Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ECCENTRIC PUMP
Document Type and Number:
WIPO Patent Application WO/2008/154665
Kind Code:
A3
Abstract:
The invention relates to an eccentric pump (1) comprising a frame (15), a pump shaft (3) which can be driven using a driving device (73) and is mounted to be rotatable about a main axis (16) that is stationary relative to the frame (15), an eccentric sleeve (17) which is mounted in an axially movable manner on a pump shaft section (23), a torsional lock (27) which is effective between the pump shaft section (23) and the eccentric sleeve (17), several pump elements (5) which are stationary relative to the frame (15) and are provided with displacement elements (6) that can be moved in a radial direction relative to the main axis (16), act upon a fluid contained in swept volumes (8) of the pump elements (5), and are moved against a fluid pressure by an external surface (18) of the eccentric sleeve (17), and at least one spring element (39) which acts upon the eccentric sleeve (17) in an axial direction. The pump shaft section (23) is designed as an inclined eccentric pin (24) that has an eccentric pin axis (25) which extends at an oblique angle (26) from the main axis (16). The eccentric sleeve (17) that is guided on the eccentric pin (24) has a cylindrical external surface (18), the generatrices (20) of which extend parallel to the main axis (16).

Inventors:
AUER JOHANN (AT)
KOPF STEFAN (AT)
Application Number:
PCT/AT2008/000199
Publication Date:
February 19, 2009
Filing Date:
June 06, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WEBER HYDRAULIK GMBH (AT)
AUER JOHANN (AT)
KOPF STEFAN (AT)
International Classes:
F04B49/20
Foreign References:
US3073178A1963-01-15
US6478548B12002-11-12
US3119280A1964-01-28
US4041800A1977-08-16
Attorney, Agent or Firm:
LINDMAYR, BAUER, SECKLEHNER Rechtsanwalts-OG (Windischgarsten, AT)
Download PDF:
Claims:
P a t e n t a n s p r ü c h e

1. Exzenterpumpe (1) umfassend ein Gestell (15), eine um eine bezüglich des Gestells (15) ortsfeste Hauptachse (16) drehbar gelagerte, mittels einer Antriebsvorrichtung (73) an- treibbare Pumpenwelle (3), eine auf einem Pumpenwellenabschnitt (23) axial verschiebbar gelagerte Exzenterhülse (17), eine zwischen Pumpenwellenabschnitt (23) und Exzenterhülse (17) wirksame Verdrehsicherung (27), mehrere bezüglich des Gestells (15) ortsfest angeordnete Pumpenelemente (5) mit radial zur Hauptachse (16) bewegbaren, auf ein in Hubräumen (8) der Pumpenelemente (5) enthaltenes Fluid einwirkenden Verdrängungselementen (6), die von einer Mantelfläche (18) der Exzenterhülse (17) gegen einen Fluiddruck verschoben werden sowie zumindest ein auf die Exzenterhülse (17) in axialer Richtung wirkendes Federelement (39), dadurch gekennzeichnet, dass der Pumpenwellenabschnitt (23) als schräger Exzenterzapfen (24) mit einer zur Hauptachse (16) in einem Schrägungswinkel (26) verlaufenden Exzenterzapfenachse (25) ausgebildet ist und die auf dem Exzenterzapfen (24) geführte Exzenterhülse (17) eine zylindrische Mantelfläche (18) aufweist, deren Erzeugende (20) parallel zur Hauptachse (16) verlaufen.

2. Exzenterpumpe (1) nach Anspruch 1 , dadurch gekennzeichnet, dass die Exzenterzapfenachse (25) die Hauptachse (16) schneidet.

3. Exzenterpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Mittelachse (21) der Mantelfläche (18) die Exzenterzapfenachse (25) schneidet.

4. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Exzenterzapfen (24) als Kreiszylinderabschnitt (31) mit der Exzenterzapfenachse (25) als

Kreiszylinderachse (32) ausgebildet ist.

5. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Federelement (39) durch eine sich an der Pumpenwelle (3) abstützende Druckfeder (40) oder Zugfeder gebildet ist.

6. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die axiale Verschiebbarkeit der Exzenterhülse (17) auf dem Exzenterzapfen (24) zumindest

nach einer Richtung durch ein Anschlagelement (35) beschränkt ist und dadurch eine Ausgangsposition (41) definiert ist.

7. Exzenterpumpe (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Exzenterhülse (17) in der Ausgangsposition (41) durch das Federelement (39) gegen das Anschlagelement

(35) vorgespannt ist.

8. Exzenterpumpe (1) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Mantelfläche (18) der Exzenterhülse (17) in der Ausgangsstellung eine Maximalexzentrizität (42) be- züglich der Hauptachse (16) aufweist.

9. Exzenterpumpe (1) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Federrate des Federelements (39) so gewählt ist, dass bei Verschiebung der Exzenterhülse (17) aus der Ausgangsposition (41) die Zunahme der durch das Federelement (39) ausgeübten Federkraft (47) größer ist als die Abnahme der Axialkomponente der auf die Exzenterhülse (17) wirkenden Fliehkraft (46).

10. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Schrägungswinkel (26) zwischen Hauptachse (16) und Exzenterzapfenachse (25) aus ei- nem Bereich mit einer unteren Grenze von 3° und einer oberen Grenze von 20° gewählt ist.

11. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Verdrehsicherung (27) durch eine parallel zur Exzenterzapfenachse (25) verlaufende Passfederverbindung (28) gebildet ist.

12. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Exzenterzapfen (24) fliegend an einem Ende (52) der Pumpenwelle (3) angeordnet ist.

13. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Exzenterzapfen (24) an einer kreiszylindrischen Kurbelwange (38) der Pumpenwelle (3) angeordnet ist.

14. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Exzenterhülse (17) ein zylindrisches Wälzlager (59) aufweist, dessen Außenring (60) die Mantelfläche (18) bildet.

15. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass entlang der Pumpenwelle (3) mehrere Exzenterzapfen (24), insbesondere drehsymmetrisch bezüglich der Hauptachse (16), angeordnet sind und jedem Exzenterzapfen (24) eine eigene Gruppe von Pumpenelementen (5), insbesondere ein feststehender, mehrere Pumpenelemente (5) umfassender Zylinderstern (64) zugeordnet ist.

16. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass am Gestell (15) zumindest zwei Pumpenwellen (3) mit jeweils zumindest einem Exzenterzapfen (24), dem jeweils eine eigene Gruppe von Pumpenelementen (5) zugeordnet ist, parallel zueinander angeordnet sind und mittels einer gemeinsamen Antriebsvorrichtung (73) antreib- bar sind.

17. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Gestell (15) als Gehäuse (50) ausgebildet ist und die Pumpenelemente (5) in dem einen Schmiermittelvorrat enthaltenden Gehäuse (50) angeordnet sind und die Pumpenwelle (3) das Gehäuse (50) abgedichtet durchsetzt.

18. Exzenterpumpe (1) nach Anspruch 17, dadurch gekennzeichnet, dass der Schmiermittelvorrat aus dem zu fördernden Druckmittel gebildet ist.

19. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Pumpenelemente (5) Federelemente, beispielsweise Kolbenfeder (34) aufweisen, die die Verdrängungselemente (6) radial in Richtung zur Hauptachse (16) gegen die Mantelfläche (18) der Exzenterhülse (17) vorspannen.

20. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass zwischen den Hubräumen (8) in den Pumpenelementen (5) und einem Druckmittel Vorrat (10) Saugventile (13), insbesondere Tellersitzventile angeordnet sind.

21. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass zwischen den Hubräumen (8) in den Pumpenelementen (5) und einem Hochdruckanschluss (12) der Exzenterpumpe (1) Druckventile (14), insbesondere Tellersitzventile angeordnet sind.

22. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Druckmittelzufluss oder der Druckmittelabfluss in bzw. aus den Hubräumen (8) der Pumpenelemente (5) mittels einer Schiebersteuerung gesteuert ist.

23. Exzenterpumpe (1) nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Verdrängungselemente (6) als in Pumpenzylindern (33) geführte Pumpenkolben (7) ausgebildet sind.

24. Verfahren zum Antreiben eines fluidbetriebenen Motors (69), wie eines Hydraulikzylinders (70) oder eines Hydraulikmotors mittels eines Druckmittelstroms, dadurch gekenn- zeichnet, dass der Druckmittelstrom von einer Exzenterpumpe (1) nach einem der Ansprüche 1 bis 23 bereitgestellt wird.

25. Bergegerät (65), umfassend ein Hydrauliksystem (67) sowie eine von diesem angetriebene Bergeschere (66) oder einen Bergespreizer, dadurch gekennzeichnet, dass das Hy- drauliksystem (67) eine Exzenterpumpe (1) nach einem der Ansprüche 1 bis 23 umfasst.

Description:

Exzenterpumpe

Die Erfindung betrifft eine Exzenterpumpe, wie im Oberbegriff des Patentanspruches 1 beschrieben.

Aus dem Stand der Technik sind bereits Verdrängerpumpen, insbesondere Radialkolbenpumpen bekannt, bei denen das Fördervolumen durch eine verstellbare Exzentrizität eines Exzenterelements der Radialkolbenpumpe aktiv beeinflussbar ist. Aus der Patentschrift EP 1 090 229 B 1 derselben Anmelderin, ist eine Radialkolbenpumpe bekannt, bei der die variable Ex- zentrizität durch ein in axialer Richtung verstellbares Verstellelement in Form eines schiefen Zylinderkörpers bewirkt wird. Bei deren Betrieb werden die von den radialen Kolben auf das Verstellelement ausgeübten Kräfte bzw. deren axialer Anteil durch ein axial auf das Verstellelement wirkendes Federelement ausgeglichen und dabei stellt sich je nach dem auf die Pumpenelemente wirkenden Systemdruck eine bestimmte axiale Verschiebung des Verstellele- ments entgegen der Kraftwirkung der Federelemente ein. Durch die Geometrie des Verstellelements in Form eines schiefen Zylinderkörpers wird bei steigendem Systemdruck und dadurch bewirkter größerer axialer Verschiebung des Verstellelements eine geringere Exzentrizität des Verstellelements und dadurch ein verringertes Fördervolumen der Radialkolbenpumpe bewirkt. Da die erforderliche Antriebsleistung einer derartigen Pumpe proportional zum Produkt aus Fördervolumen und Systemdruck ist, bleibt durch eine derartige Anordnung die Antriebsleistung und damit die Belastung eines Antriebsmotors bei verschiedenen Systemdrücken weitgehend konstant und kann der Antriebsmotor auf geringere bzw. weitgehend gleich bleibende Belastungen ausgelegt werden, wodurch die Herstellung einer derartigen Radialkolbenpumpe wirtschaftlicher wird.

Da die mit den Pumpenkolben zusammenwirkende von der Mantelfläche des Zylinderkörpers gebildete Gleitfläche schräg zu den Kolbenachsen steht, wirken auf die Pumpenkolben nicht nur Kräfte in Richtung der Kolbenachsen, sondern auch von den axialen Kraftkomponenten bewirkte Querkräfte, die zusätzlich bei der Umdrehung der Exzenterwelle in ihrer Wirkrich- tung hin- und herwechseln. Durch diese ständig wechselnden Querkräfte, sind die Kolben der Pumpenelemente hohen Belastungen ausgesetzt, wodurch diese entweder schnell verschleißen oder aufwendig und teuer an diese Belastungen angepasst ausgeführt sein müssen.

Aufgabe der Erfindung ist es, eine Verdrängerpumpe bereit zu stellen, die bei veränderlichen Systemdrucken weitgehend gleich bleibenden Leistungsbedarf besitzt, also gewissermaßen selbstregelnd ist und trotzdem mit einfach ausgeführten, kostengünstigen Pumpenelementen ausgestattet werden kann, ohne dass diese übermäßig beansprucht werden.

Die Aufgabe der Erfindung wird durch die Merkmale des Kennzeichenteils des Patentanspruches 1 gelöst, wonach der eine Exzenterhülse tragende Pumpenwellenabschnitt als schräger Exzenterzapfen mit einer zur Hauptachse der Pumpenwelle in einem Schrägungswinkel verlaufenden Exzenterzapfenachse ausgebildet ist und die auf dem Exzenterzapfen geführte Ex- zenterhülse eine zylindrische Mantelfläche aufweist, deren Erzeugenden parallel zur Hauptachse verlaufen.

Durch den schräg verlaufenden Exzenterzapfen wird die veränderliche Exzentrizität der Exzenterhülse, und damit das veränderliche Fördervolumen der Pumpenelemente bewirkt; durch die zylindrische Mantelfläche, deren Erzeugenden parallel zur Hauptachse der Pumpenwelle verlaufen, werden an der Kontaktstelle zwischen den Pumpenkolben und der Mantelfläche in Bezug auf die Exzenterhülse axiale Kraftkomponenten nur in Form von Reibungskräften während einer axialen Verstellung der Exzenterhülse auf den Exzenterzapfen ausgeübt. Die auf die Pumpenkolben einwirkenden Querkräfte sind dadurch wesentlich geringer als im Stand der Technik und weitgehend vernachlässigbar, wodurch einfach aufgebaute und dadurch kostengünstige Pumpenelemente bei einer derartigen Verdrängerpumpe eingesetzt werden können, ohne dass diese übermäßigen Beanspruchungen und dadurch bewirktem Verschleiß unterliegen.

Durch den Schrägungswinkel des Exzenterzapfens wirkt auf die mit der angetriebenen Pumpenwelle rotierende Exzenterhülse neben der von dem Federelement ausgeübten Kraft auch eine Fliehkraft, die die Exzenterhülse in Richtung größerer Exzentrizität treiben möchte und daher die Federkraft unterstützt. Lediglich bei der Stellung, bei der der Schwerpunkt der Exzenterhülse exakt in die Hauptachse der Pumpenwelle zu liegen kommt, verschwindet die Fliehkraft und die durch diese bewirkte Kraftkomponente in Richtung zunehmender Exzentrizität. Abhängig von der Lage der Exzenterzapfenachse bezüglich der Hauptachse der Pumpenwelle und dem auf dem Exzenterzapfenachse möglichen Verstellweg für die Exzenterhülse kann eine derartige Exzenterpumpe daher das Fördervolumen selbsttätig und in Abhän-

gigkeit von dem anliegenden Systemdruck selbsttätig einregeln, wodurch ein weitgehend gleich bleibendes Leistungsniveau des Pumpenantriebs gegeben ist. Die relative Lage der Exzenterzapfenachse bezüglich der Hauptachse der Pumpenwelle kann dabei auch windschief sein, wenn die mit dem Exzenterzapfen zusammenwirkende Bohrung in der Exzenterhülse so verläuft, dass die Erzeugenden der Mantelfläche der Exzenterhülse parallel zur Hauptachse der Pumpenwelle verlaufen.

