Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DUAL-FUEL INTERNAL COMBUSTION ENGINE
Document Type and Number:
WIPO Patent Application WO/2012/159923
Kind Code:
A1
Abstract:
The invention relates to a dual-fuel internal combustion engine (14), in particular a large engine for water craft, which dual-fuel internal combustion engine (14) can be operated in a first operating range (OP1) with an, in particular, gaseous first fuel and in a second operating range (OP2) with a compression-ignition second fuel, wherein, in the first operating range (OP1), the first fuel can be ignited in the combustion chamber (16) by way of an ignition fuel which is formed by the first fuel, having at least one cylinder (15) for at least one piston (18) which moves to and fro, into the combustion chamber (16) of which at least one injection device for injecting the first fuel opens. In order to reduce the emissions in as simple and space-saving a way as possible, it is provided that the injection device is configured as a two-stage injector (1) with a nozzle needle (3) which has at least two lift regions (h1, h2) for injecting a single fuel, to be precise the second fuel, wherein the first lift region (h1) is assigned to the first operating range (OP1) and the second lift region (h2) is assigned to the second operating range (OP2), wherein the second fuel can be injected into the combustion chamber (16) at at least one first injection pressure (p1) in the first operating range (OP1) and at at least one second injection pressure (p2) in the second operating range (OP2), and wherein the lift region (h1, h2) of the nozzle needle (3) is greater in the second operating range (OP2) than in the first operating range (OP1).

Inventors:
GILL DENIS WALTER (AT)
Application Number:
PCT/EP2012/058968
Publication Date:
November 29, 2012
Filing Date:
May 15, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AVL LIST GMBH (AT)
GILL DENIS WALTER (AT)
International Classes:
F02M61/20; F02B7/06
Foreign References:
US4742801A1988-05-10
EP0375795A11990-07-04
US5632447A1997-05-27
Other References:
None
Attorney, Agent or Firm:
BABELUK, Michael (AT)
Download PDF:
Claims:
P A T E N T A N S P R Ü C H E

1. Zweistoffbrennkraftmaschine (14), insbesondere Großmotor für Wasserfahrzeuge, welche in einem ersten Betriebsbereich (OP1) mit einem insbesondere gasförmigen ersten Kraftstoff und in einem zweiten Betriebsbereich (OP2) mit einem selbstzündenden zweiten Kraftstoff betreibbar ist, wobei im ersten Betriebsbereich (OP1) der erste Kraftstoff durch einen durch den ersten Kraftstoff gebildeten Zündkraftstoff im Brennraum (16) zündbar ist, mit zumindest einem Zylinder (15) für zumindest einen hin- und hergehenden Kolben (18), in dessen Brennraum (16) zumindest eine Einspritzeinrichtung zum Einspritzen des ersten Kraftstoffes einmündet, dadurch gekennzeichnet, dass die Einspritzeinrichtung als Zweistufen-Injektor (1) mit einer zumindest zwei Hubbereiche (hi, h2) aufweisenden Düsennadel (3) zum Einspritzen eines einzigen Kraftstoffes, und zwar des zweiten Kraftstoffes, ausgebildet ist, wobei der erste Hubbereich (hi) dem ersten Betriebsbereich (OP1) und der zweite Hubbereich (h2) dem zweiten Betriebsbereich (OP2) zugeordnet ist, wobei der zweite Kraftstoff im ersten Betriebsbereich (OP1) mit zumindest einem ersten Einspritzdruck (pi) und im zweiten Betriebsbereich (OP2) mit zumindest einem zweiten Einspritzdruck (p2) in den Brennraum (16) einspritzbar ist, und wobei der Hubbereich (hi, h2) der Düsennadel (3) im zweiten Betriebsbereich (OP2) größer ist als im ersten Betriebsbereich (OP1).

2. Zweistoffbrennkraftmaschine (14) nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Hubbereich (hi) der Nadelhub (h) höchstens 25% des maximalen Nadelhubes (hmax) des zweiten Hubbereichs (h2) beträgt.

3. Zweistoffbrennkraftmaschine (14) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im ersten Hubbereich (hi) der Durchfluss maximal 1% bis 2% des maximalen Durchflusses im zweiten Hubbereich (h2) beträgt.

