Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DRIVER FOR CAPACITIVE LOADS
Document Type and Number:
WIPO Patent Application WO/2013/188616
Kind Code:
A1
Abstract:
Apparatus (100) and methods for driving a piezoelectric transducer (PZT) are provided. H-bridge (116) includes switches (S1-S4) and is coupled to inductor L through terminals SWP and SWM and functions as a buck-boost circuit (110). Control circuit (118) receives a control signal from host processor (103) indicating desired power output and frequency of the response of PZT (104). Based on the current and/or voltage detection from buck-boost circuit terminals (SWP, SWM, BST), control circuit (118) generates a pulse width modulation (PWM) signal used to control switches (S1-S4) to enable buck-boost circuit (110) to provide charge on capacitor C from cell (101) which is coupled to the H-bridge (116) at the appropriate time.

Inventors:
GARG MAYANK (US)
BALDWIN DAVID J (US)
XIAO BOQIANG (US)
Application Number:
PCT/US2013/045562
Publication Date:
December 19, 2013
Filing Date:
June 13, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TEXAS INSTRUMENTS INC (US)
TEXAS INSTRUMENTS JAPAN (JP)
International Classes:
H02N2/06
Foreign References:
US20110305356A12011-12-15
US20070273437A12007-11-29
US20070064955A12007-03-22
US20110235831A12011-09-29
US6087863A2000-07-11
Attorney, Agent or Firm:
FRANZ, Warren, L. et al. (Deputy General Patent CounselP.O. Box 655474, Mail Station 399, Dallas TX, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An apparatus comprising:

a supply terminal

a first switching terminal;

a second switching terminal, wherein the first and second switching terminals are configured to be coupled to an inductor;

a boost terminal that is configured to be coupled to a capacitor;

a first output terminal;

a second output terminal, wherein the first and second output terminals are configured to be coupled to a piezoelectric transducer;

a first H-bridge that is coupled to the supply terminal, the boost terminal, the first switching terminal, and the second switching terminal;

a second H-bridge that is coupled to the boost terminal, the first output terminal, and the second output terminal; and

a control circuit that is coupled to control the first and second H-bridges, wherein the control circuit is configured to operate the first H-bridge as a buck-boost circuit, and wherein the control circuit is configured to operate the first and second H-bridges to drive substantially within the audio band.

2. The apparatus of Claim 1, wherein the control circuit is configured to operate the first H-bridge in a buck mode when a desired voltage on the capacitor is less than a first threshold voltage, in a boost mode when the desired voltage on the capacitor is greater than a second threshold voltage, and in a buck-boost mode when the desired voltage on the capacitor is between the first and second threshold voltages.

3. The apparatus of Claim 2, wherein the first H-bridge further comprises first, second, third, and fourth switches, and wherein the second H-bridge further comprises fifth, sixth, seventh, and eighth switches.

4. The apparatus of Claim 3, wherein the control circuit further comprises:

a zero-crossing detector that is coupled to the first and second output terminals;

a bridge controller that is coupled to the zero-crossing detector; and

a driver that is coupled to the bridge controller, the fifth switch, the sixth switch, the seventh switch, and the eighth switch.

5. The apparatus of Claim 4, wherein the driver further comprises a first driver, and wherein the control circuit further comprises:

a buck-boost detector that is coupled to the first and second switching terminals;

a buck-boost controller that is coupled to the buck-boost detector;

a pulse width modulator (PWM) that is coupled to the buck-boost controller; and a second driver that is coupled to the PWM, the first switch, the second switch, the third switch, and the fourth switch.

6. A method comprising:

receiving an input signal;

selecting at least one of a plurality of modes for a buck-boost stage from a comparison of a desired voltage on a capacitor to a first threshold and a second threshold, wherein the desired voltage is determined from the input signal; and

driving a piezoelectric transducer substantially within the audio band using the desired voltage on the capacitor using an H-bridge that changes state with each zero-crossing.

7. The method of Claim 6, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck mode if the desired voltage on the capacitor is less than the first threshold.

8. The method of Claim 7, wherein the step of selecting at least one of the plurality of modes further comprises selecting a boost mode if the desired voltage on the capacitor is greater than the second threshold.

9. The method of Claim 8, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost mode if the desired voltage on the capacitor is between the first and second thresholds.

10. The method of Claim 9, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck charging mode if the desired voltage on the capacitor is less than the first threshold, when building a charge on the capacitor.

