Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DRIVE APPARATUS
Document Type and Number:
WIPO Patent Application WO/2013/064513
Kind Code:
A1
Abstract:
The invention relates to a drive apparatus comprising a housing, a transmitter, a drive element in the form of a piezoelectric or electrostrictive actuator and an element which is intended to be driven, wherein the transmitter is in frictional contact with the element which is intended to be driven and makes contact with the drive element by means of at least one first end face and is in contact with a sprung element by means of at least one second end face, wherein both the drive element and the sprung element are supported on the housing in a direction which is substantially parallel to the direction of extent of the element which is intended to be driven, and the transmitter is surrounded at least in sections by a prestressing element in such a way that the prestressing element is at a distance from the housing, wherein the element which is intended to be driven projects through the sprung element and through the transmitter and through the drive element.

Inventors:
HUEBNER REINHARD (DE)
Application Number:
PCT/EP2012/071512
Publication Date:
May 10, 2013
Filing Date:
October 30, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PHYSIK INSTR PI GMBH & CO KG (DE)
International Classes:
H02N2/02; H02N2/00
Foreign References:
US6320298B12001-11-20
US5587846A1996-12-24
DE102008003879A12008-07-31
Download PDF:
Claims:
Ansprüche

1. Antriebsvorrichtung (1 ), umfassend ein Gehäuse (2), einen Übertrager (3), ein Antriebselement (4) in Form eines piezoelektrischen oder elektrostriktiven Aktuators und ein anzutreibendes Element (5), wobei sich der Übertrager (3) in Friktionskontakt mit dem anzutreibenden Element (5) befindet und über wenigstens eine erste Stirnfläche (6) das Antriebselement (4) kontaktiert und über wenigstens eine zweite Stirnfläche (7) mit einem federnden Element (8) in Kontakt steht, wobei sich sowohl das Antriebselement (4), als auch das federnde Element (8) am Gehäuse (2) in einer zur Ausdehnungsrichtung des anzutreibenden Elements im Wesentlichen parallelen Richtung abstützen, und der Übertrager (3) wenigstens abschnittsweise von einem

Vorspannungselement (9) dergestalt umfangen ist, dass das

Vorspannungselement (9) vom Gehäuse (2) beabstandet ist, wobei das anzutreibende Element (5) durch das federnde Element (8) und durch den Übertrager (3) und durch das Antriebselement (4) hindurchragt.

2. Antriebsvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die durch das Vorspannungselement (9) erzeugte Anpresskraft FN des Übertragers (3) gegen das anzutreibende Element (5) dem 4- bis 10-fachen der Blockierkraft FB der Antriebsvorrichtung entspricht.

3. Antriebsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Vorspannungselement (9) im Wesentlichen C-förmig ist.

4. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Antriebselement (4) ringförmig ist und das anzutreibende Element (5) vollumfänglich umgibt.

5. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Antriebselement (4) stoffschlüssig mit dem Gehäuse (2) verbunden ist.

6. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Übertrager (3) wenigstens zwei im Wesentlichen C-förmige Abschnitte umfasst.

7. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das federnde Element (8) zumindest eine Tellerfeder oder zumindest eine Spannscheibe ist.

8. Antriebsvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Tellerfeder oder die Spannscheibe im montierten Zustand eine Federsteifigkeit k aufweist, die dem 100- bis 400-fachen von Fß/mm entspricht.

9. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Übertrager (3) Bronze aufweist und vorzugsweise aus Bronze besteht, und/oder das anzutreibende Element (5) Stahl umfasst und vorzugsweise aus gehärtetem Stahl besteht.

10. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Übertrager (3) gegen das Antriebselement (4) mittels eines Zentriermittels (10), vorzugsweise mittels einer Zentrierhülse,

ausgerichtet ist.

1 1. Antriebsvorrichtung nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Verhältnis zwischen der geometrischen Ausdehnung des Übertragers (3) in Erstreckungsrichtung des anzutreibenden Elements (5) und der geometrischen Längsausdehnung des anzutreibenden Elements (5) kleiner als 0,5 ist.

