Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EFFECTOR DOMAINS FOR CRISPR-CAS SYSTEMS
Document Type and Number:
WIPO Patent Application WO/2023/200998
Kind Code:
A2
Abstract:
Disclosed herein are effector domains. The effector domains may be used with, for example, Cas proteins and CRISPR-Cas systems. The effectors may be used in combination with a Cas protein to form a fusion protein. The effectors may also be used in combination with an antibody that binds to a peptide epitope, wherein the peptide epitope is fused to a Cas protein. The compositions and methods comprising the effectors may be used to modulate gene expression.

Inventors:
GERSBACH CHARLES A (US)
BUTTERFIELD GABRIEL (US)
ROHM DAHLIA (US)
IGLESIAS NAHID (US)
Application Number:
PCT/US2023/018559
Publication Date:
October 19, 2023
Filing Date:
April 13, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV DUKE (US)
International Classes:
C12N9/22; C12N15/75
Attorney, Agent or Firm:
COX, Julia M. et al. (US)
Download PDF:
Claims:
CLAIMS 1. A Cas effector comprising: a first polypeptide comprising a Cas protein and at least one peptide epitope; and a second polypeptide comprising an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, and an antibody to the peptide epitope. 2. The Cas effector of claim 1, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. 3. The Cas effector of claim 1 or 2, wherein the effector is capable of increasing or decreasing expression of a gene. 4. The Cas effector of claim 3, wherein the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. 5. The Cas effector of claim 3, wherein the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. 6. The Cas effector of any one of claims 1-5, wherein the first polypeptide comprises about 2 to about 50 peptide epitopes. 7. The Cas effector of any one of claims 1-6, wherein the first polypeptide comprises more than one copy of the peptide epitope and further comprises at least one linker in between adjacent copies of the peptide epitope. 8. The Cas effector of any one of claims 1-7, wherein the peptide epitope is GCN4 and comprises the amino acid sequence of SEQ ID NO: 85.

9. The Cas effector of any one of claims 1-8, wherein the first polypeptide comprises at least one peptide epitope at the N-terminus and/or at the C-terminus of the Cas protein. 10. The Cas effector of any one of claims 1-9, wherein the first polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 87 or 89, or any fragment thereof, or wherein the first polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 87 or 89, or any fragment thereof, or wherein the first polypeptide comprises the amino acid sequence of SEQ ID NO: 87 or 89. 11. The Cas effector of any one of claims 1-10, wherein the antibody comprises the amino acid sequence of SEQ ID NO: 81. 12. The Cas effector of any one of claims 1-11, wherein the second polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or wherein the second polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or wherein the second polypeptide comprises an amino acid sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79. 13. A Cas fusion protein comprising two heterologous polypeptide domains, wherein the first polypeptide domain comprises a Cas protein, and wherein the second polypeptide domain comprises an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, and CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof.

14. The Cas fusion protein of claim 13, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. 15. The Cas fusion protein of claim 13 or 14, wherein the effector is capable of increasing or decreasing expression of a gene. 16. The Cas fusion protein of claim 15, wherein the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. 17. The Cas fusion protein of claim 15, wherein the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. 18. The Cas fusion protein of any one of claims 13-17, wherein the second polypeptide domain has transcription repression activity, transcription activation activity, de-ubiquitinase activity, p300 recruitment activity, enhancer looping mediation activity, or a combination thereof. 19. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the MCRS1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 57 or any fragment thereof, and/or wherein the MCRS1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 57, or any fragment thereof, and/or wherein the MCRS1 comprises the amino acid sequence of SEQ ID NO: 57, and/or wherein the MCRS1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 58, or any fragment thereof, and/or wherein the MCRS1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 58, or any fragment thereof, and/or wherein the MCRS1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 58.

20. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the OTUD7B comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or wherein the OTUD7B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or wherein the OTUD7B comprises the amino acid sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, and/or wherein the OTUD7B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 60, or any fragment thereof, and/or wherein the OTUD7B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 60, or any fragment thereof, and/or wherein the OTUD7B is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 60.

21 . The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the RelB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 65, or any fragment thereof, and/or wherein the RelB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 65, or any fragment thereof, and/or wherein the RelB comprises the amino acid sequence of SEQ ID NO: 65, and/or wherein the RelB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 66 or any fragment thereof, and/or wherein the RelB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 66, or any fragment thereof, and/or wherein the RelB is encoded by a polynucleotide comprising the sequence of

SEQ ID NO: 66.

22. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the LDB1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 61, or any fragment thereof, and/or wherein the LDB1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 61, or any fragment thereof, and/or wherein the LDB1 comprises the amino acid sequence of SEQ ID NO: 61, and/or wherein the LDB1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 62, or any fragment thereof, and/or wherein the LDB1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 62, or any fragment thereof, and/or wherein the LDB1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 62. 23. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the NFKBIB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 63, or any fragment thereof, and/or wherein the NFKBIB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 63, or any fragment thereof, and/or wherein the NFKBIB comprises the amino acid sequence of SEQ ID NO: 63, and/or wherein the NFKBIB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 64, or any fragment thereof, and/or wherein the NFKBIB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 64, or any fragment thereof, and/or wherein the NFKBIB is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 64. 24. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the CITED2 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 67, or any fragment thereof, and/or wherein the CITED2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 67, or any fragment thereof, and/or wherein the CITED2 comprises the amino acid sequence of SEQ ID NO: 67, and/or wherein the CITED2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 68, or any fragment thereof, and/or wherein the CITED2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 68, or any fragment thereof, and/or wherein the CITED2 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 68. 25. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the PHF15 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 133, or any fragment thereof, and/or wherein the PHF15 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 133, or any fragment thereof, and/or wherein the PHF15 comprises the amino acid sequence of SEQ ID NO: 133, and/or wherein the PHF15 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 134, or any fragment thereof, and/or wherein the PHF15 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 134, or any fragment thereof, and/or wherein the PHF15 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 134. 26. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the SS18L1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 149, or any fragment thereof, and/or wherein the SS18L1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 149, or any fragment thereof, and/or wherein the SS18L1 comprises the amino acid sequence of SEQ ID NO: 149, and/or wherein the SS18L1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 150, or any fragment thereof, and/or wherein the SS18L1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 150, or any fragment thereof, and/or wherein the SS18L1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 150. 27. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the MLLT6 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 127, or any fragment thereof, and/or wherein the MLLT6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 127, or any fragment thereof, and/or wherein the MLLT6 comprises the amino acid sequence of SEQ ID NO: 127, and/or wherein the MLLT6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 128, or any fragment thereof, and/or wherein the MLLT6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 128, or any fragment thereof, and/or wherein the MLLT6 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 128. 28. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the ASH2L comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 103, or any fragment thereof, and/or wherein the ASH2L comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 103, or any fragment thereof, and/or wherein the ASH2L comprises the amino acid sequence of SEQ ID NO: 103, and/or wherein the ASH2L is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 104, or any fragment thereof, and/or wherein the ASH2L is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 104, or any fragment thereof, and/or wherein the ASH2L is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 104. 29. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the GSK3A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 117, or any fragment thereof, and/or wherein the GSK3A comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 117, or any fragment thereof, and/or wherein the GSK3A comprises the amino acid sequence of SEQ ID NO: 117, and/or wherein the GSK3A is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 118, or any fragment thereof, and/or wherein the GSK3A is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 118, or any fragment thereof, and/or wherein the GSK3A is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 118. 30. The Cas effector of any one of claims 1-12 or the Cas fusion protein of any one of claims 13-18, wherein the effector is selected from BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, JAZF1, KAT7, KEAP1, MEAF6, MORF4L2, NFYC, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, and wherein the effector comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, , and/or wherein the effector is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176. 31. The Cas effector of any one of claims 1-12 and 19-31 or the Cas fusion protein of claim any one of claims 13-31, wherein the Cas protein comprises at least one amino acid mutation that knocks out nuclease activity of the Cas protein. 32. The Cas effector or the Cas fusion protein of claim 31, wherein the at least one amino acid mutation is at least one of D10A and H840A. 33. The Cas effector of any one of claims 1-12 and 19-32 or the Cas fusion protein of any one of claims 13-32, wherein the Cas protein comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 26-29, or any fragment thereof, or wherein the Cas protein comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 26-29, or any fragment thereof, or wherein the Cas protein comprises the amino acid sequence of one of SEQ ID NOs: 26-29. 34. The Cas effector of any one of claims 1-12 and 19-33 or the Cas fusion protein of any one of claims 13-33, wherein the Cas protein is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 30-31, or any fragment thereof, or wherein the Cas protein is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 30-31, or any fragment thereof, or wherein the Cas protein is encoded by a polynucleotide comprising the sequence of one of SEQ ID NOs: 30-31. 35. A DNA targeting composition comprising: the Cas effector of any one of claims 1-12 and 19-34 or the Cas fusion protein of any one of claims 13-34; and at least one guide RNA (gRNA) that targets the Cas protein to a target region of a target gene. 36. The DNA targeting composition of claim 35, wherein the gRNA targets the Cas protein to target region selected from a non-open chromatin region, an open chromatin region, a transcribed region of the target gene, a region upstream of a transcription start site of the target gene, a regulatory element of the target gene, an intron of the target gene, or an exon of the target gene. 37. The DNA targeting composition of claim 35 or 36, wherein the gRNA targets the Cas protein to a promoter of the target gene. 38. The DNA targeting composition of any one of claims 35-37, wherein the target region is located between about 1 to about 1000 base pairs upstream of a transcription start site of the target gene. 39. The DNA targeting composition of any one of claims 35-38, wherein the at least one gRNA comprises a sequence selected from SEQ ID NOs: 96-98 and 101-102, or wherein the at least one gRNA is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 93-95 and 99-100, or wherein the at least one gRNA targets and binds a polynucleotide comprising a sequence selected from SEQ ID NOs: 93-95 and 99-100 or a complement thereof, or a combination thereof. 40. The DNA targeting composition of any one of claims 35-39, wherein the DNA targeting composition comprises two or more gRNAs, each gRNA binding to a different target region.

41. An isolated polynucleotide sequence encoding the Cas effector of any one of claims 1-12 and 19-34 or the Cas fusion protein of any one of claims 13-34, or the DNA targeting composition of any one of claims 35-40. 42. A vector comprising: the isolated polynucleotide sequence of claim 41. 43. The vector of claim 42, wherein the vector is an adeno-associated virus (AAV) vector. 44. A cell comprising: the Cas effector of any one of claims 1-12 and 19-34 or the Cas fusion protein of any one of claims 13-34, or the DNA targeting composition of any one of claims 35-40, or the isolated polynucleotide sequence of claim 41, or the vector of claim 42 or 43, or a combination thereof. 45. A pharmaceutical composition comprising: the Cas effector of any one of claims 1-12 and 19-34 or the Cas fusion protein of any one of claims 13-34, or the DNA targeting composition of any one of claims 35-40, or the isolated polynucleotide sequence of claim 41, or the vector of claim 42 or 43, or a combination thereof. 46. A method of modulating expression of a gene in a cell or in a subject, the method comprising administering to the cell or the subject the DNA targeting composition of any one of claims 35-40, or the isolated polynucleotide sequence of claim 41, or the vector of claim 42 or 43, or the pharmaceutical composition of claim 45, or a combination thereof. 47. A method of modulating expression of a gene in a cell or in a subject, the method comprising administering to the cell or the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. 48. The method of claim 47, wherein the effector is targeted to the gene. 49. The method of claim 47 or 48, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof.

50. The method of any one of claims 47-49, wherein the effector is capable of increasing or decreasing expression of the gene. 51. The method of claim 50, wherein the effector reduces expression of the gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. 52. The method of claim 50, wherein the effector increases expression of the gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. 53. The method of any one of claims 46-50 and 52, wherein the expression of the gene is increased relative to a control. 54. The method of any one of claims 46-51, wherein the expression of the gene is decreased relative to a control. 55. The method of any one of claims 46-54, wherein the gene comprises the dystrophin gene, the CD25 gene, the B2M gene, or the TRAC gene. 56. The method of any one of claims 46-55, wherein the cell is a muscle cell or a T cell. 57. A method of treating a disease in a subject, the method comprising administering to the subject the DNA targeting composition of any one of claims 35-40, or the isolated polynucleotide sequence of claim 41, or the vector of claim 42 or 43, or the cell of claim 44, or the pharmaceutical composition of claim 45, or a combination thereof. 58. A method of treating a disease in a subject, the method comprising administering to the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector.

59. The method of claim 58, wherein the effector is targeted to a gene.

60. The method of any one of claims 46-59, wherein the method treats a disease selected from Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and cancer.

Description:
EFFECTOR DOMAINS FOR CRISPR-CAS SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Patent Application No. 63/330,691 filed April 13, 2022, U.S. Provisional Patent Application No. 63/335,122 filed April 26, 2022, and U.S. Provisional Patent Application No. 63/342,027 filed May 13, 2022, the entire contents of each of which are hereby incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was made with government support under grant 5U01 AI146356 awarded by the National Institutes of Health. The government has certain rights in the invention.

FIELD

[0003] This disclosure relates to compositions and methods including CRISPR-Cas systems with effector domains. The effector domains, which may be used, for example, in combination with a Cas protein, may be used to modulate gene expression.

INTRODUCTION

[0004] Synthetic transcription factors have been engineered to control gene expression for many different medical and scientific applications in mammalian systems, including stimulating tissue regeneration, drug screening, compensating for genetic defects, activating silenced tumor suppressors, controlling stem cell differentiation, performing genetic screens, and creating synthetic gene circuits. These transcription factors can target promoters or enhancers of endogenous genes or be purposefully designed to recognize sequences orthogonal to mammalian genomes for transgene regulation.

[0005] Further, these synthetic transcription factors rely on naturally occurring or designed effector protein domains which modulate gene expression. However, the full spectrum of regulatory mechanisms employed in mammalian cells cannot be programmed with currently described effector domains. Broadening the set of available effectors will enable both more potent and more specific gene activation and repression.

SUMMARY

[0006] In an aspect, the disclosure relates to a Cas effector. The Cas effector may include a first polypeptide comprising a Cas protein and at least one peptide epitope; and a second polypeptide comprising an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, and an antibody to the peptide epitope. In some embodiments, the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. In some embodiments, the effector is capable of increasing or decreasing expression of a gene. In some embodiments, the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. In some embodiments, the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. In some embodiments, the first polypeptide comprises about 2 to about 50 peptide epitopes. In some embodiments, the first polypeptide comprises more than one copy of the peptide epitope and further comprises at least one linker in between adjacent copies of the peptide epitope. In some embodiments, the peptide epitope is GCN4 and comprises the amino acid sequence of SEQ ID NO: 85. In some embodiments, the first polypeptide comprises at least one peptide epitope at the N-terminus and/or at the C-terminus of the Cas protein. In some embodiments, the first polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 87 or 89, or any fragment thereof, or the first polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 87 or 89, or any fragment thereof, or the first polypeptide comprises the amino acid sequence of SEQ ID NO: 87 or 89. In some embodiments, the antibody comprises the amino acid sequence of SEQ ID NO: 81. In some embodiments, the second polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or the second polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or the second polypeptide comprises an amino acid sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79. [0007] In a further aspect, the disclosure relates to a Cas fusion protein. The Cas fusion protein may include two heterologous polypeptide domains, wherein the first polypeptide domain comprises a Cas protein, and wherein the second polypeptide domain comprises an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, and CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. In some embodiments, the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. In some embodiments, the effector is capable of increasing or decreasing expression of a gene. In some embodiments, the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. In some embodiments, the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. In some embodiments, the second polypeptide domain has transcription repression activity, transcription activation activity, de-ubiquitinase activity, p300 recruitment activity, enhancer looping mediation activity, or a combination thereof. [0008] In some embodiments, the MCRS1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 57 or any fragment thereof, and/or the MCRS1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 57, or any fragment thereof, and/or the MCRS1 comprises the amino acid sequence of SEQ ID NO: 57, and/or the MCRS1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 58, or any fragment thereof, and/or the MCRS1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 58, or any fragment thereof, and/or the MCRS1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 58. In some embodiments, the OTUD7B comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or the OTUD7B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or the OTUD7B comprises the amino acid sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, and/or the OTUD7B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 60, or any fragment thereof, and/or the OTUD7B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 60, or any fragment thereof, and/or the OTUD7B is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 60. In some embodiments, the RelB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 65, or any fragment thereof, and/or the RelB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 65, or any fragment thereof, and/or the RelB comprises the amino acid sequence of SEQ ID NO: 65, and/or the RelB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 66 or any fragment thereof, and/or the RelB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 66, or any fragment thereof, and/or the RelB is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 66. In some embodiments, the LDB1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 61, or any fragment thereof, and/or the LDB1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 61, or any fragment thereof, and/or the LDB1 comprises the amino acid sequence of SEQ ID NO: 61, and/or the LDB1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 62, or any fragment thereof, and/or the LDB1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 62, or any fragment thereof, and/or the LDB1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 62. In some embodiments, the NFKBIB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 63, or any fragment thereof, and/or the NFKBIB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 63, or any fragment thereof, and/or the NFKBIB comprises the amino acid sequence of SEQ ID NO: 63, and/or the NFKBIB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 64, or any fragment thereof, and/or the NFKBIB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 64, or any fragment thereof, and/or the NFKBIB is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 64. In some embodiments, the CITED2 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 67, or any fragment thereof, and/or the CITED2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 67, or any fragment thereof, and/or the CITED2 comprises the amino acid sequence of SEQ ID NO: 67, and/or the CITED2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 68, or any fragment thereof, and/or the CITED2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 68, or any fragment thereof, and/or the CITED2 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 68. In some embodiments, the PHF15 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 133, or any fragment thereof, and/or the PHF15 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 133, or any fragment thereof, and/or the PHF15 comprises the amino acid sequence of SEQ ID NO: 133, and/or the PHF15 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 134, or any fragment thereof, and/or the PHF15 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 134, or any fragment thereof, and/or the PHF15 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 134. In some embodiments, the SS18L1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 149, or any fragment thereof, and/or the SS18L1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 149, or any fragment thereof, and/or the SS18L1 comprises the amino acid sequence of SEQ ID NO: 149, and/or the SS18L1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 150, or any fragment thereof, and/or the SS18L1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 150, or any fragment thereof, and/or the SS18L1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 150. In some embodiments, the MLLT6 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 127, or any fragment thereof, and/or the MLLT6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 127, or any fragment thereof, and/or the MLLT6 comprises the amino acid sequence of SEQ ID NO: 127, and/or the MLLT6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 128, or any fragment thereof, and/or the MLLT6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 128, or any fragment thereof, and/or the MLLT6 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 128. In some embodiments, the ASH2L comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 103, or any fragment thereof, and/or the ASH2L comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 103, or any fragment thereof, and/or the ASH2L comprises the amino acid sequence of SEQ ID NO: 103, and/or the ASH2L is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 104, or any fragment thereof, and/or the ASH2L is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 104, or any fragment thereof, and/or the ASH2L is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 104. In some embodiments, the GSK3A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 117, or any fragment thereof, and/or the GSK3A comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 117, or any fragment thereof, and/or the GSK3A comprises the amino acid sequence of SEQ ID NO: 117, and/or the GSK3A is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 118, or any fragment thereof, and/or the GSK3A is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 118, or any fragment thereof, and/or the GSK3A is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 118. In some embodiments, the effector is selected from BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, JAZF1, KAT7, KEAP1, MEAF6, MORF4L2, NFYC, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, and wherein the effector comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, , and/or wherein the effector is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176. In some embodiments, the Cas protein comprises at least one amino acid mutation that knocks out nuclease activity of the Cas protein. In some embodiments, the at least one amino acid mutation is at least one of D10A and H840A. In some embodiments, the Cas protein comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 26- 29, or any fragment thereof, or the Cas protein comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 26-29, or any fragment thereof, or the Cas protein comprises the amino acid sequence of one of SEQ ID NOs: 26-29. In some embodiments, the Cas protein is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 30- 31, or any fragment thereof, or the Cas protein is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 30-31, or any fragment thereof, or the Cas protein is encoded by a polynucleotide comprising the sequence of one of SEQ ID NOs: 30-31. [0009] Another aspect of the disclosure provides a DNA targeting composition. The DNA targeting composition may include a Cas effector as detailed herein or a Cas fusion protein as detailed herein; and at least one guide RNA (gRNA) that targets the Cas protein to a target region of a target gene. In some embodiments, the gRNA targets the Cas protein to target region selected from a non-open chromatin region, an open chromatin region, a transcribed region of the target gene, a region upstream of a transcription start site of the target gene, a regulatory element of the target gene, an intron of the target gene, or an exon of the target gene. In some embodiments, the gRNA targets the Cas protein to a promoter of the target gene. In some embodiments, the target region is located between about 1 to about 1000 base pairs upstream of a transcription start site of the target gene. In some embodiments, the at least one gRNA comprises a sequence selected from SEQ ID NOs: 96- 98 and 101-102, or the at least one gRNA is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 93-95 and 99-100, or the at least one gRNA targets and binds a polynucleotide comprising a sequence selected from SEQ ID NOs: 93-95 and 99-100 or a complement thereof, or a combination thereof. In some embodiments, the DNA targeting composition comprises two or more gRNAs, each gRNA binding to a different target region. [00010] Another aspect of the disclosure provides an isolated polynucleotide sequence encoding a Cas effector as detailed herein or a Cas fusion protein as detailed herein, or a DNA targeting composition as detailed herein. [00011] Another aspect of the disclosure provides a vector comprising an isolated polynucleotide sequence as detailed herein. In some embodiments, the vector is an adeno- associated virus (AAV) vector. [00012] Another aspect of the disclosure provides a cell comprising a Cas effector as detailed herein or a Cas fusion protein as detailed herein, or a DNA targeting composition as detailed herein, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a combination thereof. [00013] Another aspect of the disclosure provides a pharmaceutical composition. The pharmaceutical composition may include a Cas effector as detailed herein or a Cas fusion protein as detailed herein, or a DNA targeting composition as detailed herein, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a combination thereof. [00014] Another aspect of the disclosure provides a method of modulating expression of a gene in a cell or in a subject. The method may include administering to the cell or the subject a DNA targeting composition as detailed herein, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a pharmaceutical composition as detailed herein, or a combination thereof. The method may include administering to the cell or the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. In some embodiments, the effector is targeted to the gene. In some embodiments, the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. In some embodiments, the effector is capable of increasing or decreasing expression of the gene. In some embodiments, the effector reduces expression of the gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. In some embodiments, the effector increases expression of the gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. In some embodiments, the expression of the gene is increased relative to a control. In some embodiments, the expression of the gene is decreased relative to a control. In some embodiments, the gene comprises the dystrophin gene, the CD25 gene, the B2M gene, or the TRAC gene. In some embodiments, the cell is a muscle cell or a T cell. [00015] Another aspect of the disclosure provides a method of treating a disease in a subject. The method may include administering to the subject a DNA targeting composition as detailed herein, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a cell as detailed herein, or a pharmaceutical composition as detailed herein, or a combination thereof. The method may include administering to the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. In some embodiments, the effector is targeted to a gene. In some embodiments, the method treats a disease selected from Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and cancer. [00016] The disclosure provides for other aspects and embodiments that will be apparent in light of the following detailed description and accompanying figures. BRIEF DESCRIPTION OF THE DRAWINGS [00017] FIG.1 is a graph showing the results from the individual testing of top repressor effectors from B2M screen. The graph displays the percent of cells in the low B2M bin, with higher numbers suggesting more potent repression. A non-targeting guide was also included as a control for non-specific repression. MCRS1 and OTUD7B both showed repression that was both greater than the steric effects of dCas9 alone and largely dependent on dCas9 targeting, rather than a non-specific effect. [00018] Shown in FIG.2A is the level of CD25 activation after delivery of each effector domain recruited by dCas9 in Jurkat cells. A non-targeting guide (gray bars) showed no effect on CD25, suggesting that each effector was specifically activating CD25 upon recruitment by dCas9. Shown in FIG.2B is a zoomed-in view of data in FIG.2A to show the specific activation by LDB1 and NFKBIB. [00019] FIGS.3A-3B are graphs showing the results for each effector in a screen for the ability to modulate expression of TetO with a GFP reporter. Log2(fold change) and Log10(Adjusted P Value) for each effector in the screen are plotted. Shown in FIG.3A are results with a gRNA targeting TetO, and shown in FIG.3B are results with a non-targeting gRNA. Effectors with Log2(fold change) > 1.1 and Adjusted P Value < 0.01 were considered to be hits and are shown in filled black circles, while non-hits are shown in open gray circles. This threshold gave 41 hits in the targeting condition and only 1 hit in the non-targeting condition. [00020] FIG.4 shows GFP reporter expression in the TetO-GFP reporter screen in 293T cells for a subset of effectors, including PHF15, SS18L1, MLLT6, ASH2L, and GSK3A. 293T cells containing a GFP reporter were transduced with Lentivirus encoding a subset of effectors found to be hits in the high-throughput screen along with a targeting (black) or non- targeting (gray) sgRNA. The fold activation of GFP (shown above each pair of bars) was found to be greater than 1 for all effectors tested, while the dCas9 alone control showed the opposite trend, supporting the idea that even the small effects seen for some effectors are likely meaningful. All hit effectors tested did modulate GFP to some degree. [00021] FIG.5 is a graph showing activation of TetO with a GFP reporter in 293T cells by CITED2 and LDB1. 293T cells previously transduced with a TetO-GFP reporter were transfected with the indicated effector. Both LDB1 and CITED2 robustly activated GFP expression, demonstrating that activation by these effectors is not limited to CD25. [00022] FIG.6 is a graph showing activation of CD25 expression with either wild-type LDB1 or LDB1 with a deletion in its dimerization domain. Jurkat cells expressing dCas9- GCN4 and a CD25-targeting gRNA or non-targeting gRNA were transduced with the indicated effector-scFv fusion, and CD25 expression was analyzed by flow cytometry 10 days later. Only the intact LDB1 effector was able to activate CD25 expression. DETAILED DESCRIPTION [00023] Disclosed herein is a set of novel effectors that may activate or repress gene expression when recruited to the gene, for example, via a Cas protein such as dCas9. As detailed herein, the human genome was screened for potential proteins that impact gene expression. The proteins may be referred to as effectors or effector domains. Several novel effectors were discovered, including MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, GSK3A, MLLT6, PHF15, SS18L1, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, JAZF1, KAT7, KEAP1, MEAF6, MORF4L2, NFYC, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81. These effectors may be used in combination with a Cas protein, for example, to target a region of a gene or other DNA sequence. The effector and a Cas protein may form a fusion protein. In other embodiments, the effector is used in combination with an antibody, a peptide epitope is fused to a Cas protein, and binding of the antibody to the peptide epitope brings the effector proximal to the Cas protein. The effector and Cas protein may be used to modulate expression of a gene. The effector and Cas protein may also be used to treat various diseases. 1. Definitions [00024] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present invention. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. The materials, methods, and examples disclosed herein are illustrative only and not intended to be limiting. [00025] The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that do not preclude the possibility of additional acts or structures. The singular forms “a,” “and,” and “the” include plural references unless the context clearly dictates otherwise. The present disclosure also contemplates other embodiments “comprising,” “consisting of,” and “consisting essentially of,” the embodiments or elements presented herein, whether explicitly set forth or not. [00026] For the recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the number 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, and 7.0 are explicitly contemplated. [00027] The term “about” or “approximately” as used herein as applied to one or more values of interest, refers to a value that is similar to a stated reference value, or within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, such as the limitations of the measurement system. In certain aspects, the term “about” refers to a range of values that fall within 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value). Alternatively, “about” can mean within 3 or more than 3 standard deviations, per the practice in the art. Alternatively, such as with respect to biological systems or processes, the term “about” can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2- fold, of a value. [00028] “Adeno-associated virus” or “AAV” as used interchangeably herein refers to a small virus belonging to the genus Dependovirus of the Parvoviridae family that infects humans and some other primate species. AAV is not currently known to cause disease and consequently the virus causes a very mild immune response. [00029] “Allogeneic” refers to any material derived from another subject of the same species. Allogeneic cells are genetically distinct and immunologically incompatible yet belong to the same species. Typically, “allogeneic” is used to define cells, such as stem cells, that are transplanted from a donor to a recipient of the same species. [00030] “Amino acid” as used herein refers to naturally occurring and non-natural synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code. Amino acids can be referred to herein by either their commonly known three-letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Amino acids include the side chain and polypeptide backbone portions. [00031] “Autologous" refers to any material derived from a subject and re-introduced to the same subject. [00032] “Binding region” as used herein refers to the region within a target region that is recognized and bound by the CRISPR/Cas-based gene editing system. [00033] The terms “cancer”, “cancer cell”, “tumor”, and “tumor cell” are used interchangeably herein and refer generally to a group of diseases characterized by uncontrolled, abnormal growth of cells (e.g., a neoplasia). In some forms of cancer, the cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body (“metastatic cancer”). “Cancer” refers to all types of cancer or neoplasm or malignant tumors found in animals, including carcinoma, adenoma, melanoma, sarcoma, lymphoma, leukemia, blastoma, glioma, astrocytoma, mesothelioma, or a germ cell tumor. Cancer may include cancer of, for example, the colon, rectum, stomach, bladder, cervix, uterus, skin, epithelium, muscle, kidney, liver, lymph, bone, blood, ovary, prostate, lung, brain, head and neck, and/or breast. Cancer may include medullablastoma, non-small cell lung cancer, and/or mesothelioma. In embodiments detailed herein, the cancer includes leukemia. The term “leukemia” refers to broadly progressive, malignant diseases of the hematopoietic organs/systems and is generally characterized by a distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemia diseases include, for example, acute nonlymphocytic leukemia, chronic lymphocytic leukemia, acute granulocytic leukemia, chronic granulocytic leukemia, acute promyelocytic leukemia, adult T-cell leukemia, aleukemic leukemia, a leukocythemic leukemia, basophilic leukemia, blast cell leukemia, bovine leukemia, chronic myelocytic leukemia, leukemia cutis, embryonal leukemia, eosinophilic leukemia, Gross' leukemia, Rieder cell leukemia, Schilling's leukemia, stem cell leukemia, subleukemic leukemia, undifferentiated cell leukemia, hairy-cell leukemia, hemoblastic leukemia, hemocytoblastic leukemia, histiocytic leukemia, stem cell leukemia, acute monocytic leukemia, leukopenic leukemia, lymphatic leukemia, lymphoblastic leukemia, lymphocytic leukemia, lymphogenous leukemia, lymphoid leukemia, lymphosarcoma cell leukemia, mast cell leukemia, megakaryocytic leukemia, micromyeloblastic leukemia, monocytic leukemia, myeloblastic leukemia, myelocytic leukemia, myeloid leukemia, myeloid granulocytic leukemia, myelomonocytic leukemia, Naegeli leukemia, plasma cell leukemia, plasmacytic leukemia, and promyelocytic leukemia. In some embodiments, the leukemia is chronic myeloid leukemia (CML). In some embodiments, the leukemia is acute myeloid leukemia (AML). [00034] “Clustered Regularly Interspaced Short Palindromic Repeats” and “CRISPRs”, as used interchangeably herein, refers to loci containing multiple short direct repeats that are found in the genomes of approximately 40% of sequenced bacteria and 90% of sequenced archaea. [00035] “Coding sequence” or “encoding nucleic acid” as used herein means the nucleic acids (RNA or DNA molecule) that comprise a nucleotide sequence which encodes a protein. The coding sequence can further include initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in the cells of an individual or mammal to which the nucleic acid is administered. The regulatory elements may include, for example, a promoter, an enhancer, an initiation codon, a stop codon, or a polyadenylation signal. The coding sequence may be codon optimized. [00036] “Complement” or “complementary” as used herein means a nucleic acid can mean Watson-Crick (e.g., A-T/U and C-G) or Hoogsteen base pairing between nucleotides or nucleotide analogs of nucleic acid molecules. “Complementarity” refers to a property shared between two nucleic acid sequences, such that when they are aligned antiparallel to each other, the nucleotide bases at each position will be complementary. [00037] The terms “control,” “reference level,” and “reference” are used herein interchangeably. The reference level may be a predetermined value or range, which is employed as a benchmark against which to assess the measured result. “Control group” as used herein refers to a group of control subjects. The predetermined level may be a cutoff value from a control group. The predetermined level may be an average from a control group. Cutoff values (or predetermined cutoff values) may be determined by Adaptive Index Model (AIM) methodology. Cutoff values (or predetermined cutoff values) may be determined by a receiver operating curve (ROC) analysis from biological samples of the patient group. ROC analysis, as generally known in the biological arts, is a determination of the ability of a test to discriminate one condition from another, e.g., to determine the performance of each marker in identifying a patient having CRC. A description of ROC analysis is provided in P.J. Heagerty et al. (Biometrics 2000, 56, 337-44), the disclosure of which is hereby incorporated by reference in its entirety. Alternatively, cutoff values may be determined by a quartile analysis of biological samples of a patient group. For example, a cutoff value may be determined by selecting a value that corresponds to any value in the 25th-75th percentile range, preferably a value that corresponds to the 25th percentile, the 50th percentile or the 75th percentile, and more preferably the 75th percentile. Such statistical analyses may be performed using any method known in the art and can be implemented through any number of commercially available software packages (e.g., from Analyse-it Software Ltd., Leeds, UK; StataCorp LP, College Station, TX; SAS Institute Inc., Cary, NC.). The healthy or normal levels or ranges for a target or for a protein activity may be defined in accordance with standard practice. A control may be a subject or cell without a composition as detailed herein. A control may be a subject, or a sample therefrom, whose disease state is known. The subject, or sample therefrom, may be healthy, diseased, diseased prior to treatment, diseased during treatment, or diseased after treatment, or a combination thereof. [00038] “Correcting”, “gene editing,” and “restoring” as used herein refers to changing a mutant gene that encodes a dysfunctional protein or truncated protein or no protein at all, such that a full-length functional or partially full-length functional protein expression is obtained. Correcting or restoring a mutant gene may include replacing the region of the gene that has the mutation or replacing the entire mutant gene with a copy of the gene that does not have the mutation with a repair mechanism such as homology-directed repair (HDR). Correcting or restoring a mutant gene may also include repairing a frameshift mutation that causes a premature stop codon, an aberrant splice acceptor site or an aberrant splice donor site, by generating a double stranded break in the gene that is then repaired using non-homologous end joining (NHEJ). NHEJ may add or delete at least one base pair during repair which may restore the proper reading frame and eliminate the premature stop codon. Correcting or restoring a mutant gene may also include disrupting an aberrant splice acceptor site or splice donor sequence. Correcting or restoring a mutant gene may also include deleting a non-essential gene segment by the simultaneous action of two nucleases on the same DNA strand in order to restore the proper reading frame by removing the DNA between the two nuclease target sites and repairing the DNA break by NHEJ. [00039] “Donor DNA”, “donor template,” and “repair template” as used interchangeably herein refers to a double-stranded DNA fragment or molecule that includes at least a portion of the gene of interest. The donor DNA may encode a full-functional protein or a partially functional protein. [00040] “Duchenne Muscular Dystrophy” or “DMD” as used interchangeably herein refers to a recessive, fatal, X-linked disorder that results in muscle degeneration and eventual death. DMD is a common hereditary monogenic disease and occurs in 1 in 3500 males. DMD is the result of inherited or spontaneous mutations that cause nonsense or frame shift mutations in the dystrophin gene. The majority of dystrophin mutations that cause DMD are deletions of exons that disrupt the reading frame and cause premature translation termination in the dystrophin gene. DMD patients typically lose the ability to physically support themselves during childhood, become progressively weaker during the teenage years, and die in their twenties. [00041] “Dystrophin” as used herein refers to a rod-shaped cytoplasmic protein which is a part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. Dystrophin provides structural stability to the dystroglycan complex of the cell membrane that is responsible for regulating muscle cell integrity and function. The dystrophin gene or “DMD gene” as used interchangeably herein is 2.2 megabases at locus Xp21. The primary transcription measures about 2,400 kb with the mature mRNA being about 14 kb. 79 exons code for the protein which is over 3500 amino acids. [00042] “Enhancer” as used herein refers to non-coding DNA sequences containing multiple activator and repressor binding sites. Enhancers range from 200 bp to 1 kb in length and may be either proximal, 5’ upstream to the promoter or within the first intron of the regulated gene, or distal, in introns of neighboring genes or intergenic regions far away from the locus. Through DNA looping, active enhancers contact the promoter dependently of the core DNA binding motif promoter specificity. 4 to 5 enhancers may interact with a promoter. Similarly, enhancers may regulate more than one gene without linkage restriction and may “skip” neighboring genes to regulate more distant ones. Transcriptional regulation may involve elements located in a chromosome different to one where the promoter resides. Proximal enhancers or promoters of neighboring genes may serve as platforms to recruit more distal elements. [00043] “Frameshift” or “frameshift mutation” as used interchangeably herein refers to a type of gene mutation wherein the addition or deletion of one or more nucleotides causes a shift in the reading frame of the codons in the mRNA. The shift in reading frame may lead to the alteration in the amino acid sequence at protein translation, such as a missense mutation or a premature stop codon. [00044] “Functional” and “full-functional” as used herein describes protein that has biological activity. A “functional gene” refers to a gene transcribed to mRNA, which is translated to a functional protein. [00045] “Fusion protein” as used herein refers to a chimeric protein created through the joining of two or more genes that originally coded for separate proteins. The translation of the fusion gene results in a single polypeptide with functional properties derived from each of the original proteins. [00046] “Genetic construct" as used herein refers to the DNA or RNA molecules that comprise a polynucleotide that encodes a protein. The coding sequence includes initiation and termination signals operably linked to regulatory elements including a promoter and polyadenylation signal capable of directing expression in the cells of the individual to whom the nucleic acid molecule is administered. As used herein, the term “expressible form” refers to gene constructs that contain the necessary regulatory elements operable linked to a coding sequence that encodes a protein such that when present in the cell of the individual, the coding sequence will be expressed. The regulatory elements may include, for example, a promoter, an enhancer, an initiation codon, a stop codon, or a polyadenylation signal. [00047] “Genome editing” or “gene editing” as used herein refers to changing the DNA sequence of a gene. Genome editing may include correcting or restoring a mutant gene or adding additional mutations. Genome editing may include knocking out a gene, such as a mutant gene or a normal gene. Genome editing may be used to treat disease or, for example, enhance muscle repair, by changing the gene of interest. In some embodiments, the compositions and methods detailed herein are for use in somatic cells and not germ line cells. [00048] The term “heterologous” as used herein refers to nucleic acid comprising two or more subsequences that are not found in the same relationship to each other in nature. For instance, a nucleic acid that is recombinantly produced typically has two or more sequences from unrelated genes synthetically arranged to make a new functional nucleic acid, for example, a promoter from one source and a coding region from another source. The two nucleic acids are thus heterologous to each other in this context. When added to a cell, the recombinant nucleic acids would also be heterologous to the endogenous genes of the cell. Thus, in a chromosome, a heterologous nucleic acid would include a non-native (non- naturally occurring) nucleic acid that has integrated into the chromosome, or a non-native (non-naturally occurring) extract! romosomal nucleic acid. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (for example, a “fusion protein,” where the two subsequences are encoded by a single nucleic acid sequence).

[00049] “Homology-directed repair” or “HDR” as used interchangeably herein refers to a mechanism in cells to repair double strand DNA lesions when a homologous piece of DNA is present in the nucleus, mostly in G2 and S phase of the cell cycle. HDR uses a donor DNA template to guide repair and may be used to create specific sequence changes to the genome, including the targeted addition of whole genes. If a donor template is provided along with the CRISPR/Cas9-based gene editing system, then the cellular machinery will repair the break by homologous recombination, which is enhanced several orders of magnitude in the presence of DNA cleavage. When the homologous DNA piece is absent, non-homologous end joining may take place instead.