4. Zweistoffbrennkraftmaschine (14) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass auf die Düsennadel (3) in Abhängigkeit des Nadelhubes (h) abgestuft zwei Schließfedern (6, 10) einwirken, wobei während des ersten Hubbereiches (hi) nur die erste Schließfeder (6) auf die Düsennadel (3) einwirkt.

5. Zweistoffbrennkraftmaschine (14) nach Anspruch 4, dadurch gekennzeichnet, dass während des zweiten Hubbereiches (hu, h2) beide Schließfedern (6, 10) auf die Düsennadel (3) einwirken.

6. Zweistoffbrennkraftmaschine (14) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste Hubbereich (hi) durch einen in Hubrichtung der Düsennadel (3) verschiebbaren, durch die erste Schließfeder (6) federbelasteten ersten Anschlag (9) definiert ist.

7. Zweistoffbrennkraftmaschine (14) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der zweite Hubbereich (h2) durch einen gehäusefesten zweiten Anschlag (12) definiert ist.

8. Zweistoffbrennkraftmaschine (14) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass in den Brennraum (16) zumindest ein Gaseinblaseventil (17) zur Zuführung des gasförmigen ersten Kraftstoffes einmündet.

9. Verfahren zum Betreiben einer Zweistoffbrennkraftmaschine (14), insbesondere eines Großmotors für Wasserfahrzeuge, welche in einem ersten Betriebsbereich (OPl) mit einem insbesondere gasförmigen ersten Kraftstoff und in einem zweiten Betriebsbereich (OP2) mit einem selbstzündenden zweiten Kraftstoff betrieben wird, wobei im ersten Betriebsbereich (OPl) der erste Kraftstoff durch einen durch den ersten Kraftstoff gebildeten Zündkraftstoff im Brennraum (16) gezündet wird, mit zumindest einem Zylinder (15) für zumindest einen hin- und hergehenden Kolben (18), in dessen Brennraum (16) zumindest eine Einspritzeinrichtung zum Einspritzen des ersten Kraftstoffes einmündet, insbesondere nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Einspritzeinrichtung als Zweistufen-Injektor (1) mit einer zwei Hubbereiche (hi( h2) aufweisenden Düsennadel (3) zum Einspritzen eines einzigen Kraftstoffes, und zwar des zweiten Kraftstoffes, ausgebildet ist, wobei der erste Hubbereich (h dem ersten Betriebsbereich (OPl) und der zweite Hubbereich (h2) dem zweiten Betriebsbereich (OP2) zugeordnet ist, wobei der zweite Kraftstoff im ersten Betriebsbereich (OPl) mit zumindest einem ersten Einspritzdruck (pi) und im zweiten Betriebsbereich (OP2) mit einem zweiten Einspritzdruck (p2) in den Brennraum (16) eingespritzt wird, und wobei der zweite Einspritzdruck (p2) größer ist als der erste Einspritzdruck (pi) und der Hubbereich (h2, hi) der Düsennadel (3) im zweiten Betriebsbereich (OP2) größer ist als im ersten Betriebsbereich (OPl).

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass im ersten Hubbereich (hi) die Düsennadel (3) in einem Ausmaß von höchstens 25% des maximalen Nadelhubes (hmax) des zweiten Hubbereichs (h2) gehoben wird .

11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass im ersten Hubbereich (hi) maximal 1% bis 2% der maximale möglichen Kraftstoffmenge zweiten Hubbereichs (h2) eingespritzt wird .

12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass auf die Düsennadel (3) in Abhängigkeit des Nadelhubes (h) abgestuft zwei Schließfedern (6, 10) einwirken, wobei während des ersten Hubbereiches (hi) nur eine erste Schließfeder (6), und wobei vorzugsweise während des zweiten Hubbereiches (h2) beide Schließfedern (6, 10) auf die Düsennadel (3) einwirken.

13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass während des ersten Betriebsbereiches (OP2) der gasförmige erste Kraftstoff über ein Einblaseventil (17) in den Brennraum (16) eingebracht wird .