11. The method of Claim 10, wherein the step of selecting at least one of the plurality of modes further comprises selecting a boost charging mode if the desired voltage on the capacitor is greater than the second threshold, when building a charge on the capacitor.

12. The method of Claim 11, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost charging mode if the desired voltage on the capacitor is between the first and second thresholds, when building a charge on the capacitor.

13. The method of Claim 12, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck discharging mode if the desired voltage on the capacitor is less than the first threshold, when recovering a charge from the capacitor.

14. The method of Claim 13, wherein the step of selecting at least one of the plurality of modes further comprises selecting a boost discharging mode if the desired voltage on the capacitor is greater than the second threshold, when recovering a charge from the capacitor.

15. The method of Claim 14, wherein the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost discharging mode if the desired voltage on the capacitor is between the first and second thresholds, when recovering a charge from the capacitor.

16. An apparatus comprising:

a host processor;

a cell;

a capacitor that is coupled to the cell;

an inductor;

a piezoelectric transducer; and

a piezoelectric driver having:

an input terminal that is coupled to the host processor;

a first supply terminal that is coupled to the cell;

a second supply terminal that is coupled to the cell;

a first switching terminal that is coupled to the inductor;

a second switching terminal that is coupled to the inductor;

a boost terminal that is coupled to the capacitor;

a first output terminal that is coupled to the piezoelectric transducer; a second output terminal that is coupled to the piezoelectric transducer;

a first H-bridge that is coupled to the first supply terminal, the second supply terminal, the boost terminal, the first switching terminal, and the second switching terminal;

a second H-bridge that is coupled to the boost terminal, the second supply terminal, the first output terminal, and the second output terminal; and

a control circuit that is coupled to control the first and second H-bridges, wherein the control circuit is configured to operate the first H-bridge as a buck-boost circuit, and wherein the control circuit is configured to operate the first and second H-bridges to drive substantially within the audio band.

17. The apparatus of Claim 16, wherein the control circuit is configured to operate the first H-bridge in a buck mode when a desired voltage on the capacitor is less than a first threshold voltage, in a boost mode when the desired voltage on the capacitor is greater than a second threshold voltage, and in a buck-boost mode when the desired voltage on the capacitor is between the first and second threshold voltages.

18. The apparatus of Claim 17, wherein the first H-bridge further comprises first, second, third, and fourth switches, and wherein the second H-bridge further comprises fifth, sixth, seventh, and eighth switches.

19. The apparatus of Claim 18, wherein the control circuit further comprises:

a zero-crossing detector that is coupled to the first and second output terminals;

a bridge controller that is coupled to the zero-crossing detector; and

a driver that is coupled to the bridge controller, the fifth switch, the sixth switch, the seventh switch, and the eighth switch.

20. The apparatus of Claim 19, wherein the piezoelectric transducer is coupled to a screen, and wherein the driver further comprises a first driver, and wherein the control circuit further comprises:

a buck-boost detector that is coupled to the first and second switching terminals;

a buck-boost controller that is coupled to the buck-boost detector;

a PWM that is coupled to the buck-boost controller;

a second driver that is coupled to the PWM, the first switch, the second switch, the third switch, and the fourth switch; and

an interface circuit that is coupled to the buck-boost controller and the host controller.

Description:
DRIVER FOR CAPACITIVE LOADS

[0001] This relates generally to a driver for capacitive loads and, more particularly, to a driver that is configured to drive a piezoelectric transducer in the audio band.

BACKGROUND

[0002] In many applications, there is a desire to increase robustness and decrease cost.

One application with this desire is mobile space devices, and one avenue to both, reduce costs and increase robustness, is to change the human interface portion of the mobile device, namely, by collapsing speaker and haptics functionality. To accomplish this, a piezoelectric transducer can be secured to a screen so as to vibrate the screen so as to allow the screen to function as a speaker or function as a touch screen with haptics feedback (e.g., vibratory feedback indicating a button touch).

[0003] One issue, however, is that piezoelectric transducers are generally highly capacitive loads (e.g., ΙμΡ), and it can be difficult to drive these transducers with sufficient quality to function as a speaker and enough power to provide a haptics effect. The best conventional technique for driving such a capacitive load employs a class G or class H boost stage with a class D amplifier. As shown in FIG. 1, this type of conventional circuit can use an average battery current of about 110mA to drive a capacitive load of ΙμΡ at 10kHz and 20V PP with a battery voltage of about 3.6V. This particular technique, though, generally employs multiple large and expensive components (such as multiple inductors), causing this technique to be prohibitively expensive.