Description:
Beschreibung

Antriebsvorrichtu ng

[0001] Die Erfindung betrifft eine Antriebsvorrichtung, bei welcher ein

anzutreibendes Element mittels eines mit diesem in Friktionskontakt stehenden Übertragers dadurch angetrieben wird, dass ein den Übertrager kontaktierendes piezoelektrisches oder elektrostriktives Antriebselement sich entweder schnell ausdehnt und darauffolgend langsam

zusammenzieht oder umgekehrt, um während der entsprechend

langsamen Bewegung des Antriebselements den Übertrager und damit das anzutreibende Element aufgrund der zwischen Übertrager und dem anzutreibenden Element vorherrschenden Haftreibung mitzunehmen und während der entsprechend schnellen Bewegung des Antriebselements eine Relativbewegung zwischen Übertrager und dem anzutreibenden Element zu generieren, die aus der Trägheit des anzutreibenden Elements resultiert, welche dazu führt, dass zwischen Übertrager und

anzutreibendem Element Gleitreibung auftritt. Demgemäß betrifft die Erfindung eine Antriebsvorrichtung, die auf dem sogenannten Stick-Slip- bzw. Haft-Gleit-Mechanismus beruht.

[0002] Aus der Druckschrift DE 10 2008 003 879 A1 ist eine ähnliche

Antriebsvorrichtung bekannt. Hierbei handelt es sich um einen

Linearantrieb mit einem von einer Steuereinrichtung ansteuerbaren

Piezoaktor, welcher ein von einem Haltekörper gehaltenes Piezoelement sowie einen an dieses angekoppelten Übertrager aufweist. Zwischen dem Übertrager und dem zu bewegenden Objekt ist ein mechanischer

Reibschluss ausgebildet, mit dessen Hilfe die Übertragung einer

Antriebskraft von dem Übertrager auf das zu bewegende Objekt realisiert wird. Damit sich eine Linearbewegung des zu bewegenden Objektes ergibt, erfolgt die Ansteuerung des Piezoaktors über die Steuereinrichtung auf ganz spezielle Art und Weise. Dabei erfolgt zunächst ein relativ schneller Spannungsanstieg am Piezoaktor, so dass sich dieser schnell ausdehnt. Durch die Ausdehnung des Piezoaktors kommt es zu einer Verschiebung des Übertragers entgegen der Antriebsrichtung, wobei sich der Übertrager an einem einstückig mit dem Haltekörper ausgeführten elastischen Element abstützt. Unter Ausnutzung der Massenträgheit des zu bewegenden Objektes erfolgt durch das relativ schnelle Ausdehnen des Piezoaktors und damit einer relativ schnellen Bewegung des Übertragers ein Überwinden der Haftreibung zwischen diesem und dem zu

bewegenden Objekt, so dass der Übertrager entlang des zu bewegenden Objektes gleitet, ohne dieses mitzunehmen oder zu bewegen. Im

Anschluss daran erfolgt eine gegenüber dem Spannungsanstieg

langsamere Reduzierung der Spannung, so dass es zu einer Kontraktion des Piezoaktors kommt, die vergleichsweise langsam ist. Dadurch kommt es zu einer Rückwärtsbewegung des mit dem Piezoaktor verbundenen Übertragers, welche so langsam ist, dass die Haftreibung zwischen Übertrager und zu bewegendem Objekt nicht überwunden wird, und der Übertrager das zu bewegende Element in Antriebsrichtung mitnimmt.

[0003] Nachteilig an dem aus der DE 10 2008 003 879 A1 bekannten Antrieb ist zum Einen, dass sich der Piezoaktor in Ausdehnungsrichtung gegen einen federnden Abschnitt des Haltekörpers abstützt. Durch die Verformung des besagten federnden Abschnitts kann es auch zu einer geringen

Verformung des an den federnden Abschnitt angrenzenden Bereichs des Haltekörpers kommen, was die Kraft, mit der der Piezoaktor gegen das zu bewegende Objekt angepresst wird, beeinflussen kann. Das bedeutet, dass der bekannte Antrieb in Antriebsrichtung nur eine relativ geringe Steifigkeit aufweist. Dies kann sich insgesamt negativ auf die

Positioniergenauigkeit des Antriebs auswirken.