Description:
Zweistoffbrennkraftmaschine

Die Erfindung betrifft eine Zweistoffbrennkraftmaschine, insbesondere Großmotor für Wasserfahrzeuge, welche in einem ersten Betriebsbereich mit einem insbesondere gasförmigen ersten Kraftstoff und in einem zweiten Betriebsbereich mit einem selbstzündenden zweiten Kraftstoff betreibbar ist, wobei im ersten Betriebsbereich der erste Kraftstoff durch einen durch den ersten Kraftstoff gebildeten Zündkraftstoff im Brennraum zündbar ist, mit zumindest einem Zylinder für einen hin- und hergehenden Kolben, in dessen Brennraum zumindest eine Einspritzeinrichtung zum Einspritzen des ersten Kraftstoffes einmündet. Weiters betrifft die Erfindung ein Verfahren zum Betreiben dieser Zweistoffbrennkraftmaschine.

Aufgrund von strengeren Abgasvorschriften für Wasserfahrzeuge werden die durch Großbrennkraftmaschinen gebildete Antriebsmotoren für Schiffe häufig als Zweistoffbrennkraftmaschinen ausgebildet, wobei in emissionsbeschränkten Gebieten ein emissionsarmer gasförmiger erster Kraftstoff, beispielweise Methan, Flüssiggas (LPG), oder ähnliches und in küstenfernen Gebieten ein kostengünstiger schwefelreicherer zweiter Kraftstoff, beispielsweise Dieselkraftstoff, eingesetzt wird . Der zweite Kraftstoff dient dabei in Betriebsbereichen, in denen der gasförmige erste Kraftstoff als Hauptkraftstoff eingesetzt wird, auch als Zündkraftstoff für den ersten Kraftstoff. Um strenge Abgasvorschriften in küstennahen Regionen zu erfüllen, muss dabei die Menge des eingespritzten zweiten Kraftstoffes auf maximal 5% der Auslegungskraftstoffmenge beschränkt werden. Nockengetriebene Einspritzsysteme haben allerdings Probleme, für diese niedrigen Einspritzmengen eine stabile und reproduzierbare Einspritzung mit einer das gesamte Betriebsspektrum abdeckenden einzigen Einspritzeinrichtung zu ermöglichen, da die Einspritzdüsennadeln in niedere Lastbereichen nur teilweise geöffnet wird und somit durch ballistische Effekte der Düsennadel starke Variationen bei den Einspritzmengen auftreten können. Dazu kommen relativ große Toleranzbereiche bei unterschiedlichen Kraftstoffpumpen. Die Abweichungen in den gelieferten Kraftstoffmenge können somit größer sein, als die tatsächlich eingespritzten Kraftstoffmengen (1% bis 2%), was zu einer Schwankung der eingespritzten Kraftstoffmengen zwischen 0% und 5% führen kann.

Um dieses aufgezeigte Problem zu vermeiden, ist es bekannt, bei Zweistoffbrennkraftmaschine für den auf niedrige Emissionen abzielenden Betriebs mit dem ersten emissionsarmen Kraftstoff zusätzlich zu einer Haupteinspritzeinrichtung für den im zweiten Betriebsbereich als Hauptkraftstoff dienenden zweiten Kraftstoff eine weitere Zündeinspritzeinrichtung pro Zylinder zur Einspritzung des Zündkraftstoffes oder gar ein zweites Zündeinspritzsystem zu verwenden, mit welchem sich äußerst geringe Kraftstoffeinspritzmengen im ersten Betriebbereich zum Zünden des gasförmigen ersten Kraftstoffes einbringen lassen. Dadurch kann eine stabile und reproduzierbare Einspritzung des Zündkraftstoffes im Bereich zwischen 1% bis 2% der Auslegungskraftstoffmenge verwirklicht werden, allerdings ist der konstruktive Aufwand für die Maßnahmen sehr hoch, kostenintensiv und platzaufwendig.

Aufgabe der Erfindung ist es, auf möglichst einfache Weise stabile und reprodu ¬ zierbare minimale Zündeinspritzmengen bei Zweistoffbrennkraftmaschinen zu erreichen.

Erfindungsgemäß wird dies dadurch erreicht, dass die Einspritzeinrichtung als Zweistufen-Injektor mit einer zumindest zwei Hubbereiche aufweisenden Düsennadel zum Einspritzen eines einzigen Kraftstoffes, und zwar des zweiten Kraftstoffes, ausgebildet ist, wobei der erste Hubbereich dem ersten Betriebsbereich und der zweite Hubbereich dem zweiten Betriebsbereich zugeordnet ist, wobei der zweite Kraftstoff im ersten Betriebsbereich mit einem ersten Einspritzdruck und im zweiten Betriebsbereich mit einem zweiten Einspritzdruck in den Brennraum einspritzbar ist, wobei der Hubbereich der Düsennadel im zweiten Betriebsbereich größer ist als im ersten Betriebsbereich.

Vorzugsweise ist dabei vorgesehen, dass im ersten Hubbereich der Nadelhub höchstens 25% des maximalen Nadelhubes des zweiten Hubbereichs und die eingespritzte Kraftstoffmenge im ersten Hubbereich 1% bis 2% des maximalen Kraftstoffes im zweiten Hubbereich beträgt

Besonders vorteilhaft ist es dabei, wenn auf die Düsennadel in Abhängigkeit des Nadelhubes abgestuft zwei Schließfedern einwirken, wobei während des ersten Hubbereiches nur eine erste Schließfeder und während des zweiten Hubbereiches beide Schließfedern auf die Düsennadel einwirken. Der erste Hubbereich kann dabei durch einen in Hubrichtung der Düsennadel verschiebbaren, durch die erste Schließfeder federbelasteten ersten Anschlag und der zweite Hubbereich durch einen gehäusefesten Anschlag definiert sein.

Somit kann über eine einzige Einspritzeinrichtung der zweite Kraftstoff Zündkraftstoff in äußerst geringen Mengen als Zündkraftstoff für einen gasförmigen ersten Kraftstoff im ersten Betriebsbereich oder als alleiniger Hauptkraftstoff im zweiten Betriebsbereich eingespritzt werden. Eine weitere Zündeinrichtung kann damit eingespart werden. Während des ersten Betriebsbereiches dient der Zündkraftstoff dabei zum Zünden des gasförmigen zweiten Kraftstoffes, welcher über zumindest eine Gaseinblaseeinrichtung in den Brennraum eingebracht wird.

Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen :

Fig. 1 eine Einspritzeinrichtung einer erfindungsgemäßen Zweistoffbrenn- kraftmaschine in einer ersten Ausführungsvariante in einem Längsschnitt;

Fig. 2 das Detail II dieser Einspritzeinrichtung aus Fig. 1;

Fig. 3 eine Einspritzeinrichtung einer erfindungsgemäßen Brennkraftmaschine in einem Längsschnitt in einer zweiten Ausführungsvariante;

Fig. 4 ein Nadelhub-Einspritzdruckdiagramm der erfindungsgemäßen Einspritzeinrichtung ;

Fig. 5 ein Nadelhub-Nockenwellenwinkel-Diagramm;

Fig. 6 ein weiteres Nadelhub-Nockenwellenwinkel-Diagramm;

Fig. 7 ein Kraftstoffmengen-Pumpenhub-Diagramm; und

Fig. 8 schematisch eine Zylinder einer erfindungsgemäßen Brennkraftmaschine in einem Längsschnitt.

Die in Fig . 8 schematisch angedeutete erfindungsgemäße Zweistoffbrennkraftma- schine 14, beispielsweise ein Großmotor für den Antrieb eines Wasserfahrzeuges, weist einen oder mehrere Zylinder 15 mit jeweils einen oszillierenden Kolben 18 auf. In einem emissionsarmen ersten Betriebsbereich OP1 ist die Zweistoffbrenn- kraftmaschine 14 mit einem beispielsweise gasförmigen ersten Kraftstoff -etwa Methan oder LPG - betreibbar, der durch einen durch einen zweiten Kraftstoff gebildeten Zündkraftstoff - beispielsweise Dieselkraftstoff - gezündet werden kann. In einem zweiten Betriebsbereich OP2 wird die Zweistoffbrennkraftma- schine 14 nur mit dem zweiten Kraftstoff betrieben.