Für die Konstruktion und Fertigung einer derartigen Exzenterpumpe ist es von Vorteil, wenn die Exzenterzapfenachse die Hauptachse schneidet. Weiters auch, wenn eine Mittelachse der Mantelfläche die Exzenterzapfenachse schneidet. Dadurch werden einfache geometrische

Verhältnisse erzielt und die Einflüsse der Geometrie auf das dynamische Verhalten während des Betriebes können leichter abgeschätzt werden.

Obwohl der Exzenterzapfen einen beliebigen, über seine Länge konstanten Querschnitt auf- weisen kann, ist es von Vorteil und für die Fertigung einfacher, wenn die Mantelfläche des Exzenterzapfens als Kreiszylinderfläche mit der Exzenterzapfenachse als Kreiszylinderachse ausgebildet ist.

Das auf die Exzenterhülse am Pumpenwellenabschnitt axial einwirkende Federelement ist vorteilhaft durch eine sich an der Pumpenwelle abstützende Druckfeder oder Zugfeder gebildet. Derartige Federelemente sind in großer Auswahl leicht erhältlich und kann dadurch das dynamische Verhalten der Exzenterhülse durch die Wahl der Federrate des Federelements einfach angepasst werden. Dabei ist es möglich, dass ein Federelement vorgesehen ist, das den Exzenterzapfen konzentrisch umschließt, und auf diesem geführt ist; ebenso ist es mög- lieh, dass mehrere Federelemente vorgesehen sind, die an der Exzenterhülse auf einem Teilkreis verteilt außerhalb des Exzenterzapfens angreifen.

Um gewisse Betriebszustände der Exzenterpumpe vorzubestimmen oder ausschließen zu können, ist es von Vorteil, wenn die axiale Verschiebbarkeit der Exzenterhülse auf dem Exzenter- zapfen zumindest nach einer Richtung durch ein Anschlagelement beschränkt ist und dadurch eine Ausgangsstellung oder Ausgangsposition definiert ist. Eine Wegbegrenzung der Exzenterhülse auf dem Exzenterzapfen kann beispielsweise durch die Form der Pumpenwelle erfolgen, also in dem die Pumpenwelle selbst ein Anschlagelement bildet. Ebenso kann der Ver-

stellweg durch ein Pumpengehäuse begrenzt sein, weiters kann der Verstellweg auch einstellbar sein, in dem das Anschlagelement in Form einer Stellschraube ausgebildet ist.

Ein vorteilhaftes Betriebsverhalten der Exzenterpumpe wird dadurch erzielt, wenn die Exzen- terhülse in der Ausgangsposition bei geringem Druckniveau in den Pumpenelementen durch das Federelement gegen das Anschlagelement vorgespannt ist. In der Ausgangsstellung bei niedrigem Gegendruck kann dadurch eine durch die Ausgangsstellung vorbestimmte Exzentrizität und damit ein bestimmtes Fördervolumen der Exzenterpumpe vorgegeben werden, beispielsweise für einen Leerlaufbetrieb der Exzenterpumpe, wenn verbraucherseitig kein erhöh- ter Druckbedarf besteht. Die Ausgangsstellung kann sowohl einem maximalen Fördervolumen als auch einem minimalen Fördervolumen zugeordnet sein, was vom Einsatzzweck der Exzenterpumpe abhängig ist.

Wenn die Mantelfläche der Exzenterhülse in der Ausgangsposition eine Maximalexzentrizität bezüglich der Hauptachse aufweist, ist das Fördervolumen im Leerlauf bei niedrigem Druckniveau in den Pumpelementen maximal und regelt sich wie zuvor beschrieben bei steigendem Systemdruck in Richtung kleineres Fördervolumen, wodurch die Antriebsleistung der Exzenterpumpe weitgehend konstant bleibt. Alternativ dazu wäre auch möglich, dass die Exzenterhülse in der Ausgangsstellung eine Minimalexzentrizität aufweist, und die Bewegung der Ex- zenterhülse in Richtung zunehmender Exzentrizität durch die auf die Exzenterhülse wirkende Fliehkraft bewirkt wird.

Wenn die Federrate des Federelements so gewählt ist, dass bei Verschiebung der Exzenterhülse aus der Ausgangsstellung die Zunahme der durch das Federelement ausgeübten Feder- kraft größer ist als die Abnahme der Axialkomponente, der auf die Exzenterhülse wirkenden Fliehkraft, ist ein stabiles Betriebsverhalten der Exzenterpumpe gewährleistet und es kann bei einem auftretenden verbraucherseitigen Druckanstieg verhindert werden, dass das Fördervolumen der Exzenterpumpe zu stark abgesenkt wird.

Als für das Betriebsverhalten der Exzenterpumpe vorteilhaft hat sich ein Schrägungswinkel zwischen der Hauptachse und der Exzenterzapfenacb.se aus einem Bereich mit einer unteren Grenze von 3° und einer oberen Grenze von 20° erwiesen. Bei einem Schrägungswinkel von 10° ergibt sich ein vorteilhaftes Ansprechverhalten der Exzenterpumpe bei verbraucherseiti-

gen Druckschwankungen und gleichzeitig eine kompakte Baugröße der Exzenterpumpe.

Da im Fall eines kreiszylindrischen Exzenterzapfens eine zusätzliche Verdrehsicherung erforderlich ist, kann diese vorteilhaft durch eine parallel zur Exzenterzapfenachse verlaufende Passfederverbindung gebildet sein. Diese kann mit bewährten Herstellmethoden einfach hergestellt werden und gewährleistet die axiale Verschiebbarkeit der Exzenterhülse auf dem Exzenterzapfen. Im Fall eines unrund ausgeführten Exzenterzapfens, beispielsweise mit einem quadratischen Querschnitt oder einem Polygonquerschnitt kann die Verdrehsicherung entfallen, wobei allerdings die Fertigung des Exzenterzapfens und der damit zusammenwirkenden Bohrung in der Exzenterhülse wieder aufwendiger wird.

Bei einer Ausführung der Exzenterpumpe mit Pumpelementen in nur einer Arbeitsebene, also mit nur einem Zylinderstern, kann der Exzenterzapfen montagefreundlich fliegend an einem Ende der Pumpenwelle angeordnet sein. Dadurch ist es möglich, dass sowohl die Exzenter- hülse als auch die Pumpenwelle mit dem Exzenterzapfen jeweils einstückig ausgeführt werden können und nicht zusammengesetzt sein müssen.