[0004] Zum Anderen ist bei dem aus der DE 10 2008 003 879 A1 bekannten

Antrieb nachteilig, dass der Übertrager gegen den Haltekörper mittels einer Führung gelagert ist. Über diese Führung muss dabei die Kraft zum

Anpressen des Übertragers an das zu bewegende Objekt aufgebracht werden. Besagte Kraftaufbringung beeinflusst jedoch das

Führungsverhalten, insbesondere bei hohen Anpresskräften, was sich ebenso negativ die auf Positioniergenauigkeit auswirken kann. Außerdem ergeben sich bei Veränderungen an der Anpresskraft, z.B. im Zuge von Anpassungsmaßnahmen, veränderte Führungsbedingungen. Darüber hinaus unterliegt die Führung - insbesondere bei hohen Anpresskräften - einem Verschleiß, was sich auch auf die Positioniergenauigkeit bzw. die Positionierwiederholbarkeit des Antriebs auswirkt.

[0005] Der Erfindung liegt die Aufgabe zugrunde, die zuvor erwähnten und aus dem Stand der Technik bekannten Nachteile von

Stick-Slip-Antriebsvorrichtungen zu überwinden und eine

Antriebsvorrichtung bereitzustellen, die bei einfachem Aufbau zuverlässig und sicher über einen langen Zeitraum mit hoher Positioniergenauigkeit betrieben werden kann.

[0006] Diese Aufgabe wird gelöst durch eine Antriebsvorrichtung mit den

Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen einer solchen Antriebsvorrichtung sind Gegenstand der Unteransprüche.

[0007] Bei der erfindungsgemäßen Antriebsvorrichtung, bei welcher der

Übertrager zwischen einem vom Gehäuse separierten federnden Element und dem Antriebselement angeordnet ist und bei der das anzutreibende Element sowohl durch das federnde Element, als auch durch den

Übertrager und das Antriebselement hindurchragt, wird der Übertrager durch ein diesen zumindest abschnittsweise umfangendes

Vorspannungselement gegen das anzutreibende Element gedrückt, wobei das Vorspannungselement vom Gehäuse beabstandet ist und dieses an keiner Stelle berührt. Dadurch ist es möglich, dass selbst bei sehr hohen Kräften, die über das Vorspannungselement auf den Übertrager wirken, das Vorspannungselement selber keinen Einfluss, d.h. keine Kräfte, auf das umgebende Gehäuse ausübt. Der Übertrager übernimmt dabei gleichzeitig die Rolle einer Führung des anzutreibenden Elements.

[0008] Durch die Beabstandung des Vorspannungselements vom Gehäuse

ergeben sich zahlreiche Vorteile. Da nur Kräfte in Bewegungsrichtung des anzutreibenden Elements übertragen werden, fällt eine Entkopplung des Antriebs bzw. des Gehäuses gegenüber externen Führungen, in welchen der Antrieb gehaltert ist, wesentlich leichter. Auch kann dadurch eine Überbestimmung eines Systems, in welchem die erfindungsgemäße Antriebsvorrichtung eingesetzt und verwendet wird, vermieden werden. Weiterhin erfordern Veränderungen der mechanischen Vorspannung zwischen dem Übertrager und dem anzutreibenden Element, d.h. zwischen den Reibpartnern, keine Anpassung am Antriebselement oder an einem System, in dem das Antriebselement eingesetzt und verwendet wird. Außerdem ist es aufgrund der Tatsache, dass bei der erfindungsgemäßen Antriebsvorrichtung der Übertrager mit dem ihm umgebenden

Vorspannungselement die Führung des anzutreibenden Elements übernimmt, sehr einfach möglich, den Hub der Antriebsvorrichtung durch entsprechende Wahl der Länge des anzutreibenden Elements

anzupassen, ohne dass dafür eine Veränderung eines anderen Teils des Antriebs notwendig ist.