Pro Zylinder 15 ist zumindest ein Zweistufen-Injektor 1 vorgesehen, in dessen Gehäuse 2 eine Düsennadel 3 axial verschiebbar angeordnet ist. Die Düsennadel 3 grenzt an einen Druckraum 4, in welchen eine Druckleitung 5 zur Einbringung eines Kraftstoffes einmündet. Die Düsennadel 3 wird durch eine erste Schließfeder 6 gegen den Nadelsitz 8 gedrückt, wobei die erste Feder 6 auf einen Federteller 7 einwirkt. Wird der Kraftstoffdruck p in der Druckleitung 5 und somit im Druckraum 4 erhöht, so wird die Düsennadel 3 in Öffnungsrichtung ausgelenkt und führt einen Nadelhub h in einem ersten Hubbereich hi aus. Am Ende des ersten Hubbereiches hi liegt die Düsennadel 3 am durch eine Platte gebildeten ersten Anschlag 9 an, welcher durch eine zweite Schließfeder 10 in Schließrichtung belastet wird. In dieser Stellung hebt die Düsennadel 3 geringfügig vom Ventilsitz 8 ab, wodurch eine definierte Zündkraftstoffmenge durch die Düsenbohrungen 11 in den Brennraum 16 eines Zylinders 15 der Zweistoffbrennkraft- maschine 14 eintritt. Durch den Zündkraftstoff kann ein gasförmiger zweiter Kraftstoff im Brennraum 16 gezündet werden, welcher durch eine separate Einblaseeinrichtung 17 in den Brennraum 16 eingebracht wird.

Wenn der Kraftstoffdruck p nicht weiter erhöht wird, so verbleibt die Düsennadel 3 in der durch den ersten Anschlag 9 begrenzten Stellung am Ende des ersten Hubbereiches u bis zum Ende der Einspritzung. Wenn der Kraftstoffdruck p allerdings erhöht wird, so wird die Düsennadel 3 weiter angehoben und lenkt auch den Anschlag 9 entgegen der Kraft der zweiten Feder 10 aus, bis der erste Anschlag 9 an einem durch das Gehäuse 2 gebildeten zweiten Anschlag 12 anliegt. Der größtmögliche Hub des zweiten Hubbereiches h 2 wird somit durch die maximale Auslenkung des ersten Anschlages 9, und somit durch den zweiten Anschlag 12 definiert. Der maximale Hub h max der Düsennadel 3 setzt sich somit aus der Summe des ersten Hubbereiches hi und des zweiten Hubbereiches h 2 zusammen. In dieser maximalen Öffnungsstellung der Düsennadel 3 wird der Durchfluss des Kraftstoffes nicht mehr durch den Spalt zwischen der Düsennadel 3 und dem Ventilsitz 8, sondern nur mehr durch den Querschnitt der Düsenöffnungen 11 definiert. Am Ende der Einspritzung fällt der Kraftstoffdruck p rasch ab, wodurch die Düsennadel 3 durch zuerst durch beide Schließfedern 6, 10, gegen Ende der Schließbewegung nur mehr durch die erste Schließfeder 6 gegen den Ventilsitz 8 gedrückt wird.

Bei der in den Fig. 1 und Fig . 2 dargestellten ersten Ausführungsvariante sind erste und zweite Schließfeder 6, 10 konzentrisch zueinander angeordnet, wobei die erste Schließfeder 6 innerhalb der zweiten Schließfeder 10 positioniert ist. Dies erlaubt eine sehr kurze Baulänge des Zweistufen-Injektors 1.

Fig. 3 zeigt eine zweite Ausführungsvariante des Zweistufen-Injektors 1, wobei erste und zweite Schließfeder 6, 10 in axialer Richtung nacheinander angeordnet sind. Diese Ausführung erlaubt eine sehr schlanke Bauweise des Zweistufen-Injektors 1. Sie unterscheidet sich von der in den Fig. 1 und Fig. 2 dargestellten Ausführung im Wesentlichen dadurch, dass die erste Schließfeder 6 über einen Druckstift 13 auf die Düsennadel 3 einwirkt.