[00050] “Identical” or “identity” as a percentage as used herein in the context of two or more polynucleotide or polypeptide sequences means that the sequences have a specified percentage of residues that are the same over a specified region. The percentage may be calculated by optimally aligning the two sequences, comparing the two sequences over the specified region, determining the number of positions at which the identical residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the specified region, and multiplying the result by 100 to yield the percentage of sequence identity. In cases where the two sequences are of different lengths or the alignment produces one or more staggered ends and the specified region of comparison includes only a single sequence, the residues of single sequence are included in the denominator but not the numerator of the calculation. When comparing DNA and RNA, thymine (T) and uracil (U) may be considered equivalent. Identity may be performed manually or by using a computer sequence algorithm such as BLAST or BLAST 2.0. [00051] “Mutant gene” or “mutated gene” as used interchangeably herein refers to a gene that has undergone a detectable mutation. A mutant gene has undergone a change, such as the loss, gain, or exchange of genetic material, which affects the normal transmission and expression of the gene. A “disrupted gene” as used herein refers to a mutant gene that has a mutation that causes a premature stop codon. The disrupted gene product is truncated relative to a full-length undisrupted gene product. [00052] “Non-homologous end joining (NHEJ) pathway” as used herein refers to a pathway that repairs double-strand breaks in DNA by directly ligating the break ends without the need for a homologous template. The template-independent re-ligation of DNA ends by NHEJ is a stochastic, error-prone repair process that introduces random micro-insertions and micro-deletions (indels) at the DNA breakpoint. This method may be used to intentionally disrupt, delete, or alter the reading frame of targeted gene sequences. NHEJ typically uses short homologous DNA sequences called microhomologies to guide repair. These microhomologies are often present in single-stranded overhangs on the end of double-strand breaks. When the overhangs are perfectly compatible, NHEJ usually repairs the break accurately, yet imprecise repair leading to loss of nucleotides may also occur, but is much more common when the overhangs are not compatible. “Nuclease mediated NHEJ” as used herein refers to NHEJ that is initiated after a nuclease cuts double stranded DNA. [00053] “Normal gene” as used herein refers to a gene that has not undergone a change, such as a loss, gain, or exchange of genetic material. The normal gene undergoes normal gene transmission and gene expression. For example, a normal gene may be a wild-type gene. [00054] “Nucleic acid” or “oligonucleotide” or “polynucleotide” as used herein means at least two nucleotides covalently linked together. The depiction of a single strand also defines the sequence of the complementary strand. Thus, a polynucleotide also encompasses the complementary strand of a depicted single strand. Many variants of a polynucleotide may be used for the same purpose as a given polynucleotide. Thus, a polynucleotide also encompasses substantially identical polynucleotides and complements thereof. A single strand provides a probe that may hybridize to a target sequence under stringent hybridization conditions. Thus, a polynucleotide also encompasses a probe that hybridizes under stringent hybridization conditions. Polynucleotides may be single stranded or double stranded or may contain portions of both double stranded and single stranded sequence. The polynucleotide can be nucleic acid, natural or synthetic, DNA, genomic DNA, cDNA, RNA, mRNA, or a hybrid, where the polynucleotide can contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases including, for example, uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, and isoguanine. Polynucleotides can be obtained by chemical synthesis methods or by recombinant methods. [00055] “Open reading frame” refers to a stretch of codons that begins with a start codon and ends at a stop codon. In eukaryotic genes with multiple exons, introns are removed, and exons are then joined together after transcription to yield the final mRNA for protein translation. An open reading frame may be a continuous stretch of codons. In some embodiments, the open reading frame only applies to spliced mRNAs, not genomic DNA, for expression of a protein. [00056] “Operably linked” as used herein means that expression of a gene is under the control of a promoter with which it is spatially connected. A promoter may be positioned 5' (upstream) or 3' (downstream) of a gene under its control. The distance between the promoter and a gene may be approximately the same as the distance between that promoter and the gene it controls in the gene from which the promoter is derived. As is known in the art, variation in this distance may be accommodated without loss of promoter function. Nucleic acid or amino acid sequences are “operably linked” (or “operatively linked”) when placed into a functional relationship with one another. For instance, a promoter or enhancer is operably linked to a coding sequence if it regulates, or contributes to the modulation of, the transcription of the coding sequence. Operably linked DNA sequences are typically contiguous, and operably linked amino acid sequences are typically contiguous and in the same reading frame. However, since enhancers generally function when separated from the promoter by up to several kilobases or more and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not contiguous. Similarly, certain amino acid sequences that are non-contiguous in a primary polypeptide sequence may nonetheless be operably linked due to, for example folding of a polypeptide chain. With respect to fusion polypeptides, the terms “operatively linked” and “operably linked” can refer to the fact that each of the components performs the same function in linkage to the other component as it would if it were not so linked. [00057] “Partially-functional” as used herein describes a protein that is encoded by a mutant gene and has less biological activity than a functional protein but more than a non- functional protein. [00058] A “peptide” or “polypeptide” is a linked sequence of two or more amino acids linked by peptide bonds. The polypeptide can be natural, synthetic, or a modification or combination of natural and synthetic. Peptides and polypeptides include proteins such as binding proteins, receptors, and antibodies. The terms “polypeptide”, “protein,” and “peptide” are used interchangeably herein. “Primary structure” refers to the amino acid sequence of a particular peptide. “Secondary structure” refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains, for example, enzymatic domains, extracellular domains, transmembrane domains, pore domains, and cytoplasmic tail domains. “Domains” are portions of a polypeptide that form a compact unit of the polypeptide and are typically 15 to 350 amino acids long. Exemplary domains include domains with enzymatic activity or ligand binding activity. Typical domains are made up of sections of lesser organization such as stretches of beta-sheet and alpha- helices. “Tertiary structure” refers to the complete three-dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three-dimensional structure formed by the noncovalent association of independent tertiary units. A “motif” is a portion of a polypeptide sequence and includes at least two amino acids. A motif may be 2 to 20, 2 to 15, or 2 to 10 amino acids in length. In some embodiments, a motif includes 3, 4, 5, 6, or 7 sequential amino acids. A domain may be comprised of a series of the same type of motif. [00059] “Premature stop codon” or “out-of-frame stop codon” as used interchangeably herein refers to nonsense mutation in a sequence of DNA, which results in a stop codon at location not normally found in the wild-type gene. A premature stop codon may cause a protein to be truncated or shorter compared to the full-length version of the protein. [00060] “Promoter” as used herein means a synthetic or naturally derived molecule which is capable of conferring, activating or enhancing expression of a nucleic acid in a cell. A promoter may comprise one or more specific transcriptional regulatory sequences to further enhance expression and/or to alter the spatial expression and/or temporal expression of same. A promoter may also comprise distal enhancer or repressor elements, which may be located as much as several thousand base pairs from the start site of transcription. A promoter may be derived from sources including viral, bacterial, fungal, plants, insects, and animals. A promoter may regulate the expression of a gene component constitutively, or differentially with respect to cell, the tissue or organ in which expression occurs or, with respect to the developmental stage at which expression occurs, or in response to external stimuli such as physiological stresses, pathogens, metal ions, or inducing agents. Representative examples of promoters include the bacteriophage T7 promoter, bacteriophage T3 promoter, SP6 promoter, lac operator-promoter, tac promoter, SV40 late promoter, SV40 early promoter, RSV-LTR promoter, CMV IE promoter, SV40 early promoter or SV40 late promoter, human U6 (hU6) promoter, and CMV IE promoter. Promoters that target muscle-specific stem cells may include the CK8 promoter, the Spc5-12 promoter, and the MHCK7 promoter. [00061] The term “recombinant” when used with reference to, for example, a cell, nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein, or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (naturally occurring) form of the cell or express a second copy of a native gene that is otherwise normally or abnormally expressed, under expressed, or not expressed at all. [00062] “Sample” or “test sample” as used herein can mean any sample in which the presence and/or level of a target is to be detected or determined or any sample comprising a DNA targeting or gene editing system or component thereof as detailed herein. Samples may include liquids, solutions, emulsions, or suspensions. Samples may include a medical sample. Samples may include any biological fluid or tissue, such as blood, whole blood, fractions of blood such as plasma and serum, muscle, interstitial fluid, sweat, saliva, urine, tears, synovial fluid, bone marrow, cerebrospinal fluid, nasal secretions, sputum, amniotic fluid, bronchoalveolar lavage fluid, gastric lavage, emesis, fecal matter, lung tissue, peripheral blood mononuclear cells, total white blood cells, lymph node cells, spleen cells, tonsil cells, cancer cells, tumor cells, bile, digestive fluid, skin, or combinations thereof. In some embodiments, the sample comprises an aliquot. In other embodiments, the sample comprises a biological fluid. Samples can be obtained by any means known in the art. The sample can be used directly as obtained from a patient or can be pre-treated, such as by filtration, distillation, extraction, concentration, centrifugation, inactivation of interfering components, addition of reagents, and the like, to modify the character of the sample in some manner as discussed herein or otherwise as is known in the art. [00063] “Subject” and “patient” as used herein interchangeably refers to any vertebrate, including, but not limited to, a mammal that wants or is in need of the herein described compositions or methods. The subject may be a human or a non-human. The subject may be a vertebrate. The subject may be a mammal. The mammal may be a primate or a non- primate. The mammal can be a non-primate such as, for example, cow, pig, camel, llama, hedgehog, anteater, platypus, elephant, alpaca, horse, goat, rabbit, sheep, hamster, guinea pig, cat, dog, rat, and mouse. The mammal can be a primate such as a human. The mammal can be a non-human primate such as, for example, monkey, cynomolgous monkey, rhesus monkey, chimpanzee, gorilla, orangutan, and gibbon. The subject may be of any age or stage of development, such as, for example, an adult, an adolescent, a child, such as age 0-2, 2-4, 2-6, or 6-12 years, or an infant, such as age 0-1 years. The subject may be male. The subject may be female. In some embodiments, the subject has a specific genetic marker. The subject may be undergoing other forms of treatment. [00064] “Substantially identical” can mean that a first and second amino acid or polynucleotide sequence are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical over a region of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 amino acids or nucleotides, respectively. [00065] “Target gene” as used herein refers to any nucleotide sequence encoding a known or putative gene product. The target gene may be a mutated gene involved in a genetic disease. The target gene may encode a known or putative gene product that is intended to be corrected or for which its expression is intended to be modulated. [00066] “Target region” as used herein refers to the region of the target gene to which the CRISPR/Cas9-based gene editing or targeting system is designed to bind. [00067] “Transgene” as used herein refers to a gene or genetic material containing a gene sequence that has been isolated from one organism and is introduced into a different organism. This non-native segment of DNA may retain the ability to produce RNA or protein in the transgenic organism, or it may alter the normal function of the transgenic organism's genetic code. The introduction of a transgene has the potential to change the phenotype of an organism. [00068] “Transcriptional regulatory elements” or “regulatory elements” refers to a genetic element which can control the expression of nucleic acid sequences, such as activate, enhancer, or decrease expression, or alter the spatial and/or temporal expression of a nucleic acid sequence. Examples of regulatory elements include, for example, promoters, enhancers, splicing signals, polyadenylation signals, and termination signals. A regulatory element can be “endogenous,” “exogenous,” or “heterologous” with respect to the gene to which it is operably linked. An “endogenous” regulatory element is one which is naturally linked with a given gene in the genome. An “exogenous” or “heterologous” regulatory element is one which is not normally linked with a given gene but is placed in operable linkage with a gene by genetic manipulation. [00069] “Treatment” or “treating” or “therapy” when referring to protection of a subject from a disease, means suppressing, repressing, reversing, alleviating, ameliorating, or inhibiting the progress of disease, or completely eliminating a disease. A treatment may be either performed in an acute or chronic way. The term also refers to reducing the severity of a disease or symptoms associated with such disease prior to affliction with the disease. Treatment may result in a reduction in the incidence, frequency, severity, and/or duration of symptoms of the disease. Preventing the disease involves administering a composition of the present invention to a subject prior to onset of the disease. Suppressing the disease involves administering a composition of the present invention to a subject after induction of the disease but before its clinical appearance. Repressing or ameliorating the disease involves administering a composition of the present invention to a subject after clinical appearance of the disease. [00070] As used herein, the term “gene therapy” refers to a method of treating a patient wherein polypeptides or nucleic acid sequences are transferred into cells of a patient such that activity and/or the expression of a particular gene is modulated. In certain embodiments, the expression of the gene is suppressed. In certain embodiments, the expression of the gene is enhanced. In certain embodiments, the temporal or spatial pattern of the expression of the gene is modulated. [00071] “Variant” used herein with respect to a polynucleotide means (i) a portion or fragment of a referenced nucleotide sequence; (ii) the complement of a referenced nucleotide sequence or portion thereof; (iii) a nucleic acid that is substantially identical to a referenced nucleic acid or the complement thereof; or (iv) a nucleic acid that hybridizes under stringent conditions to the referenced nucleic acid, complement thereof, or a sequence substantially identical thereto. A variant can be a polynucleotide sequence that is substantially identical over the full length of the full polynucleotide sequence or a fragment thereof. The polynucleotide sequence can be 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or less than 100% identical over the full length of the polynucleotide sequence or a fragment thereof. [00072] “Variant” with respect to a peptide or polypeptide that differs in amino acid sequence by the insertion, deletion, or conservative substitution of amino acids, but retain at least one biological activity. Variant may also mean a protein with an amino acid sequence that is substantially identical to a referenced protein with an amino acid sequence that retains at least one biological activity. Representative examples of “biological activity” include the ability to be bound by a specific antibody or polypeptide or to promote an immune response. Variant can mean a functional fragment thereof. Variant can also mean multiple copies of a polypeptide. The multiple copies can be in tandem or separated by a linker. A conservative substitution of an amino acid, for example, replacing an amino acid with a different amino acid of similar properties (for example, hydrophilicity, degree and distribution of charged regions) is recognized in the art as typically involving a minor change. These minor changes may be identified, in part, by considering the hydropathic index of amino acids, as understood in the art (Kyte et al., J. Mol. Biol.1982, 157, 105-132). The hydropathic index of an amino acid is based on a consideration of its hydrophobicity and charge. It is known in the art that amino acids of similar hydropathic indexes may be substituted and still retain protein function. In one aspect, amino acids having hydropathic indexes of ±2 are substituted. The hydrophilicity of amino acids may also be used to reveal substitutions that would result in proteins retaining biological function. A consideration of the hydrophilicity of amino acids in the context of a peptide permits calculation of the greatest local average hydrophilicity of that peptide. Substitutions may be performed with amino acids having hydrophilicity values within ±2 of each other. Both the hydrophobicity index and the hydrophilicity value of amino acids are influenced by the particular side chain of that amino acid. Consistent with that observation, amino acid substitutions that are compatible with biological function are understood to depend on the relative similarity of the amino acids, and particularly the side chains of those amino acids, as revealed by the hydrophobicity, hydrophilicity, charge, size, and other properties. A variant can be an amino acid sequence that is substantially identical over the full length of the amino acid sequence or fragment thereof. The amino acid sequence can be 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, or less than 100% identical over the full length of the amino acid sequence or a fragment thereof. [00073] “Vector” as used herein means a nucleic acid sequence containing an origin of replication. A vector may be capable of directing the delivery or transfer of a polynucleotide sequence to target cells, where it can be replicated or expressed. A vector may contain an origin of replication, one or more regulatory elements, and/or one or more coding sequences. A vector may be a viral vector, bacteriophage, bacterial artificial chromosome, plasmid, cosmid, or yeast artificial chromosome. A vector may be a DNA or RNA vector. A vector may be a self-replicating extrachromosomal vector. Viral vectors include, but are not limited to, adenovirus vector, adeno-associated virus (AAV) vector, retrovirus vector, or lentivirus vector. A vector may be an adeno-associated virus (AAV) vector. The vector may encode, for example, a Cas9 protein or fusion protein and at least one gRNA molecule. [00074] Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. For example, any nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics, and protein and nucleic acid chemistry and hybridization described herein are those that are well known and commonly used in the art. The meaning and scope of the terms should be clear; in the event however of any latent ambiguity, definitions provided herein take precedent over any dictionary or extrinsic definition. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. 2. DNA Targeting Systems [00075] Provided herein are DNA Targeting Systems that may be used, for example, to modulate gene expression. A “DNA Targeting System” as used herein is a system capable of specifically targeting a particular region of DNA and modulating gene expression by binding to that region. Non-limiting examples of these systems are CRISPR-Cas-based systems, zinc finger (ZF)-based systems, and/or transcription activator-like effector (TALE)- based systems. The DNA Targeting System may be a nuclease system that acts through mutating or editing the target region (such as by insertion, deletion or substitution) or it may be a system that delivers a functional second polypeptide domain, such as an activator or repressor, to the target region. [00076] Each of these systems comprises a DNA-binding portion or domain, such as a guide RNA, a ZF, or a TALE, that specifically recognizes and binds to a particular target region of a target DNA. The DNA-binding portion (for example, Cas protein, ZF, or TALE) can be linked to a second protein domain, such as a polypeptide with transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, nuclease activity, nucleic acid association activity, methylase activity, demethylase activity, acetylation activity, or deacetylation activity, to form a fusion protein. In other embodiments, the DNA-binding portion is linked with a second protein domain using an antibody and peptide epitope, such as the Suntag recruitment system (Tanenbaum et al., Cell 2014, 159, 635–646, incorporated herein by reference in its entirety). Exemplary second polypeptide domains are detailed further below (see “Cas Fusion Protein”). For example, the DNA-binding portion can be linked to an activator and thus guide the activator to a specific target region of the target DNA. Similarly, the DNA-binding portion can be linked to a repressor and thus guide the repressor to a specific target region of the target DNA. [00077] In some embodiments, the DNA-binding portion comprises a Cas protein, such as a Cas9 protein. Some CRISPR-Cas-based systems can operate to activate or repress expression using the Cas protein alone, not linked to an activator or repressor. For example, a nuclease-null Cas9 can act as a repressor on its own, or a nuclease-active Cas9 can act as an activator when paired with an inactive (dead) guide RNA. In addition, RNA or DNA that hybridizes to a particular target region of the target DNA can be directly linked (covalently or non-covalently) to an activator or repressor. Some CRISPR-Cas-based systems can operate to activate or repress expression using the Cas protein linked to a second protein domain, such as, for example, an activator or repressor. Some embodiments include a Cas protein linked to a second polypeptide domain such as an effector (see “Cas Fusion Protein”). [00078] In other embodiments, a first polypeptide comprising a DNA-binding portion further comprises at least one peptide epitope, and a second polypeptide comprises an activator or repressor and an antibody to the peptide epitope. For example, some embodiments include a first polypeptide comprising a Cas protein and at least one peptide epitope, and a second polypeptide comprising the effector domain and an antibody to the peptide epitope (see “Cas Effector”). 3. CRISPR/Cas-based Gene Editing System [00079] Provided herein are CRISPR/Cas9-based gene editing systems. The CRISPR/Cas-based gene editing system may be used to modulate expression of a gene and/or treat a disease. The CRISPR/Cas-based gene editing system may include a Cas protein or a fusion protein, and at least one gRNA, and may also be referred to as a “CRISPR-Cas system.” Other embodiments include a first polypeptide comprising a Cas protein and at least one peptide epitope, at least one gRNA, and a second polypeptide comprising the effector domain and an antibody to the peptide epitope. [00080] “Clustered Regularly Interspaced Short Palindromic Repeats” and “CRISPRs”, as used interchangeably herein, refers to loci containing multiple short direct repeats that are found in the genomes of approximately 40% of sequenced bacteria and 90% of sequenced archaea. The CRISPR system is a microbial nuclease system involved in defense against invading phages and plasmids that provides a form of acquired immunity. The CRISPR loci in microbial hosts contain a combination of CRISPR-associated (Cas) genes as well as non- coding RNA elements capable of programming the specificity of the CRISPR-mediated nucleic acid cleavage. Short segments of foreign DNA, called spacers, are incorporated into the genome between CRISPR repeats, and serve as a “memory” of past exposures. Cas proteins include, for example, Cas12a, Cas9, and Cascade proteins. Cas12a may also be referred to as “Cpf1.” Cas12a causes a staggered cut in double stranded DNA, while Cas9 produces a blunt cut. In some embodiments, the Cas protein comprises Cas12a. In some embodiments, the Cas protein comprises Cas9. Cas9 forms a complex with the 3’ end of the sgRNA (which may be referred interchangeably herein as “gRNA”), and the protein-RNA pair recognizes its genomic target by complementary base pairing between the 5’ end of the gRNA sequence and a predefined 20 bp DNA sequence, known as the protospacer. This complex is directed to homologous loci of pathogen DNA via regions encoded within the crRNA, i.e., the protospacers, and protospacer-adjacent motifs (PAMs) within the pathogen genome. The non-coding CRISPR array is transcribed and cleaved within direct repeats into short crRNAs containing individual spacer sequences, which direct Cas nucleases to the target site (protospacer). By simply exchanging the 20 bp recognition sequence of the expressed gRNA, the Cas9 nuclease can be directed to new genomic targets. CRISPR spacers are used to recognize and silence exogenous genetic elements in a manner analogous to RNAi in eukaryotic organisms. [00081] Three classes of CRISPR systems (Types I, II, and III effector systems) are known. The Type II effector system carries out targeted DNA double-strand break in four sequential steps, using a single effector enzyme, Cas9, to cleave dsDNA. Compared to the Type I and Type III effector systems, which require multiple distinct effectors acting as a complex, the Type II effector system may function in alternative contexts such as eukaryotic cells. The Type II effector system consists of a long pre-crRNA, which is transcribed from the spacer-containing CRISPR locus, the Cas9 protein, and a tracrRNA, which is involved in pre-crRNA processing. The tracrRNAs hybridize to the repeat regions separating the spacers of the pre-crRNA, thus initiating dsRNA cleavage by endogenous RNase III. This cleavage is followed by a second cleavage event within each spacer by Cas9, producing mature crRNAs that remain associated with the tracrRNA and Cas9, forming a Cas9:crRNA- tracrRNA complex. Cas12a systems include crRNA for successful targeting, whereas Cas9 systems include both crRNA and tracrRNA. [00082] The Cas9:crRNA-tracrRNA complex unwinds the DNA duplex and searches for sequences matching the crRNA to cleave. Target recognition occurs upon detection of complementarity between a “protospacer” sequence in the target DNA and the remaining spacer sequence in the crRNA. Cas9 mediates cleavage of target DNA if a correct protospacer-adjacent motif (PAM) is also present at the 3’ end of the protospacer. For protospacer targeting, the sequence must be immediately followed by the protospacer- adjacent motif (PAM), a short sequence recognized by the Cas9 nuclease that is required for DNA cleavage. Different Cas and Cas Type II systems have differing PAM requirements. For example, Cas12a may function with PAM sequences rich in thymine “T.” [00083] An engineered form of the Type II effector system of S. pyogenes was shown to function in human cells for genome engineering. In this system, the Cas9 protein was directed to genomic target sites by a synthetically reconstituted “guide RNA” (“gRNA”, also used interchangeably herein as a chimeric single guide RNA (“sgRNA”)), which is a crRNA- tracrRNA fusion that obviates the need for RNase III and crRNA processing in general. Provided herein are CRISPR/Cas9-based engineered systems for use in gene editing and treating genetic diseases. The CRISPR/Cas9-based engineered systems can be designed to target any gene, including genes involved in, for example, a genetic disease, aging, tissue regeneration, or wound healing. The CRISPR/Cas9-based gene editing system can include a Cas9 protein or a Cas9 fusion protein. [00084] In some embodiments, the Cas protein and/or the Cas fusion protein and/or Cas effector and/or gRNAs and/or Effector domains detailed herein may be used in compositions and methods for modulating expression of a gene. The Cas protein and/or the Cas fusion protein and/or Cas effector and/or Effector domains detailed herein may be targeted to the gene. The Cas protein and/or the Cas fusion protein and/or Cas effector and/or Effector domains detailed herein may be targeted to a regulatory element of the gene. Modulating may include, for example, increasing or enhancing expression of the gene, or reducing or inhibiting expression of the gene. The expression of the gene may be modulated by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be modulated by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be modulated by about 5-95%, 10- 90%, 15-85%, 20-80%, or 1.5-fold to 10-fold, relative to a control. The expression of the gene may be reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5- fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be reduced by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6- fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be reduced by about 5-95%, 10-90%, 15-85%, 20-80%, or 1.5-fold to 10-fold, relative to a control. The expression of the gene may be increased by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be increased by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5- fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be increased by about 5-95%, 10-90%, 15-85%, 20-80%, or 1.5-fold to 10-fold, relative to a control. a. Cas9 Protein [00085] Cas9 protein is an endonuclease that cleaves nucleic acid and is encoded by the CRISPR loci and is involved in the Type II CRISPR system. The Cas9 protein can be from any bacterial or archaea species, including, but not limited to, Streptococcus pyogenes, Staphylococcus aureus (S. aureus), Acidovorax avenae, Actinobacillus pleuropneumoniae, Actinobacillus succinogenes, Actinobacillus suis, Actinomyces sp., cycliphilus denitrificans, Aminomonas paucivorans, Bacillus cereus, Bacillus smithii, Bacillus thuringiensis, Bacteroides sp., Blastopirellula marina, Bradyrhizobium sp., Brevibacillus laterosporus, Campylobacter coli, Campylobacter jejuni, Campylobacter lari, Candidatus Puniceispirillum, Clostridium cellulolyticum, Clostridium perfringens, Corynebacterium accolens, Corynebacterium diphtheria, Corynebacterium matruchotii, Dinoroseobacter shibae, Eubacterium dolichum, gamma proteobacterium, Gluconacetobacter diazotrophicus, Haemophilus parainfluenzae, Haemophilus sputorum, Helicobacter canadensis, Helicobacter cinaedi, Helicobacter mustelae, Ilyobacter polytropus, Kingella kingae, Lactobacillus crispatus, Listeria ivanovii, Listeria monocytogenes, Listeriaceae bacterium, Methylocystis sp., Methylosinus trichosporium, Mobiluncus mulieris, Neisseria bacilliformis, Neisseria cinerea, Neisseria flavescens, Neisseria lactamica, Neisseria sp., Neisseria wadsworthii, Nitrosomonas sp., Parvibaculum lavamentivorans, Pasteurella multocida, Phascolarctobacterium succinatutens, Ralstonia syzygii, Rhodopseudomonas palustris, Rhodovulum sp., Simonsiella muelleri, Sphingomonas sp., Sporolactobacillus vineae, Staphylococcus lugdunensis, Streptococcus sp., Subdoligranulum sp., Tistrella mobilis, Treponema sp., or Verminephrobacter eiseniae. In certain embodiments, the Cas9 molecule is a Streptococcus pyogenes Cas9 molecule (also referred herein as “SpCas9”). SpCas9 may comprise an amino acid sequence of SEQ ID NO: 26. In certain embodiments, the Cas9 molecule is a Staphylococcus aureus Cas9 molecule (also referred herein as “SaCas9”). SaCas9 may comprise an amino acid sequence of SEQ ID NO: 27. [00086] A Cas9 molecule or a Cas9 fusion protein can interact with one or more gRNA molecule(s) and, in concert with the gRNA molecule(s), can localize to a site which comprises a target domain, and in certain embodiments, a PAM sequence. The Cas9 protein forms a complex with the 3’ end of a gRNA. The ability of a Cas9 molecule or a Cas9 fusion protein to recognize a PAM sequence can be determined, for example, by using a transformation assay as known in the art. [00087] The specificity of the CRISPR-based system may depend on two factors: the target sequence and the protospacer-adjacent motif (PAM). The target sequence is located on the 5’ end of the gRNA and is designed to bond with base pairs on the host DNA at the correct DNA sequence known as the protospacer. By simply exchanging the recognition sequence of the gRNA, the Cas9 protein can be directed to new genomic targets. The PAM sequence is located on the DNA to be altered and is recognized by a Cas9 protein. PAM recognition sequences of the Cas9 protein can be species specific. [00088] In certain embodiments, the ability of a Cas9 molecule or a Cas9 fusion protein to interact with and cleave a target nucleic acid is PAM sequence dependent. A PAM sequence is a sequence in the target nucleic acid. In certain embodiments, cleavage of the target nucleic acid occurs upstream from the PAM sequence. Cas9 molecules from different bacterial species can recognize different sequence motifs (for example, PAM sequences). A Cas9 molecule of S. pyogenes may recognize the PAM sequence of NRG (5’-NRG-3’, where R is any nucleotide residue, and in some embodiments, R is either A or G, SEQ ID NO: 1). In certain embodiments, a Cas9 molecule of S. pyogenes may naturally prefer and recognize the sequence motif NGG (SEQ ID NO: 2) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from that sequence. In some embodiments, a Cas9 molecule of S. pyogenes accepts other PAM sequences, such as NAG (SEQ ID NO: 3) in engineered systems (Hsu et al., Nature Biotechnology 2013 doi:10.1038/nbt.2647). In certain embodiments, a Cas9 molecule of S. thermophilus recognizes the sequence motif NGGNG (SEQ ID NO: 4) and/or NNAGAAW (W = A or T) (SEQ ID NO: 5) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from these sequences. In certain embodiments, a Cas9 molecule of S. mutans recognizes the sequence motif NGG (SEQ ID NO: 2) and/or NAAR (R = A or G) (SEQ ID NO: 6) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5 bp, upstream from this sequence. In certain embodiments, a Cas9 molecule of S. aureus recognizes the sequence motif NNGRR (R = A or G) (SEQ ID NO: 7) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from that sequence. In certain embodiments, a Cas9 molecule of S. aureus recognizes the sequence motif NNGRRN (R = A or G) (SEQ ID NO: 8) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from that sequence. In certain embodiments, a Cas9 molecule of S. aureus recognizes the sequence motif NNGRRT (R = A or G) (SEQ ID NO: 9) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from that sequence. In certain embodiments, a Cas9 molecule of S. aureus recognizes the sequence motif NNGRRV (R = A or G; V = A or C or G) (SEQ ID NO: 10) and directs cleavage of a target nucleic acid sequence 1 to 10, for example, 3 to 5, bp upstream from that sequence. A Cas9 molecule derived from Neisseria meningitidis (NmCas9) normally has a native PAM of NNNNGATT (SEQ ID NO: 11), but may have activity across a variety of PAMs, including a highly degenerate NNNNGNNN PAM (SEQ ID NO: 12) (Esvelt et al. Nature Methods 2013 doi:10.1038/nmeth.2681). In the aforementioned embodiments, N can be any nucleotide residue, for example, any of A, G, C, or T. Cas9 molecules can be engineered to alter the PAM specificity of the Cas9 molecule. [00089] In some embodiments, the Cas9 protein recognizes a PAM sequence NGG (SEQ ID NO: 2) or NGA (SEQ ID NO: 13) or NNNRRT (R = A or G) (SEQ ID NO: 14) or ATTCCT (SEQ ID NO: 15) or NGAN (SEQ ID NO: 16) or NGNG (SEQ ID NO: 17). In some embodiments, the Cas9 protein is a Cas9 protein of S. aureus and recognizes the sequence motif NNGRR (R = A or G) (SEQ ID NO: 7), NNGRRN (R = A or G) (SEQ ID NO: 8), NNGRRT (R = A or G) (SEQ ID NO: 9), or NNGRRV (R = A or G; V = A or C or G) (SEQ ID NO: 10). In the aforementioned embodiments, N can be any nucleotide residue, for example, any of A, G, C, or T. [00090] Additionally or alternatively, a nucleic acid encoding a Cas9 molecule or Cas9 polypeptide may comprise a nuclear localization sequence (NLS). Nuclear localization sequences are known in the art, for example, SV40 NLS (Pro-Lys-Lys-Lys-Arg-Lys-Val; SEQ ID NO: 20). [00091] In some embodiments, the at least one Cas9 molecule is a mutant Cas9 molecule. The Cas9 protein can be mutated so that the nuclease activity is inactivated. An inactivated Cas9 protein (“iCas9”, also referred to as “dCas9”) with no endonuclease activity has been targeted to genes in bacteria, yeast, and human cells by gRNAs to silence gene expression through steric hindrance. Exemplary mutations with reference to the S. pyogenes Cas9 sequence to inactivate the nuclease activity include: D10A, E762A, H840A, N854A, N863A and/or D986A. A S. pyogenes Cas9 protein with the D10A mutation may comprise an amino acid sequence of SEQ ID NO: 28. A S. pyogenes Cas9 protein with D10A and H840A mutations may comprise an amino acid sequence of SEQ ID NO: 29. Exemplary mutations with reference to the S. aureus Cas9 sequence to inactivate the nuclease activity include D10A and N580A. In certain embodiments, the mutant S. aureus Cas9 molecule comprises a D10A mutation. The nucleotide sequence encoding this mutant S. aureus Cas9 is set forth in SEQ ID NO: 30. In certain embodiments, the mutant S. aureus Cas9 molecule comprises a N580A mutation. The nucleotide sequence encoding this mutant S. aureus Cas9 molecule is set forth in SEQ ID NO: 31. [00092] In some embodiments, the Cas9 protein is a VQR variant. The VQR variant of Cas9 is a mutant with a different PAM recognition, as detailed in Kleinstiver, et al. (Nature 2015, 523, 481–485, incorporated herein by reference). [00093] A polynucleotide encoding a Cas9 molecule can be a synthetic polynucleotide. For example, the synthetic polynucleotide can be chemically modified. The synthetic polynucleotide can be codon optimized, for example, at least one non-common codon or less-common codon has been replaced by a common codon. For example, the synthetic polynucleotide can direct the synthesis of an optimized messenger mRNA, for example, optimized for expression in a mammalian expression system, as described herein. An exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. pyogenes is set forth in SEQ ID NO: 32. Exemplary codon optimized nucleic acid sequences encoding a Cas9 molecule of S. aureus, and optionally containing nuclear localization sequences (NLSs), are set forth in SEQ ID NOs: 33-39. Another exemplary codon optimized nucleic acid sequence encoding a Cas9 molecule of S. aureus comprises the nucleotides 1293-4451 of SEQ ID NO: 40. b. Cas Fusion Protein [00094] Alternatively or additionally, the CRISPR/Cas-based gene editing system can include a fusion protein. The fusion protein can comprise two heterologous polypeptide domains. The first polypeptide domain comprises a Cas protein or a mutated Cas protein. The first polypeptide domain is fused to at least one second polypeptide domain. The second polypeptide domain may comprise or also be referred to as an effector, or effector domain. The second polypeptide domain has a different activity that what is endogenous to Cas protein. For example, the second polypeptide domain may have an activity such as transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, nuclease activity, nucleic acid association activity, histone methylase activity, DNA methylase activity, histone demethylase activity, DNA demethylase activity, acetylation activity, and/or deacetylation activity. The activity of the second polypeptide domain may be direct or indirect. The second polypeptide domain may have this activity itself (direct), or it may recruit and/or interact with a polypeptide domain that has this activity (indirect). In some embodiments, the second polypeptide domain has transcription activation activity. In some embodiments, the second polypeptide domain has transcription repression activity. In some embodiments, the second polypeptide domain comprises a synthetic transcription factor. The second polypeptide domain may be at the C- terminal end of the first polypeptide domain, or at the N-terminal end of the first polypeptide domain, or a combination thereof. The fusion protein may include one second polypeptide domain. In some embodiments, the fusion protein comprises more than one second polypeptide domain. The fusion protein may include two of the second polypeptide domains. For example, the fusion protein may include a second polypeptide domain at the N-terminal end of the first polypeptide domain as well as a second polypeptide domain at the C-terminal end of the first polypeptide domain. In other embodiments, the fusion protein may include a single first polypeptide domain and more than one (for example, two or three) second polypeptide domains in tandem. [00095] The linkage from the first polypeptide domain to the second polypeptide domain can be through reversible or irreversible covalent linkage or through a non-covalent linkage, as long as the linker does not interfere with the function of the second polypeptide domain. For example, a Cas polypeptide can be linked to a second polypeptide domain as part of a fusion protein. As another example, they can be linked through reversible non-covalent interactions such as avidin (or streptavidin)-biotin interaction, histidine-divalent metal ion interaction (such as, Ni, Co, Cu, Fe), interactions between multimerization (such as, dimerization) domains, or glutathione S-transferase (GST)-glutathione interaction. As yet another example, they can be linked covalently but reversibly with linkers such as dibromomaleimide (DBM) or amino-thiol conjugation. [00096] In some embodiments, the fusion protein includes at least one linker. A linker may be included anywhere in the polypeptide sequence of the fusion protein, for example, between the first and second polypeptide domains. A linker may be of any length and design to promote or restrict the mobility of components in the fusion protein. A linker may comprise any amino acid sequence of about 2 to about 100, about 5 to about 80, about 10 to about 60, or about 20 to about 50 amino acids. A linker may comprise an amino acid sequence of at least about 2, 3, 4, 5, 10, 15, 20, 25, or 30 amino acids. A linker may comprise an amino acid sequence of less than about 100, 90, 80, 70, 60, 50, or 40 amino acids. A linker may include sequential or tandem repeats of an amino acid sequence that is 2 to 20 amino acids in length. Linkers may include, for example, a GS linker (Gly-Gly-Gly- Gly-Ser) n , wherein n is an integer between 0 and 10 (SEQ ID NO: 21). In a GS linker, n can be adjusted to optimize the linker length and achieve appropriate separation of the functional domains. Other examples of linkers may include, for example, Gly-Gly-Gly-Gly-Gly (SEQ ID NO: 22), Gly-Gly-Ala-Gly-Gly (SEQ ID NO: 23), Gly/Ser rich linkers such as Gly-Gly-Gly-Gly- Ser-Ser-Ser (SEQ ID NO: 24) or GSGSG (SEQ ID NO: 91) or GSGSGGSGSGSGGSGSGGSGSG (SEQ ID NO: 92), or Gly/Ala rich linkers such as Gly- Gly-Gly-Gly-Ala-Ala-Ala (SEQ ID NO: 25). c. Cas Effector [00097] Alternatively or additionally, the CRISPR/Cas-based gene editing system can include a Cas effector. The Cas effector can include a first polypeptide comprising a Cas protein and at least one peptide epitope, and a second polypeptide comprising an effector and an antibody to the peptide epitope. Such systems are described in, for example, in Tanenbaum et al. (Cell 2014, 159, 635–646, incorporated herein by reference in its entirety) with reference to, for example, the Suntag recruitment system. For the Cas effector, the first polypeptide and the second polypeptide may be two separate polypeptides or chains. [00098] The first polypeptide of the Cas effector may comprise about 2 to about 50 peptide epitopes, about 2 to about 40 peptide epitopes, about 2 to about 30 peptide epitopes, or about 3 to about 25 peptide epitopes. The first polypeptide may comprise about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 peptide epitopes. In some embodiments, the first polypeptide comprises about 5 peptide epitopes. In some embodiments, the first polypeptide comprises about 24 peptide epitopes. The first polypeptide may comprise at least one peptide epitope at the N-terminus and/or at the C-terminus of the Cas protein. [00099] The peptide epitope may comprise any amino acid sequence that the antibody binds. The antibody may bind specifically to the peptide epitope. The peptide epitope may comprise an amino acid sequence that is not found in humans. In some embodiments, the peptide epitope comprises GCN4. GCN4 may comprise a peptide having an amino acid sequence of SEQ ID NO: 85 and may be encoded by a polynucleotide comprising SEQ ID NO: 86. The first polypeptide may comprise at least one linker N-terminal or C-terminal to the peptide epitope. The first polypeptide may comprise more than one copy of the peptide epitope and at least one linker in between adjacent copies of the peptide epitope. The linker may be, for example, selected from SEQ ID NOs: 21-24 and 91-92, as detailed above. [000100] In some embodiments, the first polypeptide comprises dCas9-5X-GCN4 (SEQ ID NO: 87). dCas9-5X-GCN4 may be encoded by a polynucleotide comprising SEQ ID NO: 88. In some embodiments, the first polypeptide comprises dCas9-24X-GCN4 (SEQ ID NO: 89). dCas9-24X-GCN4 may be encoded by a polynucleotide comprising SEQ ID NO: 90 or a variant thereof. The first polypeptide may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 87 or 89, or any fragment thereof. The first polypeptide may comprise an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 87 or 89, or any fragment thereof. The first polypeptide may comprise the amino acid sequence of SEQ ID NO: 87 or 89.

[000101] The second polypeptide of the Cas effector may comprise an effector (also referred to as an “effector domain”) and an antibody to the peptide epitope. The antibody may be any antibody that binds the peptide epitope. The antibody may specifically bind the peptide epitope. In some embodiments, the antibody comprises ScFv. ScFv may comprise the amino acid sequence of SEQ ID NO: 81 and may be encoded by a polynucleotide comprising SEQ ID NO: 82. The second polypeptide of the Cas effector may further comprise a reporter protein such as sfBFP. The sfBFP may comprise the amino acid sequence of SEQ ID NO: 83 and may be encoded by a polynucleotide comprising SEQ ID NO: 84. The reporter protein may be at the N-terminus and/or at the C-terminus of the effector. The reporter protein may be at the N-terminus and/or at the C-terminus of the antibody. The reporter protein may be in between the effector and the antibody in the polypeptide chain.

[000102] The effector has a different activity that what is endogenous to Cas protein. For example, the effector may have an activity such as transcription activation activity, transcription repression activity, transcription release factor activity, histone modification activity, nuclease activity, nucleic acid association activity, histone methylase activity, DNA methylase activity, histone demethylase activity, DNA demethylase activity, acetylation activity, and/or deacetylation activity. The activity of the effector may be direct or indirect. The effector may have this activity itself (direct), or it may recruit and/or interact with a polypeptide domain that has this activity (indirect). The effector may be at the C-terminal end of the antibody, or at the N-terminal end of the antibody, or a combination thereof. The second polypeptide of the Cas effector may include one or more than one effector. For example, the second polypeptide of the Cas effector may include an effector at the N- terminal end of the antibody as well as an effector at the C-terminal end of the antibody. In other embodiments, the second polypeptide of the Cas effector may include a single antibody and more than one (for example, two or three) effectors in tandem.

[000103] The linkage from the effector to the antibody, or from the Cas protein to the peptide epitope, can be through reversible or irreversible covalent linkage or through a non- covalent linkage, as long as the linker does not interfere with the function of the effector or antibody. For example, an antibody can be linked to an effector as part of a fusion protein. As another example, they can be linked through reversible non-covalent interactions such as avidin (or streptavidin)-biotin interaction, histidine-divalent metal ion interaction (such as, Ni, Co, Cu, Fe), interactions between multimerization (such as, dimerization) domains, or glutathione S-transferase (GST)-glutathione interaction. As yet another example, they can be linked covalently but reversibly with linkers such as dibromomaleimide (DBM) or amino- thiol conjugation. [000104] In some embodiments, the second polypeptide of the Cas effector includes at least one linker. A linker may be included anywhere in the polypeptide sequence, for example, between the antibody and the effector. In some embodiments, the first polypeptide of the Cas effector includes at least one linker. A linker may be included anywhere in the polypeptide sequence, for example, between the Cas protein and the peptide epitope. A linker may be of any length and design to promote or restrict the mobility of components in the protein. A linker may comprise any amino acid sequence of about 2 to about 100, about 5 to about 80, about 10 to about 60, or about 20 to about 50 amino acids. A linker may comprise an amino acid sequence of at least about 2, 3, 4, 5, 10, 15, 20, 25, or 30 amino acids. A linker may comprise an amino acid sequence of less than about 100, 90, 80, 70, 60, 50, or 40 amino acids. A linker may include sequential or tandem repeats of an amino acid sequence that is 2 to 20 amino acids in length. Linkers may comprise a sequence, for example, selected from SEQ ID NOs: 21-24 and 91-92, as detailed above. [000105] In some embodiments, the second polypeptide comprises ScFv-sfBFP-MCRS1 (amino acid sequence comprising SEQ ID NO: 69, polynucleotide sequence comprising SEQ ID NO: 70), or ScFv-sfBFP-OTUD7B (amino acid sequence comprising SEQ ID NO: 71, polynucleotide sequence comprising SEQ ID NO: 72), or ScFv-sfBFP-LDB1 (amino acid sequence comprising SEQ ID NO: 73, polynucleotide sequence comprising SEQ ID NO: 74), or ScFv-sfBFP-NFKBIB (amino acid sequence comprising SEQ ID NO: 75, polynucleotide sequence comprising SEQ ID NO: 76), or ScFv-sfBFP-RelB (amino acid sequence comprising SEQ ID NO: 77, polynucleotide sequence comprising SEQ ID NO: 78), or ScFv- sfBFP-CITED2 (amino acid sequence comprising SEQ ID NO: 79, polynucleotide sequence comprising SEQ ID NO: 80). The first polypeptide may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof. The first polypeptide may comprise an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof. The first polypeptide may comprise an amino acid sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79. d. Effector Domains [000106] Further provided herein are novel effector domains. An effector (or “effector domain”) may modulate expression of gene it is targeted to. An effector may increase, enhance, decrease, or reduce the expression of a gene. The expression of the gene may be modulated by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7- fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be modulated by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7- fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be modulated by about 5-95%, 10-90%, 15-85%, 20-80%, or 1.5-fold to 10-fold, relative to a control. The expression of the gene may be reduced by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5- fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be reduced by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be reduced by about 5-95%, 10-90%, 15-85%, 20-80%, or 1.5- fold to 10-fold, relative to a control. The expression of the gene may be increased by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be increased by less than about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 6-fold, 7-fold, 8-fold, 9-fold, or 10-fold, relative to a control. The expression of the gene may be increased by about 5-95%, 10- 90%, 15-85%, 20-80%, or 1.5-fold to 10-fold, relative to a control. [000107] As detailed above, a Cas fusion protein may comprise at least one effector as the second polypeptide. The second polypeptide of the Cas effector may comprise at least one effector. As also detailed above, at least one effector may be fused to at least one antibody for use in a Suntag recruitment system or a variation thereof. Effectors may include, for example, MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, or ZNF81, or a combination thereof. In some embodiments, the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A. In some embodiments, the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, and CITED2. In some embodiments, the second polypeptide domain or the effector has transcription repression activity, transcription activation activity, de-ubiquitinase activity, p300 recruitment activity, enhancer looping mediation activity, methylation activity, demethylation activity, acetylation activity, deacetylation activity, histone modification activity, histone acetylase activity, histone deacetylase activity, chromatin remodeling activity, chromatin looping modification activity, or a combination thereof. [000108] In some embodiments, the effector reduces expression of a gene. Effectors that reduce expression of a gene may include MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81. Effectors that reduce expression of a gene may be referred to as repressors. [000109] In some embodiments, the effector increases or enhances expression of a gene. Effectors that increase or enhance expression of a gene may include RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72. Effectors that increase or enhance expression of a gene may be referred to as activators. [000110] MCRS1 may comprise the amino acid sequence of SEQ ID NO: 57, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 58. In some embodiments, the MCRS1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 57, or any fragment thereof. In some embodiments, the MCRS1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 57, or any fragment thereof. In some embodiments, the MCRS1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 58, or any fragment thereof. In some embodiments, the MCRS1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 58, or any fragment thereof. [000111] OTUD7B may comprise the amino acid sequence of SEQ ID NO: 59, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 60. In some embodiments, the OTUD7B comprises all of SEQ ID NO: 60 (“full OTUD7B”). OTUD7B may also comprise a fragment of SEQ ID NO: 60, such as a fragment comprising amino acids 167-440 or SEQ ID NP: 60, or a fragment comprising amino acids 792-831 of SEQ ID NO: 59. In some embodiments, the OTUD7B may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 59, or any fragment thereof. In some embodiments, the OTUD7B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 59, or any fragment thereof. In some embodiments, the OTUD7B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 60 or any fragment thereof. In some embodiments, the OTUD7B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 60, or any fragment thereof. [000112] LDB1 may comprise the amino acid sequence of SEQ ID NO: 61, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 62. In some embodiments, the LDB1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 61, or any fragment thereof. In some embodiments, the LDB1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 61, or any fragment thereof. In some embodiments, the LDB1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 62 or any fragment thereof. In some embodiments, the LDB1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 62, or any fragment thereof. [000113] NFKBIB may comprise the amino acid sequence of SEQ ID NO: 63, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 64. In some embodiments, the NFKBIB may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 63, or any fragment thereof. In some embodiments, the NFKBIB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 63, or any fragment thereof. In some embodiments, the NFKBIB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 64 or any fragment thereof. In some embodiments, the NFKBIB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 64, or any fragment thereof. [000114] RelB may comprise the amino acid sequence of SEQ ID NO: 65, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 66. In some embodiments, the RelB may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 65, or any fragment thereof. In some embodiments, the RelB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 65, or any fragment thereof. In some embodiments, the RelB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 66 or any fragment thereof. In some embodiments, the RelB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 66, or any fragment thereof. [000115] CITED2 may comprise the amino acid sequence of SEQ ID NO: 67, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 68. In some embodiments, the CITED2 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 67, or any fragment thereof. In some embodiments, the CITED2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 67, or any fragment thereof. In some embodiments, the CITED2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 68 or any fragment thereof. In some embodiments, the CITED2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 68, or any fragment thereof. [000116] ASH2L may comprise the amino acid sequence of SEQ ID NO: 103, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 104. In some embodiments, the ASH2L may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 103, or any fragment thereof. In some embodiments, the ASH2L comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 103, or any fragment thereof. In some embodiments, the ASH2L is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 104, or any fragment thereof. In some embodiments, the ASH2L is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 104, or any fragment thereof. [000117] BCL7B may comprise the amino acid sequence of SEQ ID NO: 105, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 106. In some embodiments, the BCL7B may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 105, or any fragment thereof. In some embodiments, the BCL7B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 105, or any fragment thereof. In some embodiments, the BCL7B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 106, or any fragment thereof. In some embodiments, the BCL7B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 106, or any fragment thereof. [000118] C20orf20 may comprise the amino acid sequence of SEQ ID NO: 107, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 108. In some embodiments, the C20orf20 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 107, or any fragment thereof. In some embodiments, the C20orf20 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 107, or any fragment thereof. In some embodiments, the C20orf20 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 108, or any fragment thereof. In some embodiments, the C20orf20 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 108, or any fragment thereof. [000119] DMAP1 may comprise the amino acid sequence of SEQ ID NO: 109, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 110. In some embodiments, the DMAP1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 109, or any fragment thereof. In some embodiments, the DMAP1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 109, or any fragment thereof. In some embodiments, the DMAP1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 110, or any fragment thereof. In some embodiments, the DMAP1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 110, or any fragment thereof. [000120] DYRK1B may comprise the amino acid sequence of SEQ ID NO: 111, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 112. In some embodiments, the DYRK1B may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 111, or any fragment thereof. In some embodiments, the DYRK1B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 111, or any fragment thereof. In some embodiments, the DYRK1B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 112, or any fragment thereof. In some embodiments, the DYRK1B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 112, or any fragment thereof. [000121] EAF1 may comprise the amino acid sequence of SEQ ID NO: 113, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 114. In some embodiments, the EAF1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 113, or any fragment thereof. In some embodiments, the EAF1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 113, or any fragment thereof. In some embodiments, the EAF1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 114, or any fragment thereof. In some embodiments, the EAF1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 114, or any fragment thereof. [000122] FOXR2 may comprise the amino acid sequence of SEQ ID NO: 115, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 116. In some embodiments, the FOXR2 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 115, or any fragment thereof. In some embodiments, the FOXR2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 115, or any fragment thereof. In some embodiments, the FOXR2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 116, or any fragment thereof. In some embodiments, the FOXR2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 116, or any fragment thereof. [000123] GSK3A may comprise the amino acid sequence of SEQ ID NO: 117, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 118. In some embodiments, the GSK3A may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 117, or any fragment thereof. In some embodiments, the GSK3A comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 117, or any fragment thereof. In some embodiments, the GSK3A is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 118, or any fragment thereof. In some embodiments, the GSK3A is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 118, or any fragment thereof. [000124] JAZF1 may comprise the amino acid sequence of SEQ ID NO: 119, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 120. In some embodiments, the JAZF1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 119, or any fragment thereof. In some embodiments, the JAZF1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 119, or any fragment thereof. In some embodiments, the JAZF1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 120, or any fragment thereof. In some embodiments, the JAZF1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 120, or any fragment thereof. [000125] KAT7 may comprise the amino acid sequence of SEQ ID NO: 121, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 122. In some embodiments, the KAT7 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 121, or any fragment thereof. In some embodiments, the KAT7 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 121, or any fragment thereof. In some embodiments, the KAT7 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 122, or any fragment thereof. In some embodiments, the KAT7 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 122, or any fragment thereof. [000126] KEAP1 may comprise the amino acid sequence of SEQ ID NO: 123, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 124. In some embodiments, the KEAP1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 123, or any fragment thereof. In some embodiments, the KEAP1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 123, or any fragment thereof. In some embodiments, the KEAP1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 124, or any fragment thereof. In some embodiments, the KEAP1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 124, or any fragment thereof. [000127] MEAF6 may comprise the amino acid sequence of SEQ ID NO: 125, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 126. In some embodiments, the MEAF6 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 125, or any fragment thereof. In some embodiments, the MEAF6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 125, or any fragment thereof. In some embodiments, the MEAF6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 126, or any fragment thereof. In some embodiments, the MEAF6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 126, or any fragment thereof. [000128] MLLT6 may comprise the amino acid sequence of SEQ ID NO: 127, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 128. In some embodiments, the MLLT6 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 127, or any fragment thereof. In some embodiments, the MLLT6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 127, or any fragment thereof. In some embodiments, the MLLT6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 128, or any fragment thereof. In some embodiments, the MLLT6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 128, or any fragment thereof. [000129] MORF4L2 may comprise the amino acid sequence of SEQ ID NO: 129, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 130. In some embodiments, the MORF4L2 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 129, or any fragment thereof. In some embodiments, the MORF4L2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 129, or any fragment thereof. In some embodiments, the MORF4L2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 130, or any fragment thereof. In some embodiments, the MORF4L2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 130, or any fragment thereof. [000130] NFYC may comprise the amino acid sequence of SEQ ID NO: 131, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 132. In some embodiments, the NFYC X may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 131, or any fragment thereof. In some embodiments, the NFYC comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 131, or any fragment thereof. In some embodiments, the NFYC is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 132, or any fragment thereof. In some embodiments, the NFYC is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 132, or any fragment thereof. [000131] PHF15 may comprise the amino acid sequence of SEQ ID NO: 133, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 134. In some embodiments, the PHF15 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 133, or any fragment thereof. In some embodiments, the PHF15 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 133, or any fragment thereof. In some embodiments, the PHF15 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 134, or any fragment thereof. In some embodiments, the PHF15 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 134, or any fragment thereof. [000132] PKIB may comprise the amino acid sequence of SEQ ID NO: 135, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 136. In some embodiments, the PKIB may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 135, or any fragment thereof. In some embodiments, the PKIB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 135, or any fragment thereof. In some embodiments, the PKIB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 136, or any fragment thereof. In some embodiments, the PKIB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 136, or any fragment thereof. [000133] POLE4 may comprise the amino acid sequence of SEQ ID NO: 137, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 138. In some embodiments, the POLE4 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 137, or any fragment thereof. In some embodiments, the POLE4 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 137, or any fragment thereof. In some embodiments, the POLE4 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 138, or any fragment thereof. In some embodiments, the POLE4 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 138, or any fragment thereof. [000134] PRKRIR may comprise the amino acid sequence of SEQ ID NO: 139, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 140. In some embodiments, the PRKRIR may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 139, or any fragment thereof. In some embodiments, the PRKRIR comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 139, or any fragment thereof. In some embodiments, the PRKRIR is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 140, or any fragment thereof. In some embodiments, the PRKRIR is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 140, or any fragment thereof. [000135] PYGO2 may comprise the amino acid sequence of SEQ ID NO: 141, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 142. In some embodiments, the PYGO may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 141, or any fragment thereof. In some embodiments, the PYGO comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 141, or any fragment thereof. In some embodiments, the PYGO is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 142, or any fragment thereof. In some embodiments, the PYGO is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 142, or any fragment thereof. [000136] RANBP1 may comprise the amino acid sequence of SEQ ID NO: 143, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 144. In some embodiments, the RANBP may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 143, or any fragment thereof. In some embodiments, the RANBP comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 143, or any fragment thereof. In some embodiments, the RANBP is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 144, or any fragment thereof. In some embodiments, the RANBP is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 144, or any fragment thereof. [000137] RPRD1B may comprise the amino acid sequence of SEQ ID NO: 145, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 146. In some embodiments, the RPRD1B may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 145, or any fragment thereof. In some embodiments, the RPRD1B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 145, or any fragment thereof. In some embodiments, the RPRD1B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 146, or any fragment thereof. In some embodiments, the RPRD1B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 146, or any fragment thereof. [000138] SPIN1 may comprise the amino acid sequence of SEQ ID NO: 147, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 148. In some embodiments, the SPIN1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 147, or any fragment thereof. In some embodiments, the SPIN1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 147, or any fragment thereof. In some embodiments, the SPIN1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 148, or any fragment thereof. In some embodiments, the SPIN1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 148, or any fragment thereof. [000139] SS18L1 may comprise the amino acid sequence of SEQ ID NO: 149, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 150. In some embodiments, the SS18L1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 149, or any fragment thereof. In some embodiments, the SS18L1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 149, or any fragment thereof. In some embodiments, the SS18L1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 150, or any fragment thereof. In some embodiments, the SS18L1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 150, or any fragment thereof. [000140] TADA3 may comprise the amino acid sequence of SEQ ID NO: 151, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 152. In some embodiments, the TADA3 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 151, or any fragment thereof. In some embodiments, the TADA3 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 151, or any fragment thereof. In some embodiments, the TADA3 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 152, or any fragment thereof. In some embodiments, the TADA3 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 152, or any fragment thereof. [000141] TAF6 may comprise the amino acid sequence of SEQ ID NO: 153, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 154. In some embodiments, the TAF6 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 153, or any fragment thereof. In some embodiments, the TAF6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 153, or any fragment thereof. In some embodiments, the TAF6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 154 or any fragment thereof. In some embodiments, the TAF6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 154, or any fragment thereof. [000142] TBPL1 may comprise the amino acid sequence of SEQ ID NO: 155, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 156. In some embodiments, the TBPL1 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 155, or any fragment thereof. In some embodiments, the TBPL1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 155, or any fragment thereof. In some embodiments, the TBPL1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 156, or any fragment thereof. In some embodiments, the TBPL1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 156, or any fragment thereof. [000143] VPS72 may comprise the amino acid sequence of SEQ ID NO: 157, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 158. In some embodiments, the VPS7 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 157, or any fragment thereof. In some embodiments, the VPS7X comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 157, or any fragment thereof. In some embodiments, the VPS7 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 158, or any fragment thereof. In some embodiments, the VPS7 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 158, or any fragment thereof. [000144] ZNF133 may comprise the amino acid sequence of SEQ ID NO: 159, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 160. In some embodiments, the ZNF133 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 159, or any fragment thereof. In some embodiments, the ZNF133 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 159, or any fragment thereof. In some embodiments, the ZNF133 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 160, or any fragment thereof. In some embodiments, the ZNF133 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 160, or any fragment thereof. [000145] ZNF140 may comprise the amino acid sequence of SEQ ID NO: 161, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 162. In some embodiments, the ZNF140 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 161, or any fragment thereof. In some embodiments, the ZNF140 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 161, or any fragment thereof. In some embodiments, the ZNF140 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 162, or any fragment thereof. In some embodiments, the ZNF140 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 162, or any fragment thereof. [000146] ZNF169 may comprise the amino acid sequence of SEQ ID NO: 163, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 164. In some embodiments, the ZNF169 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 163, or any fragment thereof. In some embodiments, the ZNF169 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 163, or any fragment thereof. In some embodiments, the ZNF169 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 164, or any fragment thereof. In some embodiments, the ZNF169 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 164, or any fragment thereof. [000147] ZNF254 may comprise the amino acid sequence of SEQ ID NO: 165, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 166. In some embodiments, the ZNF254 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 165, or any fragment thereof. In some embodiments, the ZNF254 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 165, or any fragment thereof. In some embodiments, the ZNF254 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 166, or any fragment thereof. In some embodiments, the ZNF254 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 166, or any fragment thereof. [000148] ZNF566 may comprise the amino acid sequence of SEQ ID NO: 167, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 168. In some embodiments, the ZNF56 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 167 or any fragment thereof. In some embodiments, the ZNF56 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 167, or any fragment thereof. In some embodiments, the ZNF56X is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 168, or any fragment thereof. In some embodiments, the ZNF56 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 168, or any fragment thereof. [000149] ZNF585A may comprise the amino acid sequence of SEQ ID NO: 169, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 170. In some embodiments, the ZNF585A may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 169, or any fragment thereof. In some embodiments, the ZNF585A comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 169, or any fragment thereof. In some embodiments, the ZNF585A is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 170, or any fragment thereof. In some embodiments, the ZNF585A is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 170, or any fragment thereof. [000150] ZNF689 may comprise the amino acid sequence of SEQ ID NO: 171, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 172. In some embodiments, the ZNF689 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 171, or any fragment thereof. In some embodiments, the ZNF689 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 171, or any fragment thereof. In some embodiments, the ZNF689 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 172, or any fragment thereof. In some embodiments, the ZNF689 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 172, or any fragment thereof. [000151] ZNF765 may comprise the amino acid sequence of SEQ ID NO: 173, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 174. In some embodiments, the ZNF765 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 173, or any fragment thereof. In some embodiments, the ZNF765 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 173, or any fragment thereof. In some embodiments, the ZNF765 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 174, or any fragment thereof. In some embodiments, the ZNF765 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 174, or any fragment thereof. [000152] ZNF81 may comprise the amino acid sequence of SEQ ID NO: 175, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 176. In some embodiments, the ZNF81 may comprise an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 175, or any fragment thereof. In some embodiments, the ZNF81 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 175, or any fragment thereof. In some embodiments, the ZNF81 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 176, or any fragment thereof. In some embodiments, the ZNF81 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 176, or any fragment thereof. [000153] Other examples of effectors, or second polypeptide domains of the Cas fusion protein, are detailed below. i) Transcription Activation Activity [000154] The second polypeptide domain, or the effector, can have transcription activation activity, for example, a transactivation domain. For example, gene expression of endogenous mammalian genes, such as human genes, can be achieved by targeting a fusion protein of a first polypeptide domain, such as dCas9, and a transactivation domain to mammalian promoters via combinations of gRNAs. The transactivation domain can include a VP16 protein, multiple VP16 proteins, such as a VP48 domain or VP64 domain, p65 domain of NF kappa B transcription activator activity, TET1, VPR, VPH, Rta, and/or p300. For example, the fusion protein may comprise dCas9-p300. In some embodiments, p300 comprises a polypeptide having the amino acid sequence of SEQ ID NO: 41 or SEQ ID NO: 42. In other embodiments, the fusion protein comprises dCas9-VP64. In other embodiments, the fusion protein comprises VP64-dCas9-VP64. VP64-dCas9-VP64 may comprise a polypeptide having the amino acid sequence of SEQ ID NO: 43, encoded by the polynucleotide of SEQ ID NO: 44. VPH may comprise a polypeptide having the amino acid sequence of SEQ ID NO: 53, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 54. VPR may comprise a polypeptide having the amino acid sequence of SEQ ID NO: 55, encoded by a polynucleotide comprising the sequence of SEQ ID NO: 56. ii) Transcription Repression Activity [000155] The second polypeptide domain, or the effector, can have transcription repression activity. Non-limiting examples of repressors include Kruppel associated box activity such as a KRAB domain or KRAB, MECP2, EED, ERF repressor domain (ERD), Mad mSIN3 interaction domain (SID) or Mad-SID repressor domain, SID4X repressor domain, Mxil repressor domain, SUV39H1, SUV39H2, G9A, ESET/SETBD1, Cir4, Su(var)3- 9, Pr-SET7/8, SUV4-20H1, PR-set7, Suv4-20, Set9, EZH2, RIZ1, JMJD2A/JHDM3A, JMJD2B, JMJ2D2C/GASC1, JMJD2D, Rph1, JARID1A/RBP2, JARID1B/PLU-1, JARID1C/SMCX, JARID1D/SMCY, Lid, Jhn2, Jmj2, HDAC1, HDAC2, HDAC3, HDAC8, Rpd3, Hos1, Cir6, HDAC4, HDAC5, HDAC7, HDAC9, Hda1, Cir3, SIRT1, SIRT2, Sir2, Hst1, Hst2, Hst3, Hst4, HDAC11, DNMT1, DNMT3a/3b, DNMT3A-3L, MET1, DRM3, ZMET2, CMT1, CMT2, Laminin A, Laminin B, CTCF, and/or a domain having TATA box binding protein activity, or a combination thereof. In some embodiments, the second polypeptide domain, or the effector, has a KRAB domain activity, ERF repressor domain activity, Mxil repressor domain activity, SID4X repressor domain activity, Mad-SID repressor domain activity, DNMT3A or DNMT3L or fusion thereof activity, LSD1 histone demethylase activity, or TATA box binding protein activity. In some embodiments, the second polypeptide domain or the effector comprises KRAB. KRAB may comprise a polypeptide having the amino acid sequence of SEQ ID NO: 45, encoded by polynucleotide comprising the sequence of SEQ ID NO: 46. For example, the fusion protein may be S. pyogenes dCas9-KRAB (protein sequence comprising SEQ ID NO: 47; polynucleotide sequence comprising SEQ ID NO: 48). The fusion protein may be S. aureus dCas9-KRAB (protein sequence comprising SEQ ID NO: 49; polynucleotide sequence comprising SEQ ID NO: 50). iii) Transcription Release Factor Activity [000156] The second polypeptide domain, or the effector, can have transcription release factor activity. The second polypeptide domain, or the effector, can have eukaryotic release factor 1 (ERF1) activity or eukaryotic release factor 3 (ERF3) activity. iv) Histone Modification Activity [000157] The second polypeptide domain, or the effector, can have histone modification activity. The second polypeptide domain, or the effector, can have histone deacetylase, histone acetyltransferase, histone demethylase, or histone methyltransferase activity. The histone acetyltransferase may be p300 or CREB-binding protein (CBP) protein, or fragments thereof. For example, the fusion protein may be dCas9-p300. In some embodiments, p300 comprises a polypeptide of SEQ ID NO: 41 or SEQ ID NO: 42. v) Nuclease Activity [000158] The second polypeptide domain, or the effector, can have nuclease activity that is different from the nuclease activity of the Cas9 protein. A nuclease, or a protein having nuclease activity, is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide subunits of nucleic acids. Nucleases are usually further divided into endonucleases and exonucleases, although some of the enzymes may fall in both categories. Well known nucleases include deoxyribonuclease and ribonuclease. vi) Nucleic Acid Association Activity [000159] The second polypeptide domain, or the effector, can have nucleic acid association activity or nucleic acid binding protein-DNA-binding domain (DBD). A DBD is an independently folded protein domain that contains at least one motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a general affinity to DNA. A nucleic acid association region may be selected from helix-turn-helix region, leucine zipper region, winged helix region, winged helix-turn-helix region, helix-loop-helix region, immunoglobulin fold, B3 domain, Zinc finger, HMG-box, Wor3 domain, and TAL effector DNA-binding domain. vii) Methylase Activity [000160] The second polypeptide domain, or the effector, can have methylase activity, which involves transferring a methyl group to DNA, RNA, protein, small molecule, cytosine, or adenine. In some embodiments, the second polypeptide domain or the effector includes a DNA methyltransferase. viii) Demethylase Activity [000161] The second polypeptide domain, or the effector, can have demethylase activity. The second polypeptide domain or the effector can include an enzyme that removes methyl (CH3-) groups from nucleic acids, proteins (in particular histones), and other molecules. Alternatively, the second polypeptide or the effector can convert the methyl group to hydroxymethylcytosine in a mechanism for demethylating DNA. The second polypeptide or the effector can catalyze this reaction. For example, a second polypeptide that catalyzes this reaction can be Tet1, also known as Tet1CD (Ten-eleven translocation methylcytosine dioxygenase 1; amino acid sequence comprising SEQ ID NO: 51; polynucleotide sequence comprising SEQ ID NO: 52). In some embodiments, the second polypeptide domain or the effector has histone demethylase activity. In some embodiments, the second polypeptide domain or the effector has DNA demethylase activity. e. Guide RNA (gRNA) [000162] The CRISPR/Cas-based gene editing system may include at least one gRNA molecule. For example, the CRISPR/Cas-based gene editing system may include two gRNA molecules. The at least one gRNA molecule can bind and recognize a target region. The gRNA is the part of the CRISPR-Cas system that provides DNA targeting specificity to the CRISPR/Cas-based gene editing system. The gRNA is a fusion of two noncoding RNAs: a crRNA and a tracrRNA. gRNA mimics the naturally occurring crRNA:tracrRNA duplex involved in the Type II Effector system. This duplex, which may include, for example, a 42- nucleotide crRNA and a 75-nucleotide tracrRNA, acts as a guide for the Cas9 to bind, and in some cases, cleave the target nucleic acid. The gRNA may target any desired DNA sequence by exchanging the sequence encoding a 20 bp protospacer which confers targeting specificity through complementary base pairing with the desired DNA target. The “target region” or “target sequence” or “protospacer” refers to the region of the target gene to which the CRISPR/Cas9-based gene editing system targets and binds. The portion of the gRNA that targets the target sequence in the genome may be referred to as the “targeting sequence” or “targeting portion” or “targeting domain.” “Protospacer” or “gRNA spacer” may refer to the region of the target gene to which the CRISPR/Cas9-based gene editing system targets and binds; “protospacer” or “gRNA spacer” may also refer to the portion of the gRNA that is complementary to the targeted sequence in the genome. The gRNA may include a gRNA scaffold. A gRNA scaffold facilitates Cas9 binding to the gRNA and may facilitate endonuclease activity. The gRNA scaffold is a polynucleotide sequence that follows the portion of the gRNA corresponding to sequence that the gRNA targets. Together, the gRNA targeting portion and gRNA scaffold form one polynucleotide. The constant region of the gRNA may include the sequence of SEQ ID NO: 19 (RNA), which is encoded by a sequence comprising SEQ ID NO: 18 (DNA). The CRISPR/Cas9-based gene editing system may include at least one gRNA, wherein the gRNAs target different DNA sequences. The target DNA sequences may be overlapping. The gRNA may comprise at its 5’ end the targeting domain that is sufficiently complementary to the target region to be able to hybridize to, for example, about 10 to about 20 nucleotides of the target region of the target gene, when it is followed by an appropriate Protospacer Adjacent Motif (PAM). The target region or protospacer is followed by a PAM sequence at the 3’ end of the protospacer in the genome. Different Type II systems have differing PAM requirements, as detailed above. [000163] The targeting domain of the gRNA does not need to be perfectly complementary to the target region of the target DNA. In some embodiments, the targeting domain of the gRNA is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or at least 99% complementary to (or has 1, 2 or 3 mismatches compared to) the target region over a length of, such as, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides. For example, the DNA-targeting domain of the gRNA may be at least 80% complementary over at least 18 nucleotides of the target region. The target region may be on either strand of the target DNA. [000164] The gRNA may target the Cas9 protein or fusion protein to a gene or a regulatory element thereof. The gRNA may target the Cas protein or fusion protein to a non-open chromatin region, an open chromatin region, a transcribed region of the target gene, a region upstream of a transcription start site of the target gene, a regulatory element of the target gene, an intron of the target gene, or an exon of the target gene, or a combination thereof. In some embodiments, the gRNA targets the Cas9 protein or fusion protein to a promoter of a gene. In some embodiments, the target region is located between about 1 to about 1000 base pairs upstream of a transcription start site of a target gene. In some embodiments, the DNA targeting composition comprises two or more gRNAs, each gRNA binding to a different target region. [000165] The gRNA may target a region within or near a gene of interest. For example, the gRNA may target B2M or CD25 or TetO (see TABLE 3 and TABLE 4). The gRNA may target or bind to a regulatory region of a gene of interest. The gRNA may comprise a polynucleotide sequence comprising at least one of SEQ ID NOs: 96-98 and 101-102, or a complement thereof, or a variant thereof, or a truncation thereof. The gRNA may be encoded by a polynucleotide sequence comprising at least one of SEQ ID NOs: 93-95 and 99-100, or a complement thereof, or a variant thereof, or a truncation thereof. The gRNA may bind and target a polynucleotide sequence comprising at least one of SEQ ID NOs: 93- 95 and 99-100, or a complement thereof, or a variant thereof, or a truncation thereof. A truncation may be 1, 2, 3, 4, 5, 6, 7, 8, or 9 nucleotides shorter than the sequence of any one of SEQ ID NOs: 93-102. In some embodiments, the gRNA targets or binds to a gene or regulatory element thereof that is related to a disease, such as, for example, Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and/or cancer. [000166] As described above, the gRNA molecule comprises a targeting domain (also referred to as targeted or targeting sequence), which is a polynucleotide sequence complementary to the target DNA sequence. The gRNA may comprise a “G” at the 5’ end of the targeting domain or complementary polynucleotide sequence. The CRISPR/Cas9-based gene editing system may use gRNAs of varying sequences and lengths. The targeting domain of a gRNA molecule may comprise at least a 10 base pair, at least a 11 base pair, at least a 12 base pair, at least a 13 base pair, at least a 14 base pair, at least a 15 base pair, at least a 16 base pair, at least a 17 base pair, at least a 18 base pair, at least a 19 base pair, at least a 20 base pair, at least a 21 base pair, at least a 22 base pair, at least a 23 base pair, at least a 24 base pair, at least a 25 base pair, at least a 30 base pair, or at least a 35 base pair complementary polynucleotide sequence of the target DNA sequence followed by a PAM sequence. In certain embodiments, the targeting domain of a gRNA molecule has 19-25 nucleotides in length. In certain embodiments, the targeting domain of a gRNA molecule is 20 nucleotides in length. In certain embodiments, the targeting domain of a gRNA molecule is 21 nucleotides in length. In certain embodiments, the targeting domain of a gRNA molecule is 22 nucleotides in length. In certain embodiments, the targeting domain of a gRNA molecule is 23 nucleotides in length. [000167] The number of gRNA molecules that may be included in the CRISPR/Cas9- based gene editing system can be at least 1 gRNA, at least 2 different gRNAs, at least 3 different gRNAs, at least 4 different gRNAs, at least 5 different gRNAs, at least 6 different gRNAs, at least 7 different gRNAs, at least 8 different gRNAs, at least 9 different gRNAs, at least 10 different gRNAs, at least 11 different gRNAs, at least 12 different gRNAs, at least 13 different gRNAs, at least 14 different gRNAs, at least 15 different gRNAs, at least 16 different gRNAs, at least 17 different gRNAs, at least 18 different gRNAs, at least 18 different gRNAs, at least 20 different gRNAs, at least 25 different gRNAs, at least 30 different gRNAs, at least 35 different gRNAs, at least 40 different gRNAs, at least 45 different gRNAs, or at least 50 different gRNAs. The number of gRNA molecules that may be included in the CRISPR/Cas9-based gene editing system can be less than 50 different gRNAs, less than 45 different gRNAs, less than 40 different gRNAs, less than 35 different gRNAs, less than 30 different gRNAs, less than 25 different gRNAs, less than 20 different gRNAs, less than 19 different gRNAs, less than 18 different gRNAs, less than 17 different gRNAs, less than 16 different gRNAs, less than 15 different gRNAs, less than 14 different gRNAs, less than 13 different gRNAs, less than 12 different gRNAs, less than 11 different gRNAs, less than 10 different gRNAs, less than 9 different gRNAs, less than 8 different gRNAs, less than 7 different gRNAs, less than 6 different gRNAs, less than 5 different gRNAs, less than 4 different gRNAs, less than 3 different gRNAs, or less than 2 different gRNAs. The number of gRNAs that may be included in the CRISPR/Cas9-based gene editing system can be between at least 1 gRNA to at least 50 different gRNAs, at least 1 gRNA to at least 45 different gRNAs, at least 1 gRNA to at least 40 different gRNAs, at least 1 gRNA to at least 35 different gRNAs, at least 1 gRNA to at least 30 different gRNAs, at least 1 gRNA to at least 25 different gRNAs, at least 1 gRNA to at least 20 different gRNAs, at least 1 gRNA to at least 16 different gRNAs, at least 1 gRNA to at least 12 different gRNAs, at least 1 gRNA to at least 8 different gRNAs, at least 1 gRNA to at least 4 different gRNAs, at least 4 gRNAs to at least 50 different gRNAs, at least 4 different gRNAs to at least 45 different gRNAs, at least 4 different gRNAs to at least 40 different gRNAs, at least 4 different gRNAs to at least 35 different gRNAs, at least 4 different gRNAs to at least 30 different gRNAs, at least 4 different gRNAs to at least 25 different gRNAs, at least 4 different gRNAs to at least 20 different gRNAs, at least 4 different gRNAs to at least 16 different gRNAs, at least 4 different gRNAs to at least 12 different gRNAs, at least 4 different gRNAs to at least 8 different gRNAs, at least 8 different gRNAs to at least 50 different gRNAs, at least 8 different gRNAs to at least 45 different gRNAs, at least 8 different gRNAs to at least 40 different gRNAs, at least 8 different gRNAs to at least 35 different gRNAs, 8 different gRNAs to at least 30 different gRNAs, at least 8 different gRNAs to at least 25 different gRNAs, 8 different gRNAs to at least 20 different gRNAs, at least 8 different gRNAs to at least 16 different gRNAs, or 8 different gRNAs to at least 12 different gRNAs. f. Repair Pathways [000168] The CRISPR/Cas9-based gene editing system may be used to introduce site- specific double strand breaks at targeted genomic loci. Site-specific double-strand breaks are created when the CRISPR/Cas9-based gene editing system binds to a target DNA sequences, thereby permitting cleavage of the target DNA. This DNA cleavage may stimulate the natural DNA-repair machinery, leading to one of two possible repair pathways: homology-directed repair (HDR) or the non-homologous end joining (NHEJ) pathway. i) Homology-Directed Repair (HDR) [000169] Restoration of protein expression from a gene may involve homology-directed repair (HDR). A donor template may be administered to a cell. A donor sequence comprises a polynucleotide sequence to be inserted into a genome. The donor template may include a nucleotide sequence encoding a full-functional protein or a partially functional protein. In such embodiments, the donor template may include fully functional gene construct for restoring a mutant gene, or a fragment of the gene that after homology-directed repair, leads to restoration of the mutant gene. In other embodiments, the donor template may include a nucleotide sequence encoding a mutated version of an inhibitory regulatory element of a gene. Mutations may include, for example, nucleotide substitutions, insertions, deletions, or a combination thereof. In such embodiments, introduced mutation(s) into the inhibitory regulatory element of the gene may reduce the transcription of or binding to the inhibitory regulatory element. ii) Non-Homologous End Joining (NHEJ) [000170] Restoration of protein expression from gene may be through template-free NHEJ- mediated DNA repair. In certain embodiments, NHEJ is a nuclease mediated NHEJ, which in certain embodiments, refers to NHEJ that is initiated a Cas9 molecule that cuts double stranded DNA. The method comprises administering a presently disclosed CRISPR/Cas9- based gene editing system or a composition comprising thereof to a subject for gene editing. [000171] Nuclease mediated NHEJ may correct a mutated target gene and offer several potential advantages over the HDR pathway. For example, NHEJ does not require a donor template, which may cause nonspecific insertional mutagenesis. In contrast to HDR, NHEJ operates efficiently in all stages of the cell cycle and therefore may be effectively exploited in both cycling and post-mitotic cells, such as muscle fibers. This provides a robust, permanent gene restoration alternative to oligonucleotide-based exon skipping or pharmacologic forced read-through of stop codons and could theoretically require as few as one drug treatment. 4. Reporter Protein [000172] In some embodiments, the DNA targeting compositions or CRISPR/Cas9 systems include at least one reporter protein. For example, and as detailed above, the second polypeptide of the Cas effector may comprise a reporter protein such as sfBFP. A polynucleotide sequence encoding the reporter protein may be operably linked to the polynucleotide sequence encoding the Cas9 protein and/or Cas9 fusion protein and/or antibody and/or effector. The reporter protein may include any protein or peptide that is suitably detectable, such as, by fluorescence, chemiluminescence, enzyme activity such as beta galactosidase or alkaline phosphatase, and/or antibody binding detection. The reporter protein may comprise a fluorescent protein. The reporter protein may comprise a protein or peptide detectable with an antibody. For example, the reporter protein may comprise sfBFP, GFP, YFP, RFP, CFP, DsRed, luciferase, and/or Thy1. 5. Genetic Constructs [000173] The CRISPR/Cas9-based gene editing system or any component thereof may be encoded by or comprised within one or more genetic constructs. The CRISPR/Cas9-based gene editing system may comprise one or more genetic constructs. The genetic construct, such as a plasmid or expression vector, may comprise a nucleic acid that encodes the CRISPR/Cas9-based gene editing system and/or at least one component thereof such as at lease one gRNA. In some embodiments, a genetic construct encodes at least one effector domain. In certain embodiments, a genetic construct encodes one gRNA molecule, i.e., a first gRNA molecule, and optionally a Cas9 molecule or fusion protein. In some embodiments, a genetic construct encodes two gRNA molecules, i.e., a first gRNA molecule and a second gRNA molecule, and optionally a Cas9 molecule or fusion protein. In some embodiments, a first genetic construct encodes one gRNA molecule, i.e., a first gRNA molecule, and optionally a Cas9 molecule or fusion protein, and a second genetic construct encodes one gRNA molecule, i.e., a second gRNA molecule, and optionally a Cas9 molecule or fusion protein. In some embodiments, a first genetic construct encodes one gRNA molecule and one donor sequence, and a second genetic construct encodes a Cas9 molecule or fusion protein. In some embodiments, a first genetic construct encodes one gRNA molecule and a Cas9 molecule or fusion protein, and a second genetic construct encodes one donor sequence. In some embodiments, a single genetic construct encodes at least one effector domain, at least one antibody, a Cas9 molecule or fusion protein, and at least one peptide epitope. In some embodiments, a first genetic construct encodes at least one effector domain and at least one antibody, and a second genetic construct encodes a Cas9 molecule or fusion protein and at least one peptide epitope. [000174] Genetic constructs may include polynucleotides such as vectors and plasmids. The genetic construct may be a linear minichromosome including centromere, telomeres, or plasmids or cosmids. The vector may be an expression vectors or system to produce protein by routine techniques and readily available starting materials including Sambrook et al., Molecular Cloning and Laboratory Manual, Second Ed., Cold Spring Harbor (1989), which is incorporated fully by reference. The construct may be recombinant. The genetic construct may be part of a genome of a recombinant viral vector, including recombinant lentivirus, recombinant adenovirus, and recombinant adenovirus associated virus. The genetic construct may comprise regulatory elements for gene expression of the coding sequences of the nucleic acid. The regulatory elements may be a promoter, an enhancer, an initiation codon, a stop codon, or a polyadenylation signal.