Wenn der Exzenterzapfen an einer kreiszylindrischen Kurbelwange der Kurbelwelle angeordnet ist, insbesondere auf einer zur Hauptachse konzentrischen Kurbelwange, bietet die Stirn- fläche der kreiszylindrischen Kurbelwange ausreichend Fläche zur Abstützung der Federelemente und zur Anbringung von Anschlagelementen zur Begrenzung der axialen Verstellmöglichkeit der Exzenterhülse. Weiters bildet eine derartige Kurbelwange eine relativ große Schwungmasse, die für den Gleichlauf einer derartigen Exzenterpumpe vorteilhaft ist.

Um verschleißfördernde Gleitbewegungen zwischen der Mantelfläche der Exzenterhülse und den Verdrängungselementen der Pumpenelemente möglichst zu verringern, ist es von Vorteil, wenn die Exzenterhülse in zylindrisches Wälzlager aufweist, dessen Außenring die Mantelfläche bildet. Dadurch treten nur geringfügige Gleitbewegungen bei axialer Verstellung der Exzenterhülse sowie durch die translatorische exzentrische Bewegung der Mantelfläche in Form des Außenringes in tangentialer Richtung auf. Der Außenring des Wälzlagers besitzt dabei eine Breite, die größer ist als der axiale Verstellweg der Exzenterhülse. Da in axialer Richtung nur sehr geringe Reibungskräfte wirksam werden, können ohne weiteres auch Nadellager eingebaut werden.

Zur Versorgung mehrerer Verbraucher, kann die Exzenterpumpe auch so ausgebildet sein, dass entlang der Pumpenwelle mehrere Exzenterzapfen, insbesondere drehsymmetrisch bezüglich der Hauptachse angeordnet sind und jedem Exzenterzapfen eine eigene Gruppe von Pumpenelementen, insbesondere ein feststehender, mehrere Pumpenelemente umfassender

Zylinderstern zugeordnet ist. Die Druckleitungen der Pumpenelemente jeweils eines Zylindersterns sind zu jeweils einem gemeinsamen Hochdruckanschluss zusammengeführt der zur Versorgung eines Verbrauchers verwendet wird. Durch die mehrfachen Exzenterzapfen und Zylindersterne stehen mehrere getrennte Hochdruckanschlüsse für mehrere Verbraucher zur Verfügung, wobei sich die Fördervolumina der einzelnen Zylindersterne jeweils unabhängig von den anderen an den Betriebszustand des jeweiligen Verbrauchers anpassen können. Somit wird auch ein gemeinsamer Antriebsmotor für mehrere Verbraucher ebenfalls sehr gleichmäßig beansprucht.

Zur gleichzeitigen Versorgung mehrerer Verbraucher kann die Exzenterpumpe auch so ausgeführt sein, dass am Gestell zumindest zwei Pumpenwellen mit jeweils zumindest einem Exzenterzapfen, dem jeweils eine eigene Gruppe von Pumpenelementen zugeordnet ist, parallel zueinander angeordnet sind und mittels einer gemeinsamen Antriebsvorrichtung antreibbar sind. Zwischen den zumindest zwei parallelen Pumpenwellen kann mit einfachen Mitteln, bei- spielsweise einem Zugmittelgetriebe, insbesondere einem Zahnriementrieb, eine Antriebsverbindung hergestellt werden und es wird nur ein Antriebsmotor benötigt, der aufgrund der Pumpencharakteristik sehr gleichmäßig beansprucht wird.

Um einen verschleißarmen Betrieb einer Exzenterpumpe zu gewährleisten, ist es von Vorteil, wenn das Gestell als Gehäuse ausgebildet ist und die Pumpenelemente in dem einen Schmiermittelvorrat enthaltenden Gehäuse angeordnet sind, und die Pumpenwelle das Gehäuse abgedichtet durchsetzt. Das Schmiermittel kann dadurch durch die Bewegungen der Pumpenwelle an die verschleißgefährdeten Kontaktstellen herangeführt werden und insbesondere gleichzeitig das von den Pumpenelementen zu fördernde Druckmittel bilden. Die Pumpenelemente können also direkt aus dem Druckmittelvorrat, der gleichzeitig auch Schmiermittelvorrat ist, innerhalb des Gehäuses ansaugen.

Die Pumpenelemente der Exzenterpumpe weisen vorteilhaft Federelemente auf, die die Ver-

drängungselemente radial in Richtung zur Hauptachse gegen die Mantelfläche der Exzenterhülse vorspannen. Die Verdrängungselemente in Form von Kolbenelementen oder Membranelementen können dadurch das Ansaugen von Druckmittel in die Hubräume der Pumpenelemente selbsttätig ausführen, ohne dass dazu Zugkräfte von der Exzenterhülse auf die Verdrän- gungselemente ausgeübt werden müssen. Daraus ergibt sich ein einfacher Aufbau der Exzenterpumpe.

Um beim Arbeitstakt der Pumpenelemente einen Druckmittelrückfluss zur Ansaugseite zu verhindern, sind zwischen den Hubräumen in den Pumpenelementen und einem Druckmittel- Vorrat Saugventile, insbesondere Tellersitzventile, angeordnet. Ebenso sind vorteilhaft zwischen den Hubräumen in den Pumpenelementen und einem Hochdruckanschluss der Exzenterpumpe Druckventile, insbesondere Tellersitzventile angeordnet, wodurch während des Ansaugtaktes ein Rückströmen von Druckmittel von der Hochdruckseite in die Hubräume unterbunden ist.

Alternativ dazu kann die Steuerung der Pumpenelemente, d.h. der Druckmittelzufluss oder der Druckmittelabfiuss in bzw. aus dem Hubräumen der Pumpenelementen mittels einer Schiebersteuerung erfolgen, was bei niedrigeren Arbeitsdrehzahlen einer Exzenterpumpe sinnvoll sein kann.

Zum Erreichen höchster Betriebsdrucke einer derartigen Exzenterpumpe kann diese insbesondere in Form einer Radialkolbenpumpe ausgebildet sein, bei der die Verdrängungselemente als in Pumpenzylindern geführte Pumpenkolben ausgebildet sind. Mit einer derartigen Ausführung können Betriebsdrücke von über 500 bar, beispielsweise 700 bar, problemlos erzeugt werden.

Die Erfindung betrifft weiters ein Bergegerät umfassend ein Hydrauliksystem sowie eine von diesem angetriebene Bergeschere oder einen Bergespreizer, dadurch gekennzeichnet, dass das Hydrauliksystem eine erfindungsgemäße Exzenterpumpe umfasst. Hydraulische Verbraucher, wie Bergescheren oder Bergespreizer, zeichnen sich dadurch aus, dass sie im Betrieb einerseits bei unbelasteten Werkzeugen schnelle Bewegungen und dadurch große Volumenströme erfordern, andererseits aber ab dem Eingriff der Werkzeuge sehr hohe Betriebsdrücke erfordern, bei denen eine schnelle Werkzeugbewegung und dadurch hohe Volumenströme nicht

mehr erforderlich sind. Durch eine erfindungsgemäße Exzenterpumpe als hydraulischer Antrieb für ein derartiges Bergegerät kann der Antriebsmotor für die Exzenterpumpe in allen Arbeitszuständen optimal ausgelastet werden und dadurch ein kostengünstigerer Antriebsmotor eingesetzt werden.