[0004] Therefore, there is a need for an improved driver for capacitive loads.

[0005] Another example of a conventional system is described in PCT Publ. No.

WO2009/029563.

SUMMARY

[0006] An embodiment provides an apparatus. The apparatus comprises a supply terminal; a first switching terminal; a second switching terminal, wherein the first and second switching terminals are configured to be coupled to an inductor; a boost terminal that is configured to be coupled to a capacitor; a first output terminal; a second output terminal, wherein the first and second output terminals are configured to be coupled to a piezoelectric transducer; a first H-bridge that is coupled to the supply terminal, the boost terminal, the first switching terminal, and the second switching terminal; a second H-bridge that is coupled to the boost terminal, the first output terminal, and the second output terminal; and a control circuit that is coupled to control the first and second H-bridges, wherein the control circuit is configured to operate the first H-bridge as a buck-boost circuit, and wherein the control circuit is configured to operate the first and second H-bridges to drive substantially within the audio band.

[0007] In accordance with an embodiment, the control circuit is configured to operate the first H-bridge in a buck mode when a desired voltage on the capacitor is less than a first threshold voltage, in a boost mode when the desired voltage on the capacitor is greater than a second threshold voltage, and in a buck-boost mode when the desired voltage on the capacitor is between the first and second threshold voltages.

[0008] In accordance with an embodiment, the first H-bridge further comprises first, second, third, and fourth switches, and wherein the second H-bridge further comprises fifth, sixth, seventh, and eighth switches.

[0009] In accordance with an embodiment, the control circuit further comprises: a zero- crossing detector that is coupled to the first and second output terminals; a bridge controller that is coupled to zero-crossing circuit; and a driver that is coupled to the bridge controller, the fifth switch, the sixth switch, the seventh switch, and the eighth switch.

[0010] In accordance with an embodiment, the driver further comprises a first driver, and wherein the control circuit further comprises: a buck-boost detector that is coupled to the first and second switching terminals; a buck-boost controller that is coupled to the buck-boost detector; a pulse width modulator (PWM) that is coupled to the buck-boost controller; and a second driver that is coupled to the PWM, the first switch, the second switch, the third switch, and the fourth switch.

[0011] In accordance with an embodiment, a method is provided. The method comprises receiving an input signal; selecting at least one of a plurality of modes for a buck-boost stage from a comparison of a desired voltage on a capacitor to a first threshold and a second threshold, wherein the desired voltage is determined from the input signal; driving a piezoelectric transducer substantially within the audio band using the desired voltage on the capacitor using an H-bridge that changes state with each zero-crossing.

[0012] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck mode if the desired voltage on the capacitor is less than the first threshold.

[0013] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a boost mode if the desired voltage on the capacitor is greater than the second threshold.

[0014] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost mode if the desired voltage on the capacitor is between the first and second thresholds.

[0015] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck charging mode if the desired voltage on the capacitor is less than the first threshold, when building a charge on the capacitor.

[0016] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a boost charging mode if the desired voltage on the capacitor is greater than the second threshold, when building a charge on the capacitor.

[0017] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost charging mode if the desired voltage on the capacitor is between the first and second thresholds, when building a charge on the capacitor.

[0018] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck discharging mode if the desired voltage on the capacitor is less than the first threshold, when recovering a charge from the capacitor.

[0019] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a boost discharging mode if the desired voltage on the capacitor is greater than the second threshold, when recovering a charge from the capacitor.

[0020] In accordance with an embodiment, the step of selecting at least one of the plurality of modes further comprises selecting a buck-boost discharging mode if the desired voltage on the capacitor is between the first and second thresholds, when recovering a charge from the capacitor. [0021] In accordance with an embodiment, an apparatus is provided. The apparatus comprises a host processor; a cell; a capacitor that is coupled to the cell; an inductor; a piezoelectric transducer; and a piezoelectric driver having: an input terminal that is coupled to the host processor; a first supply terminal that is coupled to the cell; a second supply terminal that is coupled to the cell; a first switching terminal that is coupled to the inductor; a second switching terminal that is coupled to the inductor; a boost terminal that is coupled to the capacitor; a first output terminal that is coupled to the piezoelectric transducer; a second output terminal that is coupled to the piezoelectric transducer; a first H-bridge that is coupled to the first supply terminal, the second supply terminal, the boost terminal, the first switching terminal, and the second switching terminal; a second H-bridge that is coupled to the boost terminal, the second supply terminal, the first output terminal, and the second output terminal; and a control circuit that is coupled to control the first and second H-bridges, wherein the control circuit is configured to operate the first H-bridge as a buck-boost circuit, and wherein the control circuit is configured to operate the first and second H-bridges to drive substantially within the audio band.