[000175] The genetic construct may comprise heterologous nucleic acid encoding the CRISPR/Cas-based gene editing system and may further comprise an initiation codon, which may be upstream of the CRISPR/Cas-based gene editing system coding sequence, and a stop codon, which may be downstream of the CRISPR/Cas-based gene editing system coding sequence. The genetic construct may include more than one stop codon, which may be downstream of the CRISPR/Cas-based gene editing system coding sequence. In some embodiments, the genetic construct includes 1 , 2, 3, 4, or 5 stop codons. In some embodiments, the genetic construct includes 1 , 2, 3, 4, or 5 stop codons downstream of the sequence encoding the donor sequence. A stop codon may be in-frame with a coding sequence in the CRISPR/Cas-based gene editing system. For example, one or more stop codons may be in-frame with the donor sequence. The genetic construct may include one or more stop codons that are out of frame of a coding sequence in the CRISPR/Cas-based gene editing system. For example, one stop codon may be in-frame with the donor sequence, and two other stop codons may be included that are in the other two possible reading frames. A genetic construct may include a stop codon for all three potential reading frames. The initiation and termination codon may be in frame with the CRISPR/Cas-based gene editing system coding sequence.

[000176] The vector may also comprise a promoter that is operably linked to the CRISPR/Cas-based gene editing system coding sequence. The promoter may be a constitutive promoter, an inducible promoter, a repressible promoter, or a regulatable promoter. The promoter may be a ubiquitous promoter. The promoter may be a tissuespecific promoter. The tissue specific promoter may be a muscle specific promoter. The tissue specific promoter may be a skin specific promoter. The CRISPR/Cas-based gene editing system may be under the light-inducible or chemically inducible control to enable the dynamic control of gene/genome editing in space and time. The promoter operably linked to the CRISPR/Cas-based gene editing system coding sequence may be a promoter from simian virus 40 (SV40), a mouse mammary tumor virus (MMTV) promoter, a human immunodeficiency virus (HIV) promoter such as the bovine immunodeficiency virus (BIV) long terminal repeat (LTR) promoter, a Moloney virus promoter, an avian leukosis virus (ALV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter, Epstein Barr virus (EBV) promoter, or a Rous sarcoma virus (RSV) promoter. The promoter may also be a promoter from a human gene such as human ubiquitin C (hUbC), human actin, human myosin, human hemoglobin, human muscle creatine, or human metalothionein. Examples of a tissue specific promoter, such as a muscle or skin specific promoter, natural or synthetic, are described in U.S. Patent Application Publication No. US20040175727, the contents of which are incorporated herein in its entirety. The promoter may be a CK8 promoter, a Spc512 promoter, a MHCK7 promoter, for example. [000177] The genetic construct may also comprise a polyadenylation signal, which may be downstream of the CRISPR/Cas-based gene editing system. The polyadenylation signal may be a SV40 polyadenylation signal, LTR polyadenylation signal, bovine growth hormone (bGH) polyadenylation signal, human growth hormone (hGH) polyadenylation signal, or human β-globin polyadenylation signal. The SV40 polyadenylation signal may be a polyadenylation signal from a pCEP4 vector (Invitrogen, San Diego, CA). [000178] Coding sequences in the genetic construct may be optimized for stability and high levels of expression. In some instances, codons are selected to reduce secondary structure formation of the RNA such as that formed due to intramolecular bonding. [000179] The genetic construct may also comprise an enhancer upstream of the CRISPR/Cas-based gene editing system or gRNAs. The enhancer may be necessary for DNA expression. The enhancer may be human actin, human myosin, human hemoglobin, human muscle creatine or a viral enhancer such as one from CMV, HA, RSV, or EBV. Polynucleotide function enhancers are described in U.S. Patent Nos.5,593,972, 5,962,428, and WO94/016737, the contents of each are fully incorporated by reference. The genetic construct may also comprise a mammalian origin of replication in order to maintain the vector extrachromosomally and produce multiple copies of the vector in a cell. The genetic construct may also comprise a regulatory sequence, which may be well suited for gene expression in a mammalian or human cell into which the vector is administered. The genetic construct may also comprise a reporter gene, such as green fluorescent protein (“GFP”) and/or a selectable marker, such as hygromycin (“Hygro”). [000180] The genetic construct may be useful for transfecting cells with nucleic acid encoding the CRISPR/Cas-based gene editing system, which the transformed host cell is cultured and maintained under conditions wherein expression of the CRISPR/Cas-based gene editing system takes place. The genetic construct may be transformed or transduced into a cell. The genetic construct may be formulated into any suitable type of delivery vehicle including, for example, a viral vector, lentiviral expression, mRNA electroporation, and lipid-mediated transfection for delivery into a cell. The genetic construct may be part of the genetic material in attenuated live microorganisms or recombinant microbial vectors which live in cells. The genetic construct may be present in the cell as a functioning extrachromosomal molecule. [000181] Further provided herein is a cell transformed or transduced with a system or component thereof as detailed herein. Suitable cell types are detailed herein. In some embodiments, the cell is a stem cell. The stem cell may be a human stem cell. In some embodiments, the cell is an embryonic stem cell. The stem cell may be a human pluripotent stem cell (iPSCs). Further provided are stem cell-derived neurons, such as neurons derived from iPSCs transformed or transduced with a DNA targeting system or component thereof as detailed herein. a. Viral Vectors [000182] A genetic construct may be a viral vector. Further provided herein is a viral delivery system. Viral delivery systems may include, for example, lentivirus, retrovirus, adenovirus, mRNA electroporation, or nanoparticles. In some embodiments, the vector is a modified lentiviral vector. In some embodiments, the viral vector is an adeno-associated virus (AAV) vector. The AAV vector is a small virus belonging to the genus Dependovirus of the Parvoviridae family that infects humans and some other primate species. [000183] AAV vectors may be used to deliver CRISPR/Cas9-based gene editing systems using various construct configurations. For example, AAV vectors may deliver Cas9 or fusion protein and gRNA expression cassettes on separate vectors or on the same vector. Alternatively, if the small Cas9 proteins or fusion proteins, derived from species such as Staphylococcus aureus or Neisseria meningitidis, are used then both the Cas9 and up to two gRNA expression cassettes may be combined in a single AAV vector. In some embodiments, the AAV vector has a 4.7 kb packaging limit. [000184] In some embodiments, the AAV vector is a modified AAV vector. The modified AAV vector may have enhanced cardiac and/or skeletal muscle tissue tropism. The modified AAV vector may be capable of delivering and expressing the CRISPR/Cas9-based gene editing system in the cell of a mammal. For example, the modified AAV vector may be an AAV-SASTG vector (Piacentino et al. Human Gene Therapy 2012, 23, 635–646). The modified AAV vector may be based on one or more of several capsid types, including AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. The modified AAV vector may be based on AAV2 pseudotype with alternative muscle-tropic AAV capsids, such as AAV2/1, AAV2/6, AAV2/7, AAV2/8, AAV2/9, AAV2.5, and AAV/SASTG vectors that efficiently transduce skeletal muscle or cardiac muscle by systemic and local delivery (Seto et al. Current Gene Therapy 2012, 12, 139-151). The modified AAV vector may be AAV2i8G9 (Shen et al. J. Biol. Chem. 2013, 288, 28814-28823). 6. Pharmaceutical Compositions [000185] Further provided herein are pharmaceutical compositions comprising the above- described genetic constructs or gene editing systems. In some embodiments, the pharmaceutical composition may comprise about 1 ng to about 10 mg of DNA encoding the CRISPR/Cas-based gene editing system or at least one component thereof. The systems or genetic constructs as detailed herein, or at least one component thereof, may be formulated into pharmaceutical compositions in accordance with standard techniques well known to those skilled in the pharmaceutical art. The pharmaceutical compositions can be formulated according to the mode of administration to be used. In cases where pharmaceutical compositions are injectable pharmaceutical compositions, they are sterile, pyrogen free, and particulate free. An isotonic formulation is preferably used. Generally, additives for isotonicity may include sodium chloride, dextrose, mannitol, sorbitol and lactose. In some cases, isotonic solutions such as phosphate buffered saline are preferred. Stabilizers include gelatin and albumin. In some embodiments, a vasoconstriction agent is added to the formulation. [000186] The composition may further comprise a pharmaceutically acceptable excipient. The pharmaceutically acceptable excipient may be functional molecules as vehicles, adjuvants, carriers, or diluents. The term “pharmaceutically acceptable carrier,” may be a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Pharmaceutically acceptable carriers include, for example, diluents, lubricants, binders, disintegrants, colorants, flavors, sweeteners, antioxidants, preservatives, glidants, solvents, suspending agents, wetting agents, surfactants, emollients, propellants, humectants, powders, pH adjusting agents, and combinations thereof. The pharmaceutically acceptable excipient may be a transfection facilitating agent, which may include surface active agents, such as immune-stimulating complexes (ISCOMS), Freunds incomplete adjuvant, LPS analog including monophosphoryl lipid A, muramyl peptides, quinone analogs, vesicles such as squalene and squalene, hyaluronic acid, lipids, liposomes, calcium ions, viral proteins, polyanions, polycations, or nanoparticles, or other known transfection facilitating agents. The transfection facilitating agent may be a polyanion, polycation, including poly-L-glutamate (LGS), or lipid. The transfection facilitating agent may be poly-L- glutamate, and more preferably, the poly-L-glutamate may be present in the composition for gene editing in skeletal muscle or cardiac muscle at a concentration less than 6 mg/mL. 7. Administration [000187] The systems or genetic constructs as detailed herein, or at least one component thereof, may be administered or delivered to a cell. Methods of introducing a nucleic acid into a host cell are known in the art, and any known method can be used to introduce a nucleic acid (e.g., an expression construct) into a cell. Suitable methods include, for example, viral or bacteriophage infection, transfection, conjugation, protoplast fusion, polycation or lipid:nucleic acid conjugates, lipofection, electroporation, nucleofection, immunoliposomes, calcium phosphate precipitation, polyethyleneimine (PEI)-mediated transfection, DEAE-dextran mediated transfection, liposome-mediated transfection, particle gun technology, calcium phosphate precipitation, direct micro injection, nanoparticle- mediated nucleic acid delivery, and the like. In some embodiments, the composition may be delivered by mRNA delivery and ribonucleoprotein (RNP) complex delivery. The system, genetic construct, or composition comprising the same, may be electroporated using BioRad Gene Pulser Xcell or Amaxa Nucleofector Iib devices or other electroporation device. Several different buffers may be used, including BioRad electroporation solution, Sigma phosphate-buffered saline product #D8537 (PBS), Invitrogen OptiMEM I (OM), or Amaxa Nucleofector solution V (N.V.). Transfections may include a transfection reagent, such as Lipofectamine 2000. [000188] The systems or genetic constructs as detailed herein, or at least one component thereof, or the pharmaceutical compositions comprising the same, may be administered to a subject. Such compositions can be administered in dosages and by techniques well known to those skilled in the medical arts taking into consideration such factors as the age, sex, weight, and condition of the particular subject, and the route of administration. The presently disclosed systems, or at least one component thereof, genetic constructs, or compositions comprising the same, may be administered to a subject by different routes including orally, parenterally, sublingually, transdermally, rectally, transmucosally, topically, intranasal, intravaginal, via inhalation, via buccal administration, intrapleurally, intravenous, intraarterial, intraperitoneal, subcutaneous, intradermally, epidermally, intramuscular, intranasal, intrathecal, intracranial, and intraarticular or combinations thereof. In certain embodiments, the system, genetic construct, or composition comprising the same, is administered to a subject intramuscularly, intravenously, or a combination thereof. The systems, genetic constructs, or compositions comprising the same may be delivered to a subject by several technologies including DNA injection (also referred to as DNA vaccination) with and without in vivo electroporation, liposome mediated, nanoparticle facilitated, recombinant vectors such as recombinant lentivirus, recombinant adenovirus, and recombinant adenovirus associated virus. The composition may be injected into the brain or other component of the central nervous system. The composition may be injected into the skeletal muscle or cardiac muscle. For example, the composition may be injected into the tibialis anterior muscle or tail. For veterinary use, the systems, genetic constructs, or compositions comprising the same may be administered as a suitably acceptable formulation in accordance with normal veterinary practice. The veterinarian may readily determine the dosing regimen and route of administration that is most appropriate for a particular animal. The systems, genetic constructs, or compositions comprising the same may be administered by traditional syringes, needleless injection devices, “microprojectile bombardment gone guns,” or other physical methods such as electroporation (“EP”), “hydrodynamic method”, or ultrasound. Alternatively, transient in vivo delivery of CRISPR/Cas-based systems by non- viral or non-integrating viral gene transfer, or by direct delivery of purified proteins and gRNAs containing cell-penetrating motifs may enable highly specific correction and/or restoration in situ with minimal or no risk of exogenous DNA integration. [000189] Upon delivery of the presently disclosed systems or genetic constructs as detailed herein, or at least one component thereof, or the pharmaceutical compositions comprising the same, and thereupon the vector into the cells of the subject, the transfected cells may express the gRNA molecule(s) and/or the Cas9 molecule or fusion protein and/or Cas effector and/or effector domain. a. Cell Types [000190] Any of the delivery methods and/or routes of administration detailed herein can be utilized with a myriad of cell types. Further provided herein is a cell transformed or transduced with a system or component thereof as detailed herein. For example, provided herein is a cell comprising an isolated polynucleotide encoding a CRISPR/Cas9 system as detailed herein. Suitable cell types are detailed herein. In some embodiments, the cell is an immune cell. Immune cells may include, for example, lymphocytes such as T cells and B cells and natural killer (NK) cells. In some embodiments, the cell is a T cell. T cells may be divided into cytotoxic T cells and helper T cells, which are in turn categorized as TH1 or TH2 helper T cells. Immune cells may further include innate immune cells, adaptive immune cells, tumor-primed T cells, NKT cells, IFN-γ producing killer dendritic cells (IKDC), memory T cells (TCMs), and effector T cells (Tes). The cell may be a stem cell such as a human stem cell. In some embodiments, the cell is an embryonic stem cell or a hematopoietic stem cell. The stem cell may be a human induced pluripotent stem cell (iPSCs). Further provided are stem cell-derived neurons, such as neurons derived from iPSCs transformed or transduced with a DNA targeting system or component thereof as detailed herein. The cell may be a muscle cell. Cells may further include, but are not limited to, immortalized myoblast cells, dermal fibroblasts, bone marrow-derived progenitors, skeletal muscle progenitors, human skeletal myoblasts, CD 133+ cells, mesoangioblasts, cardiomyocytes, hepatocytes, chondrocytes, mesenchymal progenitor cells, hematopoietic stem cells, smooth muscle cells, and MyoD- or Pax7-transduced cells, or other myogenic progenitor cells. 8. Kits [000191] Provided herein is a kit, which may be used to modulate gene expression. The kit comprises genetic constructs or a composition comprising the same, for modulating gene expression, as described above, and instructions for using said composition. In some embodiments, the kit includes at least one effector as detailed herein, or a polynucleotide encoding the at least one effector. The effector may be selected from, for example, MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, GSK3A, MLLT6, PHF15, SS18L1, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, JAZF1, KAT7, KEAP1, MEAF6, MORF4L2, NFYC, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81. In some embodiments, the kit comprises at least one gRNA as detailed herein. The kit may further include instructions for using the CRISPR/Cas-based gene editing system. [000192] Instructions included in kits may be affixed to packaging material or may be included as a package insert. While the instructions are typically written on printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this disclosure. Such media include, but are not limited to, electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. As used herein, the term “instructions” may include the address of an internet site that provides the instructions. [000193] The genetic constructs or a composition comprising thereof for modulating gene expression may include a modified AAV vector that includes a gRNA molecule(s) and a Cas9 protein or fusion protein or Cas effector, as described above. The CRISPR/Cas-based gene editing system, as described above, may be included in the kit to specifically bind and target a particular region in a gene. 9. Methods a. Methods of Modulating Expression of a Gene [000194] Provided herein are methods of modulating expression of a gene in a cell or in a subject. The methods may include administering to the cell or the subject a DNA targeting composition as detailed herein or at least one component thereof, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a pharmaceutical composition as detailed herein, or a combination thereof. In some embodiments, the method includes administering to a cell or subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. In some embodiments, the effector is targeted to a gene or a regulatory element thereof. [000195] In some embodiments, the expression of the gene is increased relative to a control. In some embodiments, wherein the expression of the gene is decreased relative to a control. In some embodiments, the gene comprises the dystrophin gene, or the CD25 gene, or the B2M gene, or the TRAC gene. In some embodiments, the cell is a muscle cell or a T cell. [000196] In some embodiments, the gene is the dystrophin gene. Dystrophin is a rod- shaped cytoplasmic protein which is a part of a protein complex that connects the cytoskeleton of a muscle fiber to the surrounding extracellular matrix through the cell membrane. Dystrophin provides structural stability to the dystroglycan complex of the cell membrane. The dystrophin gene is 2.2 megabases at locus Xp21. The primary transcription measures about 2,400 kb with the mature mRNA being about 14 kb. 79 exons include approximately 2.2 million nucleotides and code for the protein which is over 3500 amino acids. Normal skeleton muscle tissue contains only small amounts of dystrophin, but its absence of abnormal expression leads to the development of severe and incurable symptoms. Some mutations in the dystrophin gene lead to the production of defective dystrophin and severe dystrophic phenotype in affected patients. Some mutations in the dystrophin gene lead to partially-functional dystrophin protein and a much milder dystrophic phenotype in affected patients. [000197] Duchenne muscular dystrophy (DMD) is the result of inherited orX-linked recessive spontaneous mutation(s) that cause nonsense or frame shift mutations in the dystrophin gene. DMD is a severe, highly debilitating and incurable muscle disease and is the most prevalent lethal heritable childhood disease and affects approximately one in 5,000 newborn males. DMD is characterized by muscle deterioration, progressive muscle weakness, often leading to mortality in subjects at age mid-twenties and premature death, due to the lack of a functional dystrophin gene. Most mutations are deletions in the dystrophin gene that disrupt the reading frame. Naturally occurring mutations and their consequences are relatively well understood for DMD. In-frame deletions that occur in the exon 45-55 regions contained within the rod domain can produce highly functional dystrophin proteins, and many carriers are asymptomatic or display mild symptoms. Exons 45-55 of dystrophin are a mutational hotspot. More than 60% of patients may be treated by targeting exons in this region of the dystrophin gene. Efforts have been made to restore the disrupted dystrophin reading frame in DMD patients by skipping non-essential exon(s) (e.g., exon 45 skipping) during mRNA splicing to produce internally deleted but functional dystrophin proteins. The deletion of internal dystrophin exon(s) (for example, deletion of exon 45) may retain the proper reading frame and can generate an internally truncated but partially functional dystrophin protein. Deletions between exons 45-55 of dystrophin can result in a phenotype that is much milder compared to DMD.