[0009] Die Reihen-Anordnung von federndem Element, Übertrager mit

Vorspannungselement und Antriebselement, wobei sich sowohl das federnde Element, als auch das Antriebselement am Gehäuse in zur Ausdehnungsrichtung des anzutreibenden Elements im Wesentlichen parallelen Richtung abstützen, ergibt eine in Antriebsrichtung sehr steife Antriebsvorrichtung, wodurch eine hohe Positioniergenauigkeit erzielbar ist.

[0010] Dadurch, dass das anzutreibende Element durch den Übertrager

hindurchragt, kann sich der Übertrager an diesem abstützen. Dies führt dazu, dass selbst bei sehr hohen Kräften auf den Übertrager durch das federnde Element in Richtung des Antriebselements ein Ausknicken des Übertragers vermieden wird. Je höher die Kraft des federnden Elements auf den Übertrager in Richtung des Antriebselements ist (axiale

Vorspannung), umso höhere Frequenzen des Antriebselements und damit umso höhere Antriebsgeschwindigkeiten des anzutreibenden Elements sind möglich, da dann das federnde Element der rückwärtigen Bewegung des Antriebselements schneller folgen kann.

[001 1] Weiterhin kann bei der erfindungsgemäßen Antriebsvorrichtung der

Übertrager in seiner geometrischen Ausdehnung in Erstreckungsrichtung des anzutreibenden Elements sehr klein ausgeführt sein. Dadurch ergibt sich selbst bei Materialien mit höherer Dichte ein relativ geringes Gewicht, was vorteilhaft ist, da bei geringerer anzutreibender Masse eine höhere Dynamik und damit höhere Frequenzen bzw. Antriebsgeschwindigkeiten erzielbar sind. [0012] Es kann von Vorteil sein, dass die durch das Vorspannungselement erzeugte Anpresskraft FN des Übertragers gegen das anzutreibende Element dem 4- bis 10-fachen der Blockierkraft FB der Antriebsvorrichtung entspricht. Die Blockierkraft FB stellt dabei die maximal von der

Antriebsvorrichtung erzeugbare Schubkraft gegen eine starre Barriere dar. Bei dem zuvor angegebenen Verhältnis von Anpresskraft FN ZU

Blockierkraft FB ist ein besonders zuverlässiger und genauer Betrieb der Antriebsvorrichtung möglich.

[0013] Zudem kann es von Vorteil sein, dass das Vorspannungselement im

Wesentlichen C-förmig ist. Dies erlaubt sowohl eine einfache Herstellung, als auch eine einfache Montage des Vorspannungselements bei gleichzeitig damit erzielbarer hoher Anpresskraft FN.

[0014] Weiterhin kann es von Vorteil sein, dass das Antriebselement ringförmig ist und das anzutreibende Element vollumfänglich umgibt. Die Verwendung eines ringförmigen Antriebselements vereinfacht das Ausrichten des Antriebselements sowohl zum Gehäuse, als auch zum Übertrager und zum federnden Element. Der Kontakt zwischen ringförmigem Antriebselement und Übertrager ist sehr großflächig und damit robust gegen ein Verkippen. Darüber hinaus erträgt ein ringförmiges Antriebselement hohe Momente um seine Hochachse. Dadurch kann die Antriebsvorrichtung bzw. deren Gehäuse ohne Zerstörungsgefahr mit einer Verschraubung geschlossen werden.

[0015] Es kann ebenfalls von Vorteil sein, dass das Antriebselement

stoffschlüssig mit dem Gehäuse verbunden ist. Dadurch ist auf einfache Weise eine verlässliche Verbindung zwischen Gehäuse und

Antriebselement realisierbar.

[0016] Außerdem kann es von Vorteil sein, dass der Übertrager wenigstens zwei im Wesentlichen C-förmige Abschnitte umfasst. Dadurch ist es möglich, die Kraft des Vorspannungselements optimal in den Übertrager einzuleiten und eine definierte Anpresskraft zu erhalten.