In Fig. 4 ist die Beziehung zwischen dem Nadelhub h und dem Einspritzdruck p dargestellt. Ab einem ersten Einspritzdruck pi beginnt die Einspritznadel 3 zu öff- nen und wird durch den Einspritzdruck p ausgelenkt, bis die Düsennadel 3 am ersten Anschlag 9 anliegt. Der erste Ventilhub hi beträgt normalerweise zwischen etwa 5% und 25% des maximalen Hubes h max der Düsennadel 3 und bestimmt die Drosselwirkung des Kraftstoffes während der Zündeinspritzung im ersten Betriebsbereich.

In Fig. 5 ist der Nadelhub h über dem Nockenwinkel α für eine Zweistoffbrennkraftmaschine mit einer herkömmlichen stufenlosen Einspritzeinrichtung und für eine erfindungsgemäße Zweistoffbrennkraftmaschine 14 mit einem zweistufige Zweistufen-Injektor 1 für den ersten Betriebsbereich OPl aufgetragen, wobei die Linien A die Situation bei einer bekannten Zweistoffbrennkraftmaschine und die Linie B die Situation bei einer erfindungsgemäßen Zweistoffbrennkraftmaschine 14 zeigen. Aus dem Diagramm gehen sehr gut die Schwankungen im Nadelhub h der Düsennadel bei Standardeinspritzeinrichtungen A aufgrund der Massenträgheit der Düsennadel bei Teillast hervor. Durch Beschränkung des Nadelhubes h im ersten Betriebsbereich OPl kann die Einspritzung stabilisiert werden, was zu guter Reproduzierbarkeit der Einspritzmengen führt. Ein Nebeneffekt, dass die Einspritzdauer für die selbst Einspritzmenge erhöht wird.

Fig. 6 zeigt ein Nadelhub h -Nockenwellenwinkel α -Diagramm für den zweiten Betriebsbereich OP2. Daraus ist erkennbar, dass die Hubkurve der erfindungsgemäßen Zweistoffbrennkraftmaschine 14 mit zweistufigel Einspritzeinrichtung 1 (Kurve B) sich nicht allzu sehr von der Hubkurve einer konventionellen Zweistoffbrennkraftmaschine mit stufenloser Einspritzeinrichtung unterscheidet (Kurve A). Da der Einspritzdruck p beim Umschalten zwischen dem ersten und zweiten Betriebsbereich OPl, OP2 schnell genug ansteigt, kann die erste Stufe bzw. der erste Hubbereich hi der zweistufigen Einspritzeinrichtung 1 rasch genug durchfahren werden, ohne dass Nachteile für den Betrieb der Brennkraftma ¬ schine auftreten.

Ein weiterer Vorteil der Verwendung eines Zweistufen-Injektors 1 ist, dass die über den Förderhub DS der Kraftstoffpumpe aufgetragene Fördermenge FD im ersten Hubbereich hi der Düsennadel 3 im Vergleich zu einer konventionellen einstufigen Einspritzeinrichtung (Kurve A) abgeflacht ist. Dadurch wirken sich toleranzbedingte Unterschiede zwischen verschiedenen Kraftstoffpumpen wesentlich geringer auf die Fördermenge FD aus als bei konventionellen einstufigen Einspritzeinrichtungen. Bei konventionellen Einspritzeinrichtungen kann im Teillastbereich eine Reduzierung der Kraftstoffmenge auf 2% der Volllastmenge große Unterschiede zwischen den Kraftstoffpumpen bewirken, welche weiters große Unterschiede in den eingespritzten Kraftstoffm engen hervorrufen. Diese Variation wirkt sich insbesondere auf die Gleichverteilung des Kraftstoffes zwischen verschiedenen Zylindern 15 im ersten Betriebsbereich OPl äußerst nach- teilig aus, was zu Fehlzündungen führen kann. Eine Verminderung der Empfindlichkeit der Fördemenge FD auf den Förderhub DS wirkt sich daher vorteilhaft auf die Gleichverteilung des Kraftstoffes zwischen verschiedenen Zylindern 15 aus.