Die Erfindung betrifft weiters ein Verfahren zum Antreiben eines fluidbetriebenen Motors, wie eines Hydraulikzylinders oder eines Hydraulikmotors, mittels eines Druckmittelstroms, das dadurch gekennzeichnet ist, dass der Druckmittelstrom von einer erfindungsgemäßen Exzenterpumpe bereitgestellt wird. Durch die selbstregelnde Arbeitsweise der Exzenterpumpe befindet sich deren Antriebsmotor in allen Betriebszuständen jeweils im Bereich des optimalen Arbeitspunktes und optimaler Leistung.

Die Erfindung wird im nachfolgenden anhand der in den Zeichnungen dargestellten Ausfuhrungsbeispiele näher erläutert.

Es zeigen jeweils in vereinfachter, schematischer Darstellung:

Fig. 1 eine Schnittdarstellung einer erfindungsgemäßen Exzenterpumpe in Form einer Radialkolbenpumpe;

Fig.2 eine Ansicht der Exzenterpumpe gemäß Fig. 4 in Richtung der Pumpenwellenach.se;

Fig. 3a eine Darstellung der in einem ersten Betriebszustand auf die Exzenterhülse wirkenden Kräfte;

Fig. 3b eine Darstellung der in einem zweiten Betriebszustand auf die Exzenterhülse wirkenden Kräfte;

Fig. 4 einen Schnitt durch eine weitere Ausführungsform einer erfindungsgemäßen Exzen- terpumpe in Form einer Radialkolbenpumpe;

Fig. 5 ein Bergegerät mit einer erfindungsgemäßen Exzenterpumpe.

Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen

gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, un- ten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen, unterschiedlichen Ausfuhrungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.

Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mit umfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mitumfasst sind, d.h. sämtliche Teilbereich beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1 oder 5,5 bis 10.

In den Fig. 1 und 2 ist beispielhaft der Aufbau und die Funktionsweise einer erfindungsgemäßen Exzenterpumpe 1 in Form außenbeaufschlagten Radialkolbenpumpe 2 dargestellt. Diese umfasst im Wesentlichen eine Pumpenwelle 3, die auch als Exzenterwelle 4 bezeichnet werden kann. Diese wirkt bei einer Rotation auf peripher zur Exzenterwelle 4 angeordnete Pumpenelemente 5, 5', in dem Verdrängungselemente 6, 6\ in Form von Pumpenkolben 7, T, Hubräume 8, 8', periodisch verkleinern und vergrößern. Bei jedem Arbeitstakt eines Verdrängungselementes 6 wird dabei Druckmittel bzw. Hydraulikfluid über eine Saugleitung 9, 9' von einem Druckmittelvorrat 10 durch Vergrößerung des Hubraumes 8 angesaugt und durch Verkleinerung des Hubraumes 8 über eine Druckleitung 11 an einen Hochdruckanschluss 12 abgegeben; von dem ein Verbraucher, wie z. B. ein fluidbetriebender Motor in Form eines Hydraulikzylinders; eines Hydromotors oder ähnliches versorgt wird. Die Steuerung des Druckmittelstroms durch die Pumpenelemente 5, 5' erfolgt dabei mit Hilfe von Saugventilen 13, 13' sowie Druckventilen 14, 14' die die Strömungsrichtung des Druckmittels von und zu den Hubräumen 8, 8' steuern. Die Saugventile 13 und die Druckventile 14 können beispielsweise als Tellersitzventile ausgeführt sein oder aber auch durch andere Ventilbauarten gebildet sein.

Die Pumpenwelle 3 sowie die Pumpenelemente 5; 5' sind ortsfest bezüglich eines Gestelles 15 gelagert, das beispielsweise als Gehäuse ausgebildet ist. Der Begriff Gestell 15 ist in diesem Zusammenhang nicht auf die Bauart bezogen; sondern auf die kinematische Funktion als Bezugssystem, relativ zu welchen sich die Pumpenwelle 3 und Verdrängungselemente 6; 6' der Pumpenelemente 5; 5' bewegen. Die Pumpenwelle 3 wird von einer in Fig. 1 nicht dargestellten Antriebsvorrichtung angetrieben und führt im Betrieb eine Rotation um eine Hauptachse 16 aus. Die periodische Betätigung der Verdrängungselemente 6; 6' erfolgt dabei durch eine Exzenterhülse 17; deren Mantelfläche 18 exzentrisch um die Hauptachse 16 rotiert. Die Mantelfläche 18 der Exzenterhülse 17 hat im dargestellten Ausführungsbeispiel die Form einer Kreiszylinderfiäche 19, deren Erzeugenden 20 parallel zur Hauptachse 16 sind, wodurch eine Mittelachse 21 der Kreiszylinderfiäche 19 parallel zur Hauptachse 16 verläuft. Der Abstand zwischen der Mittelachse 21 und der Hauptachse 16 ergibt dabei eine Exzentrizität 22 der Exzenterhülse 17 bezüglich der Hauptachse 16 und entspricht auch dem halben Hub der Verdrängungselemente 6.

Bei der erfindungsgemäßen Exzenterpumpe 1 ist die Exzentrizität 22 veränderlich, wozu die Exzenterhülse 17 auf einem Pumpenwellenabschnitt 23 axial verstellbar gelagert ist, der als Exzenterzapfen 24 ausgebildet ist, dessen Exzenterzapfenachse 25 einen Schrägungswinkel 26 bezüglich der Hauptachse 16 aufweist. Dieser Schrägungswinkel 26 beträgt im dargestellten Ausführungsbeispiel etwa 10 0 C, kann doch vorzugsweise aus einem Bereich mit einer unteren Grenze von 3 0 C und einer oberen Grenze von 20 °C gewählt sein. Durch den zwischen der Exzenterzapfenachse 25 und der Hauptachse 16 bestehenden Schrägungswinkel 26, bewirkt eine axiale Verschiebung der Exzenterhülse 17 auf dem Exzenterzapfen 24 eine Ver- änderung der Exzentrizität 22, d. h. der Abstand zwischen der Mittelachse 21 der Mantelfläche 18 und der Hauptachse 16 verändert sich durch die axiale Verschiebung der Exzenterhülse 17. Zur übertragung des Antriebsmomentes ist zwischen dem Exzenterzapfen 24 und der Exzenterhülse 17 eine Verdrehsicherung 27, im dargestellten Ausführungsbeispiel in Form einer Passfederverbindung 28 ausgebildet. Alternativ dazu kann jede All einer Verdreh- Sicherung 27 ausgebildet sein, die die axiale Bewegung der Exzenterhülse 17 entlang des Exzenterzapfens 24 zulässt, beispielsweise eine von der Kreisform abweichende Querschnitts- fiäche 29 des Exzenterzapfens 24 und eine damit verdrehsicher zusammenwirkende Ausnehmung bzw. Bohrung 30 in der Exzenterhülse 17. Der Querschnitt des Exzenterzapfens 24

kann dazu beispielsweise als Keilwellenprofil oder als Polygonprofil ausgebildet sein.

Im dargestellten Ausfuhrungsbeispiel ist der Exzenterzapfen 24 als Kreiszylinderabschnitt 31 ausgebildet, dessen Kreiszylinderachse 32 die Exzenterzapfenachse 25 bildet. Alternativ dazu kann der Exzenterzapfen 24 auch eckigen, beispielsweise quadratischen Querschnitt aufweisen.