[000198] A dystrophin gene may be a mutant dystrophin gene. A dystrophin gene may be a wild-type dystrophin gene. A dystrophin gene may have a sequence that is functionally identical to a wild-type dystrophin gene, for example, the sequence may be codon-optimized but still encode for the same protein as the wild-type dystrophin. A mutant dystrophin gene may include one or more mutations relative to the wild-type dystrophin gene. Mutations may include, for example, nucleotide deletions, substitutions, additions, transversions, or combinations thereof. A mutation in the dystrophin gene may be a functional deletion of the dystrophin gene. In some embodiments, the mutation in the dystrophin gene comprises an insertion or deletion in the dystrophin gene that prevents protein expression from the dystrophin gene. Mutations may be in one or more exons and/or introns. Mutations may include deletions of all or parts of at least one intron and/or exon. An exon of a mutant dystrophin gene may be mutated or at least partially deleted from the dystrophin gene. An exon of a mutant dystrophin gene may be fully deleted. A mutant dystrophin gene may have a portion or fragment thereof that corresponds to the corresponding sequence in the wildtype dystrophin gene. In some embodiments, a disrupted dystrophin gene caused by a deleted or mutated exon can be restored in DMD patients by adding back the corresponding wild-type exon. In some embodiments, disrupted dystrophin caused by a deleted or mutated exon 52 can be restored in DMD patients by adding back in wild-type exon 52. In certain embodiments, addition of exon 52 to restore reading frame ameliorates the phenotype in DMD subjects, including DMD subjects with deletion mutations. In certain embodiments, one or more exons may be added and inserted into the disrupted dystrophin gene. The one or more exons may be added and inserted so as to restore the corresponding mutated or deleted exon(s) in dystrophin. The one or more exons may be added and inserted into the disrupted dystrophin gene in addition to adding back and inserting the exon 52. In certain embodiments, exon 52 of a dystrophin gene refers to the 52 nd exon of the dystrophin gene. Exon 52 is frequently adjacent to frame-disrupting deletions in DMD patients. b. Methods of Treating a Disease [000199] Provided herein are methods of treating a disease in a subject. The methods may include administering to the cell or the subject a DNA targeting composition as detailed herein or at least one component thereof, or an isolated polynucleotide sequence as detailed herein, or a vector as detailed herein, or a pharmaceutical composition as detailed herein, or a combination thereof. In some embodiments, the method includes administering to the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. In some embodiments, the effector is targeted to a gene or a regulatory element thereof. [000200] In some embodiments, the disease is selected from Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and cancer. 10. Examples [000201] The foregoing may be better understood by reference to the following examples, which are presented for purposes of illustration and are not intended to limit the scope of the invention. The present disclosure has multiple aspects and embodiments, illustrated by the appended non-limiting examples. Example 1 Effector Screen 1: Suntag System and B2M Expression [000202] A library was generated including 3015 effector domains derived from a commercial ORFeome library. A version of the suntag system compatible with LR cloning to insert effectors was generated, and random barcodes were appended at high coverage. Effectors were then cloned in by LR cloning, intentionally bottlenecked at 100k colonies to maintain a manageable number of barcodes. Barcodes were then mapped to effectors using nanopore sequencing. [000203] The effect of each effector on gene expression was measured in pooled screens. Each effector from the library was recruited to dCas9 using a slightly modified version of the Suntag recruitment system (Tanenbaum et al., Cell 2014, 159, 635–646, incorporated herein by reference in its entirety). The modified version included a Cas9 protein fused to repeats of a GCN4 peptide epitope, a gRNA targeting the Cas9 to the target gene, and an antibody to the epitope fused to one effector from the library with the setup ScFV-sfBFP- [EFFECTOR]. For this experiment, the target gene was B2M. Lentivirus encoding the library was produced in 293T cells and titered based on sfBFP fluorescence of a dilution series in the cell type used in the screen. Cells were then transduced at a minimum of 200- fold coverage (600,000 cells for 3000 effectors). Cells were cultured for 10 days after transduction with the library. Cells were then subjected to fluorescence-activated cell sorting, and the top and bottom 10% by antibody staining for the target protein (B2M) were collected. Genomic DNA was purified, and the barcode cassette was amplified and sequenced on an Illumina MiSeq (San Diego, CA) to generate Log2Fold Change and P- values. Calculations were performed by first summing all mapped barcodes for each effector in each condition. The gRNAs used are shown in TABLE 3. [000204] Novel effectors were discovered that activate or repress gene expression when recruited via dCas9 to a gene of interest. Hits shown in FIG.1 were cloned individually, and lentivirus was produced. 293T cells encoding dCas9 and either a B2M-targeting gRNA or non-targeting gRNA were each transduced in duplicate. Cells were cultured for 10 days after transduction with the library. Cells were then stained for B2M and analyzed by flow cytometry. [000205] The effectors resulting in significant increased or decreased expression of B2M with the targeting gRNA but not with the non-targeting gRNA included MCRS1, OTUD7B, RelB, LDB1, NFKBIB, and CITED2. Two novel hits were discovered in the first screen, MCRS1 and OTUD7B. Both appeared to repress gene expression when recruited to dCas9 at a target gene promoter, and both have not previously been used as dCas9 fusions. OTUD7B (also known as Cezanne) is a de-ubiquitinase which has previously been shown to be involved in DNA repair but not to repress gene expression (Mevissen et al, Nature 2016, 538, 402–405, incorporated herein by reference in its entirety). MCRS1 has been shown to bind the DAXX repressor, which may explain its repressive effect (Lin, D. Y. et al. J. Biol. Chem.2002, 277, 25446–25456, incorporated herein by reference in its entirety). [000206] FIG.1 shows the percent of cells in the low B2M bin, with higher numbers suggesting more potent repression. The results shown in FIG.1 were based on fold changes and p-values for all tested effectors targeted to B2M in 293T cells (TABLE 1). Cells were screened by B2M staining in flow cytometry, and fold changes were calculated between barcode counts recovered from cells collected in the top or bottom 10% B2M expression. A non-targeting guide was also included as a control for non-specific repression. MCRS1 and OTUD7B both showed repression that is both greater than the steric effects of dCas9 alone and largely dependent on dCas9 targeting, rather than a non-specific effect. Although other effectors also repressed B2M as predicted from the screen, these effects appeared to be non-specific. Example 2 Effector Screen 2: Suntag System and CD25 Expression [000207] A second screening experiment as detailed in Example 1 was completed, except examining CD25 expression instead of B2M, and these further experiments were completed to determine the fold changes and p-values for all tested effectors targeted to CD25 in Jurkat cells (TABLE 2). Cells were screened by CD25 staining in flow cytometry, and fold changes were calculated between barcode counts recovered from cells collected in the top or bottom 10%. Jurkat cell lines were generated by first transducing with lentiviral vectors encoding an sgRNA and dCas9 fused to a gcn4 peptide array that recruits the effector. A cell line with a CD25 targeting guide or a non-targeting guide was generated. These cell lines were then transduced with the indicated effectors fused to an scFv for recruitment to dCas9 (Tanenbaum et al., Cell 2014, 159, 635–646, incorporated herein by reference in its entirety). [000208] Cells were cultured for 7 days after transduction with effector virus and stained for CD25 expression using a CD25 Monoclonal Antibody (BC96, PE-Cyanine7, eBioscience™, San Diego, CA). Only cells positive for the BFP fluorophore associated with the effector virus were included in the analysis of positive cells. [000209] Shown in FIG.2A is the level of CD25 activation after delivery of each effector domain recruited by dCas9 in Jurkat cells. A non-targeting guide (gray bars) showed no effect on CD25, suggesting that each effector is specifically activating CD25 upon recruitment by dCas9. Shown in FIG.2B is a zoomed-in view of data in FIG.2A to show the specific activation by LDB1 and NFKBIB. Example 3 Effector Screen 3: High-throughput TetO-GFP Screen [000210] A cell line was constructed for use in a TetO-GFP reporter screen. 293T cells were first transduced with dCas9-GCN4, which recruited the ScFv fused to an effector, and subjected to blast selection (5 µg/mL). These cells were then transduced with lentivirus encoding a minimal CMV promoter driving GFP expression and flanked by 7 repeats of the Tet operator. Clonal cell lines were generated by plating of a limiting dilution in a 96-well plate. Twelve clonal cell lines were then tested for robust GFP induction upon delivery of ScFv-VPR (a known positive control), and the clone with the highest fold induction was chosen for the screen. This cell line was then transduced with lentivirus encoding both the TetO targeting and non-targeting (negative control) sgRNA along with iRFP. These transduced cells were then sorted for iRFP expression to generate pure populations expressing each sgRNA. [000211] The TetO-GFP reporter cell lines (with either TetO targeting or non-targeting gRNA), were transduced at an MOI of 0.2 with lentivirus encoding the effector library. A total of 3.75 million cells were transduced with virus, giving 300-fold coverage (750,000 transductants) of the approximately 2500 effectors in the library. Cells were then cultured for three days, subjected to puromycin selection (0.5 µg/mL) for 3 days, and then allowed to expand for an additional 4 days before sorting the top 10% of GFP expressing cells. Genomic DNA was purified from the collected cells, the DNA encoding the effector barcodes was amplified by PCR, and the resulting amplicons were sequenced on an Illumina MiSeq (San Diego, CA). The barcode frequency in each sample was determined using custom python scripts, and the resulting barcode abundances were analyzed in the DESeq2 R package to calculate fold changes and p values between the input cells and the top 10% GFP expressing cells. This was performed for both the TetO-targeting gRNA and the non- targeting gRNA. The gRNAs used are shown in TABLE 4. [000212] Shown in FIGS.3A-3B are plots showing results for each effector in a screen for the ability to modulate GFP reporter expression. Log2 (fold change) and Log10 (Adjusted P Value) for each effector in the screen are plotted. Effectors with Log2(fold change) > 1.1 and Adjusted P Value < 0.01 were considered to be hits and are shown in filled black circles, while non-hits are shown in open gray circles. This threshold gave 41 hits in the targeting condition and only 1 hit in the non-targeting condition, suggesting that it accurately filtered for legitimate hits. The 40 effector hits in the targeting condition that are not hits in the non- targeting (NT) condition included ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, which are disclosed herein as SEQ ID NOs: 103-176. These effectors showed significant increased or decreased expression of GFP with the targeting gRNA but not with the non-targeting gRNA. Example 4 Effector Screen 4: Examining Subset of Effectors with TetO-GFP Reporter [000213] A subset of the effectors discovered as described in Example 3 was further examined using the same TetO-GFP reporter. As shown in FIG.4, 293T cells containing a GFP reporter were transduced with Lentivirus encoding a subset of effectors (PHF15, SS18L1, MLLT6, ASH2L, and GSK3A) found to be hits in the high-throughput screen along with a targeting or non-targeting gRNA. The fold activation of GFP (shown above each pair of bars) was found to be greater than 1 for all effectors tested, while the dCas9 alone control showed the opposite trend, supporting the idea that even the small effects seen for some effectors are likely meaningful. All hit effectors tested did modulate GFP to some degree, suggesting that all effectors found to be hits in the high-throughput screen of Example 3 are likely to be modulators of gene expression. [000214] CITED2 and LDB1 were also examined for activation of GFP expression in 293T cells, with results shown in FIG.5. 293T cells previously transduced with a TetO-GFP reporter were transfected with the indicated effector. Both LDB1 and CITED2 were able to robustly activate GFP expression, demonstrating that activation by these effectors was not limited to CD25, as shown in Example 2. Example 5 Effect of LDB1 Dimerization Domain on Activation of Gene Expression [000215] The LDB1 effector was examined using the CD25 expression system detailed in Example 2. Wild-type LDB1, as well as a mutant LDB1 with the dimerization domain deleted, were tested. Jurkat cells expressing dCas9-GCN4 and a CD25-targeting or non- targeting gRNA were transduced with the indicated effector-scFv fusion, and CD25 expression was analyzed by flow cytometry 10 days later. Results are shown in FIG.6. Only the intact LDB1 effector was able to activate CD25. Activation of CD25 by LDB1 was dependent on the LDB1 dimerization domain. The dimerization domain deletion was a small deletion in the dimerization domain that was shown to be necessary for chromatin looping (Ivan Krivega, et al. Genes Dev.2014, 28, 1278-90, incorporated herein by reference in its entirety), which suggested that LDB1 activated CD25 expression via a mechanism involving chromatin looping. *** [000216] The foregoing description of the specific aspects will so fully reveal the general nature of the invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific aspects, without undue experimentation, without departing from the general concept of the present disclosure. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed aspects, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance. [000217] The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary aspects, but should be defined only in accordance with the following claims and their equivalents. [000218] All publications, patents, patent applications, and/or other documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, and/or other document were individually indicated to be incorporated by reference for all purposes. [000219] For reasons of completeness, various aspects of the invention are set out in the following numbered clauses: [000220] Clause 1. A Cas effector comprising: a first polypeptide comprising a Cas protein and at least one peptide epitope; and a second polypeptide comprising an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, and an antibody to the peptide epitope. [000221] Clause 2. The Cas effector of clause 1, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. [000222] Clause 3. The Cas effector of clause 1 or 2, wherein the effector is capable of increasing or decreasing expression of a gene. [000223] Clause 4. The Cas effector of clause 3, wherein the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. [000224] Clause 5. The Cas effector of clause 3, wherein the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. [000225] Clause 6. The Cas effector of any one of clauses 1-5, wherein the first polypeptide comprises about 2 to about 50 peptide epitopes. [000226] Clause 7. The Cas effector of any one of clauses 1-6, wherein the first polypeptide comprises more than one copy of the peptide epitope and further comprises at least one linker in between adjacent copies of the peptide epitope. [000227] Clause 8. The Cas effector of any one of clauses 1-7, wherein the peptide epitope is GCN4 and comprises the amino acid sequence of SEQ ID NO: 85. [000228] Clause 9. The Cas effector of any one of clauses 1-8, wherein the first polypeptide comprises at least one peptide epitope at the N-terminus and/or at the C- terminus of the Cas protein. [000229] Clause 10. The Cas effector of any one of clauses 1-9, wherein the first polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 87 or 89, or any fragment thereof, or wherein the first polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 87 or 89, or any fragment thereof, or wherein the first polypeptide comprises the amino acid sequence of SEQ ID NO: 87 or 89. [000230] Clause 11. The Cas effector of any one of clauses 1-10, wherein the antibody comprises the amino acid sequence of SEQ ID NO: 81. [000231] Clause 12. The Cas effector of any one of clauses 1-11, wherein the second polypeptide comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or wherein the second polypeptide comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79, or any fragment thereof, or wherein the second polypeptide comprises an amino acid sequence selected from SEQ ID NOs: 69, 71, 73, 75, 77, and 79. [000232] Clause 13. A Cas fusion protein comprising two heterologous polypeptide domains, wherein the first polypeptide domain comprises a Cas protein, and wherein the second polypeptide domain comprises an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, and CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. [000233] Clause 14. The Cas fusion protein of clause 13, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. [000234] Clause 15. The Cas fusion protein of clause 13 or 14, wherein the effector is capable of increasing or decreasing expression of a gene. [000235] Clause 16. The Cas fusion protein of clause 15, wherein the effector reduces expression of a target gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. [000236] Clause 17. The Cas fusion protein of clause 15, wherein the effector increases expression of a target gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. [000237] Clause 18. The Cas fusion protein of any one of clauses 13-17, wherein the second polypeptide domain has transcription repression activity, transcription activation activity, de-ubiquitinase activity, p300 recruitment activity, enhancer looping mediation activity, or a combination thereof. [000238] Clause 19. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the MCRS1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 57 or any fragment thereof, and/or wherein the MCRS1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 57, or any fragment thereof, and/or wherein the MCRS1 comprises the amino acid sequence of SEQ ID NO: 57, and/or wherein the MCRS1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 58, or any fragment thereof, and/or wherein the MCRS1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 58, or any fragment thereof, and/or wherein the MCRS1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 58. [000239] Clause 20. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the OTUD7B comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or wherein the OTUD7B comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, or any fragment thereof, and/or wherein the OTUD7B comprises the amino acid sequence selected from SEQ ID NO: 59, amino acids 167-440 of SEQ ID NO: 59, or amino acids 792-831 of SEQ ID NO: 59, and/or wherein the OTUD7B is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 60, or any fragment thereof, and/or wherein the OTUD7B is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 60, or any fragment thereof, and/or wherein the OTUD7B is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 60. [000240] Clause 21. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the RelB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 65, or any fragment thereof, and/or wherein the RelB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 65, or any fragment thereof, and/or wherein the RelB comprises the amino acid sequence of SEQ ID NO: 65, and/or wherein the RelB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 66 or any fragment thereof, and/or wherein the RelB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 66, or any fragment thereof, and/or wherein the RelB is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 66. [000241] Clause 22. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the LDB1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 61, or any fragment thereof, and/or wherein the LDB1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 61, or any fragment thereof, and/or wherein the LDB1 comprises the amino acid sequence of SEQ ID NO: 61, and/or wherein the LDB1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 62, or any fragment thereof, and/or wherein the LDB1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 62, or any fragment thereof, and/or wherein the LDB1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 62. [000242] Clause 23. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the NFKBIB comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 63, or any fragment thereof, and/or wherein the NFKBIB comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 63, or any fragment thereof, and/or wherein the NFKBIB comprises the amino acid sequence of SEQ ID NO: 63, and/or wherein the NFKBIB is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 64, or any fragment thereof, and/or wherein the NFKBIB is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 64, or any fragment thereof, and/or wherein the NFKBIB is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 64. [000243] Clause 24. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the CITED2 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 67, or any fragment thereof, and/or wherein the CITED2 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 67, or any fragment thereof, and/or wherein the CITED2 comprises the amino acid sequence of SEQ ID NO: 67, and/or wherein the CITED2 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 68, or any fragment thereof, and/or wherein the CITED2 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 68, or any fragment thereof, and/or wherein the CITED2 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 68. [000244] Clause 25. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the PHF15 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 133, or any fragment thereof, and/or wherein the PHF15 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 133, or any fragment thereof, and/or wherein the PHF15 comprises the amino acid sequence of SEQ ID NO: 133, and/or wherein the PHF15 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 134, or any fragment thereof, and/or wherein the PHF15 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 134, or any fragment thereof, and/or wherein the PHF15 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 134. [000245] Clause 26. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the SS18L1 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 149, or any fragment thereof, and/or wherein the SS18L1 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 149, or any fragment thereof, and/or wherein the SS18L1 comprises the amino acid sequence of SEQ ID NO: 149, and/or wherein the SS18L1 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 150, or any fragment thereof, and/or wherein the SS18L1 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 150, or any fragment thereof, and/or wherein the SS18L1 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 150. [000246] Clause 27. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the MLLT6 comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 127, or any fragment thereof, and/or wherein the MLLT6 comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 127, or any fragment thereof, and/or wherein the MLLT6 comprises the amino acid sequence of SEQ ID NO: 127, and/or wherein the MLLT6 is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 128, or any fragment thereof, and/or wherein the MLLT6 is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 128, or any fragment thereof, and/or wherein the MLLT6 is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 128. [000247] Clause 28. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the ASH2L comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 103, or any fragment thereof, and/or wherein the ASH2L comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 103, or any fragment thereof, and/or wherein the ASH2L comprises the amino acid sequence of SEQ ID NO: 103, and/or wherein the ASH2L is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 104, or any fragment thereof, and/or wherein the ASH2L is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 104, or any fragment thereof, and/or wherein the ASH2L is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 104. [000248] Clause 29. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the GSK3A comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 117, or any fragment thereof, and/or wherein the GSK3A comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to SEQ ID NO: 117, or any fragment thereof, and/or wherein the GSK3A comprises the amino acid sequence of SEQ ID NO: 117, and/or wherein the GSK3A is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to SEQ ID NO: 118, or any fragment thereof, and/or wherein the GSK3A is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to SEQ ID NO: 118, or any fragment thereof, and/or wherein the GSK3A is encoded by a polynucleotide comprising the sequence of SEQ ID NO: 118. [000249] Clause 30. The Cas effector of any one of clauses 1-12 or the Cas fusion protein of any one of clauses 13-18, wherein the effector is selected from BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, JAZF1, KAT7, KEAP1, MEAF6, MORF4L2, NFYC, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, and wherein the effector comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, or any fragment thereof, and/or wherein the effector comprises an amino acid sequence selected from SEQ ID NOs: 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 129, 131, 135, 137, 139, 141, 143, 145, 147, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, or 175, , and/or wherein the effector is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176, or any fragment thereof, and/or wherein the effector is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 106, 108, 110, 112, 114, 116, 120, 122, 124, 126, 130, 132, 136, 138, 140, 142, 144, 146, 148, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, or 176. [000250] Clause 31. The Cas effector of any one of clauses 1-12 and 19-31 or the Cas fusion protein of clause any one of clauses 13-31, wherein the Cas protein comprises at least one amino acid mutation that knocks out nuclease activity of the Cas protein. [000251] Clause 32. The Cas effector or the Cas fusion protein of clause 31, wherein the at least one amino acid mutation is at least one of D10A and H840A. [000252] Clause 33. The Cas effector of any one of clauses 1-12 and 19-32 or the Cas fusion protein of any one of clauses 13-32, wherein the Cas protein comprises an amino acid sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 26-29, or any fragment thereof, or wherein the Cas protein comprises an amino acid sequence having one, two, three, four, five or more changes selected from amino acid substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 26-29, or any fragment thereof, or wherein the Cas protein comprises the amino acid sequence of one of SEQ ID NOs: 26-29. [000253] Clause 34. The Cas effector of any one of clauses 1-12 and 19-33 or the Cas fusion protein of any one of clauses 13-33, wherein the Cas protein is encoded by a polynucleotide comprising a sequence having at least 80%, 85%, 90%, 95%, or 98% or greater identity to one of SEQ ID NOs: 30-31, or any fragment thereof, or wherein the Cas protein is encoded by a polynucleotide comprising a sequence having one, two, three, four, five or more changes selected from nucleotide substitutions, insertions, or deletions, relative to one of SEQ ID NOs: 30-31, or any fragment thereof, or wherein the Cas protein is encoded by a polynucleotide comprising the sequence of one of SEQ ID NOs: 30-31. [000254] Clause 35. A DNA targeting composition comprising: the Cas effector of any one of clauses 1-12 and 19-34 or the Cas fusion protein of any one of clauses 13-34; and at least one guide RNA (gRNA) that targets the Cas protein to a target region of a target gene. [000255] Clause 36. The DNA targeting composition of clause 35, wherein the gRNA targets the Cas protein to target region selected from a non-open chromatin region, an open chromatin region, a transcribed region of the target gene, a region upstream of a transcription start site of the target gene, a regulatory element of the target gene, an intron of the target gene, or an exon of the target gene. [000256] Clause 37. The DNA targeting composition of clause 35 or 36, wherein the gRNA targets the Cas protein to a promoter of the target gene. [000257] Clause 38. The DNA targeting composition of any one of clauses 35-37, wherein the target region is located between about 1 to about 1000 base pairs upstream of a transcription start site of the target gene. [000258] Clause 39. The DNA targeting composition of any one of clauses 35-38, wherein the at least one gRNA comprises a sequence selected from SEQ ID NOs: 96-98 and 101- 102, or wherein the at least one gRNA is encoded by a polynucleotide comprising a sequence selected from SEQ ID NOs: 93-95 and 99-100, or wherein the at least one gRNA targets and binds a polynucleotide comprising a sequence selected from SEQ ID NOs: 93- 95 and 99-100 or a complement thereof, or a combination thereof. [000259] Clause 40. The DNA targeting composition of any one of clauses 35-39, wherein the DNA targeting composition comprises two or more gRNAs, each gRNA binding to a different target region. [000260] Clause 41. An isolated polynucleotide sequence encoding the Cas effector of any one of clauses 1-12 and 19-34 or the Cas fusion protein of any one of clauses 13-34, or the DNA targeting composition of any one of clauses 35-40. [000261] Clause 42. A vector comprising: the isolated polynucleotide sequence of clause 41. [000262] Clause 43. The vector of clause 42, wherein the vector is an adeno-associated virus (AAV) vector. [000263] Clause 44. A cell comprising: the Cas effector of any one of clauses 1-12 and 19-34 or the Cas fusion protein of any one of clauses 13-34, or the DNA targeting composition of any one of clauses 35-40, or the isolated polynucleotide sequence of clause 41, or the vector of clause 42 or 43, or a combination thereof. [000264] Clause 45. A pharmaceutical composition comprising: the Cas effector of any one of clauses 1-12 and 19-34 or the Cas fusion protein of any one of clauses 13-34, or the DNA targeting composition of any one of clauses 35-40, or the isolated polynucleotide sequence of clause 41, or the vector of clause 42 or 43, or a combination thereof. [000265] Clause 46. A method of modulating expression of a gene in a cell or in a subject, the method comprising administering to the cell or the subject the DNA targeting composition of any one of clauses 35-40, or the isolated polynucleotide sequence of clause 41, or the vector of clause 42 or 43, or the pharmaceutical composition of clause 45, or a combination thereof. [000266] Clause 47. A method of modulating expression of a gene in a cell or in a subject, the method comprising administering to the cell or the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. [000267] Clause 48. The method of clause 47, wherein the effector is targeted to the gene. [000268] Clause 49. The method of clause 47 or 48, wherein the effector is selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, PHF15, SS18L1, MLLT6, ASH2L, and GSK3A, or a combination thereof. [000269] Clause 50. The method of any one of clauses 47-49, wherein the effector is capable of increasing or decreasing expression of the gene. [000270] Clause 51. The method of clause 50, wherein the effector reduces expression of the gene and is selected from MCRS1, OTUD7B, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof. [000271] Clause 52. The method of clause 50, wherein the effector increases expression of the gene and is selected from RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, and VPS72, or a combination thereof. [000272] Clause 53. The method of any one of clauses 46-50 and 52, wherein the expression of the gene is increased relative to a control. [000273] Clause 54. The method of any one of clauses 46-51, wherein the expression of the gene is decreased relative to a control. [000274] Clause 55. The method of any one of clauses 46-54, wherein the gene comprises the dystrophin gene, the CD25 gene, the B2M gene, or the TRAC gene. [000275] Clause 56. The method of any one of clauses 46-55, wherein the cell is a muscle cell or a T cell. [000276] Clause 57. A method of treating a disease in a subject, the method comprising administering to the subject the DNA targeting composition of any one of clauses 35-40, or the isolated polynucleotide sequence of clause 41, or the vector of clause 42 or 43, or the cell of clause 44, or the pharmaceutical composition of clause 45, or a combination thereof. [000277] Clause 58. A method of treating a disease in a subject, the method comprising administering to the subject an effector selected from MCRS1, OTUD7B, RelB, LDB1, NFKBIB, CITED2, ASH2L, BCL7B, C20orf20, DMAP1, DYRK1B, EAF1, FOXR2, GSK3A, JAZF1, KAT7, KEAP1, MEAF6, MLLT6, MORF4L2, NFYC, PHF15, PKIB, POLE4, PRKRIR, PYGO2, RANBP1, RPRD1B, SPIN1, SS18L1, TADA3, TAF6, TBPL1, VPS72, ZNF133, ZNF140, ZNF169, ZNF254, ZNF566, ZNF585A, ZNF689, ZNF765, and ZNF81, or a combination thereof, or a polynucleotide encoding the effector. [000278] Clause 59. The method of clause 58, wherein the effector is targeted to a gene. [000279] Clause 60. The method of any one of clauses 46-59, wherein the method treats a disease selected from Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and cancer. SEQUENCES SEQ ID NO: 1 NRG (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 2 NGG (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 3 NAG (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 4 NGGNG (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 5 NNAGAAW (W = A or T; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 6 NAAR (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 7 NNGRR (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 8 NNGRRN (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 9 NNGRRT (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 10 NNGRRV (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T; V = A or C or G) SEQ ID NO: 11 NNNNGATT (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 12 NNNNGNNN (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 13 NGA (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 14 NNNRRT (R = A or G; N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 15 ATTCCT SEQ ID NO: 16 NGAN (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 17 NGNG (N can be any nucleotide residue, e.g., any of A, G, C, or T) SEQ ID NO: 18 DNA sequence of the gRNA constant region gtttaagagctatgctggaaacagcatagcaagtttaaataaggctagtccgttatcaac ttgaaaaa gtggcaccgagtcggtgc SEQ ID NO: 19 RNA sequence of the gRNA constant region guuuaagagcuaugcuggaaacagcauagcaaguuuaaauaaggcuaguccguuaucaac uugaaaaa guggcaccgagucggugc SEQ ID NO: 20 SV40 NLS (Pro-Lys-Lys-Lys-Arg-Lys-Val) SEQ ID NO: 21 GS linker (Gly-Gly-Gly-Gly-Ser) n , wherein n is an integer between 0 and 10 SEQ ID NO: 22 Gly-Gly-Gly-Gly-Gly SEQ ID NO: 23 Gly-Gly-Ala-Gly-Gly SEQ ID NO: 24 Gly-Gly-Gly-Gly-Ser-Ser-Ser SEQ ID NO: 25 Gly-Gly-Gly-Gly-Ala-Ala-Ala SEQ ID NO: 26 Streptococcus pyogenes Cas9 MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTA RRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY HEKYPTIY HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF EENPINAS GVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYD DDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDL TLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR KQRTFDNG SIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPW NFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRK PAFLSGEQ KKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEEN EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD KQSGKTIL DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT VKVVDELV KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYL QNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVV KKMKNYWR QLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYD ENDKLIRE VKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD YKVYDVRK MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLS MPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS AGELQKGN ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLS AYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRI DLSQLGGD SEQ ID NO: 27 Staphylococcus aureus Cas9 MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRLKRRR RHRIQRVK KLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHLAKRRGVHNVNEVEEDT GNELSTKE QISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQS FIDTYIDL LETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNN LVITRDEN EKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEFTNLKVYHDI KDITARKE IIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAI NLILDELW HTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKVINAIIKKY GLPNDIII ELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYLIEKIKLHDMQEGKCLY SLEAIPLE DLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETF KKHILNLA KGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYFRVNNLDVK VKSINGGF TSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKAKKVMENQMFEEKQAES MPEIETEQ EYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGL YDKDNDKL KKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPV IKKIKYYG NKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNS KCYEEAKK LKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKR PPRIIKTI ASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG SEQ ID NO: 28 Streptococcus pyogenes Cas9 (with D10A) MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTA RRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY HEKYPTIY HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF EENPINAS GVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYD DDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDL TLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR KQRTFDNG SIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPW NFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRK PAFLSGEQ KKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEEN EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD KQSGKTIL DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT VKVVDELV KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYL QNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVV KKMKNYWR QLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYD ENDKLIRE VKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD YKVYDVRK MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLS MPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS AGELQKGN ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLS AYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRI DLSQLGGD SEQ ID NO: 29 Streptococcus pyogenes Cas9 (with D10A, H840A) MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE ATRLKRTA RRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAY HEKYPTIY HLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF EENPINAS GVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL QLSKDTYD DDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDL TLLKALVR QQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLR KQRTFDNG SIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRK SEETITPW NFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRK PAFLSGEQ KKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDK DFLDNEEN EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRD KQSGKTIL DFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQT VKVVDELV KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQN EKLYLYYL QNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVV KKMKNYWR QLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYD ENDKLIRE VKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD YKVYDVRK MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDF ATVRKVLS MPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK VEKGKSKK LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLAS AGELQKGN ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILAD ANLDKVLS AYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSI TGLYETRI DLSQLGGD SEQ ID NO: 30 Polynucleotide sequence of D10A mutant of S. aureus Cas9 atgaaaagga actacattct ggggctggcc atcgggatta caagcgtggg gtatgggatt attgactatg aaacaaggga cgtgatcgac gcaggcgtca gactgttcaa ggaggccaac gtggaaaaca atgagggacg gagaagcaag aggggagcca ggcgcctgaa acgacggaga aggcacagaa tccagagggt gaagaaactg ctgttcgatt acaacctgct gaccgaccat tctgagctga gtggaattaa tccttatgaa gccagggtga aaggcctgag tcagaagctg tcagaggaag agttttccgc agctctgctg cacctggcta agcgccgagg agtgcataac gtcaatgagg tggaagagga caccggcaac gagctgtcta caaaggaaca gatctcacgc aatagcaaag ctctggaaga gaagtatgtc gcagagctgc agctggaacg gctgaagaaa gatggcgagg tgagagggtc aattaatagg ttcaagacaa gcgactacgt caaagaagcc aagcagctgc tgaaagtgca gaaggcttac caccagctgg atcagagctt catcgatact tatatcgacc tgctggagac tcggagaacc tactatgagg gaccaggaga agggagcccc ttcggatgga aagacatcaa ggaatggtac gagatgctga tgggacattg cacctatttt ccagaagagc tgagaagcgt caagtacgct tataacgcag atctgtacaa cgccctgaat gacctgaaca acctggtcat caccagggat gaaaacgaga aactggaata ctatgagaag ttccagatca tcgaaaacgt gtttaagcag aagaaaaagc ctacactgaa acagattgct aaggagatcc tggtcaacga agaggacatc aagggctacc gggtgacaag cactggaaaa ccagagttca ccaatctgaa agtgtatcac gatattaagg acatcacagc acggaaagaa atcattgaga acgccgaact gctggatcag attgctaaga tcctgactat ctaccagagc tccgaggaca tccaggaaga gctgactaac ctgaacagcg agctgaccca ggaagagatc gaacagatta gtaatctgaa ggggtacacc ggaacacaca acctgtccct gaaagctatc aatctgattc tggatgagct gtggcataca aacgacaatc agattgcaat ctttaaccgg ctgaagctgg tcccaaaaaa ggtggacctg agtcagcaga aagagatccc aaccacactg gtggacgatt tcattctgtc acccgtggtc aagcggagct tcatccagag catcaaagtg atcaacgcca tcatcaagaa gtacggcctg cccaatgata tcattatcga gctggctagg gagaagaaca gcaaggacgc acagaagatg atcaatgaga tgcagaaacg aaaccggcag accaatgaac gcattgaaga gattatccga actaccggga aagagaacgc aaagtacctg attgaaaaaa tcaagctgca cgatatgcag gagggaaagt gtctgtattc tctggaggcc atccccctgg aggacctgct gaacaatcca ttcaactacg aggtcgatca tattatcccc agaagcgtgt ccttcgacaa ttcctttaac aacaaggtgc tggtcaagca ggaagagaac tctaaaaagg gcaataggac tcctttccag tacctgtcta gttcagattc caagatctct tacgaaacct ttaaaaagca cattctgaat ctggccaaag gaaagggccg catcagcaag accaaaaagg agtacctgct ggaagagcgg gacatcaaca gattctccgt ccagaaggat tttattaacc ggaatctggt ggacacaaga tacgctactc gcggcctgat gaatctgctg cgatcctatt tccgggtgaa caatctggat gtgaaagtca agtccatcaa cggcgggttc acatcttttc tgaggcgcaa atggaagttt aaaaaggagc gcaacaaagg gtacaagcac catgccgaag atgctctgat tatcgcaaat gccgacttca tctttaagga gtggaaaaag ctggacaaag ccaagaaagt gatggagaac cagatgttcg aagagaagca ggccgaatct atgcccgaaa tcgagacaga acaggagtac aaggagattt tcatcactcc tcaccagatc aagcatatca aggatttcaa ggactacaag tactctcacc gggtggataa aaagcccaac agagagctga tcaatgacac cctgtatagt acaagaaaag acgataaggg gaataccctg attgtgaaca atctgaacgg actgtacgac aaagataatg acaagctgaa aaagctgatc aacaaaagtc ccgagaagct gctgatgtac caccatgatc ctcagacata tcagaaactg aagctgatta tggagcagta cggcgacgag aagaacccac tgtataagta ctatgaagag actgggaact acctgaccaa gtatagcaaa aaggataatg gccccgtgat caagaagatc aagtactatg ggaacaagct gaatgcccat ctggacatca cagacgatta ccctaacagt cgcaacaagg tggtcaagct gtcactgaag ccatacagat tcgatgtcta tctggacaac ggcgtgtata aatttgtgac tgtcaagaat ctggatgtca tcaaaaagga gaactactat gaagtgaata gcaagtgcta cgaagaggct aaaaagctga aaaagattag caaccaggca gagttcatcg cctcctttta caacaacgac ctgattaaga tcaatggcga actgtatagg gtcatcgggg tgaacaatga tctgctgaac cgcattgaag tgaatatgat tgacatcact taccgagagt atctggaaaa catgaatgat aagcgccccc ctcgaattat caaaacaatt gcctctaaga ctcagagtat caaaaagtac tcaaccgaca ttctgggaaa cctgtatgag gtgaagagca aaaagcaccc tcagattatc aaaaagggc SEQ ID NO: 31 Polynucleotide sequence of N580A mutant of S. aureus Cas9 atgaaaagga actacattct ggggctggac atcgggatta caagcgtggg gtatgggatt attgactatg aaacaaggga cgtgatcgac gcaggcgtca gactgttcaa ggaggccaac gtggaaaaca atgagggacg gagaagcaag aggggagcca ggcgcctgaa acgacggaga aggcacagaa tccagagggt gaagaaactg ctgttcgatt acaacctgct gaccgaccat tctgagctga gtggaattaa tccttatgaa gccagggtga aaggcctgag tcagaagctg tcagaggaag agttttccgc agctctgctg cacctggcta agcgccgagg agtgcataac gtcaatgagg tggaagagga caccggcaac gagctgtcta caaaggaaca gatctcacgc aatagcaaag ctctggaaga gaagtatgtc gcagagctgc agctggaacg gctgaagaaa gatggcgagg tgagagggtc aattaatagg ttcaagacaa gcgactacgt caaagaagcc aagcagctgc tgaaagtgca gaaggcttac caccagctgg atcagagctt catcgatact tatatcgacc tgctggagac tcggagaacc tactatgagg gaccaggaga agggagcccc ttcggatgga aagacatcaa ggaatggtac gagatgctga tgggacattg cacctatttt ccagaagagc tgagaagcgt caagtacgct tataacgcag atctgtacaa cgccctgaat gacctgaaca acctggtcat caccagggat gaaaacgaga aactggaata ctatgagaag ttccagatca tcgaaaacgt gtttaagcag aagaaaaagc ctacactgaa acagattgct aaggagatcc tggtcaacga agaggacatc aagggctacc gggtgacaag cactggaaaa ccagagttca ccaatctgaa agtgtatcac gatattaagg acatcacagc acggaaagaa atcattgaga acgccgaact gctggatcag attgctaaga tcctgactat ctaccagagc tccgaggaca tccaggaaga gctgactaac ctgaacagcg agctgaccca ggaagagatc gaacagatta gtaatctgaa ggggtacacc ggaacacaca acctgtccct gaaagctatc aatctgattc tggatgagct gtggcataca aacgacaatc agattgcaat ctttaaccgg ctgaagctgg tcccaaaaaa ggtggacctg agtcagcaga aagagatccc aaccacactg gtggacgatt tcattctgtc acccgtggtc aagcggagct tcatccagag catcaaagtg atcaacgcca tcatcaagaa gtacggcctg cccaatgata tcattatcga gctggctagg gagaagaaca gcaaggacgc acagaagatg atcaatgaga tgcagaaacg aaaccggcag accaatgaac gcattgaaga gattatccga actaccggga aagagaacgc aaagtacctg attgaaaaaa tcaagctgca cgatatgcag gagggaaagt gtctgtattc tctggaggcc atccccctgg aggacctgct gaacaatcca ttcaactacg aggtcgatca tattatcccc agaagcgtgt ccttcgacaa ttcctttaac aacaaggtgc tggtcaagca ggaagaggcc tctaaaaagg gcaataggac tcctttccag tacctgtcta gttcagattc caagatctct tacgaaacct ttaaaaagca cattctgaat ctggccaaag gaaagggccg catcagcaag accaaaaagg agtacctgct ggaagagcgg gacatcaaca gattctccgt ccagaaggat tttattaacc ggaatctggt ggacacaaga tacgctactc gcggcctgat gaatctgctg cgatcctatt tccgggtgaa caatctggat gtgaaagtca agtccatcaa cggcgggttc acatcttttc tgaggcgcaa atggaagttt aaaaaggagc gcaacaaagg gtacaagcac catgccgaag atgctctgat tatcgcaaat gccgacttca tctttaagga gtggaaaaag ctggacaaag ccaagaaagt gatggagaac cagatgttcg aagagaagca ggccgaatct atgcccgaaa tcgagacaga acaggagtac aaggagattt tcatcactcc tcaccagatc aagcatatca aggatttcaa ggactacaag tactctcacc gggtggataa aaagcccaac agagagctga tcaatgacac cctgtatagt acaagaaaag acgataaggg gaataccctg attgtgaaca atctgaacgg actgtacgac aaagataatg acaagctgaa aaagctgatc aacaaaagtc ccgagaagct gctgatgtac caccatgatc ctcagacata tcagaaactg aagctgatta tggagcagta cggcgacgag aagaacccac tgtataagta ctatgaagag actgggaact acctgaccaa gtatagcaaa aaggataatg gccccgtgat caagaagatc aagtactatg ggaacaagct gaatgcccat ctggacatca cagacgatta ccctaacagt cgcaacaagg tggtcaagct gtcactgaag ccatacagat tcgatgtcta tctggacaac ggcgtgtata aatttgtgac tgtcaagaat ctggatgtca tcaaaaagga gaactactat gaagtgaata gcaagtgcta cgaagaggct aaaaagctga aaaagattag caaccaggca gagttcatcg cctcctttta caacaacgac ctgattaaga tcaatggcga actgtatagg gtcatcgggg tgaacaatga tctgctgaac cgcattgaag tgaatatgat tgacatcact taccgagagt atctggaaaa catgaatgat aagcgccccc ctcgaattat caaaacaatt gcctctaaga ctcagagtat caaaaagtac tcaaccgaca ttctgggaaa cctgtatgag gtgaagagca aaaagcaccc tcagattatc aaaaagggc SEQ ID NO: 32 codon optimized polynucleotide encoding S. pyogenes Cas9 atggataaaa agtacagcat cgggctggac atcggtacaa actcagtggg gtgggccgtg attacggacg agtacaaggt accctccaaa aaatttaaag tgctgggtaa cacggacaga cactctataa agaaaaatct tattggagcc ttgctgttcg actcaggcga gacagccgaa gccacaaggt tgaagcggac cgccaggagg cggtatacca ggagaaagaa ccgcatatgc tacctgcaag aaatcttcag taacgagatg gcaaaggttg acgatagctt tttccatcgc ctggaagaat cctttcttgt tgaggaagac aagaagcacg aacggcaccc catctttggc aatattgtcg acgaagtggc atatcacgaa aagtacccga ctatctacca cctcaggaag aagctggtgg actctaccga taaggcggac ctcagactta tttatttggc actcgcccac atgattaaat ttagaggaca tttcttgatc gagggcgacc tgaacccgga caacagtgac gtcgataagc tgttcatcca acttgtgcag acctacaatc aactgttcga agaaaaccct ataaatgctt caggagtcga cgctaaagca atcctgtccg cgcgcctctc aaaatctaga agacttgaga atctgattgc tcagttgccc ggggaaaaga aaaatggatt gtttggcaac ctgatcgccc tcagtctcgg actgacccca aatttcaaaa gtaacttcga cctggccgaa gacgctaagc tccagctgtc caaggacaca tacgatgacg acctcgacaa tctgctggcc cagattgggg atcagtacgc cgatctcttt ttggcagcaa agaacctgtc cgacgccatc ctgttgagcg atatcttgag agtgaacacc gaaattacta aagcacccct tagcgcatct atgatcaagc ggtacgacga gcatcatcag gatctgaccc tgctgaaggc tcttgtgagg caacagctcc ccgaaaaata caaggaaatc ttctttgacc agagcaaaaa cggctacgct ggctatatag atggtggggc cagtcaggag gaattctata aattcatcaa gcccattctc gagaaaatgg acggcacaga ggagttgctg gtcaaactta acagggagga cctgctgcgg aagcagcgga cctttgacaa cgggtctatc ccccaccaga ttcatctggg cgaactgcac gcaatcctga ggaggcagga ggatttttat ccttttctta aagataaccg cgagaaaata gaaaagattc ttacattcag gatcccgtac tacgtgggac ctctcgcccg gggcaattca cggtttgcct ggatgacaag gaagtcagag gagactatta caccttggaa cttcgaagaa gtggtggaca agggtgcatc tgcccagtct ttcatcgagc ggatgacaaa ttttgacaag aacctcccta atgagaaggt gctgcccaaa cattctctgc tctacgagta ctttaccgtc tacaatgaac tgactaaagt caagtacgtc accgagggaa tgaggaagcc ggcattcctt agtggagaac agaagaaggc gattgtagac ctgttgttca agaccaacag gaaggtgact gtgaagcaac ttaaagaaga ctactttaag aagatcgaat gttttgacag tgtggaaatt tcaggggttg aagaccgctt caatgcgtca ttggggactt accatgatct tctcaagatc ataaaggaca aagacttcct ggacaacgaa gaaaatgagg atattctcga agacatcgtc ctcaccctga ccctgttcga agacagggaa atgatagaag agcgcttgaa aacctatgcc cacctcttcg acgataaagt tatgaagcag ctgaagcgca ggagatacac aggatgggga agattgtcaa ggaagctgat caatggaatt agggataaac agagtggcaa gaccatactg gatttcctca aatctgatgg cttcgccaat aggaacttca tgcaactgat tcacgatgac tctcttacct tcaaggagga cattcaaaag gctcaggtga gcgggcaggg agactccctt catgaacaca tcgcgaattt ggcaggttcc cccgctatta aaaagggcat ccttcaaact gtcaaggtgg tggatgaatt ggtcaaggta atgggcagac ataagccaga aaatattgtg atcgagatgg cccgcgaaaa ccagaccaca cagaagggcc agaaaaatag tagagagcgg atgaagagga tcgaggaggg catcaaagag ctgggatctc agattctcaa agaacacccc gtagaaaaca cacagctgca gaacgaaaaa ttgtacttgt actatctgca gaacggcaga gacatgtacg tcgaccaaga acttgatatt aatagactgt ccgactatga cgtagaccat atcgtgcccc agtccttcct gaaggacgac tccattgata acaaagtctt gacaagaagc gacaagaaca ggggtaaaag tgataatgtg cctagcgagg aggtggtgaa aaaaatgaag aactactggc gacagctgct taatgcaaag ctcattacac aacggaagtt cgataatctg acgaaagcag agagaggtgg cttgtctgag ttggacaagg cagggtttat taagcggcag ctggtggaaa ctaggcagat cacaaagcac gtggcgcaga ttttggacag ccggatgaac acaaaatacg acgaaaatga taaactgata cgagaggtca aagttatcac gctgaaaagc aagctggtgt ccgattttcg gaaagacttc cagttctaca aagttcgcga gattaataac taccatcatg ctcacgatgc gtacctgaac gctgttgtcg ggaccgcctt gataaagaag tacccaaagc tggaatccga gttcgtatac ggggattaca aagtgtacga tgtgaggaaa atgatagcca agtccgagca ggagattgga aaggccacag ctaagtactt cttttattct aacatcatga atttttttaa gacggaaatt accctggcca acggagagat cagaaagcgg ccccttatag agacaaatgg tgaaacaggt gaaatcgtct gggataaggg cagggatttc gctactgtga ggaaggtgct gagtatgcca caggtaaata tcgtgaaaaa aaccgaagta cagaccggag gattttccaa ggaaagcatt ttgcctaaaa gaaactcaga caagctcatc gcccgcaaga aagattggga ccctaagaaa tacgggggat ttgactcacc caccgtagcc tattctgtgc tggtggtagc taaggtggaa aaaggaaagt ctaagaagct gaagtccgtg aaggaactct tgggaatcac tatcatggaa agatcatcct ttgaaaagaa ccctatcgat ttcctggagg ctaagggtta caaggaggtc aagaaagacc tcatcattaa actgccaaaa tactctctct tcgagctgga aaatggcagg aagagaatgt tggccagcgc cggagagctg caaaagggaa acgagcttgc tctgccctcc aaatatgtta attttctcta tctcgcttcc cactatgaaa agctgaaagg gtctcccgaa gataacgagc agaagcagct gttcgtcgaa cagcacaagc actatctgga tgaaataatc gaacaaataa gcgagttcag caaaagggtt atcctggcgg atgctaattt ggacaaagta ctgtctgctt ataacaagca ccgggataag cctattaggg aacaagccga gaatataatt cacctcttta cactcacgaa tctcggagcc cccgccgcct tcaaatactt tgatacgact atcgaccgga aacggtatac cagtaccaaa gaggtcctcg atgccaccct catccaccag tcaattactg gcctgtacga aacacggatc gacctctctc aactgggcgg cgactag SEQ ID NO: 33 codon optimized nucleic acid sequences encoding S. aureus Cas9 atgaaaagga actacattct ggggctggac atcgggatta caagcgtggg gtatgggatt attgactatg aaacaaggga cgtgatcgac gcaggcgtca gactgttcaa ggaggccaac gtggaaaaca atgagggacg gagaagcaag aggggagcca ggcgcctgaa acgacggaga aggcacagaa tccagagggt gaagaaactg ctgttcgatt acaacctgct gaccgaccat tctgagctga gtggaattaa tccttatgaa gccagggtga aaggcctgag tcagaagctg tcagaggaag agttttccgc agctctgctg cacctggcta agcgccgagg agtgcataac gtcaatgagg tggaagagga caccggcaac gagctgtcta caaaggaaca gatctcacgc aatagcaaag ctctggaaga gaagtatgtc gcagagctgc agctggaacg gctgaagaaa gatggcgagg tgagagggtc aattaatagg ttcaagacaa gcgactacgt caaagaagcc aagcagctgc tgaaagtgca gaaggcttac caccagctgg atcagagctt catcgatact tatatcgacc tgctggagac tcggagaacc tactatgagg gaccaggaga agggagcccc ttcggatgga aagacatcaa ggaatggtac gagatgctga tgggacattg cacctatttt ccagaagagc tgagaagcgt caagtacgct tataacgcag atctgtacaa cgccctgaat gacctgaaca acctggtcat caccagggat gaaaacgaga aactggaata ctatgagaag ttccagatca tcgaaaacgt gtttaagcag aagaaaaagc ctacactgaa acagattgct aaggagatcc tggtcaacga agaggacatc aagggctacc gggtgacaag cactggaaaa ccagagttca ccaatctgaa agtgtatcac gatattaagg acatcacagc acggaaagaa atcattgaga acgccgaact gctggatcag attgctaaga tcctgactat ctaccagagc tccgaggaca tccaggaaga gctgactaac ctgaacagcg agctgaccca ggaagagatc gaacagatta gtaatctgaa ggggtacacc ggaacacaca acctgtccct gaaagctatc aatctgattc tggatgagct gtggcataca aacgacaatc agattgcaat ctttaaccgg ctgaagctgg tcccaaaaaa ggtggacctg agtcagcaga aagagatccc aaccacactg gtggacgatt tcattctgtc acccgtggtc aagcggagct tcatccagag catcaaagtg atcaacgcca tcatcaagaa gtacggcctg cccaatgata tcattatcga gctggctagg gagaagaaca gcaaggacgc acagaagatg atcaatgaga tgcagaaacg aaaccggcag accaatgaac gcattgaaga gattatccga actaccggga aagagaacgc aaagtacctg attgaaaaaa tcaagctgca cgatatgcag gagggaaagt gtctgtattc tctggaggcc tccccctgg aggacctgct gaacaatcca ttcaactacg aggtcgatca tattatcccc agaagcgtgt ccttcgacaa ttcctttaac aacaaggtgc tggtcaagca ggaagagaac tctaaaaagg gcaataggac tcctttccag tacctgtcta gttcagattc caagatctct tacgaaacct ttaaaaagca cattctgaat ctggccaaag gaaagggccg catcagcaag accaaaaagg agtacctgct ggaagagcgg gacatcaaca gattctccgt ccagaaggat tttattaacc ggaatctggt ggacacaaga tacgctactc gcggcctgat gaatctgctg cgatcctatt tccgggtgaa caatctggat gtgaaagtca agtccatcaa cggcgggttc acatcttttc tgaggcgcaa atggaagttt aaaaaggagc gcaacaaagg gtacaagcac catgccgaag atgctctgat tatcgcaaat gccgacttca tctttaagga gtggaaaaag ctggacaaag ccaagaaagt gatggagaac cagatgttcg aagagaagca ggccgaatct atgcccgaaa tcgagacaga acaggagtac aaggagattt tcatcactcc tcaccagatc aagcatatca aggatttcaa ggactacaag tactctcacc gggtggataa aaagcccaac agagagctga tcaatgacac cctgtatagt acaagaaaag acgataaggg gaataccctg attgtgaaca atctgaacgg actgtacgac aaagataatg acaagctgaa aaagctgatc aacaaaagtc ccgagaagct gctgatgtac caccatgatc ctcagacata tcagaaactg aagctgatta tggagcagta cggcgacgag aagaacccac tgtataagta ctatgaagag actgggaact acctgaccaa gtatagcaaa aaggataatg gccccgtgat caagaagatc aagtactatg ggaacaagct gaatgcccat ctggacatca cagacgatta ccctaacagt cgcaacaagg tggtcaagct gtcactgaag ccatacagat tcgatgtcta tctggacaac ggcgtgtata aatttgtgac tgtcaagaat ctggatgtca tcaaaaagga gaactactat gaagtgaata gcaagtgcta cgaagaggct aaaaagctga aaaagattag caaccaggca gagttcatcg cctcctttta caacaacgac ctgattaaga tcaatggcga actgtatagg gtcatcgggg tgaacaatga tctgctgaac cgcattgaag tgaatatgat tgacatcact taccgagagt atctggaaaa catgaatgat aagcgccccc ctcgaattat caaaacaatt gcctctaaga ctcagagtat caaaaagtac tcaaccgaca ttctgggaaa cctgtatgag gtgaagagca aaaagcaccc tcagattatc aaaaagggc SEQ ID NO: 34 codon optimized nucleic acid sequences encoding S. aureus Cas9 atgaagcgga actacatcct gggcctggac atcggcatca ccagcgtggg ctacggcatc atcgactacg agacacggga cgtgatcgat gccggcgtgc ggctgttcaa agaggccaac gtggaaaaca acgagggcag gcggagcaag agaggcgcca gaaggctgaa gcggcggagg cggcatagaa tccagagagt gaagaagctg ctgttcgact acaacctgct gaccgaccac agcgagctga gcggcatcaa cccctacgag gccagagtga agggcctgag ccagaagctg agcgaggaag agttctctgc cgccctgctg cacctggcca agagaagagg cgtgcacaac gtgaacgagg tggaagagga caccggcaac gagctgtcca ccaaagagca gatcagccgg aacagcaagg ccctggaaga gaaatacgtg gccgaactgc agctggaacg gctgaagaaa gacggcgaag tgcggggcag catcaacaga ttcaagacca gcgactacgt gaaagaagcc aaacagctgc tgaaggtgca gaaggcctac caccagctgg accagagctt catcgacacc tacatcgacc tgctggaaac ccggcggacc tactatgagg gacctggcga gggcagcccc ttcggctgga aggacatcaa agaatggtac gagatgctga tgggccactg cacctacttc cccgaggaac tgcggagcgt gaagtacgcc tacaacgccg acctgtacaa cgccctgaac gacctgaaca atctcgtgat caccagggac gagaacgaga agctggaata ttacgagaag ttccagatca tcgagaacgt gttcaagcag aagaagaagc ccaccctgaa gcagatcgcc aaagaaatcc tcgtgaacga agaggatatt aagggctaca gagtgaccag caccggcaag cccgagttca ccaacctgaa ggtgtaccac gacatcaagg acattaccgc ccggaaagag attattgaga acgccgagct gctggatcag attgccaaga tcctgaccat ctaccagagc agcgaggaca tccaggaaga actgaccaat ctgaactccg agctgaccca ggaagagatc gagcagatct ctaatctgaa gggctatacc ggcacccaca acctgagcct gaaggccatc aacctgatcc tggacgagct gtggcacacc aacgacaacc agatcgctat cttcaaccgg ctgaagctgg tgcccaagaa ggtggacctg tcccagcaga aagagatccc caccaccctg gtggacgact tcatcctgag ccccgtcgtg aagagaagct tcatccagag catcaaagtg atcaacgcca tcatcaagaa gtacggcctg cccaacgaca tcattatcga gctggcccgc gagaagaact ccaaggacgc ccagaaaatg atcaacgaga tgcagaagcg gaaccggcag accaacgagc ggatcgagga aatcatccgg accaccggca aagagaacgc caagtacctg atcgagaaga tcaagctgca cgacatgcag gaaggcaagt gcctgtacag cctggaagcc atccctctgg aagatctgct gaacaacccc ttcaactatg aggtggacca catcatcccc agaagcgtgt ccttcgacaa cagcttcaac aacaaggtgc tcgtgaagca ggaagaaaac agcaagaagg gcaaccggac cccattccag tacctgagca gcagcgacag caagatcagc tacgaaacct tcaagaagca catcctgaat ctggccaagg gcaagggcag aatcagcaag accaagaaag agtatctgct ggaagaacgg gacatcaaca ggttctccgt gcagaaagac ttcatcaacc ggaacctggt ggataccaga tacgccacca gaggcctgat gaacctgctg cggagctact tcagagtgaa caacctggac gtgaaagtga agtccatcaa tggcggcttc accagctttc tgcggcggaa gtggaagttt aagaaagagc ggaacaaggg gtacaagcac cacgccgagg acgccctgat cattgccaac gccgatttca tcttcaaaga gtggaagaaa ctggacaagg ccaaaaaagt gatggaaaac cagatgttcg aggaaaagca ggccgagagc atgcccgaga tcgaaaccga gcaggagtac aaagagatct tcatcacccc ccaccagatc aagcacatta aggacttcaa ggactacaag tacagccacc gggtggacaa gaagcctaat agagagctga ttaacgacac cctgtactcc acccggaagg acgacaaggg caacaccctg atcgtgaaca atctgaacgg cctgtacgac aaggacaatg acaagctgaa aaagctgatc aacaagagcc ccgaaaagct gctgatgtac caccacgacc cccagaccta ccagaaactg aagctgatta tggaacagta cggcgacgag aagaatcccc tgtacaagta ctacgaggaa accgggaact acctgaccaa gtactccaaa aaggacaacg gccccgtgat caagaagatt aagtattacg gcaacaaact gaacgcccat ctggacatca ccgacgacta ccccaacagc agaaacaagg tcgtgaagct gtccctgaag ccctacagat tcgacgtgta cctggacaat ggcgtgtaca agttcgtgac cgtgaagaat ctggatgtga tcaaaaaaga aaactactac gaagtgaata gcaagtgcta tgaggaagct aagaagctga agaagatcag caaccaggcc gagtttatcg cctccttcta caacaacgat ctgatcaaga tcaacggcga gctgtataga gtgatcggcg tgaacaacga cctgctgaac cggatcgaag tgaacatgat cgacatcacc taccgcgagt acctggaaaa catgaacgac aagaggcccc ccaggatcat taagacaatc gcctccaaga cccagagcat taagaagtac agcacagaca ttctgggcaa cctgtatgaa gtgaaatcta agaagcaccc tcagatcatc aaaaagggc SEQ ID NO: 35 codon optimized nucleic acid sequence encoding S. aureus Cas9 atgaagcgca actacatcct cggactggac atcggcatta cctccgtggg atacggcatc atcgattacg aaactaggga tgtgatcgac gctggagtca ggctgttcaa agaggcgaac gtggagaaca acgaggggcg gcgctcaaag aggggggccc gccggctgaa gcgccgccgc agacatagaa tccagcgcgt gaagaagctg ctgttcgact acaaccttct gaccgaccac tccgaacttt ccggcatcaa cccatatgag gctagagtga agggattgtc ccaaaagctg tccgaggaag agttctccgc cgcgttgctc cacctcgcca agcgcagggg agtgcacaat gtgaacgaag tggaagaaga taccggaaac gagctgtcca ccaaggagca gatcagccgg aactccaagg ccctggaaga gaaatacgtg gcggaactgc aactggagcg gctgaagaaa gacggagaag tgcgcggctc gatcaaccgc ttcaagacct cggactacgt gaaggaggcc aagcagctcc tgaaagtgca aaaggcctat caccaacttg accagtcctt tatcgatacc tacatcgatc tgctcgagac tcggcggact tactacgagg gtccagggga gggctcccca tttggttgga aggatattaa ggagtggtac gaaatgctga tgggacactg cacatacttc cctgaggagc tgcggagcgt gaaatacgca tacaacgcag acctgtacaa cgcgctgaac gacctgaaca atctcgtgat cacccgggac gagaacgaaa agctcgagta ttacgaaaag ttccagatta ttgagaacgt gttcaaacag aagaagaagc cgacactgaa gcagattgcc aaggaaatcc tcgtgaacga agaggacatc aagggctatc gagtgacctc aacgggaaag ccggagttca ccaatctgaa ggtctaccac gacatcaaag acattaccgc ccggaaggag atcattgaga acgcggagct gttggaccag attgcgaaga ttctgaccat ctaccaatcc tccgaggata ttcaggaaga actcaccaac ctcaacagcg aactgaccca ggaggagata gagcaaatct ccaacctgaa gggctacacc ggaactcata acctgagcct gaaggccatc aacttgatcc tggacgagct gtggcacacc aacgataacc agatcgctat tttcaatcgg ctgaagctgg tccccaagaa agtggacctc tcacaacaaa aggagatccc tactaccctt gtggacgatt tcattctgtc ccccgtggtc aagagaagct tcatacagtc aatcaaagtg atcaatgcca ttatcaagaa atacggtctg cccaacgaca ttatcattga gctcgcccgc gagaagaact cgaaggacgc ccagaagatg attaacgaaa tgcagaagag gaaccgacag actaacgaac ggatcgaaga aatcatccgg accaccggga aggaaaacgc gaagtacctg atcgaaaaga tcaagctcca tgacatgcag gaaggaaagt gtctgtactc gctggaggcc attccgctgg aggacttgct gaacaaccct tttaactacg aagtggatca tatcattccg aggagcgtgt cattcgacaa ttccttcaac aacaaggtcc tcgtgaagca ggaggaaaac tcgaagaagg gaaaccgcac gccgttccag tacctgagca gcagcgactc caagatttcc tacgaaacct tcaagaagca catcctcaac ctggcaaagg ggaagggtcg catctccaag accaagaagg aatatctgct ggaagaaaga gacatcaaca gattctccgt gcaaaaggac ttcatcaacc gcaacctcgt ggatactaga tacgctactc ggggtctgat gaacctcctg agaagctact ttagagtgaa caatctggac gtgaaggtca agtcgattaa cggaggtttc acctccttcc tgcggcgcaa gtggaagttc aagaaggaac ggaacaaggg ctacaagcac cacgccgagg acgccctgat cattgccaac gccgacttca tcttcaaaga atggaagaaa cttgacaagg ctaagaaggt catggaaaac cagatgttcg aagaaaagca ggccgagtct atgcctgaaa tcgagactga acaggagtac aaggaaatct ttattacgcc acaccagatc aaacacatca aggatttcaa ggattacaag tactcacatc gcgtggacaa aaagccgaac agggaactga tcaacgacac cctctactcc acccggaagg atgacaaagg gaataccctc atcgtcaaca accttaacgg cctgtacgac aaggacaacg ataagctgaa gaagctcatt aacaagtcgc ccgaaaagtt gctgatgtac caccacgacc ctcagactta ccagaagctc aagctgatca tggagcagta tggggacgag aaaaacccgt tgtacaagta ctacgaagaa actgggaatt atctgactaa gtactccaag aaagataacg gccccgtgat taagaagatt aagtactacg gcaacaagct gaacgcccat ctggacatca ccgatgacta ccctaattcc cgcaacaagg tcgtcaagct gagcctcaag ccctaccggt ttgatgtgta ccttgacaat ggagtgtaca agttcgtgac tgtgaagaac cttgacgtga tcaagaagga gaactactac gaagtcaact ccaagtgcta cgaggaagca aagaagttga agaagatctc gaaccaggcc gagttcattg cctccttcta taacaacgac ctgattaaga tcaacggcga actgtaccgc gtcattggcg tgaacaacga tctcctgaac cgcatcgaag tgaacatgat cgacatcact taccgggaat acctggagaa tatgaacgac aagcgcccgc cccggatcat taagactatc gcctcaaaga cccagtcgat caagaagtac agcaccgaca tcctgggcaa cctgtacgag gtcaaatcga agaagcaccc ccagatcatc aagaaggga SEQ ID NO: 36 codon optimized nucleic acid sequence encoding S. aureus Cas9 atggccccaaagaagaagcggaaggtcggtatccacggagtcccagcagccaagcggaac tacatcct gggcctggacatcggcatcaccagcgtgggctacggcatcatcgactacgagacacggga cgtgatcg atgccggcgtgcggctgttcaaagaggccaacgtggaaaacaacgagggcaggcggagca agagaggc gccagaaggctgaagcggcggaggcggcatagaatccagagagtgaagaagctgctgttc gactacaa cctgctgaccgaccacagcgagctgagcggcatcaacccctacgaggccagagtgaaggg cctgagcc agaagctgagcgaggaagagttctctgccgccctgctgcacctggccaagagaagaggcg tgcacaac gtgaacgaggtggaagaggacaccggcaacgagctgtccaccagagagcagatcagccgg aacagcaa ggccctggaagagaaatacgtggccgaactgcagctggaacggctgaagaaagacggcga agtgcggg gcagcatcaacagattcaagaccagcgactacgtgaaagaagccaaacagctgctgaagg tgcagaag gcctaccaccagctggaccagagcttcatcgacacctacatcgacctgctggaaacccgg cggaccta ctatgagggacctggcgagggcagccccttcggctggaaggacatcaaagaatggtacga gatgctga tgggccactgcacctacttccccgaggaactgcggagcgtgaagtacgcctacaacgccg acctgtac aacgccctgaacgacctgaacaatctcgtgatcaccagggacgagaacgagaagctggaa tattacga gaagttccagatcatcgagaacgtgttcaagcagaagaagaagcccaccctgaagcagat cgccaaag aaatcctcgtgaacgaagaggatattaagggctacagagtgaccagcaccggcaagcccg agttcacc aacctgaaggtgtaccacgacatcaaggacattaccgcccggaaagagattattgagaac gccgagct gctggatcagattgccaagatcctgaccatctaccagagcagcgaggacatccaggaaga actgacca atctgaactccgagctgacccaggaagagatcgagcagatctctaatctgaagggctata ccggcacc cacaacctgagcctgaaggccatcaacctgatcctggacgagctgtggcacaccaacgac aaccagat cgctatcttcaaccggctgaagctggtgcccaagaaggtggacctgtcccagcagaaaga gatcccca ccaccctggtggacgacttcatcctgagccccgtcgtgaagagaagcttcatccagagca tcaaagtg atcaacgccatcatcaagaagtacggcctgcccaacgacatcattatcgagctggcccgc gagaagaa ctccaaggacgcccagaaaatgatcaacgagatgcagaagcggaaccggcagaccaacga gcggatcg aggaaatcatccggaccaccggcaaagagaacgccaagtacctgatcgagaagatcaagc tgcacgac atgcaggaaggcaagtgcctgtacagcctggaagccatccctctggaagatctgctgaac aacccctt caactatgaggtggaccacatcatccccagaagcgtgtccttcgacaacagcttcaacaa caaggtgc tcgtgaagcaggaagaaaacagcaagaagggcaaccggaccccattccagtacctgagca gcagcgac agcaagatcagctacgaaaccttcaagaagcacatcctgaatctggccaagggcaagggc agaatcag caagaccaagaaagagtatctgctggaagaacgggacatcaacaggttctccgtgcagaa agacttca tcaaccggaacctggtggataccagatacgccaccagaggcctgatgaacctgctgcgga gctacttc agagtgaacaacctggacgtgaaagtgaagtccatcaatggcggcttcaccagctttctg cggcggaa gtggaagtttaagaaagagcggaacaaggggtacaagcaccacgccgaggacgccctgat cattgcca acgccgatttcatcttcaaagagtggaagaaactggacaaggccaaaaaagtgatggaaa accagatg ttcgaggaaaggcaggccgagagcatgcccgagatcgaaaccgagcaggagtacaaagag atcttcat caccccccaccagatcaagcacattaaggacttcaaggactacaagtacagccaccgggt ggacaaga agcctaatagagagctgattaacgacaccctgtactccacccggaaggacgacaagggca acaccctg atcgtgaacaatctgaacggcctgtacgacaaggacaatgacaagctgaaaaagctgatc aacaagag ccccgaaaagctgctgatgtaccaccacgacccccagacctaccagaaactgaagctgat tatggaac agtacggcgacgagaagaatcccctgtacaagtactacgaggaaaccgggaactacctga ccaagtac tccaaaaaggacaacggccccgtgatcaagaagattaagtattacggcaacaaactgaac gcccatct ggacatcaccgacgactaccccaacagcagaaacaaggtcgtgaagctgtccctgaagcc ctacagat tcgacgtgtacctggacaatggcgtgtacaagttcgtgaccgtgaagaatctggatgtga tcaaaaaa gaaaactactacgaagtgaatagcaagtgctatgaggaagctaagaagctgaagaagatc agcaacca ggccgagtttatcgcctccttctacaacaacgatctgatcaagatcaacggcgagctgta tagagtga tcggcgtgaacaacgacctgctgaaccggatcgaagtgaacatgatcgacatcacctacc gcgagtac ctggaaaacatgaacgacaagaggccccccaggatcattaagacaatcgcctccaagacc cagagcat taagaagtacagcacagacattctgggcaacctgtatgaagtgaaatctaagaagcaccc tcagatca tcaaaaagggcaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaag SEQ ID NO: 37 codon optimized nucleic acid sequence encoding S. aureus Cas9 accggtgcca ccatgtaccc atacgatgtt ccagattacg cttcgccgaa gaaaaagcgc aaggtcgaag cgtccatgaa aaggaactac attctggggc tggacatcgg gattacaagc gtggggtatg ggattattga ctatgaaaca agggacgtga tcgacgcagg cgtcagactg ttcaaggagg ccaacgtgga aaacaatgag ggacggagaa gcaagagggg agccaggcgc ctgaaacgac ggagaaggca cagaatccag agggtgaaga aactgctgtt cgattacaac ctgctgaccg accattctga gctgagtgga attaatcctt atgaagccag ggtgaaaggc ctgagtcaga agctgtcaga ggaagagttt tccgcagctc tgctgcacct ggctaagcgc cgaggagtgc ataacgtcaa tgaggtggaa gaggacaccg gcaacgagct gtctacaaag gaacagatct cacgcaatag caaagctctg gaagagaagt atgtcgcaga gctgcagctg gaacggctga agaaagatgg cgaggtgaga gggtcaatta ataggttcaa gacaagcgac tacgtcaaag aagccaagca gctgctgaaa gtgcagaagg cttaccacca gctggatcag agcttcatcg atacttatat cgacctgctg gagactcgga gaacctacta tgagggacca ggagaaggga gccccttcgg atggaaagac atcaaggaat ggtacgagat gctgatggga cattgcacct attttccaga agagctgaga agcgtcaagt acgcttataa cgcagatct tacaacgccc tgaatgacct gaacaacctg gtcatcacca gggatgaaaa cgagaaactg gaatactatg agaagttcca gatcatcgaa aacgtgttta agcagaagaa aaagcctaca ctgaaacaga ttgctaagga gatcctggtc aacgaagagg acatcaaggg ctaccgggtg acaagcactg gaaaaccaga gttcaccaat ctgaaagtgt atcacgatat taaggacatc acagcacgga aagaaatcat tgagaacgcc gaactgctgg atcagattgc taagatcctg actatctacc agagctccga ggacatccag gaagagctga ctaacctgaa cagcgagctg acccaggaag agatcgaaca gattagtaat ctgaaggggt acaccggaac acacaacctg tccctgaaag ctatcaatct gattctggat gagctgtggc atacaaacga caatcagatt gcaatcttta accggctgaa gctggtccca aaaaaggtgg acctgagtca gcagaaagag atcccaacca cactggtgga cgatttcatt ctgtcacccg tggtcaagcg gagcttcatc cagagcatca aagtgatcaa cgccatcatc aagaagtacg gcctgcccaa tgatatcatt atcgagctgg ctagggagaa gaacagcaag gacgcacaga agatgatcaa tgagatgcag aaacgaaacc ggcagaccaa tgaacgcatt gaagagatta tccgaactac cgggaaagag aacgcaaagt acctgattga aaaaatcaag ctgcacgata tgcaggaggg aaagtgtctg tattctctgg aggccatccc cctggaggac ctgctgaaca atccattcaa ctacgaggtc gatcatatta tccccagaag cgtgtccttc gacaattcct ttaacaacaa ggtgctggtc aagcaggaag agaactctaa aaagggcaat aggactcctt tccagtacct gtctagttca gattccaaga tctcttacga aacctttaaa aagcacattc tgaatctggc caaaggaaag ggccgcatca gcaagaccaa aaaggagtac ctgctggaag agcgggacat caacagattc tccgtccaga aggattttat taaccggaat ctggtggaca caagatacgc tactcgcggc ctgatgaatc tgctgcgatc ctatttccgg gtgaacaatc tggatgtgaa agtcaagtcc atcaacggcg ggttcacatc ttttctgagg cgcaaatgga agtttaaaaa ggagcgcaac aaagggtaca agcaccatgc cgaagatgct ctgattatcg caaatgccga cttcatcttt aaggagtgga aaaagctgga caaagccaag aaagtgatgg agaaccagat gttcgaagag aagcaggccg aatctatgcc cgaaatcgag acagaacagg agtacaagga gattttcatc actcctcacc agatcaagca tatcaaggat ttcaaggact acaagtactc tcaccgggtg gataaaaagc ccaacagaga gctgatcaat gacaccctgt atagtacaag aaaagacgat aaggggaata ccctgattgt gaacaatctg aacggactgt acgacaaaga taatgacaag ctgaaaaagc tgatcaacaa aagtcccgag aagctgctga tgtaccacca tgatcctcag acatatcaga aactgaagct gattatggag cagtacggcg acgagaagaa cccactgtat aagtactatg aagagactgg gaactacctg accaagtata gcaaaaagga taatggcccc gtgatcaaga agatcaagta ctatgggaac aagctgaatg cccatctgga catcacagac gattacccta acagtcgcaa caaggtggtc aagctgtcac tgaagccata cagattcgat gtctatctgg acaacggcgt gtataaattt gtgactgtca agaatctgga tgtcatcaaa aaggagaact actatgaagt gaatagcaag tgctacgaag aggctaaaaa gctgaaaaag attagcaacc aggcagagtt catcgcctcc ttttacaaca acgacctgat taagatcaat ggcgaactgt atagggtcat cggggtgaac aatgatctgc tgaaccgcat tgaagtgaat atgattgaca tcacttaccg agagtatctg gaaaacatga atgataagcg cccccctcga attatcaaaa caattgcctc taagactcag agtatcaaaa agtactcaac cgacattctg ggaaacctgt atgaggtgaa gagcaaaaag caccctcaga ttatcaaaaa gggctaagaa ttc SEQ ID NO: 38 codon optimized nucleic acid sequences encoding S. aureus Cas9 atggccccaaagaagaagcggaaggtcggtatccacggagtcccagcagccaagcggaac tacatcct gggcctggacatcggcatcaccagcgtgggctacggcatcatcgactacgagacacggga cgtgatcg atgccggcgtgcggctgttcaaagaggccaacgtggaaaacaacgagggcaggcggagca agagaggc gccagaaggctgaagcggcggaggcggcatagaatccagagagtgaagaagctgctgttc gactacaa cctgctgaccgaccacagcgagctgagcggcatcaacccctacgaggccagagtgaaggg cctgagcc agaagctgagcgaggaagagttctctgccgccctgctgcacctggccaagagaagaggcg tgcacaac gtgaacgaggtggaagaggacaccggcaacgagctgtccaccaaagagcagatcagccgg aacagcaa ggccctggaagagaaatacgtggccgaactgcagctggaacggctgaagaaagacggcga agtgcggg gcagcatcaacagattcaagaccagcgactacgtgaaagaagccaaacagctgctgaagg tgcagaag gcctaccaccagctggaccagagcttcatcgacacctacatcgacctgctggaaacccgg cggaccta ctatgagggacctggcgagggcagccccttcggctggaaggacatcaaagaatggtacga gatgctga tgggccactgcacctacttccccgaggaactgcggagcgtgaagtacgcctacaacgccg acctgtac aacgccctgaacgacctgaacaatctcgtgatcaccagggacgagaacgagaagctggaa tattacga gaagttccagatcatcgagaacgtgttcaagcagaagaagaagcccaccctgaagcagat cgccaaag aaatcctcgtgaacgaagaggatattaagggctacagagtgaccagcaccggcaagcccg agttcacc aacctgaaggtgtaccacgacatcaaggacattaccgcccggaaagagattattgagaac gccgagct gctggatcagattgccaagatcctgaccatctaccagagcagcgaggacatccaggaaga actgacca atctgaactccgagctgacccaggaagagatcgagcagatctctaatctgaagggctata ccggcacc cacaacctgagcctgaaggccatcaacctgatcctggacgagctgtggcacaccaacgac aaccagat cgctatcttcaaccggctgaagctggtgcccaagaaggtggacctgtcccagcagaaaga gatcccca ccaccctggtggacgacttcatcctgagccccgtcgtgaagagaagcttcatccagagca tcaaagtg atcaacgccatcatcaagaagtacggcctgcccaacgacatcattatcgagctggcccgc gagaagaa ctccaaggacgcccagaaaatgatcaacgagatgcagaagcggaaccggcagaccaacga gcggatcg aggaaatcatccggaccaccggcaaagagaacgccaagtacctgatcgagaagatcaagc tgcacgac atgcaggaaggcaagtgcctgtacagcctggaagccatccctctggaagatctgctgaac aacccctt caactatgaggtggaccacatcatccccagaagcgtgtccttcgacaacagcttcaacaa caaggtgc tcgtgaagcaggaagaaaacagcaagaagggcaaccggaccccattccagtacctgagca gcagcgac agcaagatcagctacgaaaccttcaagaagcacatcctgaatctggccaagggcaagggc agaatcag caagaccaagaaagagtatctgctggaagaacgggacatcaacaggttctccgtgcagaa agacttca tcaaccggaacctggtggataccagatacgccaccagaggcctgatgaacctgctgcgga gctacttc agagtgaacaacctggacgtgaaagtgaagtccatcaatggcggcttcaccagctttctg cggcggaa gtggaagtttaagaaagagcggaacaaggggtacaagcaccacgccgaggacgccctgat cattgcca acgccgatttcatcttcaaagagtggaagaaactggacaaggccaaaaaagtgatggaaa accagatg ttcgaggaaaagcaggccgagagcatgcccgagatcgaaaccgagcaggagtacaaagag atcttcat caccccccaccagatcaagcacattaaggacttcaaggactacaagtacagccaccgggt ggacaaga agcctaatagagagctgattaacgacaccctgtactccacccggaaggacgacaagggca acaccctg atcgtgaacaatctgaacggcctgtacgacaaggacaatgacaagctgaaaaagctgatc aacaagag ccccgaaaagctgctgatgtaccaccacgacccccagacctaccagaaactgaagctgat tatggaac agtacggcgacgagaagaatcccctgtacaagtactacgaggaaaccgggaactacctga ccaagtac tccaaaaaggacaacggccccgtgatcaagaagattaagtattacggcaacaaactgaac gcccatct ggacatcaccgacgactaccccaacagcagaaacaaggtcgtgaagctgtccctgaagcc ctacagat tcgacgtgtacctggacaatggcgtgtacaagttcgtgaccgtgaagaatctggatgtga tcaaaaaa gaaaactactacgaagtgaatagcaagtgctatgaggaagctaagaagctgaagaagatc agcaacca ggccgagtttatcgcctccttctacaacaacgatctgatcaagatcaacggcgagctgta tagagtga tcggcgtgaacaacgacctgctgaaccggatcgaagtgaacatgatcgacatcacctacc gcgagtac ctggaaaacatgaacgacaagaggccccccaggatcattaagacaatcgcctccaagacc cagagcat taagaagtacagcacagacattctgggcaacctgtatgaagtgaaatctaagaagcaccc tcagatca tcaaaaagggcaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaag SEQ ID NO: 39 codon optimized nucleic acid sequences encoding S. aureus Cas9 aagcggaactacatcctgggcctggacatcggcatcaccagcgtgggctacggcatcatc gactacga gacacgggacgtgatcgatgccggcgtgcggctgttcaaagaggccaacgtggaaaacaa cgagggca ggcggagcaagagaggcgccagaaggctgaagcggcggaggcggcatagaatccagagag tgaagaag ctgctgttcgactacaacctgctgaccgaccacagcgagctgagcggcatcaacccctac gaggccag agtgaagggcctgagccagaagctgagcgaggaagagttctctgccgccctgctgcacct ggccaaga gaagaggcgtgcacaacgtgaacgaggtggaagaggacaccggcaacgagctgtccacca aagagcag atcagccggaacagcaaggccctggaagagaaatacgtggccgaactgcagctggaacgg ctgaagaa agacggcgaagtgcggggcagcatcaacagattcaagaccagcgactacgtgaaagaagc caaacagc tgctgaaggtgcagaaggcctaccaccagctggaccagagcttcatcgacacctacatcg acctgctg gaaacccggcggacctactatgagggacctggcgagggcagccccttcggctggaaggac atcaaaga atggtacgagatgctgatgggccactgcacctacttccccgaggaactgcggagcgtgaa gtacgcct acaacgccgacctgtacaacgccctgaacgacctgaacaatctcgtgatcaccagggacg agaacgag aagctggaatattacgagaagttccagatcatcgagaacgtgttcaagcagaagaagaag cccaccct gaagcagatcgccaaagaaatcctcgtgaacgaagaggatattaagggctacagagtgac cagcaccg gcaagcccgagttcaccaacctgaaggtgtaccacgacatcaaggacattaccgcccgga aagagatt attgagaacgccgagctgctggatcagattgccaagatcctgaccatctaccagagcagc gaggacat ccaggaagaactgaccaatctgaactccgagctgacccaggaagagatcgagcagatctc taatctga agggctataccggcacccacaacctgagcctgaaggccatcaacctgatcctggacgagc tgtggcac accaacgacaaccagatcgctatcttcaaccggctgaagctggtgcccaagaaggtggac ctgtccca gcagaaagagatccccaccaccctggtggacgacttcatcctgagccccgtcgtgaagag aagcttca tccagagcatcaaagtgatcaacgccatcatcaagaagtacggcctgcccaacgacatca ttatcgag ctggcccgcgagaagaactccaaggacgcccagaaaatgatcaacgagatgcagaagcgg aaccggca gaccaacgagcggatcgaggaaatcatccggaccaccggcaaagagaacgccaagtacct gatcgaga agatcaagctgcacgacatgcaggaaggcaagtgcctgtacagcctggaagccatccctc tggaagat ctgctgaacaaccccttcaactatgaggtggaccacatcatccccagaagcgtgtccttc gacaacag cttcaacaacaaggtgctcgtgaagcaggaagaaaacagcaagaagggcaaccggacccc attccagt acctgagcagcagcgacagcaagatcagctacgaaaccttcaagaagcacatcctgaatc tggccaag ggcaagggcagaatcagcaagaccaagaaagagtatctgctggaagaacgggacatcaac aggttctc cgtgcagaaagacttcatcaaccggaacctggtggataccagatacgccaccagaggcct gatgaacc tgctgcggagctacttcagagtgaacaacctggacgtgaaagtgaagtccatcaatggcg gcttcacc agctttctgcggcggaagtggaagtttaagaaagagcggaacaaggggtacaagcaccac gccgagga cgccctgatcattgccaacgccgatttcatcttcaaagagtggaagaaactggacaaggc caaaaaag tgatggaaaaccagatgttcgaggaaaagcaggccgagagcatgcccgagatcgaaaccg agcaggag tacaaagagatcttcatcaccccccaccagatcaagcacattaaggacttcaaggactac aagtacag ccaccgggtggacaagaagcctaatagagagctgattaacgacaccctgtactccacccg gaaggacg acaagggcaacaccctgatcgtgaacaatctgaacggcctgtacgacaaggacaatgaca agctgaaa aagctgatcaacaagagccccgaaaagctgctgatgtaccaccacgacccccagacctac cagaaact gaagctgattatggaacagtacggcgacgagaagaatcccctgtacaagtactacgagga aaccggga actacctgaccaagtactccaaaaaggacaacggccccgtgatcaagaagattaagtatt acggcaac aaactgaacgcccatctggacatcaccgacgactaccccaacagcagaaacaaggtcgtg aagctgtc cctgaagccctacagattcgacgtgtacctggacaatggcgtgtacaagttcgtgaccgt gaagaatc tggatgtgatcaaaaaagaaaactactacgaagtgaatagcaagtgctatgaggaagcta agaagctg aagaagatcagcaaccaggccgagtttatcgcctccttctacaacaacgatctgatcaag atcaacgg cgagctgtatagagtgatcggcgtgaacaacgacctgctgaaccggatcgaagtgaacat gatcgaca tcacctaccgcgagtacctggaaaacatgaacgacaagaggccccccaggatcattaaga caatcgcc tccaagacccagagcattaagaagtacagcacagacattctgggcaacctgtatgaagtg aaatctaa gaagcaccctcagatcatcaaaaagggc SEQ ID NO: 40 Vector (pDO242) encoding codon optimized nucleic acid sequence encoding S. aureus Cas9 ctaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctc atttttta accaataggccgaaatcggcaaaatcccttataaatcaaaagaatagaccgagatagggt tgagtgtt gttccagtttggaacaagagtccactattaaagaacgtggactccaacgtcaaagggcga aaaaccgt ctatcagggcgatggcccactacgtgaaccatcaccctaatcaagttttttggggtcgag gtgccgta aagcactaaatcggaaccctaaagggagcccccgatttagagcttgacggggaaagccgg cgaacgtg gcgagaaaggaagggaagaaagcgaaaggagcgggcgctagggcgctggcaagtgtagcg gtcacgct gcgcgtaaccaccacacccgccgcgcttaatgcgccgctacagggcgcgtcccattcgcc attcaggc tgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctattacgccagctggcga aaggggga tgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgtaaa acgacggc cagtgagcgcgcgtaatacgactcactatagggcgaattgggtacCtttaattctagtac tatgcaTg cgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcat agcccata tatggagttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacga cccccgcc cattgacgtcaataatgacgtatgttcccatagtaacgccaatagggactttccattgac gtcaatgg gtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagt acgccccc tattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacatgaccttatg ggactttc ctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggc agtacatc aatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtc aatgggag tttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccatt gacgcaaa tgggcggtaggcgtgtacggtgggaggtctatataagcagagctctctggctaactaccg gtgccacc ATGAAAAGGAACTACATTCTGGGGCTGGACATCGGGATTACAAGCGTGGGGTATGGGATT ATTGACTA TGAAACAAGGGACGTGATCGACGCAGGCGTCAGACTGTTCAAGGAGGCCAACGTGGAAAA CAATGAGG GACGGAGAAGCAAGAGGGGAGCCAGGCGCCTGAAACGACGGAGAAGGCACAGAATCCAGA GGGTGAAG AAACTGCTGTTCGATTACAACCTGCTGACCGACCATTCTGAGCTGAGTGGAATTAATCCT TATGAAGC CAGGGTGAAAGGCCTGAGTCAGAAGCTGTCAGAGGAAGAGTTTTCCGCAGCTCTGCTGCA CCTGGCTA AGCGCCGAGGAGTGCATAACGTCAATGAGGTGGAAGAGGACACCGGCAACGAGCTGTCTA CAAAGGAA CAGATCTCACGCAATAGCAAAGCTCTGGAAGAGAAGTATGTCGCAGAGCTGCAGCTGGAA CGGCTGAA GAAAGATGGCGAGGTGAGAGGGTCAATTAATAGGTTCAAGACAAGCGACTACGTCAAAGA AGCCAAGC AGCTGCTGAAAGTGCAGAAGGCTTACCACCAGCTGGATCAGAGCTTCATCGATACTTATA TCGACCTG CTGGAGACTCGGAGAACCTACTATGAGGGACCAGGAGAAGGGAGCCCCTTCGGATGGAAA GACATCAA GGAATGGTACGAGATGCTGATGGGACATTGCACCTATTTTCCAGAAGAGCTGAGAAGCGT CAAGTACG CTTATAACGCAGATCTGTACAACGCCCTGAATGACCTGAACAACCTGGTCATCACCAGGG ATGAAAAC GAGAAACTGGAATACTATGAGAAGTTCCAGATCATCGAAAACGTGTTTAAGCAGAAGAAA AAGCCTAC ACTGAAACAGATTGCTAAGGAGATCCTGGTCAACGAAGAGGACATCAAGGGCTACCGGGT GACAAGCA CTGGAAAACCAGAGTTCACCAATCTGAAAGTGTATCACGATATTAAGGACATCACAGCAC GGAAAGAA ATCATTGAGAACGCCGAACTGCTGGATCAGATTGCTAAGATCCTGACTATCTACCAGAGC TCCGAGGA CATCCAGGAAGAGCTGACTAACCTGAACAGCGAGCTGACCCAGGAAGAGATCGAACAGAT TAGTAATC TGAAGGGGTACACCGGAACACACAACCTGTCCCTGAAAGCTATCAATCTGATTCTGGATG AGCTGTGG CATACAAACGACAATCAGATTGCAATCTTTAACCGGCTGAAGCTGGTCCCAAAAAAGGTG GACCTGAG TCAGCAGAAAGAGATCCCAACCACACTGGTGGACGATTTCATTCTGTCACCCGTGGTCAA GCGGAGCT TCATCCAGAGCATCAAAGTGATCAACGCCATCATCAAGAAGTACGGCCTGCCCAATGATA TCATTATC GAGCTGGCTAGGGAGAAGAACAGCAAGGACGCACAGAAGATGATCAATGAGATGCAGAAA CGAAACCG GCAGACCAATGAACGCATTGAAGAGATTATCCGAACTACCGGGAAAGAGAACGCAAAGTA CCTGATTG AAAAAATCAAGCTGCACGATATGCAGGAGGGAAAGTGTCTGTATTCTCTGGAGGCCATCC CCCTGGAG GACCTGCTGAACAATCCATTCAACTACGAGGTCGATCATATTATCCCCAGAAGCGTGTCC TTCGACAA TTCCTTTAACAACAAGGTGCTGGTCAAGCAGGAAGAGAACTCTAAAAAGGGCAATAGGAC TCCTTTCC AGTACCTGTCTAGTTCAGATTCCAAGATCTCTTACGAAACCTTTAAAAAGCACATTCTGA ATCTGGCC AAAGGAAAGGGCCGCATCAGCAAGACCAAAAAGGAGTACCTGCTGGAAGAGCGGGACATC AACAGATT CTCCGTCCAGAAGGATTTTATTAACCGGAATCTGGTGGACACAAGATACGCTACTCGCGG CCTGATGA ATCTGCTGCGATCCTATTTCCGGGTGAACAATCTGGATGTGAAAGTCAAGTCCATCAACG GCGGGTTC ACATCTTTTCTGAGGCGCAAATGGAAGTTTAAAAAGGAGCGCAACAAAGGGTACAAGCAC CATGCCGA AGATGCTCTGATTATCGCAAATGCCGACTTCATCTTTAAGGAGTGGAAAAAGCTGGACAA AGCCAAGA AAGTGATGGAGAACCAGATGTTCGAAGAGAAGCAGGCCGAATCTATGCCCGAAATCGAGA