[0022] In accordance with an embodiment, the piezoelectric transducer is coupled to a screen, and wherein the driver further comprises a first driver, and wherein the control circuit further comprises: a buck-boost detector that is coupled to the first and second switching terminals; a buck-boost controller that is coupled to the buck-boost detector; a PWM that is coupled to the buck-boost controller; a second driver that is coupled to the PWM, the first switch, the second switch, the third switch, and the fourth switch; and an interface circuit that is coupled to the buck-boost controller and the host controller.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] FIG. 1 depicts the operation for a conventional driver;

[0024] FIG. 2 illustrates an example of a system in accordance with the invention;

[0025] FIG. 3 illustrates an example of the control circuit of FIG. 2;

[0026] FIG. 4 illustrates depicting an example operation of the buck-boost circuit of FIG.

2;

[0027] FIGS. 5A and 5B depict an example of a buck charging mode for the buck-boost stage of FIG. 2;

[0028] FIGS. 6A and 6B depict an example of a boost charging mode for the buck-boost stage of FIG. 2; [0029] FIGS. 7A and 7B depict an example of a buck-boost charging mode for the buck- boost stage of FIG. 2;

[0030] FIGS. 8A and 8B depict an example of a buck-boost discharging mode for the buck-boost stage of FIG. 2;

[0031] FIGS. 9A and 9B depict an example of a boost discharging mode for the buck- boost stage of FIG. 2;

[0032] FIGS. 10A and 10B depict an example of a buck discharging mode for the buck- boost stage of FIG. 2;

[0033] FIG. 11 depicts an example operation of the H-bridge circuit of FIG. 2; and

[0034] FIG. 12 depicts the operation for the driver of FIG. 2.

DETAILED DESCRIPTION

[0035] FIGS. 2 and 3 show an example of a system 100. In this example, the system 100 may be a mobile device (such as a mobile phone) having a host processor 103 that can provide signals to the integrated circuit (IC) 102, which generally functions as a piezoelectric driver for a piezoelectric transducer or PZT 104. Based on the input signal (received through pin or terminal IN), the control circuit 118 can provide control signals to switches SI to S4 and S5 to S8 of H- bridges 114 and 116, respectively, to cause the PZT 104 to, for example, vibrate the screen 106 or the chassis of a mobile device (e.g., mobile phone) to generate an audio signal or haptics effect. Thus, IC 102 is able to drive the PZT 104 substantially within the entire audio band (e.g., between about 50Hz to about 20kHz).

[0036] Generally, in operation, the H-bridge 116 is responsible for "driving" PZT 104 by providing the appropriate power and frequency. As shown in the example of FIG. 2, H-bridge 116 (which, as shown, includes switches SI to S4) is coupled to inductor L through terminals SWP and SWM, functions as a buck-boost circuit 110. In operation, the interface circuit 212 of the control circuit 118 receives a control signal from host processor 103 through terminal FN (which could be an analog or multi-bit digital bus) indicating the desired power output and frequency of the response of the PZT 104. Based on the outputs from the interface circuit 212 and the buck-boost detector 204 (which can perform current and/or voltage detection from terminals SWP, SWM and BST), buck-boost controller 208 controls the pulse width modulator (PWM) 210 (which can, for example, operate at a switching frequency of about 10MHz) to generate a PWM signal that the driver can use to activate and deactivate switches SI to S4. As a result of these switching operations, the buck-boost circuit 1 10 can deliver (or recover) the appropriate charge to (or from) capacitor C from (or to) cell 101 (which is coupled to the H- bridge 1 16 at terminals BAT and GND) at the appropriate time.

[0037] FIG. 4 shows an example of the operation of buck-boost circuit 1 10 can be seen.