Auch die Mantelfläche 18 der Exzenterhülse 17 kann alternativ zu dem dargestellten Ausfuhrungsbeispiel einen von der Kreisform abweichenden Querschnitt aufweisen also beispielsweise oval ausgeführt sein oder Abflachungen aufweisen, wobei die Querschnittsform zur Erzielung einer gewünschten Charakteristik der Exzenterpumpe 1 verwendet werden kann.

Die Verdrängungselemente 6 in Form von Pumpenkolben 7 sind in Pumpenzylindern 33 geführt und werden durch Kolbenfedern 34 gegen die Mantelfläche 18 der Exzenterhülse 17 oder zumindest in Richtung der Hauptachse 16 gedrückt. Die Kolbenfedern 34 sind dabei so gewählt, dass der Ansaugtakt der Pumpenelemente 5 von den Verdrängungselementen 6 selbsttätig durchgeführt wird. Alternativ zu den Pumpenkolben 7 können als Verdrängungselemente 6, 6' auch Membranelemente eingesetzt werden. Anstelle des Einsatzes von Kolbenfedern 34 für die Pumpenkolben 7 bzw. allgemein von Federelementen für die Verdrängungselemente 6 können die Verdrängungselemente 6 auch durch Zugkräfte den Ansaugtakt aus- fuhren, wenn eine gelenkige, zur übertragung von Zugkräften geeignete Verbindung zwischen Verdrängungselementen 6 und Exzenterhülse 17 vorgesehen ist. Die Exzenterhülse 17 kann dazu mit einer Außenhülse versehen sein, die nur die translatorische Exzenterbewegung aber nicht die Rotationsbewegung ausfuhrt.

Der axiale Verstellweg der Exzenterhülse 17 auf dem Exzenterzapfen 24 ist in Fig. 1 auf der linken Seite durch ein erstes Anschlagelement 35 und nach der rechten Seite durch ein zweites Anschlagelement 36 begrenzt, wobei als Anschlagelement 35, 36 jeweils ein Schraubenelement 37 eingesetzt wird, das an Kurbelwangen 38 der Pumpenwelle 3 eingesetzt ist. Die Kurbelwangen 38 besitzen im dargestellten Ausfuhrungsbeispiel die Form von scheibenför- migen Kreiszylinderabschnitten.

Zwischen der Exzenterhülse 17 und der in Fig. 1 rechts davon angeordneten Kurbelwange 38 ist ein Federelement 39 in Form einer Druckfeder 40 angeordnet, das auf die Exzenterhülse 17

in axialer Richtung eine Federkraft ausübt. Das Federelement 39 kann dabei wie dargestellt etwa parallel zur Exzenterzapfenachse 25 orientiert sein, kann aber beispielsweise auch parallel zur Hauptachse 16 oder auch in beliebiger anderer Richtung orientiert sein, solange die Federkraft eine Kraftkomponente parallel zur Richtung der Exzenterzapfenachse 25 auf die Exzenterhülse 17 ausüben kann. Da das Federelement 39 im dargestellten Ausführungsbeispiel als Druckfeder 40 ausgebildet ist, wirkt die Federkraft auf die Exzenterhülse 17 nach links und wird die Exzenterhülse 17, wenn die von den Pumpenkolben 7 ausgeübten Kräfte gering sind, nach links gegen das erste Anschlagelement 35 gedrückt, wodurch eine Ausgangsstellung bzw. Ausgangsposition definiert ist.

Im Betrieb der Exzenterpumpe 1 wirken auf die Exzenterhülse 17 bei Vernachlässigung von Reibungskräften - die von den Pumpenkolben 7 ausgeübten radialen Kolbenkräfte, die vom Federelement 39 ausgeübte axiale Federkraft, eine durch die Exzentrizität des Schwerpunktes der Exzenterhülse 17 bezüglich der Hauptachse 16 verursachte Fliehkraft in radialer Richtung sowie eine zwischen Exzenterzapfen 24 und Exzenterhülse 17 wirkende, in Bezug auf die Exzenterzapfenachse 25 radiale Kontaktkraft.

Das Zusammenspiel der auf die Exzenterhülse 17 wirkenden Kräfte und die Funktion der Exzenterpumpe 1 wird im Folgenden anhand der Fig. 3a und 3b erläutert.

Fig. 3a zeigt den Ausschnitt aus einer erfindungsgemäßen Exzenterpumpe 1, bei der die Exzenterhülse 17 mittels des Federelementes 39 in Form der Druckfeder 40 gegen das linke Anschlagelement 35 gedrückt wird und dadurch eine Ausgangsposition 41 einnimmt. In der Ausgangsposition 41 entspricht die Exzentrizität 22 zwischen der Mittelachse 21 der Exzen- terhülse 17 und der Hauptachse 16 der Pumpenwelle 3 einer maximalen Exzentrizität 42, bei der der maximale Hub der Verdrängungselemente 6, 6' in Form der Pumpenkolben 7, T und dadurch das maximale Fördervolumen der Exzenterpumpe 1 gegeben ist.

In Folge wird der Betriebszustand der Exzenterpumpe 1 betrachtet, bei dem die Kontaktkraft zwischen der Exzenterhülse 17 und dem linken Anschlag element 35 verschwindet und die Exzenterhülse 17 unmittelbar bevor einer axialen Verschiebung auf dem Exzenterzapfen 24 nach rechts steht. Bei Vernachlässigung von Reibungskräften wirken auf die Exzenterhülse 17 vereinfacht folgende Kräfte:

1. eine resultierende Kolbenkraft 43, die direkt proportional zum Systemdruck an den Hochdruckanschlüssen 12, 12' ist. Die von den Kolbenfedern 34, 34' verursachten Kräfte können in diesem Zusammenhang vernachlässigt werden, da sie sich zum Großteil ge- genseitig aufheben;

2. eine zwischen dem Exzenterzapfen 24 und der Bohrung 30 der Exzenterhülse 17 übertragene Kontaktkraft 44, die etwa rechtwinklig auf die Exzenterzapfenachse 25 orientiert ist;

3. eine vereinfacht im Schwerpunkt 45 der Exzenterhülse 17 angreifende Fliehkraft 46, die etwa rechtwinklig zur Mittelachse 21 der Exzenterhülse 17 orientiert ist; und

4. eine vom Federelement 39 ausgeübte Federkraft 47, die parallel zur Exzenterzapfenachse 25 orientiert ist.

In diesem Betriebszustand wird die bzgl. der Exzenterzapfenachse 25 axial wirkende Komponente der Kolbenkraft 43 ausgeglichen durch die entgegengesetzt wirkenden axialen Komponenten der Fliehkraft 46 und der Federkraft 47. Das entsprechende Kräftepolygon ist in Fig. 3 a noch zusätzlich dargestellt. Bleibt in diesem Betriebszustand der an den Hochdruckan- Schlüssen 12, 12' anliegende Systemdruck unverändert, so befinden sich die an der Exzenterhülse 17 angreifenden Kräfte im Gleichgewicht und die Exzenterhülse 17 wird in der dargestellten Ausgangsposition 41 weiterrotieren.