[00 7] Es kann günstig sein, dass das federnde Element zumindest eine

Tellerfeder oder zumindest eine Spannscheibe ist. Der ringförmige Aufbau einer Tellerfeder oder einer Spannscheibe ermöglicht einen sehr platzsparenden Einsatz. Es handelt sich dabei um äußerst preiswerte Maschinenelemente, welche durch ihre enorme Federhärte den Betrieb der Antriebsvorrichtung bei Frequenzen oberhalb des für Menschen hörbaren Bereiches erlauben. Zudem kann durch Verwendung mehrerer

Tellerfedern und/oder Spannscheiben auf einfache Weise eine gezielte Anpassung der Federkraft vorgenommen werden. Durch Verwendung von Tellerfedern oder Spannscheiben kann eine in Antriebsrichtung äußerst steife Antriebsvorrichtung realisiert werden.

[0018] Ebenso kann es günstig sein, dass die Tellerfeder oder die Spannscheibe im montierten Zustand eine Federsteifigkeit k aufweist, die dem 100- bis 400-fachen von F ß /mm entspricht. Dadurch ist ein besonders effektiver und genauer Antrieb des anzutreibenden Elements möglich.

[0019] Darüber hinaus kann es günstig sein, dass der Übertrager Bronze aufweist und vorzugsweise aus Bronze besteht, und/oder das anzutreibende Element Stahl umfasst und vorzugsweise aus gehärtetem Stahl besteht. Die Werkstoffkombination Bronze/gehärteter Stahl ist hierbei besonders vorteilhaft, da hierdurch optimierte Haft- bzw. Gleitreibungsverhältnisse einstellbar sind.

[0020] Weiterhin kann es günstig sein, dass der Übertrager gegen das

Antriebselement mittels eines Zentriermittels, vorzugsweise mittels einer Zentrierhülse, ausgerichtet ist. Dadurch ist ein besonders effektiver Betrieb der Antriebsvorrichtung möglich.

[0021] Zudem kann es günstig sein, dass das Verhältnis zwischen der

geometrischen Ausdehnung des Übertragers in Erstreckungsrichtung des anzutreibenden Elements und der geometrischen Längsausdehnung des anzutreibenden Elements kleiner als 0,5 ist. Dadurch können negative Effekte des Übertragers auf die Bewegung des anzutreibenden Elements verringert bzw. vermieden werden.

[0022] Kombinationen der zuvor angeführten vorteilhaften Weiterbildungen oder Kombinationen von Teilen davon sind ebenso denkbar.

[0023] Kurze Beschreibung der Zeichnungen

[0024] Es zeigen in schematischer und nicht maßstabsgetreuer Weise:

[0025] Fig. 1 : Erfindungsgemäße Antriebsvorrichtung in Längsschnittdarstellung [0026] Fig. 2: Erfindungsgemäße Antriebsvorrichtung gemäß Fig. 1 in

Explosionsdarstellung

[0027] Fig. 3: Weitere Ausführungsform der erfindungsgemäßen

Antriebsvorrichtung in Längsschnittdarstellung

[0028] Fig. 1 zeigt eine erfindungsgemäße Antriebsvorrichtung 1 in

Längsschnittdarstellung. Ein Übertrager 3 in Form zweier kreissegment- oder C-förmiger Abschnitte aus Bronze umgibt bzw. umfängt teilweise ein anzutreibendes Element 5 aus Stahl in Form eines Rundstabs und liegt an diesem an. Das anzutreibende Element 5 und der Übertrager 3 bilden eine Friktions- oder Reibpaarung. Die Buchse oder Hülse des Übertragers 3 kann dabei ebenso aus Keramik bestehen. Weiterhin ist denkbar, dass das anzutreibende Element 5 aus einem anderen Material als Stahl,

beispielsweise aus Kunststoff, besteht und keine runde Außengeometrie, sondern einer eckige Außengeometrie, z.B. in Form eines viereckigen oder sechseckigen Stabs, besitzt.

[0029] Zum Anpressen der beiden Abschnitte des Übertragers 3 an das

anzutreibende Element 5 sind diese von einem im Wesentlichen

C-förmigen Vorspannungselement 9 aus Federstahl umgeben. Das Vorspannungselement 9 ist dabei von dem umgebenden Gehäuse 2 beabstandet und berührt dieses nicht.