CAGAACAG GAGTACAAGGAGATTTTCATCACTCCTCACCAGATCAAGCATATCAAGGATTTCAAGGAC TACAAGTA CTCTCACCGGGTGGATAAAAAGCCCAACAGAGAGCTGATCAATGACACCCTGTATAGTAC AAGAAAAG ACGATAAGGGGAATACCCTGATTGTGAACAATCTGAACGGACTGTACGACAAAGATAATG ACAAGCTG AAAAAGCTGATCAACAAAAGTCCCGAGAAGCTGCTGATGTACCACCATGATCCTCAGACA TATCAGAA ACTGAAGCTGATTATGGAGCAGTACGGCGACGAGAAGAACCCACTGTATAAGTACTATGA AGAGACTG GGAACTACCTGACCAAGTATAGCAAAAAGGATAATGGCCCCGTGATCAAGAAGATCAAGT ACTATGGG AACAAGCTGAATGCCCATCTGGACATCACAGACGATTACCCTAACAGTCGCAACAAGGTG GTCAAGCT GTCACTGAAGCCATACAGATTCGATGTCTATCTGGACAACGGCGTGTATAAATTTGTGAC TGTCAAGA ATCTGGATGTCATCAAAAAGGAGAACTACTATGAAGTGAATAGCAAGTGCTACGAAGAGG CTAAAAAG CTGAAAAAGATTAGCAACCAGGCAGAGTTCATCGCCTCCTTTTACAACAACGACCTGATT AAGATCAA TGGCGAACTGTATAGGGTCATCGGGGTGAACAATGATCTGCTGAACCGCATTGAAGTGAA TATGATTG ACATCACTTACCGAGAGTATCTGGAAAACATGAATGATAAGCGCCCCCCTCGAATTATCA AAACAATT GCCTCTAAGACTCAGAGTATCAAAAAGTACTCAACCGACATTCTGGGAAACCTGTATGAG GTGAAGAG CAAAAAGCACCCTCAGATTATCAAAAAGGGCagcggaggcaagcgtcctgctgctactaa gaaagctg gtcaagctaagaaaaagaaaggatcctacccatacgatgttccagattacgcttaagaat tcctagag ctcgctgatcagcctcgactgtgccttctagttgccagccatctgttgtttgcccctccc ccgtgcct tccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgca tcgcattg tctgagtaggtgtcattctattctggggggtggggtggggcaggacagcaagggggagga ttgggaag agaatagcaggcatgctggggaggtagcggccgcCCgcggtggagctccagcttttgttc cctttagt gagggttaattgcgcgcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgtt atccgctc acaattccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatga gtgagcta actcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtgcca gctgcatt aatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcct cgctcact gactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggta atacggtt atccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggc caggaacc gtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcaca aaaatcga cgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccct ggaagctc cctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctccc ttcgggaa gcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgct ccaagctg ggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgt cttgagtc caacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcag agcgaggt atgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagga cagtattt ggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatcc ggcaaaca aaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaa aggatctc aagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgtt aagggatt ttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagt tttaaatc aatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggc acctatct cagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataacta cgatacgg gagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggct ccagattt atcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatc cgcctcca tccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgc gcaacgtt gttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagc tccggttc ccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctcctt cggtcctc cgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgc ataattct cttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtca ttctgaga atagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgcc acatagca gaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatct taccgctg ttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttact ttcaccag cgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgac acggaaat gttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtc tcatgagc ggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccc cgaaaagt gccac SEQ ID NO: 41 Human p300 (with L553M mutation) protein MAENVVEPGPPSAKRPKLSSPALSASASDGTDFGSLFDLEHDLPDELINSTELGLTNGGD INQLQTSL GMVQDAASKHKQLSELLRSGSSPNLNMGVGGPGQVMASQAQQSSPGLGLINSMVKSPMTQ AGLTSPNM GMGTSGPNQGPTQSTGMMNSPVNQPAMGMNTGMNAGMNPGMLAAGNGQGIMPNQVMNGSI GAGRGRQN MQYPNPGMGSAGNLLTEPLQQGSPQMGGQTGLRGPQPLKMGMMNNPNPYGSPYTQNPGQQ IGASGLGL QIQTKTVLSNNLSPFAMDKKAVPGGGMPNMGQQPAPQVQQPGLVTPVAQGMGSGAHTADP EKRKLIQQ QLVLLLHAHKCQRREQANGEVRQCNLPHCRTMKNVLNHMTHCQSGKSCQVAHCASSRQII SHWKNCTR HDCPVCLPLKNAGDKRNQQPILTGAPVGLGNPSSLGVGQQSAPNLSTVSQIDPSSIERAY AALGLPYQ VNQMPTQPQVQAKNQQNQQPGQSPQGMRPMSNMSASPMGVNGGVGVQTPSLLSDSMLHSA INSQNPMM SENASVPSMGPMPTAAQPSTTGIRKQWHEDITQDLRNHLVHKLVQAIFPTPDPAALKDRR MENLVAYA RKVEGDMYESANNRAEYYHLLAEKIYKIQKELEEKRRTRLQKQNMLPNAAGMVPVSMNPG PNMGQPQP GMTSNGPLPDPSMIRGSVPNQMMPRITPQSGLNQFGQMSMAQPPIVPRQTPPLQHHGQLA QPGALNPP MGYGPRMQQPSNQGQFLPQTQFPSQGMNVTNIPLAPSSGQAPVSQAQMSSSSCPVNSPIM PPGSQGSH IHCPQLPQPALHQNSPSPVPSRTPTPHHTPPSIGAQQPPATTIPAPVPTPPAMPPGPQSQ ALHPPPRQ TPTPPTTQLPQQVQPSLPAAPSADQPQQQPRSQQSTAASVPTPTAPLLPPQPATPLSQPA VSIEGQVS NPPSTSSTEVNSQAIAEKQPSQEVKMEAKMEVDQPEPADTQPEDISESKVEDCKMESTET EERSTELK TEIKEEEDQPSTSATQSSPAPGQSKKKIFKPEELRQALMPTLEALYRQDPESLPFRQPVD PQLLGIPD YFDIVKSPMDLSTIKRKLDTGQYQEPWQYVDDIWLMFNNAWLYNRKTSRVYKYCSKLSEV FEQEIDPV MQSLGYCCGRKLEFSPQTLCCYGKQLCTIPRDATYYSYQNRYHFCEKCFNEIQGESVSLG DDPSQPQT TINKEQFSKRKNDTLDPELFVECTECGRKMHQICVLHHEIIWPAGFVCDGCLKKSARTRK ENKFSAKR LPSTRLGTFLENRVNDFLRRQNHPESGEVTVRVVHASDKTVEVKPGMKARFVDSGEMAES FPYRTKAL FAFEEIDGVDLCFFGMHVQEYGSDCPPPNQRRVYISYLDSVHFFRPKCLRTAVYHEILIG YLEYVKKL GYTTGHIWACPPSEGDDYIFHCHPPDQKIPKPKRLQEWYKKMLDKAVSERIVHDYKDIFK QATEDRLT SAKELPYFEGDFWPNVLEESIKELEQEEEERKREENTSNESTDVTKGDSKNAKKKNNKKT SKNKSSLS RGNKKKPGMPNVSNDLSQKLYATMEKHKEVFFVIRLIAGPAANSLPPIVDPDPLIPCDLM DGRDAFLT LARDKHLEFSSLRRAQWSTMCMLVELHTQSQDRFVYTCNECKHHVETRWHCTVCEDYDLC ITCYNTKN HDHKMEKLGLGLDDESNNQQAAATQSPGDSRRLSIQRCIQSLVHACQCRNANCSLPSCQK MKRVVQHT KGCKRKTNGGCPICKQLIALCCYHAKHCQENKCPVPFCLNIKQKLRQQQLQHRLQQAQML RRRMASMQ RTGVVGQQQGLPSPTPATPTTPTGQQPTTPQTPQPTSQPQPTPPNSMPPYLPRTQAAGPV SQGKAAGQ VTPPTPPQTAQPPLPGPPPAAVEMAMQIQRAAETQRQMAHVQIFQRPIQHQMPPMTPMAP MGMNPPPM TRGPSGHLEPGMGPTGMQQQPPWSQGGLPQPQQLQSGMPRPAMMSVAQHGQPLNMAPQPG LGQVGISP LKPGTVSQQALQNLLRTLRSPSSPLQQQQVLSILHANPQLLAAFIKQRAAKYANSNPQPI PGQPGMPQ GQPGLQPPTMPGQQGVHSNPAMQNMNPMQAGVQRAGLPQQQPQQQLQPPMGGMSPQAQQM NMNHNTMP SQFRDILRRQQMMQQQQQQGAGPGIGPGMANHNQFQQPQGVGYPPQQQQRMQHHMQQMQQ GNMGQIGQ LPQALGAEAGASLQAYQQRLLQQQMGSPVQPNPMSPQQHMLPNQAQSPHLQGQQIPNSLS NQVRSPQP VPSPRPQSQPPHSSPSPRMQPQPSPHHVSPQTSSPHPGLVAAQANPMEQGHFASPDQNSM LSQLASNP GMANLHGASATDLGLSTDNSDLNSNLSQSTLDIH SEQ ID NO: 42 Human p300 Core Effector protein (aa 1048-1664 of SEQ ID NO: 41) IFKPEELRQALMPTLEALYRQDPESLPFRQPVDPQLLGIPDYFDIVKSPMDLSTIKRKLD TGQYQEPW QYVDDIWLMFNNAWLYNRKTSRVYKYCSKLSEVFEQEIDPVMQSLGYCCGRKLEFSPQTL CCYGKQLC TIPRDATYYSYQNRYHFCEKCFNEIQGESVSLGDDPSQPQTTINKEQFSKRKNDTLDPEL FVECTECG RKMHQICVLHHEIIWPAGFVCDGCLKKSARTRKENKFSAKRLPSTRLGTFLENRVNDFLR RQNHPESG EVTVRVVHASDKTVEVKPGMKARFVDSGEMAESFPYRTKALFAFEEIDGVDLCFFGMHVQ EYGSDCPP PNQRRVYISYLDSVHFFRPKCLRTAVYHEILIGYLEYVKKLGYTTGHIWACPPSEGDDYI FHCHPPDQ KIPKPKRLQEWYKKMLDKAVSERIVHDYKDIFKQATEDRLTSAKELPYFEGDFWPNVLEE SIKELEQE EEERKREENTSNESTDVTKGDSKNAKKKNNKKTSKNKSSLSRGNKKKPGMPNVSNDLSQK LYATMEKH KEVFFVIRLIAGPAANSLPPIVDPDPLIPCDLMDGRDAFLTLARDKHLEFSSLRRAQWST MCMLVELH TQSQD SEQ ID NO: 43 VP64-dCas9-VP64 protein RADALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMVNPKKKRKV GRGMDKKY SIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLK RTARRRYT RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP TIYHLRKK LVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPI NASGVDAK AILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKD TYDDDLDN LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKA LVRQQLPE KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTF DNGSIPHQ IHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETI TPWNFEEV VDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLS GEQKKAIV DLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDN EENEDILE DIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGK TILDFLKS DGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVD ELVKVMGR HKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYL YYLQNGRD MYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKN YWRQLLNA KLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKL IREVKVIT LKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYD VRKMIAKS EQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRK VLSMPQVN IVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGK SKKLKSVK ELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALP SKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDK VLSAYNKH RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYE TRIDLSQL GGDSRADPKKKRKVASRADALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDAL DDFDLDML I SEQ ID NO: 44 VP64-dCas9-VP64 DNA cgggctgacgcattggacgattttgatctggatatgctgggaagtgacgccctcgatgat tttgacct tgacatgcttggttcggatgcccttgatgactttgacctcgacatgctcggcagtgacgc ccttgatg atttcgacctggacatggttaaccccaagaagaagaggaaggtgggccgcggaatggaca agaagtac tccattgggctcgccatcggcacaaacagcgtcggctgggccgtcattacggacgagtac aaggtgcc gagcaaaaaattcaaagttctgggcaataccgatcgccacagcataaagaagaacctcat tggcgccc tcctgttcgactccggggaaaccgccgaagccacgcggctcaaaagaacagcacggcgca gatatacc cgcagaaagaatcggatctgctacctgcaggagatctttagtaatgagatggctaaggtg gatgactc tttcttccataggctggaggagtcctttttggtggaggaggataaaaagcacgagcgcca cccaatct ttggcaatatcgtggacgaggtggcgtaccatgaaaagtacccaaccatatatcatctga ggaagaag cttgtagacagtactgataaggctgacttgcggttgatctatctcgcgctggcgcatatg atcaaatt tcggggacacttcctcatcgagggggacctgaacccagacaacagcgatgtcgacaaact ctttatcc aactggttcagacttacaatcagcttttcgaagagaacccgatcaacgcatccggagttg acgccaaa gcaatcctgagcgctaggctgtccaaatcccggcggctcgaaaacctcatcgcacagctc cctgggga gaagaagaacggcctgtttggtaatcttatcgccctgtcactcgggctgacccccaactt taaatcta acttcgacctggccgaagatgccaagcttcaactgagcaaagacacctacgatgatgatc tcgacaat ctgctggcccagatcggcgaccagtacgcagacctttttttggcggcaaagaacctgtca gacgccat tctgctgagtgatattctgcgagtgaacacggagatcaccaaagctccgctgagcgctag tatgatca agcgctatgatgagcaccaccaagacttgactttgctgaaggcccttgtcagacagcaac tgcctgag aagtacaaggaaattttcttcgatcagtctaaaaatggctacgccggatacattgacggc ggagcaag ccaggaggaattttacaaatttattaagcccatcttggaaaaaatggacggcaccgagga gctgctgg taaagcttaacagagaagatctgttgcgcaaacagcgcactttcgacaatggaagcatcc cccaccag attcacctgggcgaactgcacgctatcctcaggcggcaagaggatttctacccctttttg aaagataa cagggaaaagattgagaaaatcctcacatttcggataccctactatgtaggccccctcgc ccggggaa attccagattcgcgtggatgactcgcaaatcagaagagaccatcactccctggaacttcg aggaagtc gtggataagggggcctctgcccagtccttcatcgaaaggatgactaactttgataaaaat ctgcctaa cgaaaaggtgcttcctaaacactctctgctgtacgagtacttcacagtttataacgagct caccaagg tcaaatacgtcacagaagggatgagaaagccagcattcctgtctggagagcagaagaaag ctatcgtg gacctcctcttcaagacgaaccggaaagttaccgtgaaacagctcaaagaagactatttc aaaaagat tgaatgtttcgactctgttgaaatcagcggagtggaggatcgcttcaacgcatccctggg aacgtatc acgatctcctgaaaatcattaaagacaaggacttcctggacaatgaggagaacgaggaca ttcttgag gacattgtcctcacccttacgttgtttgaagatagggagatgattgaagaacgcttgaaa acttacgc tcatctcttcgacgacaaagtcatgaaacagctcaagaggcgccgatatacaggatgggg gcggctgt caagaaaactgatcaatgggatccgagacaagcagagtggaaagacaatcctggattttc ttaagtcc gatggatttgccaaccggaacttcatgcagttgatccatgatgactctctcacctttaag gaggacat ccagaaagcacaagtttctggccagggggacagtcttcacgagcacatcgctaatcttgc aggtagcc cagctatcaaaaagggaatactgcagaccgttaaggtcgtggatgaactcgtcaaagtaa tgggaagg cataagcccgagaatatcgttatcgagatggcccgagagaaccaaactacccagaaggga cagaagaa cagtagggaaaggatgaagaggattgaagagggtataaaagaactggggtcccaaatcct taaggaac acccagttgaaaacacccagcttcagaatgagaagctctacctgtactacctgcagaacg gcagggac atgtacgtggatcaggaactggacatcaatcggctctccgactacgacgtggatgccatc gtgcccca gtcttttctcaaagatgattctattgataataaagtgttgacaagatccgataaaaatag agggaaga gtgataacgtcccctcagaagaagttgtcaagaaaatgaaaaattattggcggcagctgc tgaacgcc aaactgatcacacaacggaagttcgataatctgactaaggctgaacgaggtggcctgtct gagttgga taaagccggcttcatcaaaaggcagcttgttgagacacgccagatcaccaagcacgtggc ccaaattc tcgattcacgcatgaacaccaagtacgatgaaaatgacaaactgattcgagaggtgaaag ttattact ctgaagtctaagctggtctcagatttcagaaaggactttcagttttataaggtgagagag atcaacaa ttaccaccatgcgcatgatgcctacctgaatgcagtggtaggcactgcacttatcaaaaa atatccca agcttgaatctgaatttgtttacggagactataaagtgtacgatgttaggaaaatgatcg caaagtct gagcaggaaataggcaaggccaccgctaagtacttcttttacagcaatattatgaatttt ttcaagac cgagattacactggccaatggagagattcggaagcgaccacttatcgaaacaaacggaga aacaggag aaatcgtgtgggacaagggtagggatttcgcgacagtccggaaggtcctgtccatgccgc aggtgaac atcgttaaaaagaccgaagtacagaccggaggcttctccaaggaaagtatcctcccgaaa aggaacag cgacaagctgatcgcacgcaaaaaagattgggaccccaagaaatacggcggattcgattc tcctacag tcgcttacagtgtactggttgtggccaaagtggagaaagggaagtctaaaaaactcaaaa gcgtcaag gaactgctgggcatcacaatcatggagcgatcaagcttcgaaaaaaaccccatcgacttt ctcgaggc gaaaggatataaagaggtcaaaaaagacctcatcattaagcttcccaagtactctctctt tgagcttg aaaacggccggaaacgaatgctcgctagtgcgggcgagctgcagaaaggtaacgagctgg cactgccc tctaaatacgttaatttcttgtatctggccagccactatgaaaagctcaaagggtctccc gaagataa tgagcagaagcagctgttcgtggaacaacacaaacactaccttgatgagatcatcgagca aataagcg aattctccaaaagagtgatcctcgccgacgctaacctcgataaggtgctttctgcttaca ataagcac agggataagcccatcagggagcaggcagaaaacattatccacttgtttactctgaccaac ttgggcgc gcctgcagccttcaagtacttcgacaccaccatagacagaaagcggtacacctctacaaa ggaggtcc tggacgccacactgattcatcagtcaattacggggctctatgaaacaagaatcgacctct ctcagctc ggtggagacagcagggctgaccccaagaagaagaggaaggtggctagccgcgccgacgcg ctggacga tttcgatctcgacatgctgggttctgatgccctcgatgactttgacctggatatgttggg aagcgacg cattggatgactttgatctggacatgctcggctccgatgctctggacgatttcgatctcg atatgtta atc SEQ ID NO: 45 Polypeptide sequence of KRAB protein RTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGYQLTKPDVILRLEKGE EP WLV SEQ ID NO: 46 Polynucleotide sequence for KRAB cggacactggtgaccttcaaggatgtgtttgtggacttcaccagggaggagtggaagctg ct ggacactgctcagcagatcctgtacagaaatgtgatgctggagaactataagaacctggt tt ccttgggttatcagcttactaagccagatgtgatcctccggttggagaagggagaagagc cc tggctggtg SEQ ID NO: 47 Polypeptide sequence of Streptococcus pyogenes dCas9-KRAB protein MDYKDHDGDYKDHDIDYKDDDDKMAPKKKRKVGRGMDKKYSIGLAIGTNSVGWAVITDEY KVPSKKFK VLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKV DDSFFHRL EESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHM IKFRGHFL IEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQL PGEKKNGL FGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLS DAILLSDI LRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDG GASQEEFY KFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFL KDNREKIE KILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKN LPNEKVLP KHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYF KKIECFDS VEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK TYAHLFDD KVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFK EDIQKAQV SGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKG QKNSRERM KRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAI VPQSFLKD DSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS ELDKAGFI KRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVRE INNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNF FKTEITLA NGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPK RNSDKLIA RKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDF LEAKGYKE VKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSP EDNEQKQL FVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTN LGAPAAFK YFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSRADPKKKRKVASDAKS LTAWSRTL VTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGYQLTKPDVILRLEKGEEPW LVEREIHQ ETHPDSETAFEIKSSVPKKKRKV SEQ ID NO: 48 Polynucleotide sequence encoding Streptococcus pyogenes dCas9-KRAB atggactacaaagaccatgacggtgattataaagatcatgacatcgattacaaggatgac gatgacaa gatggcccccaagaagaagaggaaggtgggccgcggaatggacaagaagtactccattgg gctcgcca tcggcacaaacagcgtcggctgggccgtcattacggacgagtacaaggtgccgagcaaaa aattcaaa gttctgggcaataccgatcgccacagcataaagaagaacctcattggcgccctcctgttc gactccgg ggaaaccgccgaagccacgcggctcaaaagaacagcacggcgcagatatacccgcagaaa gaatcgga tctgctacctgcaggagatctttagtaatgagatggctaaggtggatgactctttcttcc ataggctg gaggagtcctttttggtggaggaggataaaaagcacgagcgccacccaatctttggcaat atcgtgga cgaggtggcgtaccatgaaaagtacccaaccatatatcatctgaggaagaagcttgtaga cagtactg ataaggctgacttgcggttgatctatctcgcgctggcgcatatgatcaaatttcggggac acttcctc atcgagggggacctgaacccagacaacagcgatgtcgacaaactctttatccaactggtt cagactta caatcagcttttcgaagagaacccgatcaacgcatccggagttgacgccaaagcaatcct gagcgcta ggctgtccaaatcccggcggctcgaaaacctcatcgcacagctccctggggagaagaaga acggcctg tttggtaatcttatcgccctgtcactcgggctgacccccaactttaaatctaacttcgac ctggccga agatgccaagcttcaactgagcaaagacacctacgatgatgatctcgacaatctgctggc ccagatcg gcgaccagtacgcagacctttttttggcggcaaagaacctgtcagacgccattctgctga gtgatatt ctgcgagtgaacacggagatcaccaaagctccgctgagcgctagtatgatcaagcgctat gatgagca ccaccaagacttgactttgctgaaggcccttgtcagacagcaactgcctgagaagtacaa ggaaattt tcttcgatcagtctaaaaatggctacgccggatacattgacggcggagcaagccaggagg aattttac aaatttattaagcccatcttggaaaaaatggacggcaccgaggagctgctggtaaagctt aacagaga agatctgttgcgcaaacagcgcactttcgacaatggaagcatcccccaccagattcacct gggcgaac tgcacgctatcctcaggcggcaagaggatttctacccctttttgaaagataacagggaaa agattgag aaaatcctcacatttcggataccctactatgtaggccccctcgcccggggaaattccaga ttcgcgtg gatgactcgcaaatcagaagagaccatcactccctggaacttcgaggaagtcgtggataa gggggcct ctgcccagtccttcatcgaaaggatgactaactttgataaaaatctgcctaacgaaaagg tgcttcct aaacactctctgctgtacgagtacttcacagtttataacgagctcaccaaggtcaaatac gtcacaga agggatgagaaagccagcattcctgtctggagagcagaagaaagctatcgtggacctcct cttcaaga cgaaccggaaagttaccgtgaaacagctcaaagaagactatttcaaaaagattgaatgtt tcgactct gttgaaatcagcggagtggaggatcgcttcaacgcatccctgggaacgtatcacgatctc ctgaaaat cattaaagacaaggacttcctggacaatgaggagaacgaggacattcttgaggacattgt cctcaccc ttacgttgtttgaagatagggagatgattgaagaacgcttgaaaacttacgctcatctct tcgacgac aaagtcatgaaacagctcaagaggcgccgatatacaggatgggggcggctgtcaagaaaa ctgatcaa tgggatccgagacaagcagagtggaaagacaatcctggattttcttaagtccgatggatt tgccaacc ggaacttcatgcagttgatccatgatgactctctcacctttaaggaggacatccagaaag cacaagtt tctggccagggggacagtcttcacgagcacatcgctaatcttgcaggtagcccagctatc aaaaaggg aatactgcagaccgttaaggtcgtggatgaactcgtcaaagtaatgggaaggcataagcc cgagaata tcgttatcgagatggcccgagagaaccaaactacccagaagggacagaagaacagtaggg aaaggatg aagaggattgaagagggtataaaagaactggggtcccaaatccttaaggaacacccagtt gaaaacac ccagcttcagaatgagaagctctacctgtactacctgcagaacggcagggacatgtacgt ggatcagg aactggacatcaatcggctctccgactacgacgtggatgccatcgtgccccagtcttttc tcaaagat gattctattgataataaagtgttgacaagatccgataaaaatagagggaagagtgataac gtcccctc agaagaagttgtcaagaaaatgaaaaattattggcggcagctgctgaacgccaaactgat cacacaac ggaagttcgataatctgactaaggctgaacgaggtggcctgtctgagttggataaagccg gcttcatc aaaaggcagcttgttgagacacgccagatcaccaagcacgtggcccaaattctcgattca cgcatgaa caccaagtacgatgaaaatgacaaactgattcgagaggtgaaagttattactctgaagtc taagctgg tctcagatttcagaaaggactttcagttttataaggtgagagagatcaacaattaccacc atgcgcat gatgcctacctgaatgcagtggtaggcactgcacttatcaaaaaatatcccaagcttgaa tctgaatt tgtttacggagactataaagtgtacgatgttaggaaaatgatcgcaaagtctgagcagga aataggca aggccaccgctaagtacttcttttacagcaatattatgaattttttcaagaccgagatta cactggcc aatggagagattcggaagcgaccacttatcgaaacaaacggagaaacaggagaaatcgtg tgggacaa gggtagggatttcgcgacagtccggaaggtcctgtccatgccgcaggtgaacatcgttaa aaagaccg aagtacagaccggaggcttctccaaggaaagtatcctcccgaaaaggaacagcgacaagc tgatcgca cgcaaaaaagattgggaccccaagaaatacggcggattcgattctcctacagtcgcttac agtgtact ggttgtggccaaagtggagaaagggaagtctaaaaaactcaaaagcgtcaaggaactgct gggcatca caatcatggagcgatcaagcttcgaaaaaaaccccatcgactttctcgaggcgaaaggat ataaagag gtcaaaaaagacctcatcattaagcttcccaagtactctctctttgagcttgaaaacggc cggaaacg aatgctcgctagtgcgggcgagctgcagaaaggtaacgagctggcactgccctctaaata cgttaatt tcttgtatctggccagccactatgaaaagctcaaagggtctcccgaagataatgagcaga agcagctg ttcgtggaacaacacaaacactaccttgatgagatcatcgagcaaataagcgaattctcc aaaagagt gatcctcgccgacgctaacctcgataaggtgctttctgcttacaataagcacagggataa gcccatca gggagcaggcagaaaacattatccacttgtttactctgaccaacttgggcgcgcctgcag ccttcaag tacttcgacaccaccatagacagaaagcggtacacctctacaaaggaggtcctggacgcc acactgat tcatcagtcaattacggggctctatgaaacaagaatcgacctctctcagctcggtggaga cagcaggg ctgaccccaagaagaagaggaaggtggctagcgatgctaagtcactgactgcctggtccc ggacactg gtgaccttcaaggatgtgtttgtggacttcaccagggaggagtggaagctgctggacact gctcagca gatcctgtacagaaatgtgatgctggagaactataagaacctggtttccttgggttatca gcttacta agccagatgtgatcctccggttggagaagggagaagagccctggctggtggagagagaaa ttcaccaa gagacccatcctgattcagagactgcatttgaaatcaaatcatcagttccgaaaaagaaa cgcaaagt ttga SEQ ID NO: 49 Polypeptide sequence of Staphylococcus aureus dCas9-KRAB protein MAPKKKRKVGIHGVPAAKRNYILGLAIGITSVGYGIIDYETRDVIDAGVRLFKEANVENN EGRRSKRG ARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFSAALLHL AKRRGVHN VNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLERLKKDGEVRGSINRFKTSDYVKEA KQLLKVQK AYHQLDQSFIDTYIDLLETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVK YAYNADLY NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDIKGYRVT STGKPEFT NLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQEELTNLNSELTQEEIEQIS NLKGYTGT HNLSLKAINLILDELWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKR SFIQSIKV INAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRTTGKENAKYL IEKIKLHD MQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRSVSFDNSFNNKVLVKQEEASKKGNRTP FQYLSSSD SKISYETFKKHILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGL MNLLRSYF RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIFKEWKKLDKA KKVMENQM FEEKQAESMPEIETEQEYKEIFITPHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTR KDDKGNTL IVNNLNGLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEE TGNYLTKY SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLDNGVYKFVTV KNLDVIKK ENYYEVNSKCYEEAKKLKKISNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNM IDITYREY LENMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKGKRPAATKKAGQ AKKKKGSD AKSLTAWSRTLVTFKDVFVDFTREEWKLLDTAQQILYRNVMLENYKNLVSLGYQLTKPDV ILRLEKGE EPWLVEREIHQETHPDSETAFEIKSSVPKKKRKV SEQ ID NO: 50 Polynucleotide sequence of Staphylococcus aureus dCas9-KRAB protein atggccccaaagaagaagcggaaggtcggtatccacggagtcccagcagccaagcggaac tacatcct gggcctggccatcggcatcaccagcgtgggctacggcatcatcgactacgagacacggga cgtgatcg atgccggcgtgcggctgttcaaagaggccaacgtggaaaacaacgagggcaggcggagca agagaggc gccagaaggctgaagcggcggaggcggcatagaatccagagagtgaagaagctgctgttc gactacaa cctgctgaccgaccacagcgagctgagcggcatcaacccctacgaggccagagtgaaggg cctgagcc agaagctgagcgaggaagagttctctgccgccctgctgcacctggccaagagaagaggcg tgcacaac gtgaacgaggtggaagaggacaccggcaacgagctgtccaccaaagagcagatcagccgg aacagcaa ggccctggaagagaaatacgtggccgaactgcagctggaacggctgaagaaagacggcga agtgcggg gcagcatcaacagattcaagaccagcgactacgtgaaagaagccaaacagctgctgaagg tgcagaag gcctaccaccagctggaccagagcttcatcgacacctacatcgacctgctggaaacccgg cggaccta ctatgagggacctggcgagggcagccccttcggctggaaggacatcaaagaatggtacga gatgctga tgggccactgcacctacttccccgaggaactgcggagcgtgaagtacgcctacaacgccg acctgtac aacgccctgaacgacctgaacaatctcgtgatcaccagggacgagaacgagaagctggaa tattacga gaagttccagatcatcgagaacgtgttcaagcagaagaagaagcccaccctgaagcagat cgccaaag aaatcctcgtgaacgaagaggatattaagggctacagagtgaccagcaccggcaagcccg agttcacc aacctgaaggtgtaccacgacatcaaggacattaccgcccggaaagagattattgagaac gccgagct gctggatcagattgccaagatcctgaccatctaccagagcagcgaggacatccaggaaga actgacca atctgaactccgagctgacccaggaagagatcgagcagatctctaatctgaagggctata ccggcacc cacaacctgagcctgaaggccatcaacctgatcctggacgagctgtggcacaccaacgac aaccagat cgctatcttcaaccggctgaagctggtgcccaagaaggtggacctgtcccagcagaaaga gatcccca ccaccctggtggacgacttcatcctgagccccgtcgtgaagagaagcttcatccagagca tcaaagtg atcaacgccatcatcaagaagtacggcctgcccaacgacatcattatcgagctggcccgc gagaagaa ctccaaggacgcccagaaaatgatcaacgagatgcagaagcggaaccggcagaccaacga gcggatcg aggaaatcatccggaccaccggcaaagagaacgccaagtacctgatcgagaagatcaagc tgcacgac atgcaggaaggcaagtgcctgtacagcctggaagccatccctctggaagatctgctgaac aacccctt caactatgaggtggaccacatcatccccagaagcgtgtccttcgacaacagcttcaacaa caaggtgc tcgtgaagcaggaagaagccagcaagaagggcaaccggaccccattccagtacctgagca gcagcgac agcaagatcagctacgaaaccttcaagaagcacatcctgaatctggccaagggcaagggc agaatcag caagaccaagaaagagtatctgctggaagaacgggacatcaacaggttctccgtgcagaa agacttca tcaaccggaacctggtggataccagatacgccaccagaggcctgatgaacctgctgcgga gctacttc agagtgaacaacctggacgtgaaagtgaagtccatcaatggcggcttcaccagctttctg cggcggaa gtggaagtttaagaaagagcggaacaaggggtacaagcaccacgccgaggacgccctgat cattgcca acgccgatttcatcttcaaagagtggaagaaactggacaaggccaaaaaagtgatggaaa accagatg ttcgaggaaaagcaggccgagagcatgcccgagatcgaaaccgagcaggagtacaaagag atcttcat caccccccaccagatcaagcacattaaggacttcaaggactacaagtacagccaccgggt ggacaaga agcctaatagagagctgattaacgacaccctgtactccacccggaaggacgacaagggca acaccctg atcgtgaacaatctgaacggcctgtacgacaaggacaatgacaagctgaaaaagctgatc aacaagag ccccgaaaagctgctgatgtaccaccacgacccccagacctaccagaaactgaagctgat tatggaac agtacggcgacgagaagaatcccctgtacaagtactacgaggaaaccgggaactacctga ccaagtac tccaaaaaggacaacggccccgtgatcaagaagattaagtattacggcaacaaactgaac gcccatct ggacatcaccgacgactaccccaacagcagaaacaaggtcgtgaagctgtccctgaagcc ctacagat tcgacgtgtacctggacaatggcgtgtacaagttcgtgaccgtgaagaatctggatgtga tcaaaaaa gaaaactactacgaagtgaatagcaagtgctatgaggaagctaagaagctgaagaagatc agcaacca ggccgagtttatcgcctccttctacaacaacgatctgatcaagatcaacggcgagctgta tagagtga tcggcgtgaacaacgacctgctgaaccggatcgaagtgaacatgatcgacatcacctacc gcgagtac ctggaaaacatgaacgacaagaggccccccaggatcattaagacaatcgcctccaagacc cagagcat taagaagtacagcacagacattctgggcaacctgtatgaagtgaaatctaagaagcaccc tcagatca tcaaaaagggcaaaaggccggcggccacgaaaaaggccggccaggcaaaaaagaaaaagg gatccgat gctaagtcactgactgcctggtcccggacactggtgaccttcaaggatgtgtttgtggac ttcaccag ggaggagtggaagctgctggacactgctcagcagatcctgtacagaaatgtgatgctgga gaactata agaacctggtttccttgggttatcagcttactaagccagatgtgatcctccggttggaga agggagaa gagccctggctggtggagagagaaattcaccaagagacccatcctgattcagagactgca tttgaaat caaatcatcagttccgaaaaagaaacgcaaagtt SEQ ID NO: 51 Polypeptide sequence of Tet1CD LPTCSCLDRVIQKDKGPYYTHLGAGPSVAAVREIMENRYGQKGNAIRIEIVVYTGKEGKS SHGCPIAK WVLRRSSDEEKVLCLVRQRTGHHCPTAVMVVLIMVWDGIPLPMADRLYTELTENLKSYNG HPTDRRCT LNENRTCTCQGIDPETCGASFSFGCSWSMYFNGCKFGRSPSPRRFRIDPSSPLHEKNLED NLQSLATR LAPIYKQYAPVAYQNQVEYENVARECRLGSKEGRPFSGVTACLDFCAHPHRDIHNMNNGS TVVCTLTR EDNRSLGVIPQDEQLHVLPLYKLSDTDEFGSKEGMEAKIKSGAIEVLAPRRKKRTCFTQP VPRSGKKR AAMMTEVLAHKIRAVEKKPIPRIKRKNNSTTTNNSKPSSLPTLGSNTETVQPEVKSETEP HFILKSSD NTKTYSLMPSAPHPVKEASPGFSWSPKTASATPAPLKNDATASCGFSERSSTPHCTMPSG RLSGANAA AADGPGISQLGEVAPLPTLSAPVMEPLINSEPSTGVTEPLTPHQPNHQPSFLTSPQDLAS SPMEEDEQ HSEADEPPSDEPLSDDPLSPAEEKLPHIDEYWSDSEHIFLDANIGGVAIAPAHGSVLIEC ARRELHAT TPVEHPNRNHPTRLSLVFYQHKNLNKPQHGFELNKIKFEAKEAKNKKMKASEQKDQAANE GPEQSSEV NELNQIPSHKALTLTHDNVVTVSPYALTHVAGPYNHWV SEQ ID NO: 52 Polynucleotide sequence of Tet1CD CTGCCCACCTGCAGCTGTCTTGATCGAGTTATACAAAAAGACAAAGGCCCATATTATACA CACCTTGG GGCAGGACCAAGTGTTGCTGCTGTCAGGGAAATCATGGAGAATAGGTATGGTCAAAAAGG AAACGCAA TAAGGATAGAAATAGTAGTGTACACCGGTAAAGAAGGGAAAAGCTCTCATGGGTGTCCAA TTGCTAAG TGGGTTTTAAGAAGAAGCAGTGATGAAGAAAAAGTTCTTTGTTTGGTCCGGCAGCGTACA GGCCACCA CTGTCCAACTGCTGTGATGGTGGTGCTCATCATGGTGTGGGATGGCATCCCTCTTCCAAT GGCCGACC GGCTATACACAGAGCTCACAGAGAATCTAAAGTCATACAATGGGCACCCTACCGACAGAA GATGCACC CTCAATGAAAATCGTACCTGTACATGTCAAGGAATTGATCCAGAGACTTGTGGAGCTTCA TTCTCTTT TGGCTGTTCATGGAGTATGTACTTTAATGGCTGTAAGTTTGGTAGAAGCCCAAGCCCCAG AAGATTTA GAATTGATCCAAGCTCTCCCTTACATGAAAAAAACCTTGAAGATAACTTACAGAGTTTGG CTACACGA TTAGCTCCAATTTATAAGCAGTATGCTCCAGTAGCTTACCAAAATCAGGTGGAATATGAA AATGTTGC CCGAGAATGTCGGCTTGGCAGCAAGGAAGGTCGACCCTTCTCTGGGGTCACTGCTTGCCT GGACTTCT GTGCTCATCCCCACAGGGACATTCACAACATGAATAATGGAAGCACTGTGGTTTGTACCT TAACTCGA GAAGATAACCGCTCTTTGGGTGTTATTCCTCAAGATGAGCAGCTCCATGTGCTACCTCTT TATAAGCT TTCAGACACAGATGAGTTTGGCTCCAAGGAAGGAATGGAAGCCAAGATCAAATCTGGGGC CATCGAGG TCCTGGCACCCCGCCGCAAAAAAAGAACGTGTTTCACTCAGCCTGTTCCCCGTTCTGGAA AGAAGAGG GCTGCGATGATGACAGAGGTTCTTGCACATAAGATAAGGGCAGTGGAAAAGAAACCTATT CCCCGAAT CAAGCGGAAGAATAACTCAACAACAACAAACAACAGTAAGCCTTCGTCACTGCCAACCTT AGGGAGTA ACACTGAGACCGTGCAACCTGAAGTAAAAAGTGAAACCGAACCCCATTTTATCTTAAAAA GTTCAGAC AACACTAAAACTTATTCGCTGATGCCATCCGCTCCTCACCCAGTGAAAGAGGCATCTCCA GGCTTCTC CTGGTCCCCGAAGACTGCTTCAGCCACACCAGCTCCACTGAAGAATGACGCAACAGCCTC ATGCGGGT TTTCAGAAAGAAGCAGCACTCCCCACTGTACGATGCCTTCGGGAAGACTCAGTGGTGCCA ATGCTGCA GCTGCTGATGGCCCTGGCATTTCACAGCTTGGCGAAGTGGCTCCTCTCCCCACCCTGTCT GCTCCTGT GATGGAGCCCCTCATTAATTCTGAGCCTTCCACTGGTGTGACTGAGCCGCTAACGCCTCA TCAGCCAA ACCACCAGCCCTCCTTCCTCACCTCTCCTCAAGACCTTGCCTCTTCTCCAATGGAAGAAG ATGAGCAG CATTCTGAAGCAGATGAGCCTCCATCAGACGAACCCCTATCTGATGACCCCCTGTCACCT GCTGAGGA GAAATTGCCCCACATTGATGAGTATTGGTCAGACAGTGAGCACATCTTTTTGGATGCAAA TATTGGTG GGGTGGCCATCGCACCTGCTCACGGCTCGGTTTTGATTGAGTGTGCCCGGCGAGAGCTGC ACGCTACC ACTCCTGTTGAGCACCCCAACCGTAATCATCCAACCCGCCTCTCCCTTGTCTTTTACCAG CACAAAAA CCTAAATAAGCCCCAACATGGTTTTGAACTAAACAAGATTAAGTTTGAGGCTAAAGAAGC TAAGAATA AGAAAATGAAGGCCTCAGAGCAAAAAGACCAGGCAGCTAATGAAGGTCCAGAACAGTCCT CTGAAGTA AATGAATTGAACCAAATTCCTTCTCATAAAGCATTAACATTAACCCATGACAATGTTGTC ACCGTGTC CCCTTATGCTCTCACACACGTTGCGGGGCCCTATAACCATTGGGTC SEQ ID NO: 53 Protein sequence for VPH DALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSLPSASVEF EGSGGPSG QISNQALALAPSSAPVLAQTMVPSSAMVPLAQPPAPAPVLTPGPPQSLSAPVPKSTQAGE GTLSEALL HLQFDADEDLGALLGNSTDPGVFTDLASVDNSEFQQLLNQGVSMSHSTAEPMLMEYPEAI TRLVTGSQ RPPDPAPTPLGTSGLPNGLSGDEDFSSIADMDFSALLSQISSSGQGGGGSGFSVDTSALL DLFSPSVT VPDMSLPDLDSSLASIQELLSPQEPPRPPEAENSSPDSGKQLVHYTAQPLFLLDPGSVDT GSNDLPVL FELGEGSYFSEGDGFAEDPTISLLTGSEPPKAKDPTVS SEQ ID NO: 54 DNA sequence for VPH Gatgctttagacgattttgacttagatatgcttggttcagacgcgttagacgacttcgac ctagacat gttaggctcagatgcattggacgacttcgatttagatatgttgggctccgatgccctaga tgactttg atctagatatgctagggtcactacccagcgccagcgtcgagttcgaaggcagcggcgggc cttcaggg cagatcagcaaccaggccctggctctggcccctagctccgctccagtgctggcccagact atggtgcc ctctagtgctatggtgcctctggcccagccacctgctccagcccctgtgctgaccccagg accacccc agtcactgagcgccccagtgcccaagtctacacaggccggcgaggggactctgagtgaag ctctgctg cacctgcagttcgacgctgatgaggacctgggagctctgctggggaacagcaccgatccc ggagtgtt cacagatctggcctccgtggacaactctgagtttcagcagctgctgaatcagggcgtgtc catgtctc atagtacagccgaaccaatgctgatggagtaccccgaagccattacccggctggtgaccg gcagccag cggccccccgaccccgctccaactcccctgggaaccagcggcctgcctaatgggctgtcc ggagatga agacttctcaagcatcgctgatatggactttagtgccctgctgtcacagatttcctctag tgggcagg gaggaggtggaagcggcttcagcgtggacaccagtgccctgctggacctgttcagcccct cggtgacc gtgcccgacatgagcctgcctgaccttgacagcagcctggccagtatccaagagctcctg tctcccca ggagccccccaggcctcccgaggcagagaacagcagcccggattcagggaagcagctggt gcactaca cagcgcagccgctgttcctgctggaccccggctccgtggacaccgggagcaacgacctgc cggtgctg tttgagctgggagagggctcctacttctccgaaggggacggcttcgccgaggaccccacc atctccct gctgacaggctcggagcctcccaaagccaaggaccccactgtctcc SEQ ID NO: 55 Protein sequence for VPR DALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSDALDDFDLDMLGSPKKKRKVG SQYLPDTD DRHRIEEKRKRTYETFKSIMKKSPFSGPTDPRPPPRRIAVPSRSSASVPKPAPQPYPFTS SLSTINYD EFPTMVFPSGQISQASALAPAPPQVLPQAPAPAPAPAMVSALAQAPAPVPVLAPGPPQAV APPAPKPT QAGEGTLSEALLQLQFDDEDLGALLGNSTDPAVFTDLASVDNSEFQQLLNQGIPVAPHTT EPMLMEYP EAITRLVTGAQRPPDPAPAPLGAPGLPNGLLSGDEDFSSIADMDFSALLSQISSGSGSGS RDSREGMF LPKPEAGSAISDVFEGREVCQPKRIRPFHPPGSPWANRPLPASLAPTPTGPVHEPVGSLT PAPVPQPL DPAPAVTPEASHLLEDPDEETSQAVKALREMADTVIPQKEEAAICGQMDLSHPPPRGHLD ELTTTLES MTEDLNLDSPLTPELNEILDTFLNDECLLHAMHISTGLSIFDTSLF SEQ ID NO: 56 DNA sequence for VPR gatgctttagacgattttgacttagatatgcttggttcagacgcgttagacgacttcgac ctagacat gttaggctcagatgcattggacgacttcgatttagatatgttgggctccgatgccctaga tgactttg atctagatatgctaggtagtcccaaaaagaagaggaaagtgggatcccagtatctgcccg acacagat gatagacaccgaatcgaagagaaacgcaagcgaacgtatgaaaccttcaaatcgatcatg aagaaatc gcccttctcgggtccgaccgatcccaggcccccaccgagaaggattgcggtcccgtcccg ctcgtcgg ccagcgtgccgaagcctgcgccgcagccctaccccttcacgtcgagcctgagcacaatca attatgac gagttcccgacgatggtgttcccctcgggacaaatctcacaagcctcggcgctcgcacca gcgcctcc ccaagtccttccgcaagcgcctgccccagcgcctgcaccggcaatggtgtccgccctcgc acaggccc ctgcgcccgtccccgtgctcgcgcctggaccgccccaggcggtcgctccaccggctccga agccgacg caggccggagagggaacactctccgaagcacttcttcaactccagtttgatgacgaggat cttggagc actccttggaaactcgacagaccctgcggtgtttaccgacctcgcgtcagtagataactc cgaatttc agcagcttttgaaccagggtatcccggtcgcgccacatacaacggagcccatgttgatgg aatacccc gaagcaatcacgagacttgtgacgggagcgcagcggcctcccgatcccgcacccgcacct ttgggggc acctggcctccctaacggacttttgagcggcgacgaggatttctcctccatcgccgatat ggatttct cagccttgctgtcacagatttccagcggctctggcagcggcagccgggattccagggaag ggatgttt ttgccgaagcctgaggccggctccgctattagtgacgtgtttgagggccgcgaggtgtgc cagccaaa acgaatccggccatttcatcctccaggaagtccatgggccaaccgcccactccccgccag cctcgcac caacaccaaccggtccagtacatgagccagtcgggtcactgaccccggcaccagtccctc agccactg gatccagcgcccgcagtgactcccgaggccagtcacctgttggaggatcccgatgaagag acgagcca ggctgtcaaagcccttcgggagatggccgatactgtgattccccagaaggaagaggctgc aatctgtg gccaaatggacctttcccatccgcccccaaggggccatctggatgagctgacaaccacac ttgagtcc atgaccgaggatctgaacctggactcacccctgaccccggaattgaacgagattctggat accttcct gaacgacgagtgcctcttgcatgccatgcatatcagcacaggactgtccatcttcgacac atctctgt tt SEQ ID NO: 57 Protein sequence for MCRS1 YKKAGSTMDKDSQGLLDSSLMASGTASRSEDEESLAGQKRASSQALGTIPKRRSSSRFIK RK KFDDELVESSLAKSSTRAKGASGVEPGRCSGSEPSSSEKKKVSKAPSTPVPPSPAPAPGL TK RVKKSKQPLQVTKDLGRWKPADDLLLINAVLQTNDLTSVHLGVKFSCRFTLREVQERWYA LL YDPVISKLACQAMRQLHPEAIAAIQSKALFSKAEEQLLSKVGSTSQPTLETFQDLLHRHP DA FYLARTAKALQAHWQLMKQYYLLEDQTVQPLPKGDQVLNFSDAEDLIDDSKLKDMRDEVL EH ELMVADRRQKREIRQLEQELHKWQVLVDSITGMSSPDFDNQTLAVLRGRMVRYLMRSREI TL GRATKDNQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSKW RL SNNSVVEIASLRFVFLINQDLIALIRAEAAKITPQLDPAFL SEQ ID NO: 58 DNA sequence for MCRS1 gtacaaaaaagcaggctccaccatggacaaagattctcaggggctgctagattcatccct ga tggcatcaggcactgccagccgctcagaggatgaggagtcactggcagggcagaagcgag cc tcctcccaggccttgggcaccatccctaaacggagaagctcctccaggttcatcaagagg aa gaagttcgatgatgagctggtggagagcagcctggcaaaatcttctacccgggcaaaggg gg ccagtggggtggaaccagggcgctgttcggggagtgaaccctcctccagtgagaagaaga ag gtatccaaagcccccagcactcctgtgccacccagcccagccccagcccctggactcacc aa gcgtgtgaagaagagtaaacagccacttcaggtgaccaaggatctgggccgctggaagcc tg cagatgacctcctgctcataaatgctgtgttgcagaccaacgacctgacctccgtccacc tg ggcgtgaaattcagctgccgcttcacccttcgggaggtccaggagcgttggtacgccctg ct ctacgatcctgtcatctccaagttggcctgtcaggccatgaggcagctgcacccagaggc ta ttgcagccatccagagcaaggccctgtttagcaaggctgaggagcagctgctgagcaaag tg ggatcgaccagccagcccaccttggagaccttccaggacctgctgcacagacaccctgat gc cttctacctggcccgtaccgcgaaggccctgcaggcccactggcagctcatgaagcagta tt acctgctggaggaccagacagtgcagccgctgcccaaaggggaccaagtgctgaacttct ct gatgcagaggacctgattgatgacagtaagctcaaggacatgcgagatgaggtcctggaa ca tgagctgatggtggctgaccggcgccagaagcgagagattcggcagctggaacaggaact gc ataagtggcaggtgctagtggacagcatcacaggcatgagctctccggacttcgacaacc ag acactggcagtgctgcggggccgcatggtgcggtacctgatgcgctcgcgtgagatcacc ct gggcagagcaaccaaggataaccagattgatgtggacctgtctctggagggtccggcctg ga agatatcccggaaacaaggtgtcatcaagctgaagaacaacggtgatttcttcattgcca at gagggtcgacggcccatctacatcgatggacggccggtgctctgtggctccaaatggcgc ct cagcaacaactctgtggtggagatcgccagcctgcgattcgtcttccttatcaaccagga cc tcattgccctcatcagggctgaggctgccaagatcacaccacagttggacccagctttct tg tac SEQ ID NO: 59 Protein sequence for OTUD7B MTLDMDAVLSDFVRSTGAEPGLARDLLEGKNWDVNAALSDFEQLRQVHAGNLPPSFSEGS GG SRTPEKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLARSHVSSNGGGGG SN EHPLEMPICAFQLPDLTVYNEDFRSFIERDLIEQSMLVALEQAGRLNWWVSVDPTSQRLL PL ATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGVEKEALKRRWRWQQTQQNKESG LV YTEDEWQKEWNELIKLASSEPRMHLGTNGANCGGVESSEEPVYESLEEFHVFVLAHVLRR PI VVVADTMLRDSGGEAFAPIPFGGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKEN TK EQAVIPLTDSEYKLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVK WI PLSSDAQAPLAQPESPTASAGDEPRSTPESGDSDKESVGSSSTSNEGGRRKEKSKRDREK DK KRADSVANKLGSFGKTLGSKLKKNMGGLMHSKGSKPGGVGTGLGGSSGTETLEKKKKNSL KS WKGGKEEAAGDGPVSEKPPAESVGNGGSKYSQEVMQSLSILRTAMQGEGKFIFVGTLKMG HR HQYQEEMIQRYLSDAEERFLAEQKQKEAERKIMNGGIGGGPPPAKKPEPDAREEQPTGPP AE SRAMAFSTGYPGDFTIPRPSGGGVHCQEPRRQLAGGPCVGGLPPYATFPRQCPPGRPYPH QD SIPSLEPGSHSKDGLHRGALLPPPYRVADSYSNGYREPPEPDGWAGGLRGLPPTQTKCKQ PN CSFYGHPETNNFCSCCYREELRRREREPDGELLVHRFLDPAFLY SEQ ID NO: 60 DNA sequence for OTUD7B gtacaaaaaagcaggctccaccatgaccctggacatggatgctgttctgtcagattttgt cc gttccacaggagcagagccagggctagcgcgagatctcctagaaggaaagaattgggatg tg aatgccgccctcagtgattttgaacagctacgtcaagtccatgctggaaacctaccccca tc ctttagtgaggggagtggtggctccaggacccctgaaaaagggttttctgacagagagcc ta ctcgccctccccgacccatcctccagcggcaggatgacatcgttcaagaaaaacgcctgt ct aggggcatctcccacgccagctccagcattgtttccctggcccggtcccatgtctcctcc aa tggtgggggtggggggagcaatgagcaccccctggaaatgcccatctgtgccttccagct tc cagatctcactgtatacaatgaagacttccgcagcttcatagagagagacctcattgagc ag tccatgctggttgccttggaacaggcagggcgtttgaactggtgggtgagtgtggatccc ac ctctcagaggctgcttcctttggcaactactggagatgggaactgcctcctgcatgcagc ct cccttggaatgtggggtttccatgatcgggacttgatgctgcggaaagctttgtatgcac tg atggagaagggagttgagaaggaagcgttgaaaaggcgctggaggtggcagcagacacag ca gaataaagagtcagggctggtatacacagaagatgaatggcagaaggagtggaatgaact ga tcaagcttgcctcaagtgaaccccgaatgcatctaggtaccaatggagccaactgtggtg gg gtggagagttctgaggagcctgtatatgagagccttgaagagtttcacgtctttgtcctt gc tcatgtgcttaggaggcccatagtcgtcgtggcagacaccatgctgagggactccggagg gg aagcatttgcccctattccctttggaggaatctatctgcctttggaggtcccagccagcc ag tgtcaccgctcccctctggtgctcgcctatgatcaggcccacttttctgcactcgtgtcc at ggagcagaaggagaataccaaggaacaagctgtgatcccacttacagattcagagtataa gc tgctgcccttgcactttgctgtggaccctggaaagggctgggagtggggcaaagatgata gt gacaatgtccgattggccagtgtaattctgtccctagaggtcaaattgcatctgctgcat ag ctacatgaatgtgaagtggatcccactgtcctctgatgcacaggctcctctggcccagcc tg agtcccccaccgcctcagctggagatgagccccggtccactcctgagtctggagactcag ac aaggagtcagttggcagcagttccaccagcaacgagggcggccggcggaaggagaagtca aa gcgagatcgggagaaggacaagaagagagcagattctgtggctaacaaactgggcagctt tg gcaaaaccttgggcagcaagctcaagaagaacatggggggcctgatgcacagcaagggtt ca aagcctggaggggtggggacagggttgggaggaagcagcggcactgagacactggagaag aa gaagaaaaactcactgaagagctggaagggtggcaaggaggaggcagctggggatgggcc tg tgtctgagaagcccccagctgagtctgttggtaacggagggagcaagtatagccaggagg tg atgcaaagcctgagcattctgaggactgccatgcaaggggaggggaagtttatttttgtt gg aaccctgaagatgggtcaccgtcaccagtatcaggaggaaatgatccagcgctacctttc tg atgctgaggagagattcctggcagaacagaagcagaaggaggcagagaggaagatcatga at ggaggaatagggggtggccctcctccagccaaaaagccagagccagatgctagggaagag ca gccgaccggtcccccagcagagtccagggcaatggcattttccactggctaccctgggga ct ttactatccctcggccgtctgggggcggagtccactgccaggaaccccggaggcagttgg ca gggggtccatgtgtcgggggcctaccaccatatgccaccttccccagacagtgccctcct gg gcgaccctacccccaccaggacagcatcccttctctggagccaggcagccactctaagga tg gacttcacaggggtgccttgttaccacccccctaccgagtggctgattcctatagcaatg gc tacagagagccccctgagccagatggatgggctggaggtctccggggccttcccccaact ca gaccaaatgcaaacaaccgaactgcagcttctatggacaccctgagacaaacaacttctg tt cctgttgttacagggaagaactgaggaggagggagcgggaaccggatggggagctcctgg tg cacaggttcttggacccagctttcttgtac SEQ ID NO: 61 Protein sequence for LDB1 MLDRDVGPTPMYPPTYLEPGIGRHTPYGNQTDYRIFELNKRLQNWTEECDNLWWDAFTTE FF EDDAMLTITFCLEDGPKRYTIGRTLIPRYFRSIFEGGATELYYVLKHPKEAFHSNFVSLD CD QGSMVTQHGKPMFTQVCVEGRLYLEFMFDDMMRIKTWHFSIRQHRELIPRSILAMHAQDP QM LDQLSKNITRCGLSNSTLNYLRLCVILEPMQELMSRHKTYSLSPRDCLKTCLFQKWQRMV AP PAEPTRQQPSKRRKRKMSGGSTMSSGGGNTNNSNSKKKSPASTFALSSQVPDVMVVGEPT LM GGEFGDEDERLITRLENTQFDAANGIDDEDSFNNSPALGANSPWNSKPPSSQESKSENPT SQ ASQLDPAFLY SEQ ID NO: 62 DNA sequence for LDB1 atgctggatagggatgtgggcccaactcccatgtatccgcctacatacctggagccaggg at tgggaggcacacaccatatggcaaccaaactgactacagaatatttgagcttaacaaacg gc ttcagaactggacagaggagtgtgacaatctctggtgggatgcattcacgactgagttct tt gaggatgatgccatgttgaccatcactttctgcctggaggatggaccaaagagatatacc at tggccggaccctgatcccacgctacttccgcagcatctttgaggggggtgctacggagct gt actatgttcttaagcaccccaaggaggcattccacagcaactttgtgtccctcgactgtg ac cagggcagcatggtgacccagcatggcaagcccatgttcacccaggtgtgtgtggagggc cg gttgtacctggagttcatgtttgacgacatgatgcggataaagacgtggcacttcagcat cc ggcagcaccgagagctcatcccccgcagcatccttgccatgcatgcccaagacccccaga tg ttggatcagctctccaaaaacatcactcggtgtgggctgtccaattccactctcaactac ct ccgactctgtgtgatactcgagcccatgcaagagctcatgtcacgccacaagacctacag cc tcagcccccgcgactgcctcaagacctgccttttccagaagtggcagcgcatggtagcac cc cctgcggagcccacacgtcagcagcccagcaaacggcggaaacggaagatgtcagggggc ag caccatgagctctggtggtggcaacaccaacaacagcaacagcaagaagaagagcccagc ta gcaccttcgccctctccagccaggtacctgatgtgatggtggtgggggagcccaccctga tg ggcggggagttcggggacgaggacgagaggctcatcacccggctggagaacacccagttt ga cgcagccaacggcattgacgacgaggacagctttaacaactcccctgcactgggcgccaa ca gcccctggaacagcaagcctccgtccagccaagaaagcaaatcggagaaccccacgtcac ag gcctcccagttggacccagctttcttgtac SEQ ID NO: 63 Protein sequence for NFKBIB MAGVACLGKAADADEWCDSGLGSLGPDAAAPGGPGLGAELGPGLSWAPLVFGYVTEDGDT AL HLAVIHQHEPFLDFLLGFSAGTEYMDLQNDLGQTALHLAAILGETSTVEKLYAAGAGLCV AE RRGHTALHLACRVGAHACARALLQPRPRRPREAPDTYLAQGPDRTPDTNHTPVALYPDSD LE KEEEESEEDWKLQLEAENYEGHTPLHVAVIHKDVEMVRLLRDAGADLDKPEPTCGRSPLH LA VEAQAADVLELLLRAGANPAARMYGGRTPLGSAMLRPNPILARLLRAHGAPEPEGEDEKS GP CSSSSDSDSGDEGDEYDDIVVHSSRSQTRLPPTPASKPLPDDPRPV SEQ ID NO: 64 DNA sequence for NFKBIB ATGGCTGGGGTCGCGTGCTTGGGAAAAGCTGCCGACGCAGATGAATGGTGCGACAGCGGC CT GGGCTCCCTGGGTCCGGACGCAGCGGCCCCCGGAGGACCTGGGTTGGGCGCGGAGTTGGG CC CGGGGCTGTCGTGGGCTCCCCTCGTCTTCGGCTACGTCACTGAGGATGGGGACACGGCAC TG CACTTGGCTGTGATTCATCAGCATGAACCCTTCCTGGATTTTCTTCTAGGCTTCTCGGCC GG CACTGAGTACATGGACCTGCAGAATGACCTAGGCCAGACAGCCCTGCACCTGGCAGCCAT CC TGGGGGAGACATCCACGGTGGAGAAGCTGTACGCAGCAGGCGCCGGGCTGTGTGTGGCGG AG CGTAGGGGCCACACGGCGCTGCACCTGGCCTGCCGTGTGGGGGCACACGCCTGTGCCCGT GC CCTGCTTCAGCCCCGCCCCCGGCGCCCCAGGGAAGCCCCCGACACCTACCTCGCTCAGGG CC CTGACCGTACTCCCGACACCAACCATACCCCTGTCGCCTTGTACCCCGATTCCGACTTGG AG AAGGAAGAAGAGGAGAGTGAGGAGGACTGGAAGCTGCAGCTGGAGGCTGAAAACTACGAG GG CCACACCCCACTCCACGTGGCCGTTATCCACAAAGATGTGGAGATGGTCCGGCTGCTCCG AG ATGCTGGAGCTGACCTTGACAAACCGGAGCCCACGTGCGGCCGGAGCCCCCTTCATTTGG CA GTGGAGGCCCAGGCAGCCGATGTGCTGGAGCTTCTCCTGAGGGCAGGCGCGAACCCTGCT GC CCGCATGTACGGTGGCCGCACCCCACTCGGCAGTGCCATGCTCCGGCCCAACCCCATCCT CG CCCGCCTCCTCCGTGCACACGGAGCCCCTGAGCCCGAGGGCGAGGACGAGAAATCCGGCC CC