As shown, the buck-boost circuit 1 10 can deliver positive sinusoidal "peaks" at the terminal BST that can vary in both amplitude and frequency (where the amplitude and frequency are based on the signal provided by the host processor 103). This is generally accomplished by operating the buck-boost circuit 1 10 in several modes. These modes can generally be differentiated by threshold voltages VI and V2, whether charge is being built on capacitor C or whether capacitor C is being discharged.

[0038] There can, for example, be three charging modes (as shown in FIGS. 5 A to 7B), that allow for a charge to be built onto capacitor C as a function of the desired voltage on terminal BST. For voltages on terminal BST that are less than threshold voltage VI (which can, for example, be about 80% of the supply voltage VBAT from cell 101), a buck charging mode is employed. For this mode, switch S4 is open or "off and switch S3 is closed or "on." In the initial state (as shown in FIG. 5 A), switch S I is closed; then (as shown in FIG. 5B), switch S2 is closed in the subsequent state. For voltages on terminal BST that are greater than threshold voltage V2 (which can, for example, be about 120% of the supply voltage VBAT), a boost charging mode is employed. For this mode, switch S2 is open or "off and switch S I is closed or "on." In the initial state (as shown in FIG. 6A), switch S4 is closed; then (as shown in FIG. 6B), switch S3 is closed in the subsequent state. For voltages on terminal BST between threshold voltage VI and V2, a buck-boost charging mode is employed. In the initial state (as shown in FIG. 7A), switches S I and S4 are closed; then (as shown in FIG. 7B), switches S2 and S3 are closed in the subsequent state.

[0039] With the discharging modes, charge is recovered from the capacitor C and provided to cell 101. To do this, there can, for example, be three modes (as shown in FIGS. 8 A to 10B), that allow for a charge to be discharged from capacitor C as a function of the desired voltage on terminal BST. For voltages on terminal BST between threshold voltage VI and V2, a buck-boost discharging mode is employed. In the initial state (as shown in FIG. 8A), switches S2 and S3 are closed or "on"; then (as shown in FIG. 8B), switches S I and S4 are closed or "on" in the subsequent state. For voltages on terminal BST that are greater than threshold voltage V2, a boost discharging mode is employed. For this mode, switch S2 is open or "off and switch SI is closed or "on." In the initial state (as shown in FIG. 9A), switch S3 is closed or "on"; then (as shown in FIG. 9B), switch S4 is closed or "on" in the subsequent state. For voltages on terminal BST that are less than threshold voltage VI, a buck discharging mode is employed. For this mode, switch S4 is open or "off and switch S3 is closed or "on." In the initial state (as shown in FIG. 10A), switch S2 is closed or "on"; then (as shown in FIG. 10B), switch SI is closed or "on" in the subsequent state.

[0040] Because the voltage on terminal BST is a positive rectified sinusoid, H-bridge 1 14 can be employed to generate an appropriate drive signal to PZT 104. When controlling H-bridge 114 (which, as shown, includes switches S5 to S8), the control circuit 118 changes the state of H- bridge 114 with zero-crossings. This, as shown in this example, allows H-bridge 114 to differentially drive PZT 104 through pins or terminals OUTP and OUTM, and a zero-crossing detector 202 (as shown in FIG. 3) is able to detect zero-crossing events on terminals OUTP and OUTM. When a zero-crossing event occurs the bridge controller 203 is able to control the driver 206-1 (which appropriately activates and deactivates switches S5 to S8). Typically, as shown in the example of FIG. 11, for a positive swing signals, switches S5 and S8 are closed or activated (while switches S7 and S6 are open or deactivated) allowing current to flow from the capacitor C (which is coupled to terminal BST) to the PZT 104. Then, switches S6 and S7 are closed or activated (while switches S5 and S8 are open or deactivated) for negative swing signals. This allows PZT 104 to be sinusoidally driven from capacitor C and cell 101 (through H-Bridge 116).

[0041] As a result of using driver 100, the PZT 104 can be efficiently driven so as to allow it to operate as a haptics actuator and as a speaker. As shown in FIG. 12, for a lOKHz signal with a peak-to-peak voltage of 20V (where PZT is 1 μΡ and the voltage VBAT is 3.6V), the average battery current is about 150mA. This is comparable to the performance of the conventional circuit for FIG. 1, but there are fewer external components (namely, fewer inductors), significantly reducing the cost of the system.

[0042] Those skilled in the art will appreciate that modifications may be made to the described embodiments, and also that many other embodiments are possible, within the scope of the claimed invention.