[0030] An ersten Stirnflächen 6 ist der Übertrager 3 in Kontakt mit einem

federnden Element 8 in Form einer Tellerfeder. An zweiten Stirnflächen 7, die den ersten Stirnflächen 6 gegenüber liegen, kontaktiert der Übertrager 7 ein Antriebselement 4 in Gestalt eines ringförmigen, piezoelektrischen Aktuators. Sowohl die Tellerfeder 8, als auch der piezoelektrische Aktuator stützen sich am zweiteiligen Gehäuse 2 in einer zur Ausdehnungsrichtung des anzutreibenden Elements 5 im Wesentlichen parallelen Richtung ab, wobei der piezoelektrische Aktuator 4 durch eine stoffschlüssige

Klebeverbindung mit dem Gehäuseteil 2' verbunden ist, während die Tellerfeder 8 am Gehäuseteil 2" anliegt. Die Tellerfeder 8 und der piezoelektrische Aktuator 4 umgeben das anzutreibende Element 5 vollumfänglich, wobei sie dieses nicht berühren. Das anzutreibende Element 5 ragt durch das Gehäuse 2, die Tellerfeder 8, den Übertrager 3 und den piezoelektrischen Aktuator 4 hindurch.

[0031] Das Gehäuseteil 2" ist in das Gehäuseteil 2' eingeschraubt, wobei über die Einschraubtiefe die Vorspannung der Tellerfeder 8 eingestellt werden kann.

[0032] Es kann sinnvoll sein, dass im Gehäuseteil 2' und/oder im Gehäuseteil 2" Buchsen eingesetzt sind, welche die Führung des anzutreibenden

Elements 5 unterstützen, indem diese als Anschlag- oder

Wegbegrenzungselemente für das anzutreibende Element 5 fungieren.

[0033] Das Antriebselement 4 besteht aus einem piezokeramischen Material und ist kompakt aufgebaut. Dabei ist die Piezokeramik lediglich an den

Außenflächen elektrisch kontaktiert, und zwischen den entsprechenden Außenelektroden befindet sich die Piezokeramik, die in geeigneter Weise polarisiert ist. Alternativ dazu ist es ebenso möglich, dass das

piezokeramische Material des Antriebselements 4 eine

Multilayer-Bauweise besitzt, die sich dadurch auszeichnet, dass auch innerhalb des piezokeramischen Materials zahlreiche, sogenannte

Innenelektroden, angeordnet sind, wobei die Innenelektroden

normalerweise über Terminierungs- oder Kontaktelektroden miteinander verbunden sind. Der wesentliche Vorteil der Multilayer-Bauweise besteht darin, dass die Ansteuerspannungen des Aktuators für eine definierte Auslenkung bzw. Ausdehnung wesentlich niedriger sein können als bei kompakter Bauweise. Der Vorteil bei kompakter Bauweise liegt hingegen in der deutlich einfacheren Herstellung entsprechender Aktuatoren.

[0034] Fig. 2 zeigt die erfindungsgemäße Antriebsvorrichtung gemäß Fig. 1 in perspektivischer Explosionsdarstellung. Gleiche Teile sind mit identischen Bezugszeichen versehen. Da es sich hierbei nur um eine andere

Darstellungsweise der Antriebsvorrichtung gemäß Fig. 1 handelt, wird auf eine nähere Beschreibung verzichtet und auf die Ausführungen zu Fig. 1 verwiesen.

[0035] Fig. 3 zeigt eine weitere Ausführungsform der erfindungsgemäßen

Antriebsvorrichtung, die sich gegenüber der in Fig. 1 dargestellten

Ausführungsform einzig dahingehend unterscheidet, dass aus Gründen der Ausrichtung des Übertragers 3 gegen das Antriebselement 4 ein Zentriermittel in Form einer Zentrierhülse 10 vorgesehen ist. Das

Zentriermittel verhindert dabei im Wesentlichen eine radiale Lageänderung des Übertragers 3 gegen das Antriebselement 4, so dass eine optimierte Führung des anzutreibenden Elements 5 durch den Übertrager 3 ermöglicht ist.