Erfolgt nun eine Druckerhöhung an den Hochdruckanschlüssen 12, 12' ist einleuchtend, dass dadurch auch die resultierende Kolbenkraft 43, die auf die Mantelfläche 18 der Exzenterhülse 17 einwirkt, ansteigt und die bzgl. der Exzenterzapfenachse 25 axiale Komponente der Kolbenkraft 43 eine Verschiebung der Exzenterhülse 17 nach rechts bewirkt, bis die Erhöhung der axialen Komponente der Kolbenkraft 43 durch eine von der axialen Verschiebung bewirkten Erhöhung der Federkraft 47 ausgeglichen ist und sich ein neuer Gleichgewichtszustand mit einer gegenüber der Ausgangsposition 41 nach rechts verschobenen Exzenterhülse 17 einstellt.

Durch diese Verschiebung der Exzenterhülse 17 entlang des schrägen Exzenterzapfens 24

verringert sich die Exzentrizität 22 und damit auch der Hub der Pumpenkolben 7 wodurch sich das Fördervolumen der Exzenterpumpe 1 bei konstant angenommener Antriebsdrehzahl verringert gegenüber dem Fördervolumen in der Ausgangsposition 41 der Exzenterhülse 17. In der beschriebenen neuen Gleichgewichtsstellung ist gegenüber der Ausgangsstellung 41, der von der Exzenterpumpe 1 zu liefernde Systemdruck höher, dafür aber auch der Volumenstrom geringer, wodurch die für die Exzenterpumpe 1 erforderliche Antriebsleistung weitgehend konstant bleibt, da diese proportional dem Produkt aus Systemdruck und Volumenstrom ist und sich deren Veränderungen gegenseitig aufheben. Eine Erhöhung des Systemdrucks an den Hochdruckanschlüssen 12 bewirkt also eine Verschiebung der Exzenterhülse 17 in Rich- tung geringere Exzentrizität 22 also im dargestellten Ausfuhrungsbeispiel nach rechts und im Gegenzug bewirkt eine Verringerung des Systemdrucks 12 an den Hochdruckanschlüssen 12 eine Verschiebung der Exzenterhülse 17 in Richtung zunehmender Exzentrizität d. h. im dargestellten Ausführungsbeispiel nach links und zwar durch die Federkraft 47 des Federelements 39. Theoretisch würde ein unbegrenzt ansteigender Druck an den Hochdruckanschlüs- sen 12 aufgrund der ständig zunehmenden Kolbenkraft 43 eine Verschiebung der Exzenterhülse 17 so weit nach rechts verursachen, bis die Exzentrizität 22 verschwindet und der Volumenstrom der Exzenterpumpe 1 gegen null geht. Da ein derartiger Betriebszustand in der Praxis unerwünscht ist, ist der Verstellweg der Exzenterhülse am Exzenterzapfen 24 durch ein zweites Anschlagelement 36 nach rechts begrenzt.

In Fig. 3b ist ein Betriebszustand einer Exzenterpumpe 1 dargestellt, bei der die Exzenterhülse 17 gerade die Endposition 48 ihrer maximalen Verschiebung entlang des Exzenterzapfens 24 einnimmt und mit dem rechten, zweiten Anschlagelement 36 in Kontakt kommt. In diesem Betriebszustand wirken auf die Exzenterhülse 17 wiederum die resultierende Kolbenkraft 43, die in diesem Betriebszustand wesentlich höher ist, als im Ausgangszustand 41; weiters die ebenfalls entsprechend größere Kontaktkraft 44 zwischen dem Exzenterzapfen 24 und der Bohrung 30 in der Exzenterhülse 17; weiteres die durch die verringerte Exzentrizität 22 verringerte Fliehkraft 46 sowie die erhöhte Federkraft 47, die die axialen Komponenten der Kolbenkraft 43 und der Fliehkraft 47 gerade ausgleicht. Das Zusammenwirken der Kräfte ist wie- derum in einem eigenen Kräftepolygon vereinfacht dargestellt.

In dieser Endposition 48 entspricht die Exzentrizität 22 zwischen der Mittelachse 21 der Mantelfläche 18 der Exzenterhülse 17 und der Hauptachse 16 der Pumpenwelle 3 einer Minimal-

exzentrizität 49, die auch das minimale Fördervolumen je Umdrehung der Exzenterpumpe 1 festlegt.

Das Betriebsverhalten einer derartigen Exzenterpumpe 1 kann somit in weiten Bereichen be- einfhisst werden, beispielsweise durch die Wahl des Schrägungswinkels 26, die Lage und die Größe des Verstellweges der Exzenterhülse 17 auf dem Exzenterzapfen 24, die Federkennlinie und Vorspannung des Federelements 39, die maximale Exzentrizität 42 und minimale Exzentrizität 49.

Fig. 4 zeigt ausschnittsweise einen Schnitt durch eine weitere Ausführungsform einer erfindungsgemäßen Exzenterpumpe 1, bei der das Gestell 15 als Gehäuse 50 ausgebildet ist, die Pumpenwelle 3 in das Gehäuseinnere 51 geführt ist und an einem Ende 52 der Pumpenwelle 3 die Exzenterhülse 17 axial verschiebbar auf dem das Ende 52 der Pumpenwelle bildenden, fliegenden Exzenterzapfen 24 axial verschiebbar gelagert ist. Fig. 4 zeigt die Exzenterhülse 17 in der Ausgangsposition 41, in der dieses durch mehrere Druckfedern 40 gegen eine am

Ende 52 des Exzenterzapfens 24 befestigte Stirnscheibe 53 vorgespannt ist. Der außerhalb des Gehäuses 50 liegende Teil der Pumpenwelle 3 weist eine Wellenbohrung 54 mit einer Passfe- demut 55 auf, wodurch die Pumpenwelle einfach mit einem nicht dargestellten Antriebsmotor verbunden werden kann. Die Pumpenwelle 3 ist mittels Wälzlagern 56 in Form von Radial- kugellagern 57 im Gehäuse 50 gelagert und das Gehäuseinnere 51 mittels Wellendichtungen

58 gegenüber der Umgebung abgedichtet.

An der Innenseite des Gehäuses 50 sind auf einem Teilkreis bezüglich der Hauptachse 16 der Pumpenwelle 3 mehrere Pumpenelemente 6 befestigt, die in radialer Richtung betätigbare Verdrängungselemente 6 in Form von Pumpenkolben 7 aufweisen. Die Funktionsweise der Pumpenelemente 5 wurde bereits anhand von Fig. 1 beschrieben und wird an dieser Stelle nicht mehr wiederholt.

Um den Verschleiß durch das Gleiten zwischen der Mantelfläche 18 der Exzenterhülse 17 und den Pumpenkolben 7 zu verringern, weist die Exzenterhülse 17 ein zylindrisches Wälzlager

59 auf, dessen Außenring 60 die Mantelfläche 18 der Exzenterhülse bildet. Durch diese drehbare Wälzlagerung des Außenrings 60 führt dieser nicht wie die Exzenterhülse 17 eine exzentrische Rotation bezüglich der Hauptachse 16 aus sondern führt, wenn die Rollreibung zwi-

schen Außenring und Innenring vernachlässigt wird eine kreisförmige Translation bezüglich der Hauptachse 16 aus, wobei der Durchmesser dieser Kreisbewegung dem Doppelten der Exzentrizität 22 entspricht. Die Verdrehsicherung 27 zwischen der Exzenterhülse 17 und dem Exzenterzapfen 24 ist wieder durch eine Passfederverbindung 28 gebildet.

