnet, dass die Dosierung der Wirkstoffe in Innenräumen von Gebäuden, Fahrzeugen oder technischen Geräten erfolgt, wird daher bevorzugt.

Mit besonderem Vorzug werden die erfindungsgemäßen Dosiervorrichtungen in wechselfeuchten Räumen, das heißt in Räumen mit stark schwankender Luftfeuchtigkeit eingesetzt. Als „wechselfeuchte Räume" werden dabei insbesondere die Innenräume von Geschirrspülmaschinen, Textilwaschmaschinen oder Textiltrocknern bezeichnet. Ein erfindungsgemäßes Verfahren,

dadurch gekennzeichnet, dass die Dosierung der Wirkstoffe in Innenräume von Textilwaschmaschinen, Textiltrocknern oder Geschirrspülmaschinen erfolgt, wird daher bevorzugt.