TGCAGCAGCAGTAGCGACAGCGACAGCGGAGACGAGGGCGATGAATACGACGACATTGTG GT TCACAGCAGCCGCAGCCAAACCCGGCTGCCTCCCACCCCAGCCTCAAAACCTCTTCCTGA CG ACCCCCGCCCCGTGTGA SEQ ID NO: 65 Protein sequence for RelB MLRSGPASGPSVPTGRAMPSRRVARPPAAPELGALGSPDLSSLSLAVSRSTDELEIIDEY IK ENGFGLDGGQPGPGEGLPRLVSRGAASLSTVTLGPVAPPATPPPWGCPLGRLVSPAPGPG PQ PHLVITEQPKQRGMRFRYECEGRSAGSILGESSTEASKTLPAIELRDCGGLREVEVTACL VW KDWPHRVHPHSLVGKDCTDGICRVRLRPHVSPRHSFNNLGIQCVRKKEIEAAIERKIQLG ID PYNAGSLKNHQEVDMNVVRICFQASYRDQQGQMRRMDPVLSEPVYDKKSTNTSELRICRI NK ESGPCTGGEELYLLCDKVQKEDISVVFSRASWEGRADFSQADVHRQIAIVFKTPPYEDLE IV EPVTVNVFLQRLTDGVCSEPLPFTYLPRDHDSYGVDKKRKRGMPDVLGELNSSDPHGIES KR RKKKPAILDHFLPNHGSGPFLPPSALLPDPDFFSGTVSLPGLEPPGGPDLLDDGFAYDPT AP TLFTMLDLLPPAPPHASAVVCSGGAGAVVGETPGPEPLTLDSYQAPGPGDGGTASLVGSN MF PNHYREAAFGGGLLSPGPEAT SEQ ID NO: 66 DNA sequence for RelB ATGCTTCGGTCTGGGCCAGCCTCTGGGCCGTCCGTCCCCACTGGCCGGGCCATGCCGAGT CG CCGCGTCGCCAGACCGCCGGCTGCGCCGGAGCTGGGGGCCTTAGGGTCCCCCGACCTCTC CT CACTCTCGCTCGCCGTTTCCAGGAGCACAGATGAATTGGAGATCATCGACGAGTACATCA AG GAGAACGGCTTCGGCCTGGACGGGGGACAGCCGGGCCCGGGCGAGGGGCTGCCACGCCTG GT GTCTCGCGGGGCTGCGTCCCTGAGCACGGTCACCCTGGGCCCTGTGGCGCCCCCAGCCAC GC CGCCGCCTTGGGGCTGCCCCCTGGGCCGACTAGTGTCCCCAGCGCCGGGCCCGGGCCCGC AG CCGCACCTGGTCATCACGGAGCAGCCCAAGCAGCGCGGCATGCGCTTCCGCTACGAGTGC GA GGGCCGCTCGGCCGGCAGCATCCTTGGGGAGAGCAGCACCGAGGCCAGCAAGACGCTGCC CG CCATCGAGCTCCGGGATTGTGGAGGGCTGCGGGAGGTGGAGGTGACTGCCTGCCTGGTGT GG AAGGACTGGCCTCACCGAGTCCACCCCCACAGCCTCGTGGGGAAAGACTGCACCGACGGC AT CTGCAGGGTGCGGCTCCGGCCTCACGTCAGCCCCCGGCACAGTTTTAACAACCTGGGCAT CC AGTGTGTGAGGAAGAAGGAGATTGAGGCTGCCATTGAGCGGAAGATTCAACTGGGCATTG AC CCCTACAACGCTGGGTCCCTGAAGAACCATCAGGAAGTAGACATGAATGTGGTGAGGATC TG CTTCCAGGCCTCATATCGGGACCAGCAGGGACAGATGCGCCGGATGGATCCTGTGCTTTC CG AGCCCGTCTATGACAAGAAATCCACAAACACATCAGAGCTGCGGATTTGCCGAATTAACA AG GAAAGCGGGCCGTGCACCGGTGGCGAGGAGCTCTACTTGCTCTGCGACAAGGTGCAGAAA GA GGACATATCAGTGGTGTTCAGCAGGGCCTCCTGGGAAGGTCGGGCTGACTTCTCCCAGGC CG ACGTGCACCGCCAGATTGCCATTGTGTTCAAGACGCCGCCCTACGAGGACCTGGAGATTG TC GAGCCCGTGACAGTCAACGTCTTCCTGCAGCGGCTCACCGATGGGGTCTGCAGCGAGCCA TT GCCTTTCACGTACCTGCCTCGCGACCATGACAGCTACGGCGTGGACAAGAAGCGGAAACG GG GGATGCCCGACGTCCTTGGGGAGCTGAACAGCTCTGACCCCCATGGCATCGAGAGCAAAC GG CGGAAGAAAAAGCCGGCCATCCTGGACCACTTCCTGCCCAACCACGGCTCAGGCCCGTTC CT CCCGCCGTCAGCCCTGCTGCCAGACCCTGACTTCTTCTCTGGCACCGTGTCCCTGCCCGG CC TGGAGCCCCCTGGCGGGCCTGACCTCCTGGACGATGGCTTTGCCTACGACCCTACGGCCC CC ACACTCTTCACCATGCTGGACCTGCTGCCCCCGGCACCGCCACACGCTAGCGCTGTTGTG TG CAGCGGAGGTGCCGGGGCCGTGGTTGGGGAGACCCCCGGCCCTGAACCACTGACACTGGA CT CGTACCAGGCCCCGGGCCCCGGGGATGGAGGCACCGCCAGCCTTGTGGGCAGCAACATGT TC CCCAATCATTACCGCGAGGCGGCCTTTGGGGGCGGCCTCCTATCCCCGGGGCCTGAAGCC AC GTAG SEQ ID NO: 67 Protein sequence for CITED2 MADHMMAMNHGRFPDGTNGLHHHPAHRMGMGQFPSPHHHQQQQPQHAFNALMGEHIHYGA GN MNATSGIRHAMGPGTVNGGHPPSALAPAARFNNSQFMGPPVASQGGSLPASMQLQKLNNQ YF NHHPYPHNHYMPDLHPAAGHQMNGTNQHFRDCNPKHSGGSSTPGGSGGSSTPGGSGSSSG GG AGSSNSGGGSGSGNMPASVAHVPAAMLPPNVIDTDFIDEEVLMSLVIEMGLDRIKELPEL WL GQNEFDFMTDFVCKQQPSRVSCLDPAFLY SEQ ID NO: 68 DNA sequence for CITED2 atggcagaccatatgatggcaatgaaccacgggcgcttccccgacggcaccaatgggctg ca ccatcaccctgcccaccgcatgggcatggggcagttcccgagcccccatcaccaccagca gc agcagccccagcacgccttcaacgccctaatgggcgagcacatacactacggcgcgggca ac atgaatgccacgagcggcatcaggcatgcgatggggccggggactgtgaacggagggcac cc cccgagcgcgctggcccccgcggccaggtttaacaactcccagttcatgggtcccccggt gg ccagccagggaggctccctgccggccagcatgcagctgcagaagctcaacaaccagtatt tc aaccatcacccctacccccacaaccactacatgccggatttgcaccctgctgcaggccac ca gatgaacgggacaaaccagcacttccgagattgcaaccccaagcacagcggcggcagcag ca cccccggcggctcgggcggcagcagcacccccggcggctctggcagcagctcgggcggcg gc gcgggcagcagcaacagcggcggcggcagcggcagcggcaacatgcccgcctccgtggcc ca cgtccccgctgcaatgctgccgcccaatgtcatagacactgatttcatcgacgaggaagt tc ttatgtccttggtgatagaaatgggtttggaccgcatcaaggagctgcccgaactctggc tg gggcaaaacgagtttgattttatgacggacttcgtgtgcaaacagcagcccagcagagtg ag ctgtttggacccagctttcttgtac SEQ ID NO: 69 Protein sequence for ScFv-sfBFP-MCRS1 NLS-ScFV-linker-sfBFP-linker-MCRS1 MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGST MDKDSQGLLDSSLMASGTASRSEDEESLAGQKRASSQALGTIPKRRSSSRFIK RKKFDDELVESSLAKSSTRAKGASGVEPGRCSGSEPSSSEKKKVSKAPSTPVP PSPAPAPGLTKRVKKSKQPLQVTKDLGRWKPADDLLLINAVLQTNDLTSVHLG VKFSCRFTLREVQERWYALLYDPVISKLACQAMRQLHPEAIAAIQSKALFSKA EEQLLSKVGSTSQPTLETFQDLLHRHPDAFYLARTAKALQAHWQLMKQYYLLE DQTVQPLPKGDQVLNFSDAEDLIDDSKLKDMRDEVLEHELMVADRRQKREIRQ LEQELHKWQVLVDSITGMSSPDFDNQTLAVLRGRMVRYLMRSREITLGRATKD NQIDVDLSLEGPAWKISRKQGVIKLKNNGDFFIANEGRRPIYIDGRPVLCGSK WRLSNNSVVEIASLRFVFLINQDLIALIRAEAAKITPQLDPAFL SEQ ID NO: 70 DNA sequence for ScFv-sfBFP-MCRS1 atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccgtacaaaaaagcaggctccaccat gg acaaagattctcaggggctgctagattcatccctgatggcatcaggcactgccagccgct ca gaggatgaggagtcactggcagggcagaagcgagcctcctcccaggccttgggcaccatc cc taaacggagaagctcctccaggttcatcaagaggaagaagttcgatgatgagctggtgga ga gcagcctggcaaaatcttctacccgggcaaagggggccagtggggtggaaccagggcgct gt tcggggagtgaaccctcctccagtgagaagaagaaggtatccaaagcccccagcactcct gt gccacccagcccagccccagcccctggactcaccaagcgtgtgaagaagagtaaacagcc ac ttcaggtgaccaaggatctgggccgctggaagcctgcagatgacctcctgctcataaatg ct gtgttgcagaccaacgacctgacctccgtccacctgggcgtgaaattcagctgccgcttc ac ccttcgggaggtccaggagcgttggtacgccctgctctacgatcctgtcatctccaagtt gg cctgtcaggccatgaggcagctgcacccagaggctattgcagccatccagagcaaggccc tg tttagcaaggctgaggagcagctgctgagcaaagtgggatcgaccagccagcccaccttg ga gaccttccaggacctgctgcacagacaccctgatgccttctacctggcccgtaccgcgaa gg ccctgcaggcccactggcagctcatgaagcagtattacctgctggaggaccagacagtgc ag ccgctgcccaaaggggaccaagtgctgaacttctctgatgcagaggacctgattgatgac ag taagctcaaggacatgcgagatgaggtcctggaacatgagctgatggtggctgaccggcg cc agaagcgagagattcggcagctggaacaggaactgcataagtggcaggtgctagtggaca gc atcacaggcatgagctctccggacttcgacaaccagacactggcagtgctgcggggccgc at ggtgcggtacctgatgcgctcgcgtgagatcaccctgggcagagcaaccaaggataacca ga ttgatgtggacctgtctctggagggtccggcctggaagatatcccggaaacaaggtgtca tc aagctgaagaacaacggtgatttcttcattgccaatgagggtcgacggcccatctacatc ga tggacggccggtgctctgtggctccaaatggcgcctcagcaacaactctgtggtggagat cg ccagcctgcgattcgtcttccttatcaaccaggacctcattgccctcatcagggctgagg ct gccaagatcacaccacagttggacccagctttcttgtac SEQ ID NO: 71 Protein sequence for ScFv-sfBFP-OTUD7B NLS-ScFV-linker-sfBFP-linker-OTUD7b MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGSTMTLDMDAVLSDFV RSTGAEPGLARDLLEGKNWDVNAALSDFEQLRQVHAGNLPPSFSEGSGGSRTP EKGFSDREPTRPPRPILQRQDDIVQEKRLSRGISHASSSIVSLARSHVSSNGG GGGSNEHPLEMPICAFQLPDLTVYNEDFRSFIERDLIEQSMLVALEQAGRLNW WVSVDPTSQRLLPLATTGDGNCLLHAASLGMWGFHDRDLMLRKALYALMEKGV EKEALKRRWRWQQTQQNKESGLVYTEDEWQKEWNELIKLASSEPRMHLGTNGA NCGGVESSEEPVYESLEEFHVFVLAHVLRRPIVVVADTMLRDSGGEAFAPIPF GGIYLPLEVPASQCHRSPLVLAYDQAHFSALVSMEQKENTKEQAVIPLTDSEY KLLPLHFAVDPGKGWEWGKDDSDNVRLASVILSLEVKLHLLHSYMNVKWIPLS SDAQAPLAQPESPTASAGDEPRSTPESGDSDKESVGSSSTSNEGGRRKEKSKR DREKDKKRADSVANKLGSFGKTLGSKLKKNMGGLMHSKGSKPGGVGTGLGGSS GTETLEKKKKNSLKSWKGGKEEAAGDGPVSEKPPAESVGNGGSKYSQEVMQSL SILRTAMQGEGKFIFVGTLKMGHRHQYQEEMIQRYLSDAEERFLAEQKQKEAE RKIMNGGIGGGPPPAKKPEPDAREEQPTGPPAESRAMAFSTGYPGDFTIPRPS GGGVHCQEPRRQLAGGPCVGGLPPYATFPRQCPPGRPYPHQDSIPSLEPGSHS KDGLHRGALLPPPYRVADSYSNGYREPPEPDGWAGGLRGLPPTQTKCKQPNCS FYGHPETNNFCSCCYREELRRREREPDGELLVHRFLDPAFLYKVV SEQ ID NO: 72 DNA sequence for ScFv-sfBFP-OTUD7B atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccgtacaaaaaagcaggctccaccat ga ccctggacatggatgctgttctgtcagattttgtccgttccacaggagcagagccagggc ta gcgcgagatctcctagaaggaaagaattgggatgtgaatgccgccctcagtgattttgaa ca gctacgtcaagtccatgctggaaacctacccccatcctttagtgaggggagtggtggctc ca ggacccctgaaaaagggttttctgacagagagcctactcgccctccccgacccatcctcc ag cggcaggatgacatcgttcaagaaaaacgcctgtctaggggcatctcccacgccagctcc ag cattgtttccctggcccggtcccatgtctcctccaatggtgggggtggggggagcaatga gc accccctggaaatgcccatctgtgccttccagcttccagatctcactgtatacaatgaag ac ttccgcagcttcatagagagagacctcattgagcagtccatgctggttgccttggaacag gc agggcgtttgaactggtgggtgagtgtggatcccacctctcagaggctgcttcctttggc aa ctactggagatgggaactgcctcctgcatgcagcctcccttggaatgtggggtttccatg at cgggacttgatgctgcggaaagctttgtatgcactgatggagaagggagttgagaaggaa gc gttgaaaaggcgctggaggtggcagcagacacagcagaataaagagtcagggctggtata ca cagaagatgaatggcagaaggagtggaatgaactgatcaagcttgcctcaagtgaacccc ga atgcatctaggtaccaatggagccaactgtggtggggtggagagttctgaggagcctgta ta tgagagccttgaagagtttcacgtctttgtccttgctcatgtgcttaggaggcccatagt cg tcgtggcagacaccatgctgagggactccggaggggaagcatttgcccctattccctttg ga ggaatctatctgcctttggaggtcccagccagccagtgtcaccgctcccctctggtgctc gc ctatgatcaggcccacttttctgcactcgtgtccatggagcagaaggagaataccaagga ac aagctgtgatcccacttacagattcagagtataagctgctgcccttgcactttgctgtgg ac cctggaaagggctgggagtggggcaaagatgatagtgacaatgtccgattggccagtgta at tctgtccctagaggtcaaattgcatctgctgcatagctacatgaatgtgaagtggatccc ac tgtcctctgatgcacaggctcctctggcccagcctgagtcccccaccgcctcagctggag at gagccccggtccactcctgagtctggagactcagacaaggagtcagttggcagcagttcc ac cagcaacgagggcggccggcggaaggagaagtcaaagcgagatcgggagaaggacaagaa ga gagcagattctgtggctaacaaactgggcagctttggcaaaaccttgggcagcaagctca ag aagaacatggggggcctgatgcacagcaagggttcaaagcctggaggggtggggacaggg tt gggaggaagcagcggcactgagacactggagaagaagaagaaaaactcactgaagagctg ga agggtggcaaggaggaggcagctggggatgggcctgtgtctgagaagcccccagctgagt ct gttggtaacggagggagcaagtatagccaggaggtgatgcaaagcctgagcattctgagg ac tgccatgcaaggggaggggaagtttatttttgttggaaccctgaagatgggtcaccgtca cc agtatcaggaggaaatgatccagcgctacctttctgatgctgaggagagattcctggcag aa cagaagcagaaggaggcagagaggaagatcatgaatggaggaatagggggtggccctcct cc agccaaaaagccagagccagatgctagggaagagcagccgaccggtcccccagcagagtc ca gggcaatggcattttccactggctaccctggggactttactatccctcggccgtctgggg gc ggagtccactgccaggaaccccggaggcagttggcagggggtccatgtgtcgggggccta cc accatatgccaccttccccagacagtgccctcctgggcgaccctacccccaccaggacag ca tcccttctctggagccaggcagccactctaaggatggacttcacaggggtgccttgttac ca cccccctaccgagtggctgattcctatagcaatggctacagagagccccctgagccagat gg atgggctggaggtctccggggccttcccccaactcagaccaaatgcaaacaaccgaactg ca gcttctatggacaccctgagacaaacaacttctgttcctgttgttacagggaagaactga gg aggagggagcgggaaccggatggggagctcctggtgcacaggttcttggacccagctttc tt gtac SEQ ID NO: 73 Protein sequence for ScFv-sfBFP-LDB1 NLS-ScFV-linker-sfBFP-linker-LDB1 MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGSTMLDRDVGPTPMYP PTYLEPGIGRHTPYGNQTDYRIFELNKRLQNWTEECDNLWWDAFTTEFFEDDA MLTITFCLEDGPKRYTIGRTLIPRYFRSIFEGGATELYYVLKHPKEAFHSNFV SLDCDQGSMVTQHGKPMFTQVCVEGRLYLEFMFDDMMRIKTWHFSIRQHRELI PRSILAMHAQDPQMLDQLSKNITRCGLSNSTLNYLRLCVILEPMQELMSRHKT YSLSPRDCLKTCLFQKWQRMVAPPAEPTRQQPSKRRKRKMSGGSTMSSGGGNT NNSNSKKKSPASTFALSSQVPDVMVVGEPTLMGGEFGDEDERLITRLENTQFD AANGIDDEDSFNNSPALGANSPWNSKPPSSQESKSENPTSQASQLDPAFLY SEQ ID NO: 74 DNA sequence for ScFv-sfBFP-LDB1 atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccatgctggatagggatgtgggccca ac tcccatgtatccgcctacatacctggagccagggattgggaggcacacaccatatggcaa cc aaactgactacagaatatttgagcttaacaaacggcttcagaactggacagaggagtgtg ac aatctctggtgggatgcattcacgactgagttctttgaggatgatgccatgttgaccatc ac tttctgcctggaggatggaccaaagagatataccattggccggaccctgatcccacgcta ct tccgcagcatctttgaggggggtgctacggagctgtactatgttcttaagcaccccaagg ag gcattccacagcaactttgtgtccctcgactgtgaccagggcagcatggtgacccagcat gg caagcccatgttcacccaggtgtgtgtggagggccggttgtacctggagttcatgtttga cg acatgatgcggataaagacgtggcacttcagcatccggcagcaccgagagctcatccccc gc agcatccttgccatgcatgcccaagacccccagatgttggatcagctctccaaaaacatc ac tcggtgtgggctgtccaattccactctcaactacctccgactctgtgtgatactcgagcc ca tgcaagagctcatgtcacgccacaagacctacagcctcagcccccgcgactgcctcaaga cc tgccttttccagaagtggcagcgcatggtagcaccccctgcggagcccacacgtcagcag cc cagcaaacggcggaaacggaagatgtcagggggcagcaccatgagctctggtggtggcaa ca ccaacaacagcaacagcaagaagaagagcccagctagcaccttcgccctctccagccagg ta cctgatgtgatggtggtgggggagcccaccctgatgggcggggagttcggggacgaggac ga gaggctcatcacccggctggagaacacccagtttgacgcagccaacggcattgacgacga gg acagctttaacaactcccctgcactgggcgccaacagcccctggaacagcaagcctccgt cc agccaagaaagcaaatcggagaaccccacgtcacaggcctcccagttggacccagctttc tt gtac SEQ ID NO: 75 Protein sequence for ScFv-sfBFP-NFKBIB NLS-ScFV-linker-sfBFP-linker-NFKBIB MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGSTMAGVACLGKAADA DEWCDSGLGSLGPDAAAPGGPGLGAELGPGLSWAPLVFGYVTEDGDTALHLAV IHQHEPFLDFLLGFSAGTEYMDLQNDLGQTALHLAAILGETSTVEKLYAAGAG LCVAERRGHTALHLACRVGAHACARALLQPRPRRPREAPDTYLAQGPDRTPDT NHTPVALYPDSDLEKEEEESEEDWKLQLEAENYEGHTPLHVAVIHKDVEMVRL LRDAGADLDKPEPTCGRSPLHLAVEAQAADVLELLLRAGANPAARMYGGRTPL GSAMLRPNPILARLLRAHGAPEPEGEDEKSGPCSSSSDSDSGDEGDEYDDIVV HSSRSQTRLPPTPASKPLPDDPRPV SEQ ID NO: 76 DNA sequence for ScFv-sfBFP-NFKBIB atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccATGGCTGGGGTCGCGTGCTTGGGA AA AGCTGCCGACGCAGATGAATGGTGCGACAGCGGCCTGGGCTCCCTGGGTCCGGACGCAGC GG CCCCCGGAGGACCTGGGTTGGGCGCGGAGTTGGGCCCGGGGCTGTCGTGGGCTCCCCTCG TC TTCGGCTACGTCACTGAGGATGGGGACACGGCACTGCACTTGGCTGTGATTCATCAGCAT GA ACCCTTCCTGGATTTTCTTCTAGGCTTCTCGGCCGGCACTGAGTACATGGACCTGCAGAA TG ACCTAGGCCAGACAGCCCTGCACCTGGCAGCCATCCTGGGGGAGACATCCACGGTGGAGA AG CTGTACGCAGCAGGCGCCGGGCTGTGTGTGGCGGAGCGTAGGGGCCACACGGCGCTGCAC CT GGCCTGCCGTGTGGGGGCACACGCCTGTGCCCGTGCCCTGCTTCAGCCCCGCCCCCGGCG CC CCAGGGAAGCCCCCGACACCTACCTCGCTCAGGGCCCTGACCGTACTCCCGACACCAACC AT ACCCCTGTCGCCTTGTACCCCGATTCCGACTTGGAGAAGGAAGAAGAGGAGAGTGAGGAG GA CTGGAAGCTGCAGCTGGAGGCTGAAAACTACGAGGGCCACACCCCACTCCACGTGGCCGT TA TCCACAAAGATGTGGAGATGGTCCGGCTGCTCCGAGATGCTGGAGCTGACCTTGACAAAC CG GAGCCCACGTGCGGCCGGAGCCCCCTTCATTTGGCAGTGGAGGCCCAGGCAGCCGATGTG CT GGAGCTTCTCCTGAGGGCAGGCGCGAACCCTGCTGCCCGCATGTACGGTGGCCGCACCCC AC TCGGCAGTGCCATGCTCCGGCCCAACCCCATCCTCGCCCGCCTCCTCCGTGCACACGGAG CC CCTGAGCCCGAGGGCGAGGACGAGAAATCCGGCCCCTGCAGCAGCAGTAGCGACAGCGAC AG CGGAGACGAGGGCGATGAATACGACGACATTGTGGTTCACAGCAGCCGCAGCCAAACCCG GC TGCCTCCCACCCCAGCCTCAAAACCTCTTCCTGACGACCCCCGCCCCGTGTGA SEQ ID NO: 77 Protein sequence for ScFv-sfBFP-RelB NLS-ScFV-linker-sfBFP-linker-RelB MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGSTMLRSGPASGPSVP TGRAMPSRRVARPPAAPELGALGSPDLSSLSLAVSRSTDELEIIDEYIKENGF GLDGGQPGPGEGLPRLVSRGAASLSTVTLGPVAPPATPPPWGCPLGRLVSPAP GPGPQPHLVITEQPKQRGMRFRYECEGRSAGSILGESSTEASKTLPAIELRDC GGLREVEVTACLVWKDWPHRVHPHSLVGKDCTDGICRVRLRPHVSPRHSFNNL GIQCVRKKEIEAAIERKIQLGIDPYNAGSLKNHQEVDMNVVRICFQASYRDQQ GQMRRMDPVLSEPVYDKKSTNTSELRICRINKESGPCTGGEELYLLCDKVQKE DISVVFSRASWEGRADFSQADVHRQIAIVFKTPPYEDLEIVEPVTVNVFLQRL TDGVCSEPLPFTYLPRDHDSYGVDKKRKRGMPDVLGELNSSDPHGIESKRRKK KPAILDHFLPNHGSGPFLPPSALLPDPDFFSGTVSLPGLEPPGGPDLLDDGFA YDPTAPTLFTMLDLLPPAPPHASAVVCSGGAGAVVGETPGPEPLTLDSYQAPG PGDGGTASLVGSNMFPNHYREAAFGGGLLSPGPEAT SEQ ID NO: 78 DNA sequence for ScFv-sfBFP-RelB atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccATGCTTCGGTCTGGGCCAGCCTCT GG GCCGTCCGTCCCCACTGGCCGGGCCATGCCGAGTCGCCGCGTCGCCAGACCGCCGGCTGC GC CGGAGCTGGGGGCCTTAGGGTCCCCCGACCTCTCCTCACTCTCGCTCGCCGTTTCCAGGA GC ACAGATGAATTGGAGATCATCGACGAGTACATCAAGGAGAACGGCTTCGGCCTGGACGGG GG ACAGCCGGGCCCGGGCGAGGGGCTGCCACGCCTGGTGTCTCGCGGGGCTGCGTCCCTGAG CA CGGTCACCCTGGGCCCTGTGGCGCCCCCAGCCACGCCGCCGCCTTGGGGCTGCCCCCTGG GC CGACTAGTGTCCCCAGCGCCGGGCCCGGGCCCGCAGCCGCACCTGGTCATCACGGAGCAG CC CAAGCAGCGCGGCATGCGCTTCCGCTACGAGTGCGAGGGCCGCTCGGCCGGCAGCATCCT TG GGGAGAGCAGCACCGAGGCCAGCAAGACGCTGCCCGCCATCGAGCTCCGGGATTGTGGAG GG CTGCGGGAGGTGGAGGTGACTGCCTGCCTGGTGTGGAAGGACTGGCCTCACCGAGTCCAC CC CCACAGCCTCGTGGGGAAAGACTGCACCGACGGCATCTGCAGGGTGCGGCTCCGGCCTCA CG TCAGCCCCCGGCACAGTTTTAACAACCTGGGCATCCAGTGTGTGAGGAAGAAGGAGATTG AG GCTGCCATTGAGCGGAAGATTCAACTGGGCATTGACCCCTACAACGCTGGGTCCCTGAAG AA CCATCAGGAAGTAGACATGAATGTGGTGAGGATCTGCTTCCAGGCCTCATATCGGGACCA GC AGGGACAGATGCGCCGGATGGATCCTGTGCTTTCCGAGCCCGTCTATGACAAGAAATCCA CA AACACATCAGAGCTGCGGATTTGCCGAATTAACAAGGAAAGCGGGCCGTGCACCGGTGGC GA GGAGCTCTACTTGCTCTGCGACAAGGTGCAGAAAGAGGACATATCAGTGGTGTTCAGCAG GG CCTCCTGGGAAGGTCGGGCTGACTTCTCCCAGGCCGACGTGCACCGCCAGATTGCCATTG TG TTCAAGACGCCGCCCTACGAGGACCTGGAGATTGTCGAGCCCGTGACAGTCAACGTCTTC CT GCAGCGGCTCACCGATGGGGTCTGCAGCGAGCCATTGCCTTTCACGTACCTGCCTCGCGA CC ATGACAGCTACGGCGTGGACAAGAAGCGGAAACGGGGGATGCCCGACGTCCTTGGGGAGC TG AACAGCTCTGACCCCCATGGCATCGAGAGCAAACGGCGGAAGAAAAAGCCGGCCATCCTG GA CCACTTCCTGCCCAACCACGGCTCAGGCCCGTTCCTCCCGCCGTCAGCCCTGCTGCCAGA CC CTGACTTCTTCTCTGGCACCGTGTCCCTGCCCGGCCTGGAGCCCCCTGGCGGGCCTGACC TC CTGGACGATGGCTTTGCCTACGACCCTACGGCCCCCACACTCTTCACCATGCTGGACCTG CT GCCCCCGGCACCGCCACACGCTAGCGCTGTTGTGTGCAGCGGAGGTGCCGGGGCCGTGGT TG GGGAGACCCCCGGCCCTGAACCACTGACACTGGACTCGTACCAGGCCCCGGGCCCCGGGG AT GGAGGCACCGCCAGCCTTGTGGGCAGCAACATGTTCCCCAATCATTACCGCGAGGCGGCC TT TGGGGGCGGCCTCCTATCCCCGGGGCCTGAAGCCACGTAG SEQ ID NO: 79 Protein sequence for ScFv-sfBFP-CITED2 NLS-ScFV-linker-sfBFP-linker-CITED2 MGPKKKRKVGGMGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWV QEKPGKLFKGLIGGTNNRAPGVPSRFSGSLIGDKATLTISSLQPEDFATYFCA LWYSNHWVFGQGTKVELKRGGGGSGGGGSGGGGSSGGGSEVKLLESGGGLVQP GGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGVIWGDGITDYNSALKDRF IISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVSSYPYDVPD YAGGGGGSGGGGSGGGGSGGGGSLDPGGGGSGSKGEELFTGVVPILVELDGDV NGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTHGVQCFSRYP DHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGI DFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADH YQQNTPIGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMD ELYKGGGRTGGGGSGGGGADPKKKRKVARITSLYKKAGSTMADHMMAMNHGRF PDGTNGLHHHPAHRMGMGQFPSPHHHQQQQPQHAFNALMGEHIHYGAGNMNAT SGIRHAMGPGTVNGGHPPSALAPAARFNNSQFMGPPVASQGGSLPASMQLQKL NNQYFNHHPYPHNHYMPDLHPAAGHQMNGTNQHFRDCNPKHSGGSSTPGGSGG SSTPGGSGSSSGGGAGSSNSGGGSGSGNMPASVAHVPAAMLPPNVIDTDFIDE EVLMSLVIEMGLDRIKELPELWLGQNEFDFMTDFVCKQQPSRVSCLDPAFLY SEQ ID NO: 80 DNA sequence for ScFv-sfBFP-CITED2 atgggtCCCAAGAAAAAGAGAAAGGTCggtggcatgggccccgacatcgtgatgacccag ag ccccagcagcctgagcgccagcgtgggcgaccgcgtgaccatcacctgccgcagcagcac cg gcgccgtgaccaccagcaactacgccagctgggtgcaggagaagcccggcaagctgttca ag ggcctgatcggcggcaccaacaaccgcgcccccggcgtgcccagccgcttcagcggcagc ct gatcggcgacaaggccaccctgaccatcagcagcctgcagcccgaggacttcgccaccta ct tctgcgccctgtggtacagcaaccactgggtgttcggccagggcaccaaggtggagctga ag cgcggcggcggTggAagcggAggcggTggGTCTggTggAggcggcagcTCTggcggAggc ag cgaggtgaagctgctggagagcggcggcggcctggtgcagcccggcggcagcctgaagct ga gctgcgccgtgagcggcttcagcctgaccgactacggcgtgaactgggtgcgccaggccc cc ggccgcggcctggagtggatcggcgtgatctggggcgacggcatcaccgactacaacagc gc cctgaaggaccgcttcatcatcagcaaggacaacggcaagaacaccgtgtacctgcagat ga gcaaggtgcgcagcgacgacaccgccctgtactactgcgtgaccggcctgttcgactact gg ggccagggcaccctggtgaccgtgagcagctacccatacgatgttccagattacgctggt gg aggcggaggttctgggggaggaggtagtggcggtggtggttcaggaggcggcggaagctt gg atccaggtggaggtggaagcggtagcaaaggagaagaacttttcactggagttgtcccaa tt cttgttgaattagatggtgatgttaatgggcacaaattttctgtccgtggagagggtgaa gg tgatgctacaaacggaaaactcacccttaaatttatttgcactactggaaaactacctgt tc cgtggccaacacttgtcactactctgacccatggtgttcaatgcttttcccgttatccgg at cacatgaaacggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgc ac tatatctttcaaagatgacgggacctacaagacgcgtgctgaagtcaagtttgaaggtga ta cccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaacattcttg ga cacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaag aa tggaatcaaagctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagc ag accattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccatt ac ctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacatggtcctt ct tgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaaggtggagg tc ggaccggtggcggtggcagcggtggaggcggtGCTGACCCCAAGAAGAAGAGGAAGGTGG CT AGGATCACAAGTTTgtacaaaaaagcaggctccaccatggcagaccatatgatggcaatg aa ccacgggcgcttccccgacggcaccaatgggctgcaccatcaccctgcccaccgcatggg ca tggggcagttcccgagcccccatcaccaccagcagcagcagccccagcacgccttcaacg cc ctaatgggcgagcacatacactacggcgcgggcaacatgaatgccacgagcggcatcagg ca tgcgatggggccggggactgtgaacggagggcaccccccgagcgcgctggcccccgcggc ca ggtttaacaactcccagttcatgggtcccccggtggccagccagggaggctccctgccgg cc agcatgcagctgcagaagctcaacaaccagtatttcaaccatcacccctacccccacaac ca ctacatgccggatttgcaccctgctgcaggccaccagatgaacgggacaaaccagcactt cc gagattgcaaccccaagcacagcggcggcagcagcacccccggcggctcgggcggcagca gc acccccggcggctctggcagcagctcgggcggcggcgcgggcagcagcaacagcggcggc gg cagcggcagcggcaacatgcccgcctccgtggcccacgtccccgctgcaatgctgccgcc ca atgtcatagacactgatttcatcgacgaggaagttcttatgtccttggtgatagaaatgg gt ttggaccgcatcaaggagctgcccgaactctggctggggcaaaacgagtttgattttatg ac ggacttcgtgtgcaaacagcagcccagcagagtgagctgtttggacccagctttcttgta c SEQ ID NO: 81 Protein sequence for scFv MGPDIVMTQSPSSLSASVGDRVTITCRSSTGAVTTSNYASWVQEKPGKLFKGLIGGTNNR AP GVPSRFSGSLIGDKATLTISSLQPEDFATYFCALWYSNHWVFGQGTKVELKRGGGGSGGG GS GGGGSSGGGSEVKLLESGGGLVQPGGSLKLSCAVSGFSLTDYGVNWVRQAPGRGLEWIGV IW GDGITDYNSALKDRFIISKDNGKNTVYLQMSKVRSDDTALYYCVTGLFDYWGQGTLVTVS S SEQ ID NO: 82 DNA sequence for scFv atgggccccgacatcgtgatgacccagagccccagcagcctgagcgccagcgtgggcgac cg cgtgaccatcacctgccgcagcagcaccggcgccgtgaccaccagcaactacgccagctg gg tgcaggagaagcccggcaagctgttcaagggcctgatcggcggcaccaacaaccgcgccc cc ggcgtgcccagccgcttcagcggcagcctgatcggcgacaaggccaccctgaccatcagc ag cctgcagcccgaggacttcgccacctacttctgcgccctgtggtacagcaaccactgggt gt tcggccagggcaccaaggtggagctgaagcgcggcggcggTggAagcggAggcggTggGT CT ggTggAggcggcagcTCTggcggAggcagcgaggtgaagctgctggagagcggcggcggc ct ggtgcagcccggcggcagcctgaagctgagctgcgccgtgagcggcttcagcctgaccga ct acggcgtgaactgggtgcgccaggcccccggccgcggcctggagtggatcggcgtgatct gg ggcgacggcatcaccgactacaacagcgccctgaaggaccgcttcatcatcagcaaggac aa cggcaagaacaccgtgtacctgcagatgagcaaggtgcgcagcgacgacaccgccctgta ct actgcgtgaccggcctgttcgactactggggccagggcaccctggtgaccgtgagcagct ac ccatacgatgttccagattacgctggtggaggcggaggttctgggggaggaggtagtggc gg tggtggttcaggaggcggcggaagcttggatccaggtggaggtggaagcggt SEQ ID NO: 83 Protein sequence for sfBFP SKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLV TT LTHGVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRI EL KGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQN TP IGDGPVLLPDNHYLSTQSVLSKDPNEKRDHMVLLEFVTAAGITHGMDELYK SEQ ID NO: 84 DNA sequence for sfBFP agcaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgat gt taatgggcacaaattttctgtccgtggagagggtgaaggtgatgctacaaacggaaaact ca cccttaaatttatttgcactactggaaaactacctgttccgtggccaacacttgtcacta ct ctgacccatggtgttcaatgcttttcccgttatccggatcacatgaaacggcatgacttt tt caagagtgccatgcccgaaggttatgtacaggaacgcactatatctttcaaagatgacgg ga cctacaagacgcgtgctgaagtcaagtttgaaggtgatacccttgttaatcgtatcgagt ta aagggtattgattttaaagaagatggaaacattcttggacacaaactcgagtacaacttt aa ctcacacaatgtatacatcacggcagacaaacaaaagaatggaatcaaagctaacttcaa aa ttcgccacaacgttgaagatggttccgttcaactagcagaccattatcaacaaaatactc ca attggcgatggccctgtccttttaccagacaaccattacctgtcgacacaatctgtcctt tc gaaagatcccaacgaaaagcgtgaccacatggtccttcttgagtttgtaactgctgctgg ga ttacacatggcatggatgagctctacaaa SEQ ID NO: 85 Protein sequence for GCN4 Peptide (which is bound by ScFV) EELLSKNYHLENEVARLKK SEQ ID NO: 86 DNA sequence for GCN4 (one example of a sequence for GCN4) gaggagcttctgagcaaaaactatcacctcgaaaacgaggttgcgcgactgaagaaa SEQ ID NO: 87 Protein sequence for dCas9-5X-GCN4 (GCN4 is underlined) MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE AT RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNI VD EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKL FI QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSL GL TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV NT EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQE EF YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPF LK DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER MT NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN RK VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILED IV LTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL DF LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVK VV DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGK SD NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT KH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLN AV VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITL AN GEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR NS DKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK NP IDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYL AS HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK PI REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDL SQ LGGDSRADPKKKRKVASDGIGSGSNGSSGSNGPTDAAEEELLSKNYHLENEVARLKKGSG SG GSGSGSGGSGSGGSGSGEELLSKNYHLENEVARLKKGSGSGGSGSGSGGSGSGGSGSGEE LL SKNYHLENEVARLKKGSGSGGSGSGSGGSGSGGSGSGEELLSKNYHLENEVARLKKGSGS GG SGSGSGGSGSGGSGSGEELLSKNYHLENEVARLKKGSGSGGSGSGSGGSGSGGSGSG SEQ ID NO: 88 DNA sequence for dCas9-5X-GCN4 ATGGACAAGAAGTACTCCATTGGGCTCGCCATCGGCACAAACAGCGTCGGCTGGGCCGTC AT TACGGACGAGTACAAGGTGCCGAGCAAAAAATTCAAAGTTCTGGGCAATACCGATCGCCA CA GCATAAAGAAGAACCTCATTGGCGCCCTCCTGTTCGACTCCGGGGAAACCGCCGAAGCCA CG CGGCTCAAAAGAACAGCACGGCGCAGATATACCCGCAGAAAGAATCGGATCTGCTACCtg ca GGAGATCTTTAGTAATGAGATGGCTAAGGTGGATGACTCTTTCTTCCATAGGCTGGAGGA GT CCTTTTTGGTGGAGGAGGATAAAAAGCACGAGCGCCACCCAATCTTTGGCAATATCGTGG AC GAGGTGGCGTACCATGAAAAGTACCCAACCATATATCATCTGAGGAAGAAGCTTGTAGAC AG TACTGATAAGGCTGACTTGCGGTTGATCTATCTCGCGCTGGCGCATATGATCAAATTTCG GG GACACTTCCTCATCGAGGGGGACCTGAACCCAGACAACAGCGATGTCGACAAACTCTTTA TC CAACTGGTTCAGACTTACAATCAGCTTTTCGAAGAGAACCCGATCAACGCATCCGGAGTT GA CGCCAAAGCAATCCTGAGCGCTAGGCTGTCCAAATCCCGGCGGCTCGAAAACCTCATCGC AC AGCTCCCTGGGGAGAAGAAGAACGGCCTGTTTGGTAATCTTATCGCCCTGTCACTCGGGC TG ACCCCCAACTTTAAATCTAACTTCGACCTGGCCGAAGATGCCAAGCTTCAACTGAGCAAA GA CACCTACGATGATGATCTCGACAATCTGCTGGCCCAGATCGGCGACCAGTACGCAGACCT TT TTTTGGCGGCAAAGAACCTGTCAGACGCCATTCTGCTGAGTGATATTCTGCGAGTGAACA CG GAGATCACCAAAGCTCCGCTGAGCGCTAGTATGATCAAGCGCTATGATGAGCACCACCAA GA CTTGACTTTGCTGAAGGCCCTTGTCAGACAGCAACTGCCTGAGAAGTACAAGGAAATTTT CT TCGATCAGTCTAAAAATGGCTACGCCGGATACATTGACGGCGGAGCAAGCCAGGAGGAAT TT TACAAATTTATTAAGCCCATCTTGGAAAAAATGGACGGCACCGAGGAGCTGCTGGTAAAG CT TAACAGAGAAGATCTGTTGCGCAAACAGCGCACTTTCGACAATGGAAGCATCCCCCACCA GA TTCACCTGGGCGAACTGCACGCTATCCTCAGGCGGCAAGAGGATTTCTACCCCTTTTTGA AA GATAACAGGGAAAAGATTGAGAAAATCCTCACATTTCGGATACCCTACTATGTAGGCCCC CT CGCCCGGGGAAATTCCAGATTCGCGTGGATGACTCGCAAATCAGAAGAGACCATCACTCC CT GGAACTTCGAGGAAGTCGTGGATAAGGGGGCCTCTGCCCAGTCCTTCATCGAAAGGATGA CT AACTTTGATAAAAATCTGCCTAACGAAAAGGTGCTTCCTAAACACTCTCTGCTGTACGAG TA CTTCACAGTTTATAACGAGCTCACCAAGGTCAAATACGTCACAGAAGGGATGAGAAAGCC AG CATTCCTGTCTGGAGAGCAGAAGAAAGCTATCGTGGACCTCCTCTTCAAGACGAACCGGA AA GTTACCGTGAAACAGCTCAAAGAAGACTATTTCAAAAAGATTGAATGTTTCGACTCTGTT GA AATCAGCGGAGTGGAGGATCGCTTCAACGCATCCCTGGGAACGTATCACGATCTCCTGAA AA TCATTAAAGACAAGGACTTCCTGGACAATGAGGAGAACGAGGACATTCTTGAGGACATTG TC CTCACCCTTACGTTGTTTGAAGATAGGGAGATGATTGAAGAACGCTTGAAAACTTACGCT CA TCTCTTCGACGACAAAGTCATGAAACAGCTCAAGAGGCGCCGATATACAGGATGGGGGCG GC TGTCAAGAAAACTGATCAATGGgatcCGAGACAAGCAGAGTGGAAAGACAATCCTGGATT TT CTTAAGTCCGATGGATTTGCCAACCGGAACTTCATGCAGTTGATCCATGATGACTCTCTC AC CTTTAAGGAGGACATCCAGAAAGCACAAGTTTCTGGCCAGGGGGACAGTCTTCACGAGCA CA TCGCTAATCTTGCAGGTAGCCCAGCTATCAAAAAGGGAATACTGCAGACCGTTAAGGTCG TG GATGAACTCGTCAAAGTAATGGGAAGGCATAAGCCCGAGAATATCGTTATCGAGATGGCC CG AGAGAACCAAACTACCCAGAAGGGACAGAAGAACAGTAGGGAAAGGATGAAGAGGATTGA AG AGGGTATAAAAGAACTGGGGTCCCAAATCCTTAAGGAACACCCAGTTGAAAACACCCAGC TT CAGAATGAGAAGCTCTACCTGTACTACCTGCAGAACGGCAGGGACATGTACGTGGATCAG GA ACTGGACATCAATCGGCTCTCCGACTACGACGTGGATGCCATCGTGCCCCAGTCTTTTCT CA AAGATGATTCTATTGATAATAAAGTGTTGACAAGATCCGATAAAAATAGAGGGAAGAGTG AT AACGTCCCCTCAGAAGAAGTTGTCAAGAAAATGAAAAATTATTGGCGGCAGCTGCTGAAC GC CAAACTGATCACACAACGGAAGTTCGATAATCTGACTAAGGCTGAACGAGGTGGCCTGTC TG AGTTGGATAAAGCCGGCTTCATCAAAAGGCAGCTTGTTGAGACACGCCAGATCACCAAgc ac GTGGCCCAAATTCTCGATTCACGCATGAACACCAAGTACGATGAAAATGACAAACTGATT CG AGAGGTGAAAGTTATTACTCTGAAGTCTAAGCTGGTCTCAGATTTCAGAAAGGACTTTCA GT TTTATAAGGTGAGAGAGATCAACAATTACCACCATGCGCATGATGCCTACCTGAATGCAG TG GTAGGCACTGCACTTATCAAAAAATATCCCAAGCTTGAATCTGAATTTGTTTACGGAGAC TA TAAAGTGTACGATGTTAGGAAAATGATCGCAAAGTCTGAGCAGGAAATAGGCAAGGCCAC CG CTAAGTACTTCTTTTACAGCAATATTATGAATTTTTTCAAGACCGAGATTACACTGGCCA AT GGAGAGATTCGGAAGCGACCACTTATCGAAACAAACGGAGAAACAGGAGAAATCGTGTGG GA CAAGGGTAGGGATTTCGCGACAGTCCGGAAGGTCCTGTCCATGCCGCAGGTGAACATCGT TA AAAAGACCGAAGTACAGACCGGAGGCTTCTCCAAGGAAAGTATCCTCCCGAAAAGGAACA GC GACAAGCTGATCGCACGCAAAAAAGATTGGGACCCCAAGAAATACGGCGGATTCGATTCT CC TACAGTCGCTTACAGTGTACTGGTTGTGGCCAAAGTGGAGAAAGGGAAGTCTAAAAAACT CA AAAGCGTCAAGGAACTGCTGGGCATCACAATCATGGAGCGATCAAGCTTCGAAAAAAACC CC ATCGACTTTCTCGAGGCGAAAGGATATAAAGAGGTCAAAAAAGACCTCATCATTAAGCTT CC CAAGTACTCTCTCTTTGAGCTTGAAAACGGCCGGAAACGAATGCTCGCTAGTGCGGGCGA GC TGCAGAAAGGTAACGAGCTGGCACTGCCCTCTAAATACGTTAATTTCTTGTATCTGGCCA GC CACTATGAAAAGCTCAAAGGGTCTCCCGAAGATAATGAGCAGAAGCAGCTGTTCGTGGAA CA ACACAAACACTACCTTGATGAGATCATCGAGCAAATAAGCGAATTCTCCAAAAGAGTGAT CC TCGCCGACGCTAACCTCGATAAGGTGCTTTCTGCTTACAATAAGCACAGGGATAAGCCCA TC AGGGAGCAGGCAGAAAACATTATCCACTTGTTTACTCTGACCAACTTGGGCGCGCCTGCA GC CTTCAAGTACTTCGACACCACCATAGACAGAAAGCGGTACACCTCTACAAAGGAGGTCCT GG ACGCCACACTGATTCATCAGTCAATTACGGGGCTCTATGAAACAAGAATCGACCTCTCTC AG CTCGGTGGAGACAGCAGGGCTGACCCCAAGAAGAAGAGGAAGGTGGctagCgacggcatt gg tagtgggagcaacggcagcagcggatccaacggtccgactgacgccgcggaagaggagct tc tgagcaaaaactatcacctcgaaaacgaggttgcgcgactgaagaaaggaagcgggtccg gt ggaagtggctccggatctggaggttctggcagcggaggtagcggcagtggcgaagagctc ct tagtaagaactatcatctggaaaatgaggtagcgcgcttaaagaaagggtcgggaagtgg cg gcagcggaagtgggagtggagggagcggttctggcggttccggcagtggagaggagttgc tg tctaagaactaccacttagaaaacgaagtcgcacggctaaaaaaaggttccggctccggc gg ctccggttctggaagcgggggctcgggatcaggtggatctggatcaggagaggaattgct tt ccaaaaactaccaccttgagaatgaggtggccaggttaaagaaggggagcggctcggggg gt agtggatcggggtcgggcgggtcaggaagcggtggtagcggatctggggaggagctgctc tc gaagaattaccatttggagaacgaagtggcgagactaaagaag SEQ ID NO: 89 Protein sequence for dCas9-24X-GCN4 (GCN4 is underlined) MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAE AT RLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNI VD EVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKL FI QLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSL GL TPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV NT EITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQE EF YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPF LK DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIER MT NFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN RK VTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILED IV LTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTIL DF LKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVK VV DELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENT QL QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGK SD NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQIT KH VAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLN AV VGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITL AN GEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKR NS DKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEK NP IDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYL AS HYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDK PI REQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDL SQ LGGDAYPYDVPDYASLGSGSPKKKRKVEDPKKKRKVDGIGSGSNGSSGSNGPGGSGGGGS GG EELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLEN EV ARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEE LL SKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVAR LK KGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSK NY HLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKG SG SGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHL EN EVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSG EE LLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKNYHLENEV AR LKKGSGSGEELLSKNYHLENEVARLKKGSGSGEELLSKDYHLENEVARLKKGSGSGEELL SK NYHLENEVARLKK SEQ ID NO: 90 DNA sequence for dCas9-24X-GCN4 atggacaagaagtacagcatcggcctggccatcggcaccaactctgtgggctgggccgtg at caccgacgagtacaaggtgcccagcaagaaattcaaggtgctgggcaacaccgaccggca ca gcatcaagaagaacctgatcggcgccctgctgttcgacagcggagaaacagccgaggcca cc cggctgaagagaaccgccagaagaagatacaccagacggaagaaccggatctgctatctg ca agagatcttcagcaacgagatggccaaggtggacgacagcttcttccacagactggaaga gt ccttcctggtggaagaggataagaagcacgagcggcaccccatcttcggcaacatcgtgg ac gaggtggcctaccacgagaagtaccccaccatctaccacctgagaaagaaactggtggac ag caccgacaaggccgacctgcggctgatctatctggccctggcccacatgatcaagttccg gg gccacttcctgatcgagggcgacctgaaccccgacaacagcgacgtggacaagctgttca tc cagctggtgcagacctacaaccagctgttcgaggaaaaccccatcaacgccagcggcgtg ga cgccaaggccatcctgtctgccagactgagcaagagcagacggctggaaaatctgatcgc cc agctgcccggcgagaagaagaatggcctgttcggcaacctgattgccctgagcctgggcc tg acccccaacttcaagagcaacttcgacctggccgaggatgccaaactgcagctgagcaag ga cacctacgacgacgacctggacaacctgctggcccagatcggcgaccagtacgccgacct gt ttctggccgccaagaacctgtccgacgccatcctgctgagcgacatcctgagagtgaaca cc gagatcaccaaggcccccctgagcgcctctatgatcaagagatacgacgagcaccaccag ga cctgaccctgctgaaagctctcgtgcggcagcagctgcctgagaagtacaaagagatttt ct tcgaccagagcaagaacggctacgccggctacatcgatggcggagccagccaggaagagt tc tacaagttcatcaagcccatcctggaaaagatggacggcaccgaggaactgctcgtgaag ct gaacagagaggacctgctgcggaagcagcggaccttcgacaacggcagcatcccccacca ga tccacctgggagagctgcacgccattctgcggcggcaggaagatttttacccattcctga ag gacaaccgggaaaagatcgagaagatcctgaccttccgcatcccctactacgtgggccct ct ggccaggggaaacagcagattcgcctggatgaccagaaagagcgaggaaaccatcacccc ct ggaacttcgaggaagtggtggacaagggcgccagcgcccagagcttcatcgagcggatga cc aacttcgataagaacctgcccaacgagaaggtgctgcccaagcacagcctgctgtacgag ta cttcaccgtgtacaacgagctgaccaaagtgaaatacgtgaccgagggaatgagaaagcc cg ccttcctgagcggcgagcagaaaaaagccatcgtggacctgctgttcaagaccaaccgga aa gtgaccgtgaagcagctgaaagaggactacttcaagaaaatcgagtgcttcgactccgtg ga aatctccggcgtggaagatcggttcaacgcctccctgggcacataccacgatctgctgaa aa ttatcaaggacaaggacttcctggacaatgaggaaaacgaggacattctggaagatatcg tg ctgaccctgacactgtttgaggacagagagatgatcgaggaacggctgaaaacctatgcc ca cctgttcgacgacaaagtgatgaagcagctgaagcggcggagatacaccggctggggcag gc tgagccggaagctgatcaacggcatccgggacaagcagtccggcaagacaatcctggatt tc ctgaagtccgacggcttcgccaacagaaacttcatgcagctgatccacgacgacagcctg ac ctttaaagaggacatccagaaagcccaggtgtccggccagggcgatagcctgcacgagca ca ttgccaatctggccggcagccccgccattaagaagggcatcctgcagacagtgaaggtgg tg gacgagctcgtgaaagtgatgggccggcacaagcccgagaacatcgtgatcgaaatggcc ag agagaaccagaccacccagaagggacagaagaacagccgcgagagaatgaagcggatcga ag agggcatcaaagagctgggcagccagatcctgaaagaacaccccgtggaaaacacccagc tg cagaacgagaagctgtacctgtactacctgcagaatgggcgggatatgtacgtggaccag ga actggacatcaaccggctgtccgactacgatgtggacgctatcgtgcctcagagctttct ga aggacgactccatcgataacaaagtgctgactcggagcgacaagaaccggggcaagagcg ac aacgtgccctccgaagaggtcgtgaagaagatgaagaactactggcgccagctgctgaat gc caagctgattacccagaggaagttcgacaatctgaccaaggccgagagaggcggcctgag cg aactggataaggccggcttcatcaagagacagctggtggaaacccggcagatcacaaagc ac gtggcacagatcctggactcccggatgaacactaagtacgacgagaacgacaaactgatc cg ggaagtgaaagtgatcaccctgaagtccaagctggtgtccgatttccggaaggatttcca gt tttacaaagtgcgcgagatcaacaactaccaccacgcccacgacgcctacctgaacgccg tc gtgggaaccgccctgatcaaaaagtaccctaagctggaaagcgagttcgtgtacggcgac ta caaggtgtacgacgtgcggaagatgatcgccaagagcgagcaggaaatcggcaaggctac cg ccaagtacttcttctacagcaacatcatgaactttttcaagaccgagattaccctggcca ac ggcgagatccggaagcggcctctgatcgagacaaacggcgaaacaggcgagatcgtgtgg ga taagggccgggactttgccaccgtgcggaaagtgctgtctatgccccaagtgaatatcgt ga aaaagaccgaggtgcagacaggcggcttcagcaaagagtctatcctgcccaagaggaaca gc gacaagctgatcgccagaaagaaggactgggaccctaagaagtacggcggcttcgacagc cc caccgtggcctattctgtgctggtggtggccaaagtggaaaagggcaagtccaagaaact ga agagtgtgaaagagctgctggggatcaccatcatggaaagaagcagcttcgagaagaatc cc atcgactttctggaagccaagggctacaaagaagtgaaaaaggacctgatcatcaagctg cc taagtactccctgttcgagctggaaaacggccggaagagaatgctggcctctgccggcga ac tgcagaagggaaacgaactggccctgccctccaaatatgtgaacttcctgtacctggcca gc cactatgagaagctgaagggctcccccgaggataatgagcagaaacagctgtttgtggaa ca gcacaaacactacctggacgagatcatcgagcagatcagcgagttctccaagagagtgat cc tggccgacgctaatctggacaaggtgctgagcgcctacaacaagcacagagacaagccta tc agagagcaggccgagaatatcatccacctgtttaccctgaccaatctgggagcccctgcc gc cttcaagtactttgacaccaccatcgaccggaagaggtacaccagcaccaaagaggtgct gg acgccaccctgatccaccagagcatcaccggcctgtacgagacacggatcgacctgtctc ag ctgggaggcgacgcctatccctatgacgtgcccgattatgccagcctgggcagcggctcc cc caagaaaaaacgcaaggtggaagatcctaagaaaaagcggaaagtggacggcattggtag tg ggagcaacggcagcagcggatccaacggtccgggtggatctggaggtggaggttctggag ga gaagaacttttgagcaagaattatcatcttgagaacgaagtggctcgtcttaagaaaggt tc tggcagtggagaagaactgctttcaaagaattaccacctggaaaatgaggtagctagact ga aaaaggggagcggaagtggggaggagttgctgagcaaaaattatcatttggagaacgaag ta gcacgactaaagaaagggtccggatcgggtgaggagttactctcgaaaaattatcatctc ga aaacgaagtggctcggctaaaaaagggcagtggttctggagaagagctattatctaaaaa ct accacctcgaaaatgaggtggcacgcttaaaaaagggaagtggcagtggtgaagagctac ta tccaagaattatcatcttgagaacgaggtagcgcgtttgaagaagggttccggctcagga ga ggaactgctctcgaagaactatcatcttgaaaatgaggtcgctcgattaaaaaagggatc gg gcagtggtgaggaactactttcaaagaattaccacctcgaaaacgaagtagctcgattaa ag aaaggttcagggtcgggtgaagaattactgagtaaaaattatcatctggaaaatgaggta gc gagactaaaaaaggggagtggttctggcgaagagttgctatcgaaaaattatcatcttga ga acgaagttgctaggctcaaaaagggctcaggctcaggcgaggagttgctctcgaaaaact ac cacttggaaaatgaggtcgcgaggttgaaaaaggggagcgggtcgggcgaggagttattg ag caaaaactatcatttagagaacgaagtcgcgcgcttaaagaaaggctcgggctcgggcga ag aactcttatcgaagaactaccacctcgaaaatgaggtcgccaggttgaaaaagggcagtg gc agcggggaggaactcttgagcaagaactaccacttggagaatgaggtcgcgagattgaag aa agggtcggggagcggcgaggaattgctcagcaagaattatcatttggagaacgaagtcgc ca ggctcaagaaaggctcggggtcgggggaggaattgttgagtaaaaactaccacttggaaa at gaagtcgccaggctcaaaaaagggagtgggagcggcgaagagttattgagcaaaaattac ca cttggagaacgaagtggcaaggctcaagaaagggagcggcagcggggaggagctcttatc ga agaactaccacttagagaatgaagtcgcccgcttgaagaaaggctcggggagcggggaag ag ctcttgagcaagaactaccacttggaaaatgaggtggcgcgcttgaagaaagggagcggg ag cggggaagagttactatctaagaattatcatctcgagaacgaggtggctcgactaaagaa gg gctccggcagtggggaggaactcctgtcgaagaactatcatcttgaaaatgaggttgcaa ga cttaaaaaggggtccggatcaggtgaggaactactcagtaagaattaccacctggaaaac ga agttgcacgtttgaagaaaggatcaggatcaggcgaagaactgctctcaaaagattatca tt tggaaaatgaggttgcacgtttaaaaaagggaagtggcagtggtgaggaacttctgtcga aa aattatcatctcgagaatgaagtagcccgacttaaaaag SEQ ID NO: 91 Linker, peptide GSGSG SEQ ID NO: 92 Linker, peptide GSGSGGSGSGSGGSGSGGSGSG SEQ ID NO: 103 ASH2L protein sequence MDTQAGSVDEENGRQLGEVELQCGICTKWFTADTFGIDTSSCLPFMTNYSFHCNVCHHSG NTYFLRKQANLKEMCLSALANLTWQSRTQDEHPKTMFSKDKDIIPFIDKYWECMTTRQRP GKMTWPNNIVKTMSKERDVFLVKEHPDPGSKDPEEDYPKFGLLDQDLSNIGPAYDNQKQS SAVSTSGNLNGGIAAGSSGKGRGAKRKQQDGGTTGTTKKARSDPLFSAQRLPPHGYPLEH PFNKDGYRYILAEPDPHAPDPEKLELDCWAGKPIPGDLYRACLYERVLLALHDRAPQLKI SDDRLTVVGEKGYSMVRASHGVRKGAWYFEITVDEMPPDTAARLGWSQPLGNLQAPLGYD KFSYSWRSKKGTKFHQSIGKHYSSGYGQGDVLGFYINLPEDTETAKSLPDTYKDKALIKF KSYLYFEEKDFVDKAEKSLKQTPHSEIIFYKNGVNQGVAYKDIFEGVYFPAISLYKSCTV SINFGPCFKYPPKDLTYRPMSDMGWGAVVEHTLADVLYHVETEVDGRRSPPWEP SEQ ID NO: 104 ASH2L DNA sequence ATGGATACTCAGGCGGGCTCCGTGGATGAAGAGAATGGCCGACAGTTGGGTGAGGTAGAG CT GCAATGTGGGATTTGTACAAAATGGTTCACGGCTGACACATTTGGCATAGATACCTCATC CT GTCTACCTTTCATGACCAACTACAGTTTTCATTGCAACGTCTGCCATCACAGTGGGAATA CC TATTTCCTCCGGAAGCAAGCAAACTTGAAGGAAATGTGCCTTAGTGCTTTGGCCAACCTG AC ATGGCAGTCCCGAACACAGGATGAACATCCGAAGACAATGTTCTCCAAAGATAAGGATAT TA TACCATTTATTGATAAATACTGGGAGTGCATGACAACCAGACAGAGACCTGGGAAAATGA CT TGGCCAAATAACATTGTTAAAACAATGAGTAAAGAAAGAGATGTATTCTTGGTAAAGGAA CA CCCAGATCCAGGCAGTAAAGATCCAGAAGAAGATTACCCCAAATTTGGACTTTTGGATCA GG ACCTTAGTAACATTGGTCCTGCTTATGACAACCAAAAACAGAGCAGTGCTGTGTCTACTA GT GGGAATTTAAATGGGGGAATTGCAGCAGGAAGCAGCGGAAAAGGACGAGGAGCCAAGCGC AA ACAGCAGGATGGAGGGACCACAGGGACCACCAAGAAGGCCCGGAGTGACCCTTTGTTTTC TG CTCAGCGCCTTCCCCCTCATGGCTACCCATTGGAACACCCGTTTAACAAAGATGGCTATC GG TATATTCTAGCTGAGCCTGATCCGCACGCCCCTGACCCCGAGAAGCTGGAACTTGACTGC TG GGCAGGAAAACCTATTCCTGGAGACCTCTACAGAGCCTGCTTGTATGAACGGGTTTTGTT AG CCCTACATGATCGAGCTCCCCAGTTAAAGATCTCAGATGACCGGCTGACTGTGGTTGGAG AG AAGGGCTACTCTATGGTGAGGGCCTCTCATGGAGTACGGAAGGGTGCCTGGTATTTTGAA AT CACTGTGGATGAGATGCCACCAGATACCGCTGCCAGACTGGGTTGGTCCCAGCCCCTAGG AA ACCTTCAAGCTCCTTTAGGTTATGATAAATTTAGCTATTCTTGGCGGAGCAAAAAGGGAA CC AAGTTCCACCAGTCCATTGGCAAACACTACTCTTCTGGCTATGGACAGGGAGACGTCCTG GG ATTTTATATTAATCTTCCTGAAGACACAGAGACAGCCAAGTCATTGCCAGACACATACAA AG ATAAGGCTTTGATAAAATTCAAGAGTTATTTGTATTTTGAGGAAAAAGACTTTGTGGATA AA GCAGAGAAGAGCCTGAAGCAGACTCCCCATAGTGAGATAATATTTTATAAAAATGGTGTC AA TCAAGGTGTGGCTTACAAAGATATTTTTGAGGGGGTTTACTTCCCAGCCATCTCACTGTA CA AGAGCTGCACGGTTTCCATTAACTTTGGACCATGCTTCAAGTATCCTCCGAAGGATCTCA CT TACCGCCCTATGAGTGACATGGGCTGGGGCGCCGTGGTAGAGCACACCCTGGCTGACGTC TT GTATCACGTGGAGACAGAAGTGGATGGGAGGCGCAGTCCCCCATGGGAACCCTGA SEQ ID NO: 105 BCL7B protein sequence MSGRSVRAETRSRAKDDIKKVMAAIEKVRKWEKKWVTVGDTSLRIFKWVPVTDSKEKEKS KSNSSAAREPNGFPSDASANSSLLLEFQDENSNQSSVSDVYQLKVDSSTNSSPSPQQSES LSPAHTSDFRTDDSQPPTLGQEILEEPSLPSSEVADEPPTLTKEEPVPLETQVVEEEEDS GAPPLKRFCVDQPTVPQTASESL SEQ ID NO: 106 BCL7B DNA sequence atgtcgggccggtcggtccgggcggagacccgcagccgggccaaggacgacatcaagaag gt gatggcggccatcgagaaagtgcggaaatgggagaagaagtgggtgactgtgggtgacac gt ccctgaggatatttaagtgggttcctgtgacagacagcaaggagaaagaaaagtcaaaat cg aacagttcagcagcccgagaacctaatggctttccttctgatgcctcagccaattcctct ct ccttcttgaattccaggacgaaaacagcaaccagagttccgtgtctgacgtctatcagct ta aggtggacagcagcaccaactcaagccccagcccccagcagagtgagtccctgagcccag ca cacacctccgacttccgcacggatgactcccagcccccaacgctgggccaggagatcctg ga ggagccctccctgccctcctcggaagttgctgatgaacctcctaccctcaccaaggaaga ac cagttccactagagacacaggtcgttgaggaagaggaagactcaggtgccccgcccctga ag cgcttctgtgtggaccaacccacagtgccgcagacggcgtcagaaagcttg SEQ ID NO: 107 C20orf20 protein sequence MGEAEVGGGGAAGDKGPGEAATSPAEETVVWSPEVEVCLFHAMLGHKPVGVNRHFHMICI RDKFSQNIGRQVPSKVIWDHLSTMYDMQALHESEILPFPNPERNFVLPEEIIQEVREGKV MIEEEMKEEMKEDVDPHNGADDVFSSSGSLGKASEKSSKDKEKNSSDLGCKEGADKRKRS RVTDKVLTANSNPSSPSAAKRRRT SEQ ID NO: 108 C20orf20 DNA sequence ATGGGAGAGGCCGAGGTGGGCGGCGGGGGCGCCGCAGGCGACAAGGGCCCGGGGGAGGCG GC CACCAGCCCGGCGGAGGAGACAGTGGTGTGGAGCCCCGAGGTGGAGGTGTGCCTCTTCCA CG