Die von den Hubräumen 8 in den Pumpenelementen 5 wegführenden Druckleitungen 11 sind durch entsprechende Bohrungen 61 gebildet und sind zu einem gemeinsamen Hochdruckan- schluss zur Versorgung eines Verbrauchers zusammengeführt, während die Saugleitungen 9 im Gehäuseinneren 51 enden, in dem sich ein ausreichender Druclαnittelvorrat befindet, wo- durch das Gehäuse 50 die Funktion eines Tanks in einem offenen Hydraulikkreislauf erfüllt. Wie in Fig. 4 erkennbar, umfasst die Saugleitung 9 für ein oberhalb des Flüssigkeitsspiegels angeordnetes Pumpenelement 5 - ein Saugrohr 62, dass bis unter den Flüssigkeitsstand 63 geführt ist.

Die Funktionsweise der in Fig. 4 dargestellten Exzenterpumpe 1 entspricht der anhand von den Fig. 3a und Fig. 3b beschriebenen Funktionsweise und wird, um Wiederholungen zu vermeiden, an dieser Stelle nicht mehr näher beschrieben. Die Pumpenelemente 5 können auf einen Teilkreis bezüglich der Hauptachse 16 angeordnet sein und um möglichst geringe Druckschwankungen am Hochdruckanschluss 12 zu erzielen, zu einem gemeinsamen An- Schluss zusammengeführt und gleichmäßig über den Umfang des Teilkreises verteilt sein. Je nach der Baugröße der Pumpenelemente 5 können beispielsweise 4 bis 9 Pumpenelemente 5 einer Exzenterhülse 17 zugeordnet sein und bilden durch ihre sternförmige Anordnung einen so genannten Zylinderstern 64.

Fig. 5 zeigt als Beispiel für die Verwendung einer erfindungsgemäßen Exzenterpumpe 1 ein Bergegerät 65, umfassend eine Bergeschere 66 oder einen Bergespreizer und ein Hydrauliksystem 67 mit der erfindungsgemäßen Exzenterpumpe 1 und einer Hydrauliksteuerung 68 zur Steuerung der Fluidströmung zur bzw. von der Bergeschere 66. Die Bergeschere 66 umfasst einen fluidbetriebenen Motor 69 in Form eines Hydraulikzylinders 70, der den Hydraulikmit- telstrom in Bewegungen der Bergewerkzeuge umwandelt. Die Bereitsstellung des Druckmittelstroms erfolgt durch eine Exzenterpumpe I 3 bei der die Pumpenwelle 3 mehrere, in dargestellten Ausführungsbeispiel drei Exzenterzapfen 24 aufweist, denen jeweils ein mehrere Pumpenelemente 5 umfassender Zylinderstern 64 zugeordnet ist. Die Druckleitungen 11 der Pumpen-

elemente 5 jeweils eines Zylindersterns 64 sind zu einem gemeinsamen Hochdrackanschluss 12 zusammengeführt. Durch die drei Zylindersterne 64 stehen somit drei Hochdruckanschlüsse bereit, von denen einer durch die Hydrauliksteuerung 68 mit dem Verbraucher in Form der Bergeschere 66 verbunden ist und zwei weitere Hochdruckanschlüsse 12', 12" für zusätzliche Verbraucher zur Verfügung stehen. Die Saugleitungen 9 der oberen Pumpenelemente 5 sind durch Saugrohre 62 mit dem im Gehäuse 50 enthaltenen Druckmittelvorrat 71 verbunden. Um die Exzenterpumpe 1 vor schädlichen Druckspitzen zu bewahren, umfasst das Hydrauliksystem ein Druckbegrenzungsventil 72. Der Antrieb der Pumpenwelle 3 erfolgt durch eine nur symbolisch angedeutete Antriebsvorrichtung 73 bspw. in Form eines Elektromotors.

In Fig. 4 ist noch die Möglichkeit dargestellt, von der mittels einer Antriebsvorrichtung 73 angetriebenen Pumpenwelle 3 mittels eines Zahnriementriebs 74 eine oder mehrere weitere, nicht dargestellte Pumpenwellen anzutreiben, wodurch mehrere Exzenteφumpeneinheiten mit nur einem Antriebsmotor betrieben werden können und für mehrere Verbraucher getrennte Hydraulikkreise zur Verfügung stehen.

Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten der Exzenterpumpe 1, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch die gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt. Es sind also auch sämtliche denkbaren Ausführungsvarianten, die durch Kombinationen einzelner Details der dargestellten und beschriebenen Ausführungsvarianten möglich sind, vom Schutzumfang mit umfasst.

Der Ordnung halber sei abschließend daraufhingewiesen, dass zum besseren Verständnis des Aufbaus der Exzenterpumpe diese bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.

Vor allem können die einzelnen in den Fig. 1, 2, 3 a, 3b; 4; 5 gezeigten Ausführungen den Gegenstand von eigenständigen, erfmdungsgemäßen Lösungen bilden. Die diesbezüglichen, erfindungsgemäßen Aufgaben und Lösungen sind den Detailbeschreibungen dieser Figuren zu entnehmen.

B e z u g s z e i c h e n a u f s t e l l u n g

1 Exzenterpumpe 41 Ausgangsposition 2 Radialkolbenpumpe 42 Maximalexzentrizität

3 Pumpenwelle 43 Kolbenkraft

4 Exzenterwelle 44 Kontaktkraft

5 Pumpenelement 45 Schwerpunkt 6 Verdrängungselement 46 Fliehkraft

7 Pumpenkolben 47 Federkraft

8 Hubraum 48 Endposition

9 Saugleitung 49 Minimalexzentrizität

10 Druckmittel vorrat 50 Gehäuse

11 Druckleitung 51 Gehäuseinneres

12 Hochdruckanschluss 52 Ende

13 Saugventil 53 Stirnscheibe

14 Druckventil 54 Wellenbohrung 15 Gestell 55 Passfedernut

16 Hauptachse 56 Wälzlager

17 Exzenterhülse 57 Radialkugellager

18 Mantelfläche 58 Wellendichtung 19 Kreiszylinderfläche 59 Wälzlager

20 Erzeugende 60 Außenring

21 Mittelachse 61 Bohrung

22 Exzentrizität 62 Saugrohr 23 Pumpenwellenabschnitt 63 Flüssigkeitsstand

24 Exzenterzapfen 64 Zylinderstern

25 Exzenterzapfenachse 65 Bergegerät

26 Schrägungswinkel 66 Bergeschere 27 Verdrehsicherung 67 Hydrauliksystem

28 Passfederverbindung 68 Hydrauliksteuerung

29 Querschnittsfläche 69 Motor

30 Bohrung 70 Hydraulikzylinder 31 Kreiszylinderabschnitt 71 Druckmittelvorrat

32 Kreiszylinderachse 72 Druckbegrenzungsventil

33 Pumpenzylinder 73 Antriebsvorrichtung

34 Kolbenfeder 74 Zahnriementrieb

35 Anschlagelement

36 Anschlagelement

37 Schraubenelement

38 Kurbelwange

39 Federelement 40 Druckfeder