[0036] Funktionsweise der erfindungsgemäßen Antriebsvorrichtung

[0037] Bei der erfindungsgemäßen Antriebsvorrichtung ist der Übertrager 3 mittels des Vorspannungselements 9 an das anzutreibende Element 5

angepresst, und befindet sich mit diesem in Friktionskontakt. Weiterhin ist der Übertrager 3 an den ersten Stirnflächen 6 durch das vorgespannte federnde Element 8 unterstützt, während er an den gegenüberliegenden zweiten Stirnflächen 8 das Antriebselement 4 kontaktiert. Durch diese Anordnung ist der Übertrager 3 fest eingespannt und in seiner

Bewegungsmöglichkeit so weit eingeschränkt, dass Bewegungen im Wesentlichen nur parallel zur Ausdehnungsrichtung des anzutreibenden Elements 5 = Antriebsrichtung möglich sind. Dadurch fungiert der

Übertrager 3 gleichzeitig als Führung für das anzutreibende Element 5; eine weitergehende Führungseinrichtung ist prinzipiell nicht notwendig. Die beschriebene Anordnung von federndem Element, Übertrager mit dem diesen umgebenden Vorspannungselement und dem Antriebselement ergibt eine sehr steife und kompakte Antriebsvorrichtung.

[0038] Der zugrunde liegende Antriebsmechanismus der erfindungsgemäßen Antriebsvorrichtung untergliedert sich im Wesentlichen in die zwei im Folgenden charakterisierten Phasen:

[0039] In der Ausdehnungsphase wird das Antriebselement 4 durch eine

geeignete elektrische Einrichtung so angesteuert, dass es zu einem bestimmten zeitlichen Verlauf seiner Ausdehnung kommt.

[0040] Die Ausdehnung des Antriebselements 4 in der Ausdehnungsphase

überträgt sich auf den Übertrager 3, der sich somit in einer zum

anzutreibenden Element parallelen Richtung bewegt. Dabei kommt es zu einer Stauchung des in mit dem Übertrager in Kontakt stehenden federnden Elements. Diese Stauchung bewirkt, dass während der sich der Ausdehnungsphase anschließenden Kontraktionsphase der Übertrager 3 der entsprechenden Rückwärts- bzw. Kontraktionsbewegung des

Antriebselements 4 folgt und mit diesem auch während der

Kontraktionsphase in dauerhaftem Kontakt bleibt.

[0041] Zwei unterschiedliche Abfolgen von Ausdehnungs- und Kontraktionsphase sind möglich: entweder erfolgt eine schnelle Ausdehnungsphase, der sich eine langsame Kontraktionsphase anschließt, oder aber einer langsamen Ausdehnungsphase folgt eine schnelle Kontraktionsphase.

[0042] Bei schneller Ausdehnungsphase des Antriebselements 4 macht auch der Übertrager 3 eine schnelle Bewegung, welcher das anzutreibende Element 5 aufgrund seiner Trägheit nicht folgen kann. Dadurch kommt es zu einem relativen Gleiten des Übertragers 3 gegenüber dem anzutreibenden Element 5, und folglich ergibt sich im Wesentlichen keine Bewegung des anzutreibenden Elements 5.

[0043] In der sich anschließenden Kontraktionsphase, die wesentlich langsamer ist als die Ausdehnungsphase, herrscht Haftreibung zwischen dem

Übertrager 3 und dem anzutreibenden Element 5, so dass das

anzutreibende Element vom Übertrager 3 mitgenommen wird. Somit ergibt sich eine Bewegung des anzutreibenden Elements 5 in die gewünschte Antriebsrichtung.

[0044] Da während einer solchen Kontraktionsphase des Antriebselements 4 nur eine relativ geringe Bewegung des anzutreibenden Elements 5 folgt, wird die zuvor beschriebene Abfolge aus Ausdehnungs- und Kontraktionsphase in der Regel vielfach wiederholt, um einen größeren Stellweg des anzutreibenden Elements 5 zu realisieren.

[0045] Bei umgekehrter Abfolge, wobei einer langsamen Ausdehnungsphase eine schnelle Kontraktionsphase folgt, ist eine Bewegung des anzutreibenden Elements 5 in entgegengesetzter Richtung realisierbar.