CCATGCTGGGCCACAAGCCCGTCGGTGTGAACCGACACTTCCACATGATTTGTATTCGGG AC AAGTTCAGCCAGAACATCGGGCGGCAGGTCCCATCCAAGGTCATCTGGGACCATCTGAGC AC CATGTACGACATGCAGGCGCTGCATGAGTCTGAGATTCTTCCATTCCCGAATCCAGAGAG GA ACTTCGTCCTTCCAGAAGAGATCATTCAGGAGGTCCGAGAAGGAAAAGTGATGATAGAAG AG GAGATGAAAGAGGAGATGAAGGAAGACGTGGACCCCCACAATGGGGCTGACGATGTTTTT TC ATCTTCAGGGAGTTTGGGGAAAGCATCAGAAAAATCCAGCAAAGACAAAGAGAAGAACTC CT CAGACTTGGGGTGCAAAGAAGGCGCAGACAAGCGGAAGCGCAGCCGGGTCACCGACAAAG TC CTGACCGCAAACAGCAACCCTTCCAGTCCCAGTGCTGCCAAGCGGCGCCGCACGTAG SEQ ID NO: 109 DMAP1 protein sequence MATGADVRDILELGGPEGDAASGTISKKDIINPDKKKSKKSSETLTFKRPEGMHREVYAL LYSDKKDAPPLLPSDTGQGYRTVKAKLGSKKVRPWKWMPFTNPARKDGAMFFHWRRAAEE GKDYPFARFNKTVQVPVYSEQEYQLYLHDDAWTKAETDHLFDLSRRFDLRFVVIHDRYDH QQFKKRSVEDLKERYYHICAKLANVRAVPGTDLKIPVFDAGHERRRKEQLERLYNRTPEQ VAEEEYLLQELRKIEARKKEREKRSQDLQKLITAADTTAEQRRTERKAPKKKLPQKKEAE KPAVPETAGIKFPDFKSAGVTLRSQRMKLPSSVGQKKIKALEQMLLELGVELSPTPTEEL VHMFNELRSDLVLLYELKQACANCEYELQMLRHRHEALARAGVLGGPATPASGPGPASAE PAVTEPGLGPDPKDTIIDVVGAPLTPNSRKRRESASSSSSVKKAKKPL SEQ ID NO: 110 DMAP1 DNA sequence atggctacgggcgcggatgtacgggacattctagaactcgggggtccagaaggggatgca gc ctctgggaccatcagcaagaaggacattatcaacccggacaagaaaaaatccaagaagtc ct ctgagacactgactttcaagaggcccgagggcatgcaccgggaagtctatgccttgctct ac tctgacaagaaggatgcacccccactgctacccagtgacactggccagggataccgtaca gt gaaggccaagttgggctccaagaaggtgcggccttggaagtggatgccattcaccaaccc gg cccgcaaggacggagcaatgttcttccactggcgacgtgcagcggaggagggcaaggact ac ccctttgccaggttcaataagactgtgcaggtgcctgtgtactcggagcaggagtaccag ct ttatctccacgatgatgcttggactaaggcagaaactgaccacctctttgacctcagccg cc gctttgacctgcgttttgttgttatccatgaccggtatgaccaccagcagttcaagaagc gt tctgtggaagacctgaaggagcggtactaccacatctgtgctaagcttgccaacgtgcgg gc tgtgccaggcacagaccttaagataccagtatttgatgctgggcacgaacgacggcggaa gg aacagcttgagcgtctctacaaccggaccccagagcaggtggcagaggaggagtacctgc ta caggagctgcgcaagattgaggcccggaagaaggagcgggagaaacgcagccaggacctg ca gaagctgatcacagcggcagacaccactgcagagcagcggcgcacggaacgcaaggcccc ca aaaagaagctaccccagaaaaaggaggctgagaagccggctgttcctgagactgcaggca tc aagtttccagacttcaagtctgcaggtgtcacgctgcggagccaacggatgaagctgcca ag ctctgtgggacagaagaagatcaaggccctggaacagatgctgctggagcttggtgtgga gc tgagcccgacacctacggaggagctggtgcacatgttcaatgagctgcgaagcgacctgg tg ctgctctacgagctcaagcaggcctgtgccaactgcgagtatgagctgcagatgctgcgg ca ccgtcatgaggcactggcccgggctggtgtgctagggggccctgccacaccagcatcagg cc caggcccggcctctgctgagccggcagtgactgaacccggacttggtcctgaccccaagg ac accatcattgatgtggtgggcgcacccctcacgcccaattcgagaaagcgacgggagtcg gc ctccagctcatcttccgtgaagaaagccaagaagccgttg SEQ ID NO: 111 DYRK1B protein sequence MAVPPGHGPFSGFPGPQEHTQVLPDVRLLPRRLPLAFRDATSAPLRKLSVDLIKTYKHIN EVYYAKKKRRAQQAPPQDSSNKKEKKVLNHGYDDDNHDYIVRSGERWLERYEIDSLIGKG SFGQVVKAYDHQTQELVAIKIIKNKKAFLNQAQIELRLLELMNQHDTEMKYYIVHLKRHF MFRNHLCLVFELLSYNLYDLLRNTHFRGVSLNLTRKLAQQLCTALLFLATPELSIIHCDL KPENILLCNPKRSAIKIVDFGSSCQLGQRIYQYIQSRFYRSPEVLLGTPYDLAIDMWSLG CILVEMHTGEPLFSGSNEVDQMNRIVEVLGIPPAAMLDQAPKARKYFERLPGGGWTLRRT KELRKDYQGPGTRRLQEVLGVQTGGPGGRRAGEPGHSPADYLRFQDLVLRMLEYEPAARI SPLGALQHGFFRRTADEATNTGPAGSSASTSPAPLDTCPSSSTASSISSSGGSSGSSSDN RTYRYSNRYCGGPGPPITDCEMNSPQVPPSQPLRPWAGGDVPHKTHQAPASASSLPGTGA QLPPQPRYLGRPPSPTSPPPPELMDVSLVGGPADCSPPHPAPAPQHPAASALRTRMTGGR PPLPPPDDPATLGPHLGLRGVPQSTAASSL SEQ ID NO: 112 DYRK1B DNA sequence atggccgtcccaccgggccatggtcccttctctggcttcccagggccccaggagcacacg ca ggtattgcctgatgtgcggctactgcctcggaggctgcccctggccttccgggatgcaac ct cagccccgctgcgtaagctctctgtggacctcatcaagacctacaagcacatcaatgagg ta tactatgcgaagaagaagcggcgggcccagcaggcgccaccccaggattcgagcaacaag aa ggagaagaaggtcctgaaccatggttatgatgacgacaaccatgactacatcgtgcgcag tg gcgagcgctggctggagcgctacgaaattgactcgctcattggcaaaggctcctttggcc ag gtggtgaaagcctatgatcatcagacccaggagcttgtggccatcaagatcatcaagaac aa aaaggctttcctgaaccaggcccagattgagctgcggctgctggagctgatgaaccagca tg acacggagatgaagtactatatagtacacctgaagcggcacttcatgttccggaaccacc tg tgcctggtatttgagctgctgtcctacaacctgtacgacctcctgcgcaacacccacttc cg cggcgtctcgctgaacctgacccggaagctggcgcagcagctctgcacggcactgctctt tc tggccacgcctgagctcagcatcattcactgcgacctcaagcccgaaaacatcttgctgt gc aaccccaagcgcagcgccatcaagattgtggacttcggcagctcctgccagcttggccag ag gatctaccagtatatccagagccgcttctaccgctcacctgaggtgctcctgggcacacc ct acgacctggccattgacatgtggtccctgggctgcatccttgtggagatgcacaccggag ag cccctcttcagtggctccaatgaggtcgaccagatgaaccgcattgtggaggtgctgggc at cccaccggccgccatgctggaccaggcgcccaaggctcgcaagtactttgaacggctgcc tg ggggtggctggaccctacgaaggacgaaagaactcaggaaggattaccagggccccggga ca cggcggctgcaggaggtgctgggcgtgcagacgggcgggcccgggggccggcgggcgggg ga gccgggccacagccccgccgactacctccgcttccaggacctggtgctgcgcatgctgga gt atgagcccgccgcccgcatcagccccctgggggctctgcagcacggcttcttccgccgca cg gccgacgaggccaccaacacgggcccggcaggcagcagtgcctccacctcgcccgcgccc ct cgacacctgcccctcttccagcaccgccagctccatctccagttctggaggctccagtgg ct cctccagtgacaaccggacctaccgctacagcaaccgatattgtgggggccctgggcccc ct atcacagactgtgagatgaacagcccccaggtcccaccctcccagccgctgcggccctgg gc agggggtgatgtgccccacaagacacatcaagcccctgcctctgcctcgtcactgcctgg ga ccggggcccagttacccccccagccccgataccttggtcgtcccccatcaccaacctcac ca ccacccccggagctgatggatgtgagcctggtgggcggccctgctgactgctccccacct ca cccagcgcctgccccccagcacccggctgcctcagccctccggactcggatgactggagg tc gtccacccctcccgcctcctgatgaccctgccactctggggcctcacctgggcctccgtg gt gtaccccagagcacagcagccagctcgttg SEQ ID NO: 113 EAF1 protein sequence MNGTANPLLDREEHCLRLGESFEKRPRASFHTIRYDFKPASIDTSCEGELQVGKGDEVTI TLPHIPGSTPPMTVFKGNKRPYQKDCVLIINHDTGEFVLEKLSSSIQVKKTRAEGSSKIQ ARMEQQPTRPPQTSQPPPPPPPMPFRAPTKPPVGPKTSPLKDNPSPEPQLDDIKRELRAE VDIIEQMSSSSGSSSSDSESSSGSDDDSSSSGGEDNGPASPPQPSHQQPYNSRPAVANGT SRPQGSNQLMNALRNDLQLSESGSDSDD SEQ ID NO: 114 EAF1 DNA sequence ATGAATGGGACCGCAAACCCGCTGCTGGACCGCGAGGAACATTGCCTGAGGCTCGGGGAG AG CTTCGAGAAGCGGCCGCGGGCCTCCTTCCACACTATTCGTTATGATTTTAAACCAGCATC TA TAGACACTTCCTGTGAAGGAGAGCTTCAAGTTGGCAAAGGAGATGAAGTCACAATTACAC TT CCACATATCCCTGGATCCACACCACCCATGACTGTGTTCAAGGGGAACAAACGGCCTTAC CA GAAAGACTGTGTGCTTATTATTAATCATGACACTGGTGAATTTGTGCTGGAAAAACTCAG TA GCAGCATTCAGGTGAAGAAAACAAGAGCTGAGGGCAGCAGTAAAATCCAGGCCCGAATGG AA CAGCAGCCCACTCGTCCTCCACAGACGTCACAGCCACCACCACCTCCACCACCTATGCCA TT CAGAGCTCCAACGAAGCCTCCAGTTGGACCCAAAACTTCTCCCTTGAAAGATAACCCCTC AC CTGAACCTCAGTTGGATGACATCAAAAGAGAGCTGAGGGCTGAAGTTGACATTATTGAAC AA ATGAGCAGCAGCAGTGGGAGCAGCTCTTCAGACTCTGAGAGCTCTTCGGGAAGTGATGAC GA TAGCTCCAGCAGTGGAGGCGAGGACAATGGCCCAGCCTCTCCTCCGCAGCCTTCACACCA GC AGCCCTACAACAGTAGGCCTGCCGTTGCCAATGGAACCAGCCGGCCACAAGGAAGCAACC AG CTCATGAACGCCCTCAGAAATGACTTGCAGTTGAGTGAGTCTGGCAGTGACAGTGATGAC TA G SEQ ID NO: 115 FOXR2 protein sequence MDLKLKDCEFWYSLHGQVPGLLDWDMRNELFLPCTTDQCSLAEQILAKYRVGVMKPPEMP QKRRPSPDGDGPPCEPNLWMWVDPNILCPLGSQEAPKPSGKEDLTNISPFPQPPQKDEGS NCSEDKVVESLPSSSSEQSPLQKQGIHSPSDFELTEEEAEEPDDNSLQSPEMKCYQSQKL WQINNQEKSWQRPPLNCSHLIALALRNNPHCGLSVQEIYNFTRQHFPFFWTAPDGWKSTI HYNLCFLDSFEKVPDSLKDEDNARPRSCLWKLTKEGHRRFWEETRVLAFAQRERIQECMS QPELLTSLFDL SEQ ID NO: 116 FOXR2 DNA sequence ATGGACTTAAAACTAAAAGACTGTGAATTTTGGTATAGTCTCCATGGCCAGGTCCCAGGG CT GCTGGACTGGGACATGAGGAATGAGTTATTTCTGCCTTGTACCACAGACCAGTGCTCTTT AG CTGAGCAAATCCTTGCCAAATACAGAGTCGGAGTAATGAAGCCCCCAGAAATGCCTCAGA AG AGGAGACCCAGTCCTGATGGAGATGGTCCTCCCTGTGAACCCAATCTGTGGATGTGGGTG GA CCCCAATATCCTGTGCCCCCTTGGCAGCCAGGAGGCCCCAAAGCCCAGTGGAAAAGAGGA TC TGACAAACATTTCTCCTTTCCCTCAGCCCCCACAAAAAGACGAAGGGTCTAACTGCTCAG AG GACAAAGTGGTAGAGTCTCTGCCATCTTCCTCCAGTGAGCAGTCTCCTTTACAGAAGCAG GG TATCCATTCCCCCAGTGACTTTGAGCTCACAGAAGAGGAGGCTGAGGAACCAGACGACAA CT CCCTCCAGTCCCCTGAAATGAAATGTTACCAGAGCCAGAAACTATGGCAAATCAACAACC AA GAGAAGTCCTGGCAAAGGCCCCCTCTCAATTGTAGCCACCTTATTGCCCTAGCATTAAGA AA CAACCCCCACTGTGGCCTCAGTGTGCAGGAGATCTACAATTTCACCCGACAGCATTTCCC CT TTTTCTGGACAGCTCCGGATGGCTGGAAGAGCACCATTCATTACAACCTCTGCTTCCTGG AC AGCTTTGAGAAGGTGCCAGACAGCCTTAAGGATGAAGATAATGCAAGACCTCGCTCTTGC CT TTGGAAGCTCACTAAGGAGGGGCACCGCCGCTTTTGGGAGGAGACTCGTGTCTTAGCCTT TG CTCAAAGGGAGAGAATCCAAGAGTGCATGAGTCAGCCAGAGTTGTTGACCTCTCTCTTTG AT CTTTGA SEQ ID NO: 117 GSK3A protein sequence MSGGGPSGGGPGGSGRARTSSFAEPGGGGGGGGGGPGGSASGPGGTGGGKASVGAMGGGV GASSSGGGPGGSGGGGSGGPGAGTSFPPPGVKLGRDSGKVTTVVATLGQGPERSQEVAYT DIKVIGNGSFGVVYQARLAETRELVAIKKVLQDKRFKNRELQIMRKLDHCNIVRLRYFFY SSGEKKDELYLNLVLEYVPETVYRVARHFTKAKLTIPILYVKVYMYQLFRSLAYIHSQGV CHRDIKPQNLLVDPDTAVLKLCDFGSAKQLVRGEPNVSYICSRYYRAPELIFGATDYTSS IDVWSAGCVLAELLLGQPIFPGDSGVDQLVEIIKVLGTPTREQIREMNPNYTEFKFPQIK AHPWTKVFKSRTPPEAIALCSSLLEYTPSSRLSPLEACAHSFFDELRCLGTQLPNNRPLP PLFNFSAGELSIQPSLNAILIPPHLRSPAGTTTLTPSSQALTETPTSSDWQSTDATPTLT NSSL SEQ ID NO: 118 GSK3A DNA sequence atgagcggcggcgggccttcgggaggcggccctgggggctcgggcagggcgcggactagc tc gttcgcggagcccggcggcggaggcggaggaggcggcggcggccccggaggctcggcctc cg gcccaggcggcaccggcggcggaaaggcatctgtcggggccatgggtgggggcgtcgggg cc tcgagctccgggggtggacccggcggcagcggcggaggaggcagcggaggccccggcgca gg cactagcttcccgccgcccggggtgaagctgggccgtgacagcgggaaggtgaccacagt cg tagccactctaggccaaggcccagagcgctcccaagaagtggcttacacggacatcaaag tg attggcaatggctcatttggggtcgtgtaccaggcacggctggcagagaccagggaacta gt cgccatcaagaaggttctccaggacaagaggttcaagaaccgagagctgcagatcatgcg ta agctggaccactgcaatattgtgaggctgagatactttttctactccagtggcgagaaga aa gacgagctttacctaaatctggtgctggaatatgtgcccgagacagtgtaccgggtggcc cg ccacttcaccaaggccaagttgaccatccctatcctctatgtcaaggtgtacatgtacca gc tcttccgcagcttggcctacatccactcccagggcgtgtgtcaccgcgacatcaagcccc ag aacctgctggtggaccctgacactgctgtcctcaagctctgcgattttggcagtgcaaag ca gttggtccgaggggagcccaatgtctcctacatctgttctcgctactaccgggccccaga gc tcatctttggagccactgattacacctcatccatcgatgtttggtcagctggctgtgtac tg gcagagctcctcttgggccagcccatcttccctggggacagtggggtggaccagctggtg ga gatcatcaaggtgctgggaacaccaacccgggaacaaatccgagagatgaaccccaacta ca cggagttcaagttccctcagattaaagctcacccctggacaaaggtgttcaaatctcgaa cg ccgccagaggccatcgcgctctgctctagcctgctggagtacaccccatcctcaaggctc tc cccactagaggcctgtgcgcacagcttctttgatgaactgcgatgtctgggaacccagct gc ctaacaaccgcccacttccccctctcttcaacttcagtgctggtgaactctccatccaac cg tctctcaacgccattctcatccctcctcacttgaggtccccagcgggcactaccaccctc ac cccgtcctcacaagctttaactgagactccgaccagctcagactggcagtcgaccgatgc ca cacctaccctcactaactcctccttg SEQ ID NO: 119 JAZF1 protein sequence MTGIAAASFFSNTCRFGGCGLHFPTLADLIEHIEDNHIDTDPRVLEKQELQQPTYVALSY INRFMTDAARREQESLKKKIQPKLSLTLSSSVSRGNVSTPPRHSSGSLTPPVTPPITPSS SFRSSTPTGSEYGEEEVDYEESDSDESWTTESAISSEAILSSMCMNGGEEKPFACPVPGC KKRYKNVNGIKYHAKNGHRTQIRVRKPFKCRCGKSYKTAQGLRHHTINFHPPVSAEIIRK MQQL SEQ ID NO: 120 JAZF1 DNA sequence Atgacaggcatcgccgccgcctccttcttctccaatacctgccgattcgggggctgcgga ct ccacttccccaccctggccgacctcatcgagcacatcgaggacaaccacatcgatacaga tc cacgggttttagaaaaacaagaattacagcagccaacctatgttgccctgagttacataa at agattcatgacagatgctgcccgccgagagcaggagtccctaaagaagaagattcagccg aa gctctcgctgactctgtccagctcagtgtctcgagggaatgtgtccactcccccacgcca ca gcagtggaagccttactccccccgtgaccccacccatcaccccctcctcttcattccgca gc agcactccgacaggcagcgagtatggcgaggaggaggtggactatgaggagtcggacagc ga tgagtcctggaccacagagagtgccatcagctccgaagccatcctcagctccatgtgcat ga atggaggggaagagaagccttttgcctgcccagttcctggatgtaaaaagagatacaaga at gtgaatggcataaagtatcacgctaagaatggtcacagaacacagattcgtgtccgcaaa cc attcaagtgtcgctgtgggaagagttacaagacagctcagggcctgcggcaccacacaat ca atttccatcccccggtgtcggctgagattatcaggaagatgcagcaattg SEQ ID NO: 121 KAT7 protein sequence MPRRKRNAGSSSDGTEDSDFSTDLEHTDSSESDGTSRRSARVTRSSARLSQSSQDSSPVR NLQSFGTEEPAYSTRRVTRSQQQPTPVTPKKYPLRQTRSSGSETEQVVDFSDRETKNTAD HDESPPRTPTGNAPSSESDIDISSPNVSHDESIAKDMSLKDSGSDLSHRPKRRRFHESYN FNMKCPTPGCNSLGHLTGKHERHFSISGCPLYHNLSADECKVRAQSRDKQIEERMLSHRQ DDNNRHATRHQAPTERQLRYKEKVAELRKKRNSGLSKEQKEKYMEHRQTYGNTREPLLEN LTSEYDLDLFRRAQARASEDLEKLRLQGQITEGSNMIKTIAFGRYELDTWYHSPYPEEYA RLGRLYMCEFCLKYMKSQTILRRHMAKCVWKHPPGDEIYRKGSISVFEVDGKKNKIYCQN LCLLAKLFLDHKTLYYDVEPFLFYVMTEADNTGCHLIGYFSKEKNSFLNYNVSCILTMPQ YMRQGYGKMLIDFSYLLSKVEEKVGSPERPLSDLGLISYRSYWKEVLLRYLHNFQGKEIS IKEISQETAVNPVDIVSTLQALQMLKYWKGKHLVLKRQDLIDEWIAKEAKRSNSNKTMDP SCLKWTPPKGT SEQ ID NO: 122 KAT7 DNA sequence ATGCCGCGAAGGAAGAGGAATGCAGGCAGTAGTTCAGATGGAACCGAAGATTCCGATTTT TC TACAGATCTCGAGCACACAGACAGTTCAGAAAGTGATGGCACATCCCGACGATCTGCTCG AG TCACCCGCTCCTCAGCCAGGCTAAGCCAGAGTTCTCAAGATTCCAGTCCTGTTCGAAATC TG CAGTCTTTTGGCACTGAGGAGCCTGCTTACTCTACCAGAAGAGTGACCCGTAGTCAGCAG CA GCCTACCCCAGTGACACCGAAAAAATACCCTCTTCGGCAGACTCGTTCATCTGGTTCAGA AA CTGAGCAAGTGGTTGATTTTTCAGATAGAGAAACTAAAAATACAGCTGATCATGATGAGT CA CCGCCTCGAACTCCAACTGGAAATGCGCCTTCTTCTGAGTCTGACATAGACATCTCCAGC CC CAATGTATCTCACGATGAGAGCATTGCCAAGGACATGTCCCTGAAGGACTCAGGCAGTGA TC TCTCTCATCGCCCCAAGCGCCGTCGCTTCCATGAAAGCTACAACTTCAATATGAAGTGTC CT ACACCAGGCTGTAACTCTCTAGGACACCTTACAGGAAAACATGAGAGACATTTCTCCATC TC AGGATGCCCACTGTATCATAACCTCTCAGCTGACGAATGCAAGGTGAGAGCACAGAGCCG GG ATAAGCAGATAGAAGAAAGGATGCTGTCTCACAGGCAAGATGACAACAACAGGCATGCAA CC AGGCACCAGGCACCAACGGAGAGGCAGCTTCGATATAAGGAAAAAGTGGCTGAACTCAGG AA GAAAAGAAATTCTGGACTGAGCAAAGAACAGAAAGAGAAATATATGGAACACAGACAGAC CT ATGGGAACACACGGGAACCTCTTTTAGAAAACCTGACAAGCGAGTATGACTTGGATCTTT TC CGAAGAGCACAAGCCCGGGCTTCAGAGGATTTGGAGAAGTTAAGGCTGCAAGGCCAAATC AC AGAGGGAAGCAACATGATTAAAACAATTGCTTTTGGCCGCTATGAGCTTGATACCTGGTA CC ATTCTCCATATCCTGAAGAATATGCACGGCTGGGACGTCTCTATATGTGTGAATTCTGTT TA AAATATATGAAGAGCCAAACGATACTCCGCCGGCACATGGCCAAATGTGTGTGGAAACAC CC ACCTGGTGATGAGATATATCGCAAAGGTTCAATCTCTGTGTTTGAAGTGGATGGCAAGAA AA ACAAGATCTACTGCCAAAACCTGTGCCTGTTGGCCAAACTTTTTCTGGACCACAAGACAT TA TATTATGATGTGGAGCCCTTCCTGTTCTATGTTATGACAGAGGCGGACAACACTGGCTGT CA CCTGATTGGATATTTTTCTAAGGAAAAGAATTCATTCCTCAACTACAACGTCTCCTGTAT CC TTACTATGCCTCAGTACATGAGACAGGGCTATGGCAAGATGCTTATTGATTTCAGTTATT TG CTTTCCAAAGTCGAAGAAAAAGTTGGCTCCCCAGAACGTCCACTCTCAGATCTGGGGCTT AT AAGCTATCGCAGTTACTGGAAAGAAGTACTTCTCCGCTACCTGCATAATTTTCAAGGCAA AG AGATTTCTATCAAAGAAATCAGTCAGGAGACGGCTGTGAATCCTGTGGACATTGTCAGCA CT CTGCAAGCCCTTCAGATGCTCAAATACTGGAAGGGAAAACACCTAGTTTTAAAGAGACAG GA CCTGATTGATGAGTGGATAGCCAAAGAGGCCAAAAGGTCCAACTCCAATAAAACCATGGA TC CCAGCTGCTTAAAATGGACCCCTCCCAAGGGCACTTAA SEQ ID NO: 123 KEAP1 protein sequence MQPDPRPSGAGACCRFLPLQSQCPEGAGDAVMYASTECKAEVTPSQHGNRTFSYTLEDHT KQAFGIMNELRLSQQLCDVTLQVKYQDAPAAQFMAHKVVLASSSPVFKAMFTNGLREQGM EVVSIEGIHPKVMERLIEFAYTASISMGEKCVLHVMNGAVMYQIDSVVRACSDFLVQQLD PSNAIGIANFAEQIGCVELHQRAREYIYMHFGEVAKQEEFFNLSHCQLVTLISRDDLNVR CESEVFHACINWVKYDCEQRRFYVQALLRAVRCHSLTPNFLQMQLQKCEILQSDSRCKDY LVKIFEELTLHKPTQVMPCRAPKVGRLIYTAGGYFRQSLSYLEAYNPSDGTWLRLADLQV PRSGLAGCVVGGLLYAVGGRNNSPDGNTDSSALDCYNPMTNQWSPCAPMSVPRNRIGVGV IDGHIYAVGGSHGCIHHNSVERYEPERDEWHLVAPMLTRRIGVGVAVLNRLLYAVGGFDG TNRLNSAECYYPERNEWRMITAMNTIRSGAGVCVLHNCIYAAGGYDGQDQLNSVERYDVE TETWTFVAPMKHRRSALGITVHQGRIYVLGGYDGHTFLDSVECYDPDTDTWSEVTRMTSG RSGVGVAVTMEPCRKQIDQQNCTCL SEQ ID NO: 124 KEAP1 DNA sequence atgcagccagatcccaggcctagcggggctggggcctgctgccgattcctgcccctgcag tc acagtgccctgagggggcaggggacgcggtgatgtacgcctccactgagtgcaaggcgga gg tgacgccctcccagcatggcaaccgcaccttcagctacaccctggaggatcataccaagc ag gcctttggcatcatgaacgagctgcggctcagccagcagctgtgtgacgtcacactgcag gt caagtaccaggatgcaccggccgcccagttcatggcccacaaggtggtgctggcctcatc ca gccctgtcttcaaggccatgttcaccaacgggctgcgggagcagggcatggaggtggtgt cc attgagggtatccaccccaaggtcatggagcgcctcattgaattcgcctacacggcctcc at ctccatgggcgagaagtgtgtcctccacgtcatgaacggtgctgtcatgtaccagatcga ca gcgttgtccgtgcctgcagtgacttcctggtgcagcagctggaccccagcaatgccatcg gc atcgccaacttcgctgagcagattggctgtgtggagttgcaccagcgtgcccgggagtac at ctacatgcattttggggaggtggccaagcaagaggagttcttcaacctgtcccactgcca ac tggtgaccctcatcagccgggacgacctgaacgtgcgctgcgagtccgaggtcttccacg cc tgcatcaactgggtcaagtacgactgcgaacagcgacggttctacgtccaggcgctgctg cg ggccgtgcgctgccactcgttgacgccgaacttcctgcagatgcagctgcagaagtgcga ga tcctgcagtccgactcccgctgcaaggactacctggtcaagatcttcgaggagctcaccc tg cacaagcccacgcaggtgatgccctgccgggcgcccaaggtgggccgcctgatctacacc gc gggcggctacttccgacagtcgctcagctacctggaggcttacaaccccagtgacggcac ct ggctccggttggcggacctgcaggtgccgcggagcggcctggccggctgcgtggtgggcg gg ctgttgtacgccgtgggcggcaggaacaactcgcccgacggcaacaccgactccagcgcc ct ggactgttacaaccccatgaccaatcagtggtcgccctgcgcccccatgagcgtgccccg ta accgcatcggggtgggggtcatcgatggccacatctatgccgtcggcggctcccacggct gc atccaccacaacagtgtggagaggtatgagccagagcgggatgagtggcacttggtggcc cc aatgctgacacgaaggatcggggtgggcgtggctgtcctcaatcgtctcctttatgccgt gg ggggctttgacgggacaaaccgccttaattcagctgagtgttactacccagagaggaacg ag tggcgaatgatcacagcaatgaacaccatccgaagcggggcaggcgtctgcgtcctgcac aa ctgtatctatgctgctgggggctatgatggtcaggaccagctgaacagcgtggagcgcta cg atgtggaaacagagacgtggactttcgtagcccccatgaagcaccggcgaagtgccctgg gg atcactgtccaccaggggagaatctacgtccttggaggctatgatggtcacacgttcctg ga cagtgtggagtgttacgacccagatacagacacctggagcgaggtgacccgaatgacatc gg gccggagtggggtgggcgtggctgtcaccatggagccctgccggaagcagattgaccagc ag aactgtacctgtttg SEQ ID NO: 125 MEAF6 protein sequence MAMHNKAAPPQIPDTRRELAELVKRKQELAETLANLERQIYAFEGSYLEDTQMYGNIIRG WDRYLTNQKNSNSKNDRRNRKFKEAERLFSKSSVTSAAAVSALAGVQDQLIEKREPGSGT ESDTSPDFHNQENEPSQEDPEDLDGSVQGVKPQKAASSTSSGSHHSSHKKRKNKNRHRID LKLNKKPRADY SEQ ID NO: 126 MEAF6 DNA sequence ATGGCGATGCACAACAAGGCGGCGCCGCCGCAGATCCCGGACACCCGGCGGGAGCTGGCG GA GCTCGTGAAGCGGAAGCAGGAGCTGGCGGAAACATTGGCAAATTTGGAGCGACAGATCTA TG CTTTTGAGGGAAGCTACCTGGAAGACACTCAGATGTATGGCAATATTATTCGTGGCTGGG AT CGGTATCTGACCAACCAAAAAAACTCCAATAGCAAAAATGATCGAAGGAACCGGAAGTTT AA GGAAGCTGAGCGGCTCTTCAGTAAATCCTCGGTTACCTCAGCAGCTGCAGTAAGTGCATT GG CAGGAGTTCAGGACCAGCTCATTGAAAAGAGGGAGCCAGGAAGTGGGACGGAAAGTGACA CT TCTCCAGACTTCCACAATCAGGAAAATGAGCCCAGCCAGGAGGACCCTGAGGATCTGGAT GG ATCTGTGCAGGGAGTGAAACCTCAGAAGGCTGCTTCTTCTACTTCCTCAGGGAGTCACCA CA GCAGCCATAAAAAGCGAAAGAATAAAAACCGGCACAGGATTGATCTGAAGTTAAACAAAA AA CCACGAGCTGACTATTAG SEQ ID NO: 127 MLLT6 protein sequence MGAVNPLLSQAESSHTEPDLEDCSFRCRGTSPQESLSSMSPISSLPALFDQTASAPCGGG QLDPAAPGTTNMEQLLEKQGDGEAGVNIVEMLKALHALQKENQRLQEQILSLTAKKERLQ ILNVQLSVPFPALPAALPAANGPVPGPYGLPPQAGSSDSLSTSKSPPGKSSLGLDNSLST SSEDPHSGCPSRSSSSLSFHSTPPPLPLLQQSPATLPLALPGAPAPLPPQPQNGLGRAPG AAGLGAMPMAEGLLGGLAGSGGLPLNGLLGGLNGAAAPNPASLSQAGGAPTLQLPGCLNS LTEQQRHLLQQQEQQLQQLQQLLASPQLTPEHQTVVYQMIQQIQQKRELQRLQMAGGSQL PMASLLAGSSTPLLSAGTPGLLPTASAPPLLPAGALVAPSLGNNTSLMAAAAAAAAVAAA GGPPVLTAQTNPFLSLSGAEGSGGGPKGGTADKGASANQEKG SEQ ID NO: 128 MLLT6 DNA sequence ATGGGTGCCGTTAATCCCCTCCTCTCCCAAGCTGAGAGCAGCCACACAGAGCCAGACCTG GA GGACTGCAGCTTCCGGTGTCGGGGGACCTCCCCTCAGGAGAGTCTGTCTTCCATGTCCCC CA TCAGCAGCCTCCCCGCACTCTTCGACCAGACAGCCTCTGCACCCTGTGGGGGCGGCCAGT TA GACCCGGCGGCCCCAGGGACGACTAACATGGAGCAGCTTCTGGAGAAGCAGGGCGACGGG GA GGCCGGCGTCAACATCGTGGAGATGCTGAAGGCGCTGCACGCGCTGCAGAAGGAGAACCA GC GGCTGCAAGAGCAGATCCTGAGCCTGACGGCCAAAAAGGAGCGGCTGCAGATTCTCAACG TG CAGCTCTCTGTGCCCTTCCCTGCCCTGCCTGCTGCCCTGCCTGCCGCCAACGGCCCTGTC CC TGGGCCCTATGGCCTGCCTCCCCAAGCCGGCAGCAGCGACTCCTTGAGCACCAGCAAGAG CC CTCCGGGAAAGAGCAGCCTCGGCCTGGACAACTCGCTGTCCACTTCTTCTGAGGACCCAC AC TCAGGCTGCCCGAGCCGCAGCAGCTCGTCGCTGTCCTTCCACAGCACGCCCCCACCGCTG CC CCTCCTCCAGCAGAGCCCTGCCACTCTGCCCCTGGCCCTGCCTGGGGCCCCTGCCCCACT CC CGCCCCAGCCGCAGAACGGGTTGGGCCGGGCACCCGGGGCAGCGGGGCTGGGGGCCATGC CC ATGGCTGAGGGGCTGTTGGGGGGGCTGGCAGGCAGTGGGGGCCTGCCCCTCAATGGGCTC CT TGGGGGGTTGAATGGGGCCGCTGCCCCCAACCCCGCAAGCTTGAGCCAGGCTGGCGGGGC CC CCACGCTGCAGCTGCCAGGCTGTCTCAACAGCCTTACAGAGCAGCAGAGACATCTCCTTC AG CAGCAAGAGCAGCAGCTCCAGCAACTCCAGCAGCTCCTGGCCTCCCCGCAGCTGACCCCG GA ACACCAGACTGTTGTCTACCAGATGATCCAGCAGATCCAGCAGAAACGGGAGCTGCAGCG CC TGCAGATGGCTGGGGGCTCCCAGCTGCCCATGGCCAGCCTGCTGGCAGGAAGCTCCACCC CG CTGCTGTCTGCGGGTACCCCTGGCCTGCTGCCCACAGCGTCTGCTCCACCCCTGCTGCCC GC TGGAGCCCTAGTGGCTCCCTCGCTTGGCAACAACACAAGTCTCATGGCCGCAGCAGCTGC AG CTGCAGCAGTAGCAGCAGCAGGCGGACCTCCAGTCCTCACTGCCCAGACCAACCCCTTCC TC AGCCTGTCGGGAGCAGAGGGCAGTGGCGGTGGCCCCAAAGGAGGGACCGCTGACAAAGGA GC CTCAGCCAACCAGGAAAAAGGCTAA SEQ ID NO: 129 MORF4L2 protein sequence MSSRKQGSQPRGQQSAEEENFKKPTRSNMQRSKMRGASSGKKTAGPQQKNLEPALPGRWG GRSAENPPSGSVRKTRKNKQKTPGNGDGGSTSEAPQPPRKKRARADPTVESEEAFKNRME VKVKIPEELKPWLVEDWDLVTRQKQLFQLPAKKNVDAILEEYANCKKSQGNVDNKEYAVN EVVAGIKEYFNVMLGTQLLYKFERPQYAEILLAHPDAPMSQVYGAPHLLRLFVRIGAMLA YTPLDEKSLALLLGYLHDFLKYLAKNSASLFTASDYKVASAEYHRKAL SEQ ID NO: 130 MORF4L2 DNA sequence ATGAGTTCCAGAAAGCAGGGTTCTCAACCTCGTGGACAGCAATCTGCAGAAGAAGAGAAC TT CAAAAAACCAACTAGAAGCAACATGCAGAGAAGTAAAATGAGAGGGGCCTCCTCAGGAAA GA AGACAGCTGGTCCACAGCAGAAAAATCTTGAACCAGCTCTCCCAGGAAGATGGGGTGGTC GC TCTGCAGAGAACCCCCCTTCAGGATCCGTGAGGAAGACCAGAAAGAACAAGCAGAAGACT CC TGGAAACGGAGATGGTGGCAGTACCAGCGAAGCACCTCAGCCCCCTCGGAAGAAAAGGGC CC GGGCAGACCCCACTGTTGAAAGTGAGGAGGCGTTTAAGAATAGAATGGAGGTTAAAGTGA AG ATTCCTGAAGAATTAAAACCATGGCTTGTTGAGGACTGGGACTTAGTTACCAGGCAGAAG CA GCTGTTTCAACTCCCTGCCAAGAAAAATGTAGATGCAATTCTGGAGGAGTATGCAAATTG CA AGAAATCGCAGGGAAATGTTGATAATAAGGAATATGCGGTTAATGAAGTTGTGGCAGGAA TA AAAGAATATTTCAATGTGATGTTGGGCACTCAGCTGCTCTACAAATTTGAGAGGCCCCAG TA TGCTGAAATCCTCTTGGCTCACCCTGATGCTCCAATGTCCCAGGTTTATGGAGCACCACA CC TACTGAGATTATTTGTAAGAATTGGAGCAATGTTGGCCTATACGCCCCTTGATGAGAAAA GC CTTGCATTATTGTTGGGCTATTTGCATGATTTCCTAAAATATCTGGCAAAGAATTCTGCA TC TCTCTTTACTGCCAGTGATTACAAAGTGGCTTCTGCTGAGTACCACCGCAAAGCCCTGTG A SEQ ID NO: 131 NFYC protein sequence MSTEGGFGGTSSSDAQQSLQSFWPRVMEEIRNLTVKDFRVQELPLARIKKIMKLDEDVKM ISAEAPVLFAKAAQIFITELTLRAWIHTEDNKRRTLQRNDIAMAITKFDQFDFLIDIVPR DELKPPKRQEEVRQSVTPAEPVQYYFTLAQQPTAVQVQGQQQGQQTTSSTTTIQPGQIII AQPQQGQTTPVTMQVGEGQQVQIVQAQPQGQAQQAQSGTGQTMQVMQQIITNTGEIQQIP VQLNAGQLQYIRLAQPVSGTQVVQGQIQTLATNAQQITQTEVQQGQQQFSQFTDGQQLYQ IQQVTMPAGQDLAQPMFIQSANQPSDGQAPQVTGD SEQ ID NO: 132 NFYC DNA sequence ATGTCCACAGAAGGAGGATTTGGTGGTACTAGCAGCAGTGATGCCCAGCAAAGCCTACAG TC GTTCTGGCCTCGGGTCATGGAAGAAATCCGGAATTTAACAGTGAAAGACTTCCGAGTGCA GG AACTCCCACTGGCTCGTATTAAGAAGATTATGAAACTGGATGAAGATGTGAAGATGATCA GT GCAGAAGCGCCTGTACTCTTTGCCAAGGCAGCCCAGATTTTTATCACAGAGTTGACTCTT CG AGCCTGGATTCACACAGAAGATAACAAGCGCCGGACTCTACAGAGAAATGATATCGCCAT GG CAATTACAAAATTTGATCAGTTTGATTTTCTCATCGATATTGTTCCAAGAGATGAACTGA AA CCTCCAAAGCGTCAGGAGGAGGTGCGCCAGTCTGTAACTCCTGCCGAGCCAGTCCAGTAC TA TTTCACGCTGGCTCAGCAACCCACCGCTGTCCAAGTCCAGGGCCAGCAGCAAGGCCAGCA GA CCACCAGCTCCACGACCACCATCCAGCCTGGGCAGATCATCATCGCACAGCCTCAGCAGG GC CAGACCACACCTGTGACAATGCAGGTTGGAGAAGGTCAGCAGGTGCAGATTGTCCAGGCT CA GCCACAGGGTCAAGCCCAACAGGCCCAGAGTGGCACTGGACAGACCATGCAGGTGATGCA GC AGATCATCACTAACACAGGAGAGATCCAGCAGATCCCGGTGCAGCTGAATGCCGGCCAGC TG CAGTATATCCGCTTAGCCCAGCCTGTATCAGGCACTCAAGTTGTGCAGGGACAGATCCAG AC ACTTGCCACCAATGCTCAACAGATTACACAGACAGAGGTCCAGCAAGGACAGCAGCAGTT CA GCCAGTTCACAGATGGACAGCAGCTCTACCAGATCCAGCAAGTCACCATGCCTGCGGGCC AG GACCTCGCCCAGCCCATGTTCATCCAGTCAGCCAACCAGCCCTCCGACGGGCAGGCCCCC CA GGTGACCGGCGACTGA SEQ ID NO: 133 PHF15 protein sequence MEEKRRKYSISSDNSDTTDSHATSTSASRCSKLPSSTKSGWPRQNEKKPSEVFRTDLITA MKIPDSYQLSPDDYYILADPWRQEWEKGVQVPAGAEAIPEPVVRILPPLEGPPAQASPSS TMLGEGSQPDWPGGSRYDLDEIDAYWLELINSELKEMERPELDELTLERVLEELETLCHQ NMARAIETQEGLGIEYDEDVVCDVCRSPEGEDGNEMVFCDKCNVCVHQACYGILKVPTGS WLCRTCALGVQPKCLLCPKRGGALKPTRSGTKWVHVSCALWIPEVSIGCPEKMEPITKIS HIPASRWALSCSLCKECTGTCIQCSMPSCVTAFHVTCAFDHGLEMRTILADNDEVKFKSF CQEHSDGGPRNEPTSEPTEPSQAGEDLEKVTLRKQRLQQLEEDFYELVEPAEVAERLDLA EALVDFIYQYWKLKRKANANQPLLTPKTDEVDNLAQQEQDVLYRRLKLFTHLRQDLERVR NLCYMVTRRERTKHAICKLQEQIFHLQMKLIEQDLCRAGLSTSFPIDGTFFNSWLAQSVQ ITAENMAMSEWPLNNGHREDPAPGLLSEELLQDEETLLSFMRDPSLRPGDPARKARGRTR LPAKKKPPPPPPQDGPGSRTTPDKAPKKTWGQDAGSGKGGQGPPTRKPPRRTSSHLPSSP AAGDCPILATPESPPPLAPETPDEAASVAADSDVQVPGPAASPKPLGRLRPPRESKVTRR LPGARPDAGMGPPSAVAERPKVSLHFDTETDGYFSDGEMSDSDVEAEDGGVQRGPREAGA EEVVRMGVLAS SEQ ID NO: 134 PHF15 DNA sequence ATGGAAGAGAAGAGGCGAAAATACTCCATCAGCAGTGACAACTCTGACACCACTGACAGT CA TGCGACATCTACATCCGCATCAAGATGCTCCAAACTGCCCAGCAGCACCAAGTCGGGCTG GC CCCGACAGAACGAAAAGAAGCCCTCCGAGGTTTTCCGGACAGACTTGATCACAGCCATGA AG ATCCCGGACTCATACCAGCTCAGCCCGGATGACTACTACATCCTGGCAGACCCATGGCGA CA GGAATGGGAGAAAGGTGTGCAGGTGCCTGCCGGGGCAGAGGCCATCCCAGAGCCCGTGGT GA GGATCCTCCCACCACTGGAAGGCCCCCCTGCCCAGGCATCCCCGAGCAGCACCATGCTTG GT GAGGGCTCCCAGCCTGATTGGCCAGGGGGCAGCCGCTATGACTTGGACGAGATTGATGCC TA CTGGCTGGAGCTCATCAACTCGGAGCTTAAGGAGATGGAGAGGCCGGAGCTGGACGAGCT GA CATTAGAGCGTGTGCTGGAGGAGCTGGAGACCCTGTGCCACCAGAATATGGCCAGGGCCA TT GAGACGCAGGAGGGGCTGGGCATCGAGTACGACGAGGATGTTGTCTGCGACGTGTGTCGC TC TCCTGAGGGCGAGGATGGCAACGAGATGGTCTTCTGTGACAAGTGCAACGTCTGTGTGCA TC AGGCATGCTACGGGATCCTCAAGGTGCCCACGGGCAGCTGGCTGTGCCGGACGTGTGCCC TG GGTGTCCAGCCAAAGTGCCTGCTCTGCCCCAAGCGAGGAGGAGCCTTGAAGCCCACTAGA AG TGGGACCAAGTGGGTGCATGTCAGCTGTGCCCTATGGATTCCTGAGGTCAGCATCGGCTG CC CAGAGAAGATGGAGCCCATCACCAAGATCTCGCATATCCCAGCCAGCCGCTGGGCTCTGT CC TGCAGCCTCTGCAAGGAATGCACAGGCACCTGCATCCAGTGTTCCATGCCTTCCTGCGTC AC AGCGTTCCATGTCACATGCGCCTTTGACCACGGCCTGGAAATGCGGACTATATTAGCAGA CA ACGATGAGGTCAAGTTCAAGTCATTCTGCCAGGAGCACAGTGACGGGGGCCCACGTAATG AG CCCACATCTGAGCCCACGGAACCCAGCCAGGCTGGCGAGGACCTGGAAAAGGTGACCCTG CG CAAGCAGCGGCTGCAGCAGCTAGAGGAGGACTTCTACGAGCTGGTGGAGCCGGCTGAGGT GG CTGAGCGGCTGGACCTGGCTGAGGCACTGGTCGACTTCATCTACCAGTACTGGAAGCTGA AG AGGAAAGCCAATGCCAACCAGCCGCTGCTGACCCCCAAGACCGACGAGGTGGACAACCTG GC CCAGCAGGAGCAGGACGTCCTCTACCGCCGCCTGAAGCTCTTCACCCATCTGCGGCAGGA CC TAGAGAGGGTTAGAAATCTGTGCTACATGGTGACAAGGCGCGAGAGAACGAAACACGCCA TC TGCAAACTCCAGGAGCAGATATTCCACCTGCAGATGAAACTTATTGAACAGGATCTGTGT CG AGCAGGCCTGTCCACCTCATTCCCCATCGATGGCACCTTCTTCAACAGCTGGCTGGCACA GT CGGTGCAGATCACAGCAGAGAACATGGCCATGAGCGAGTGGCCACTGAACAATGGGCACC GC GAGGACCCTGCTCCAGGGCTGCTGTCAGAGGAACTGCTGCAGGACGAGGAGACACTGCTC AG CTTCATGCGGGACCCCTCGCTGCGACCTGGTGACCCTGCTAGGAAGGCCCGAGGCCGCAC CC GCCTGCCTGCCAAGAAGAAACCACCACCACCACCACCGCAGGACGGGCCTGGTTCACGGA CG ACTCCAGACAAAGCCCCCAAGAAGACCTGGGGCCAGGATGCAGGCAGTGGCAAGGGGGGT CA AGGGCCACCTACCAGGAAGCCACCACGTCGGACATCTTCTCACTTGCCGTCCAGCCCTGC AG CCGGGGACTGTCCCATCCTAGCCACCCCTGAAAGCCCCCCGCCACTGGCCCCTGAGACCC CG GACGAGGCAGCCTCAGTAGCTGCTGACTCAGATGTCCAAGTGCCTGGCCCTGCAGCAAGC CC TAAGCCTTTGGGCCGGCTCCGGCCACCCCGCGAGAGCAAGGTAACCCGGAGATTGCCGGG TG CCAGGCCTGATGCTGGGATGGGACCACCTTCAGCTGTGGCTGAGAGGCCCAAGGTCAGCC TG CATTTTGACACTGAGACTGATGGCTACTTCTCTGATGGGGAGATGAGCGACTCAGATGTA GA GGCCGAGGACGGTGGGGTGCAGCGGGGTCCCCGGGAGGCAGGGGCAGAGGAGGTGGTCCG CA TGGGCGTACTGGCCTCCTAA SEQ ID NO: 135 PKIB protein sequence MRTDSSKMTDVESGVANFASSARAGRRNALPDIQSSAATDGTSDLPLKLEALSVKEDAKE KDEKTTQDQLEKPQNEEKCPTFLY SEQ ID NO: 136 PKIB DNA sequence Atgaggacagattcatcaaaaatgactgacgtggagtctggggtcgccaattttgcatct tc agcaagggcaggccgccggaatgccttaccagacatccagagttcagctgccacagacgg aa cctcagatttgcccctcaaactggaggctctctccgtgaaggaagatgcaaaagagaaag at gaaaaaacaacacaagaccaattggaaaagcctcaaaatgaagaaaaatgcccaactttc tt gtac SEQ ID NO: 137 POLE4 protein sequence MAAAAAAGSGTPREEEVPAGEAAASQPQAPTSVPGARLSRLPLARVKALVKADPDVTLAG QEAIFILARAAELFVETIAKDAYCCAQQGKRKTLQRRDLDNAIEAVDEFAFLEGTLD SEQ ID NO: 138 POLE4 DNA sequence ATGGCGGCGGCGGCGGCGGCAGGAAGCGGGACGCCCCGAGAGGAGGAGGTACCTGCTGGG GA GGCAGCGGCCTCGCAGCCCCAGGCCCCAACGAGTGTGCCTGGGGCTCGTCTCTCGAGGTT GC CTCTGGCGCGAGTGAAGGCCTTGGTGAAGGCAGATCCCGACGTGACGCTAGCGGGACAGG AA GCCATCTTCATTCTGGCACGAGCCGCGGAACTGTTTGTGGAGACCATTGCAAAAGATGCC TA CTGTTGCGCTCAGCAGGGAAAAAGGAAAACCCTTCAGAGGAGAGACTTGGATAATGCAAT AG AAGCTGTGGATGAATTTGCTTTTCTGGAAGGTACTTTAGATTGA SEQ ID NO: 139 PRKRIR protein sequence MPNFCAAPNCTRKSTQSDLAFFRFPRDPARCQKWVENCRRADLEDKTPDQLNKHYRLCAK HFETSMICRTSPYRTVLRDNAIPTIFDLTSHLNNPHSRHRKRIKELSEDEIRTLKQKKID ETSEQEQKHKETNNSNAQNPSEEEGEGQDEDILPLTLEEKENKEYLKSLFEILILMGKQN IPLDGHEADEIPEGLFTPDNFQALLECRINSGEEVLRKRFETTAVNTLFCSKTQQRQMLE ICESCIREETLREVRDSHFFSIITDDVVDIAGEEHLPVLVRFVDESHNLREEFIGFLPYE ADAEILAVKFHTMITEKWGLNMEYCRGQAYIVSSGFSSKMKVVASRLLEKYPQAIYTLCS SCALNMWLAKSVPVMGVSVALGTIEEVCSFFHRSPQLLLELDNVISVLFQNSKERGKELK EICHSQWTGRHDAFEILVELLQALVLCLDGINSDTNIRWNNYIAGRAFVLCSAVSDFDFI VTIVVLKNVLSFTRAFGKNLQGQTSDVFFAAGSLTAVLHSLNEVMENIEVYHEFWFEEAT NLATKLDIQMKLPGKFRRAHQGNLESQLTSESYYKETLSVPTVEHIIQELKDIFSEQHLK ALKCLSLVPSVMGQLKFNTSEEHHADMYRSDLPNPDTLSAELHCWRIKWKHRGKDIELPS TIYEALHLPDIKFFPNVYALLKVLCILPVMKVENERYENGRKRLKAYLRNTLTDQRSSNL ALLNINFDIKHDLDLMVDTYIKLYTSKSELPTDNSETVENT SEQ ID NO: 140 PRKRIR DNA sequence ATGCCGAACTTCTGCGCTGCCCCCAACTGCACGCGGAAGAGCACGCAGTCCGACTTGGCC TT CTTCAGGTTCCCGCGGGACCCTGCCAGATGCCAGAAGTGGGTGGAGAACTGTAGGAGAGC AG ACTTAGAAGATAAAACACCTGATCAGCTAAATAAACATTATCGATTATGTGCCAAACATT TT GAGACCTCTATGATCTGTAGAACTAGTCCTTATAGGACAGTTCTTCGAGATAATGCAATA CC AACAATATTTGATCTTACCAGTCATTTGAACAACCCACATAGTAGACACAGAAAACGAAT AA AAGAACTGAGTGAAGATGAAATCAGGACACTGAAACAGAAAAAAATTGATGAAACTTCTG AG CAGGAACAAAAACATAAAGAAACCAACAATAGCAATGCTCAGAACCCCAGCGAAGAAGAG GG TGAAGGGCAAGATGAGGACATTTTACCTCTAACCCTTGAAGAGAAGGAAAACAAAGAATA CC TAAAATCTCTATTTGAAATCTTGATTCTGATGGGAAAGCAAAACATACCTCTGGATGGAC AT GAGGCTGATGAAATCCCAGAAGGTCTCTTTACTCCAGATAACTTTCAGGCACTGCTGGAG TG TCGGATAAATTCTGGTGAAGAGGTTCTGAGAAAGCGGTTTGAGACAACAGCAGTTAACAC GT TGTTTTGTTCAAAAACACAGCAGAGGCAGATGCTAGAGATCTGTGAGAGCTGTATTCGAG AA GAAACTCTCAGGGAAGTGAGAGACTCACACTTCTTTTCCATTATCACTGACGATGTAGTG GA CATAGCAGGGGAAGAGCACCTACCTGTGTTGGTGAGGTTTGTTGATGAATCTCATAACCT AA GAGAGGAATTTATAGGCTTCCTGCCTTATGAAGCCGATGCAGAAATTTTGGCTGTGAAAT TT CACACTATGATAACTGAGAAGTGGGGATTAAATATGGAGTATTGTCGTGGCCAGGCTTAC AT TGTCTCTAGTGGATTTTCTTCCAAAATGAAAGTTGTTGCTTCTAGACTTTTAGAGAAATA TC CCCAAGCTATCTACACACTCTGCTCTTCCTGTGCCTTAAATATGTGGTTGGCAAAATCAG TA CCTGTTATGGGAGTATCTGTTGCATTAGGAACAATTGAGGAAGTTTGTTCTTTTTTCCAT CG ATCACCACAACTGCTTTTAGAACTTGACAACGTAATTTCTGTTCTTTTTCAGAACAGTAA AG AAAGGGGTAAAGAACTGAAGGAAATCTGCCATTCTCAGTGGACAGGCAGGCATGATGCTT TT GAAATTTTAGTGGAACTCCTGCAAGCACTTGTTTTATGTTTAGATGGTATAAATAGTGAC AC AAATATTAGATGGAATAACTATATAGCTGGCCGAGCATTTGTACTCTGCAGTGCAGTGTC AG ATTTTGATTTCATTGTTACTATTGTTGTTCTTAAAAATGTCCTATCTTTTACAAGAGCCT TT GGGAAAAACCTCCAGGGGCAAACCTCTGATGTCTTCTTTGCGGCCGGTAGCTTGACTGCA GT ACTGCATTCACTCAACGAAGTGATGGAAAATATTGAAGTTTATCATGAATTTTGGTTTGA GG AAGCCACAAATTTGGCAACCAAACTTGATATTCAAATGAAACTCCCTGGGAAATTCCGCA GA GCTCACCAGGGTAACTTGGAATCTCAGCTAACCTCTGAGAGTTACTATAAAGAAACCCTA AG TGTCCCAACAGTGGAGCACATTATTCAGGAACTTAAAGATATATTCTCAGAACAGCACCT CA AAGCTCTTAAATGCTTATCTCTGGTACCCTCAGTCATGGGACAACTCAAATTCAATACGT CG GAGGAACACCATGCTGACATGTATAGAAGTGACTTACCCAATCCTGACACGCTGTCAGCT GA GCTTCATTGTTGGAGAATCAAATGGAAACACAGGGGGAAAGATATAGAGCTTCCGTCCAC CA TCTATGAAGCCCTCCACCTGCCTGACATCAAGTTTTTTCCTAATGTGTATGCATTGCTGA AG GTCCTGTGTATTCTTCCTGTGATGAAGGTTGAGAATGAGCGGTATGAAAATGGACGAAAG CG TCTTAAAGCATATTTGAGGAACACTTTGACAGACCAAAGGTCAAGTAACTTGGCTTTGCT TA ACATAAATTTTGATATAAAACACGACCTGGATTTAATGGTGGACACATATATTAAACTCT AT ACAAGTAAGTCAGAGCTTCCTACAGATAATTCCGAAACTGTGGAAAATACCTAA SEQ ID NO: 141 PYGO2 protein sequence MAASAPPPPDKLEGGGGPAPPPAPPSTGRKQGKAGLQMKSPEKKRRKSNTQGPAYSHLTE FAPPPTPMVDHLVASNPFEDDFGAPKVGVAAPPFLGSPVPFGGFRVQGGMAGQVPPGYST GGGGGPQPLRRQPPPFPPNPMGPAFNMPPQGPGYPPPGNMNFPSQPFNQPLGQNFSPPSG QMMPGPVGGFGPMISPTMGQPPRAELGPPSLSQRFAQPGAPFGPSPLQRPGQGLPSLPPN TSPFPGPDPGFPGPGGEDGGKPLNPPASTAFPQEPHSGSPAAAVNGNQPSFPPNSSGRGG GTPDANSLAPPGKAGGGSGPQPPPGLVYPCGACRSEVNDDQDAILCEASCQKWFHRECTG MTESAYGLLTTEASAVWACDLCLKTKEIQSVYIREGMGQLVAANDGL SEQ ID NO: 142 PYGO2 DNA sequence atggccgcctcggcgccgcccccaccggacaagctggagggaggtggcggccccgcaccg cc ccctgcgccgcccagcaccgggaggaagcagggcaaggccggtctgcaaatgaagagtcc ag aaaagaagcgaaggaagtcaaatactcagggccctgcatactcacatctgacggagtttg ca ccacccccaactcccatggtggatcacctggttgcatccaacccttttgaagatgacttc gg agcccccaaagtgggggttgcagcccctccattccttggcagtcctgtgcccttcggagg ct tccgtgtgcaggggggcatggcgggccaggtacccccaggctacagcactggaggtggag gg ggcccccagccactccgtcgacagccaccccccttccctcccaatcctatgggccctgct tt caacatgcccccccagggtcctggctacccacccccaggcaacatgaactttcccagcca ac ccttcaaccagcctctgggtcaaaactttagtcctcccagtgggcagatgatgccgggcc ca gtggggggatttggtcccatgatctcacccaccatgggacagcctcccagagcagagctg gg cccaccttctctgtcccaacgatttgctcagccaggggctccttttggcccttctcctct cc agagacctggtcaggggctccccagcctgccgcctaacacaagtccctttcctggtccgg ac cctggctttcctggccctggtggtgaggatggggggaagcccttgaatccacctgcttct ac tgcttttccccaggagccccactcaggctccccggctgctgctgttaatgggaaccagcc ca gtttccccccgaacagcagtgggcggggtgggggcactccagatgccaacagcttggcac cc cctggcaaggcaggtgggggctccgggccccagcctcccccaggcttggtgtacccatgt gg tgcctgtcggagtgaggtgaacgatgaccaggatgccattctgtgtgaggcctcctgcca ga aatggttccaccgtgagtgcacaggcatgactgagagcgcctatgggctgctgaccactg aa gcttctgccgtctgggcctgcgatctctgcctcaagaccaaggagatccagtctgtctac at ccgtgagggcatggggcagctggtggctgctaacgatgggttg SEQ ID NO: 143 RANBP1 protein sequence MAAAKDTHEDHDTSTENTDESNHDPQFEPIVSLPEQEIKTLEEDEEELFKMRAKLFRFAS ENDLPEWKERGTGDVKLLKHKEKGAIRLLMRRDKTLKICANHYITPMMELKPNAGSDRAW VWNTHADFADECPKPELLAIRFLNAENAQKFKTKFEECRKEIEEREKKAGSGKNDHAEKV AEKLEALSVKEETKEDAEEKQPTFLY SEQ ID NO: 144 RANBP1 DNA sequence atggcggccgccaaggacactcatgaggaccatgatacttccactgagaatacagacgag tc caaccatgaccctcagtttgagccaatagtttctcttcctgagcaagaaattaaaacact gg aagaagatgaagaggaactttttaaaatgcgggcaaaactgttccgatttgcctctgaga ac gatctcccagaatggaaggagcgaggcactggtgacgtcaagctcctgaagcacaaggag aa aggggccatccgcctcctcatgcggagggacaagaccctgaagatctgtgccaaccacta ca tcacgccgatgatggagctgaagcccaacgcaggtagcgaccgtgcctgggtctggaaca cc cacgctgacttcgccgacgagtgccccaagccagagctgctggccatccgcttcctgaat gc tgagaatgcacagaaattcaaaacaaagtttgaagaatgcaggaaagagatcgaagagag ag aaaagaaagcaggatcaggcaaaaatgatcatgccgaaaaagtggcggaaaagctagaag ct ctctcggtgaaggaggagaccaaggaggatgctgaggagaagcaaccaactttcttgtac SEQ ID NO: 145 RPRD1B protein sequence MSSFSESALEKKLSELSNSQHSVQTLSLWLIHHRKHAGPIVSVWHRELRKAKSNRKLTFL YLANDVIQNSKRKGPEFTREFESVLVDAFSHVAREADEGCKKPLERLLNIWQERSVYGGE FIQQLKLSMEDSKSPPPKATEEKKSLKRTFQQIQEEEDDDYPGSYSPQDPSAGPLLTEEL IKALQDLENAASGDATVRQKIASLPQEVQDVSLLEKITDKEAAERLSKTVDEACLLLAEY NGRLAAELEDRRQLARMLVEYTQNQKDVLSEKEKKLEEYKQKLARVTQVRKELKSHIQSL PDLSLLPNVTGGLAPLPSAGDLFSTD SEQ ID NO: 146 RPRD1B DNA sequence ATGTCCTCCTTCTCTGAGTCGGCGCTGGAGAAGAAGCTCTCGGAGCTGAGCAACTCTCAG CA CAGCGTGCAGACCCTGTCCCTTTGGCTCATCCACCACCGCAAGCACGCGGGACCCATCGT CT CCGTGTGGCACCGCGAGCTCCGCAAAGCCAAATCAAATAGAAAGCTTACTTTTCTGTATT TA GCGAATGATGTCATCCAAAACAGTAAAAGGAAAGGACCTGAATTCACTAGAGAATTTGAA TC TGTCCTTGTGGATGCTTTTTCTCATGTTGCCAGAGAGGCAGATGAAGGCTGTAAAAAACC TT TAGAAAGATTGCTGAACATCTGGCAAGAACGAAGTGTGTATGGCGGCGAGTTCATACAGC AG CTGAAGCTGTCTATGGAGGACTCCAAGAGCCCTCCCCCCAAAGCAACAGAAGAGAAGAAA TC TCTGAAACGAACTTTTCAGCAAATTCAGGAGGAGGAGGATGACGACTACCCTGGCAGCTA CT CTCCTCAGGATCCTTCTGCAGGACCCCTCTTGACTGAGGAACTAATCAAAGCTTTGCAGG AT CTGGAAAATGCCGCATCAGGGGATGCTACTGTCCGACAGAAAATTGCTTCTCTGCCCCAG GA AGTGCAAGATGTTTCTCTATTGGAAAAAATAACAGACAAAGAGGCAGCTGAACGTCTTTC AA AAACAGTAGATGAAGCATGTCTGTTACTAGCAGAATATAACGGGCGCCTGGCAGCAGAAC TG GAGGACCGTCGCCAGCTGGCTCGGATGTTGGTGGAGTATACCCAGAATCAGAAAGATGTT TT GTCGGAGAAGGAGAAAAAACTAGAGGAATACAAACAGAAGCTTGCACGAGTAACCCAGGT CC GCAAGGAACTGAAATCCCATATTCAGAGCTTGCCAGACCTCTCACTGCTGCCCAACGTCA CA GGGGGCTTAGCCCCCCTGCCCTCTGCTGGGGACCTGTTTTCAACTGACTAG SEQ ID NO: 147 SPIN1 protein sequence MKTPFGKTPGQRSRADAGHAGVSANMMKKRTSHKKHRSSVGPSKPVSQPRRNIVGCRIQH GWKEGNGPVTQWKGTVLDQVPVNPSLYLIKYDGFDCVYGLELNKDERVSALEVLPDRVAT SRISDAHLADTMIGKAVEHMFETEDGSKDEWRGMVLARAPVMNTWFYITYEKDPVLYMYQ LLDDYKEGDLRIMPDSNDSPPAEREPGEVVDSLVGKQVEYAKEDGSKRTGMVIHQVEAKP SVYFIKFDDDFHIYVYDLVKTS SEQ ID NO: 148 SPIN1 DNA sequence ATGAAGACCCCATTCGGAAAGACACCTGGCCAGCGGTCCAGAGCTGATGCAGGCCATGCT GG AGTATCTGCCAACATGATGAAGAAGAGGACATCCCACAAAAAACATCGGAGCAGTGTGGG TC CGAGCAAACCTGTTTCCCAGCCCCGGCGGAACATCGTAGGCTGCAGGATTCAGCATGGGT GG AAAGAGGGGAATGGCCCTGTTACCCAGTGGAAAGGAACCGTTCTGGACCAGGTGCCTGTA AA TCCTTCTTTGTATCTTATAAAATACGATGGATTTGACTGTGTTTATGGACTAGAACTTAA TA AAGATGAAAGAGTTTCTGCGCTTGAAGTCCTCCCTGATAGAGTTGCGACATCTCGAATCA GC GATGCACACTTGGCAGACACAATGATTGGCAAAGCAGTGGAACATATGTTTGAGACAGAG GA TGGTTCTAAAGATGAGTGGAGGGGAATGGTCTTAGCACGTGCACCTGTCATGAACACATG GT TTTACATTACCTATGAGAAAGACCCTGTCTTGTACATGTACCAACTCTTAGATGATTACA AA GAAGGCGACCTTCGCATTATGCCTGATTCCAATGATTCACCTCCAGCAGAAAGGGAACCA GG AGAAGTTGTGGACAGCCTGGTAGGCAAACAAGTGGAATATGCCAAAGAAGATGGCTCGAA AA GGACTGGCATGGTCATTCATCAAGTAGAAGCCAAGCCCTCCGTCTATTTCATCAAGTTTG AT GATGATTTCCATATTTATGTCTACGATTTGGTGAAAACATCCTAG SEQ ID NO: 149 SS18L1 protein sequence MSVAFASARPRGKGEVTQQTIQKMLDENHHLIQCILEYQSKGKTAECTQYQQILHRNLVY LATIADSNQNMQSLLPAPPTQNMNLGPGALTQSGSSQGLHSQGSLSDAISTGLPPSSLLQ GQIGNGPSHVSMQQTAPNTLPTTSMSISGPGYSHAGPASQGVPMQGQGTIGNYVSRTNIN MQSNPVSMIQQQAATSHYSSAQGGSQHYQGQSSIAMMGQGSQGSSMMGQRPMAPYRPSQQ GSSQQYLGQEEYYGEQYSHSQGAAEPMGQQYYPDGHGDYAYQQSSYTEQSYDRSFEESTQ HYYEGGNSQYSQQQAGYQQGAAQQQTYSQQQYPSQQSYPGQQQGYGSAQGAPSQYPGYQQ GQGQQYGSYRAPQTAPSAQQQRPYGYEQGQYGNYQQL SEQ ID NO: 150 SS18L1 DNA sequence Atgtccgtggccttcgcgtctgcccggccaagaggcaaaggggaggttacgcagcaaacc at ccagaagatgctggacgagaaccaccacctgatccagtgcatcctggagtaccagagcaa gg gcaagacggccgagtgcacgcagtaccagcagatcctgcaccggaacctggtatacctgg cc acgatcgcagactccaaccagaacatgcagtccctgcttcctgccccgcccacgcagaac at gaacctgggccctggagccctgactcagagcggctccagccagggcctgcactctcaggg ca gcctgagtgacgccatcagcacgggcctgccaccctcctccctcctgcagggccagattg gc aacgggccgagccacgtgtccatgcagcagacggcgcctaacacgctgcccaccacctcc at gagcatctctgggcccggctacagccacgcgggacccgcctcgcagggcgtccccatgca gg ggcaaggcaccatcggcaactacgtgtctcggaccaacatcaacatgcagtccaacccag tc tccatgatacagcagcaggcggccacgtcgcactacagctcggcgcagggcggcagccag ca ctaccagggccagtcgtccatcgccatgatggggcagggcagccaggggagcagcatgat gg ggcagcggcccatggcgccctaccggccctcccagcaaggctcttcccagcagtacctgg gc caggaggagtactatggcgagcagtacagccacagccagggcgccgcggagcccatgggc ca gcagtactaccccgacggccatggcgattacgcctaccagcagtcatcctacacggagca ga gctacgaccggtccttcgaggagtccacgcagcactactatgaggggggaaactcccagt ac agccagcagcaggccgggtaccagcagggtgccgcgcagcagcagacgtactcccagcag ca gtaccccagccagcagagctaccccgggcagcagcagggctacgggtctgcccagggagc cc cgtcacagtaccccggctaccagcaaggccaaggccagcagtacggaagctaccgagcac cg cagacagcgccgtctgcccagcagcagcggccctacggctatgaacagggccagtatgga aa ttaccagcagttg SEQ ID NO: 151 TADA3 protein sequence MSELKDCPLQFHDFKSVDHLKVCPRYTAVLARSEDDGIGIEELDTLQLELETLLSSASRR LRVLEAETQILTDWQDKKGDRRFLKLGRDHELGAPPKHGKPKKQKLEGKAGHGPGPGPGR PKSKNLQPKIQEYEFTDDPIDVPRIPKNDAPNRFWASVEPYCADITSEEVRTLEELLKPP EDEAEHYKIPPLGKHYSQRWAQEDLLEEQKDGARAAAVADKKKGLMGPLTELDTKDVDAL LKKSEAQHEQPEDGCPFGALTQRLLQALVEENIISPMEDSPIPDMSGKESGADGASTSPR NQNKPFSVPHTKSLESRIKEELIAQGLLESEDRPAEDSEDEVLAELRKRQAELKALSAHN RTKKHDLLRLAKEEVSRQELRQRVRMADNEVMDAFRKIMAARQKKRTPTKKEKDQAWKTL KERESILKLLDG SEQ ID NO: 152 TADA3 DNA sequence ATGAGTGAGTTGAAAGACTGCCCCTTGCAGTTCCACGACTTCAAGTCTGTGGATCACCTG AA GGTCTGTCCCCGCTACACGGCAGTGCTGGCACGCTCTGAGGATGATGGCATCGGCATCGA GG AGCTGGACACCCTGCAGCTGGAGCTGGAGACCCTGCTGTCTTCTGCCAGCCGGCGCCTGC GT GTGCTTGAGGCCGAAACCCAGATCCTCACCGACTGGCAGGATAAGAAAGGTGACAGACGA TT CCTGAAGCTGGGTCGAGACCATGAACTTGGAGCTCCCCCCAAACATGGGAAGCCCAAGAA GC AGAAACTGGAAGGGAAGGCAGGACATGGGCCGGGCCCTGGCCCAGGACGGCCCAAATCCA AA AACCTTCAGCCCAAGATCCAGGAATATGAATTCACTGATGACCCTATCGACGTGCCACGG AT CCCCAAAAATGATGCCCCCAACAGGTTCTGGGCTTCAGTGGAGCCCTACTGTGCTGACAT CA CCAGCGAGGAGGTCCGCACACTTGAGGAGTTACTGAAGCCCCCAGAAGATGAGGCTGAGC AT TACAAGATCCCACCCCTGGGGAAGCACTACTCCCAGCGCTGGGCCCAGGAGGACCTGCTG GA GGAGCAGAAGGATGGGGCCCGGGCAGCGGCTGTGGCTGACAAGAAGAAAGGCCTCATGGG GC CACTGACCGAACTGGACACTAAAGATGTGGATGCCCTGCTGAAGAAGTCTGAGGCCCAGC AT GAACAGCCGGAAGATGGATGCCCCTTTGGTGCCCTGACGCAGCGCCTCCTGCAGGCCCTG GT GGAGGAAAATATTATTTCCCCTATGGAGGATTCTCCTATTCCTGACATGTCTGGGAAAGA AT CAGGGGCTGACGGGGCAAGCACCTCCCCTCGCAATCAGAACAAGCCCTTCAGTGTGCCGC AT ACTAAGTCCCTGGAGAGCCGCATCAAGGAGGAGCTAATTGCCCAGGGCCTTTTGGAGTCT GA GGACCGCCCCGCAGAGGACTCCGAGGATGAGGTCCTTGCTGAGCTTCGCAAACGGCAGGC TG AGCTGAAGGCACTTAGTGCCCACAACCGCACCAAGAAGCACGACCTGCTGAGGCTGGCAA AG GAGGAGGTGAGCCGGCAGGAGCTGAGGCAGCGGGTGCGCATGGCTGACAACGAGGTCATG GA CGCCTTTCGCAAGATCATGGCTGCCCGGCAGAAGAAGCGGACTCCCACCAAGAAAGAAAA GG ACCAGGCCTGGAAGACTCTGAAGGAGCGTGAGAGCATCCTGAAGCTGCTGGATGGGTAG SEQ ID NO: 153 TAF6 protein sequence MAEEKKLKLSNTVLPSESMKVVAESMGIAQIQEETCQLLTDEVSYRIKEIAQDALKFMHM GKRQKLTTSDIDYALKLKNVEPLYGFHAQEFIPFRFASGGGRELYFYEEKEVDLSDIINT PLPRVPLDVCLKAHWLSIEGCQPAIPENPPPAPKEQQKAEATEPLKSAKPGQEEDGPLKG KGQGATTADGKGKEKKAPPLLEGAPLRLKPRSIHELSVEQQLYYKEITEACVGSCEAKRA EALQSIATDPGLYQMLPRFSTFISEGVRVNVVQNNLALLIYLMRMVKALMDNPTLYLEKY VHELIPAVMTCIVSRQLCLRPDVDNHWALRDFAARLVAQICKHFSTTTNNIQSRITKTFT KSWVDEKTPWTTRYGSIAGLAELGHDVIKTLILPRLQQEGERIRSVLDGPVLSNIDRIGA DHVQSLLLKHCAPVLAKLRPPPDNQDAYRAEFGSLGPLLCSQVVKARAQAALQAQQVNRT TLTITQPRPTLTLSQAPQPGPRTPGLLKVPGSIALPVQTLVSARAAAPPQPSPPPTKFIV MSSSSSAPSTQQVLSLSTSAPGSGSTTTSPVTTTVPSVQPIVKLVSTATTAPPSTAPSGP GSVQKYIVVSLPPTGEGKGGPTSHPSPVPPPASSPSPLSGSALCGGKQEAGDSPPPAPGT PKANGSQPNSGSPQPAPL SEQ ID NO: 154 TAF6 DNA sequence atggctgaggagaagaagctgaagcttagcaacactgtgctgccctcggagtccatgaag gt ggtggctgaatccatgggcatcgcccagattcaggaggagacctgccagctgctaacgga tg aggtcagctaccgcatcaaagagatcgcacaggatgccttgaagttcatgcacatgggga ag cggcagaagctcaccaccagtgacattgactacgccttgaagctaaagaatgtcgagcca ct ctatggcttccacgcccaggagttcattcctttccgcttcgcctctggtgggggccggga gc tttacttctatgaggagaaggaggttgatctgagcgacatcatcaatacccctctgcccc gg gtgcccctggacgtctgcctcaaagctcattggctgagcatcgagggctgccagccagct at ccccgagaacccgcccccagctcccaaagagcaacagaaggctgaagccacagaacccct ga agtcagccaagccaggccaggaggaagacggacccctgaagggcaaaggtcaaggggcca cc acagccgacggcaaagggaaagagaagaaggcgccgcccttgctggagggggcccccttg cg actgaagccccggagcatccacgagttgtctgtggagcagcagctctactacaaggagat ca ccgaggcctgcgtgggctcctgcgaggccaagagggcggaagccctgcaaagcattgcca cg gaccctggactgtatcagatgctgccacggttcagtacctttatctcggagggggtccgt gt gaacgtggttcagaacaacctggccctactcatctacctgatgcgtatggtgaaagcgct ga tggacaaccccacgctctatctagaaaaatacgtccatgagctgattccagctgtgatga cc tgcatcgtgagcagacagttgtgcctgcgaccagatgtggacaatcactgggcactccga ga ctttgctgcccgcctggtggcccagatctgcaagcattttagcacaaccactaacaacat cc agtcccggatcaccaagaccttcaccaagagctgggtggacgagaagacgccctggacga ct cgttatggctccatcgcaggcttggctgagctgggacacgatgttatcaagactctgatt ct gccccggctgcagcaggaaggggagcggatccgcagtgtgctggacggccctgtgctgag ca acattgaccggattggagcagaccatgtgcagagcctcctgctgaaacactgtgctcctg tt ctggcaaagctgcgcccaccgcctgacaatcaggacgcctatcgggcagaattcgggtcc ct tgggcccctcctctgctcccaggtggtcaaggctcgggcccaggctgctctgcaggctca gc aggtcaacaggaccactctgaccatcacgcagccccggcccacgctgaccctctcgcagg cc ccacagcctggccctcgcacccctggcttgctgaaggttcctggctccatcgcacttcct gt ccagacactggtgtctgcacgagcggctgccccaccacagccttcccctcctccaaccaa gt ttattgtaatgtcatcgtcctccagcgccccatccacccagcaggtcctgtccctcagca cc tcggcccccggctcaggttccaccaccacttcgcccgtcaccaccaccgtccccagcgtg ca gcccatcgtcaagttggtctccaccgccaccaccgcaccccccagcactgctccctctgg tc ctgggagtgtccagaagtacatcgtggtctcacttcccccaacaggggagggcaaaggag gc cccacctcccatccttctccagttcctcccccggcatcgtccccgtccccactcagcggc ag tgccctttgtggggggaagcaggaggctggggacagtccccctccagctccagggactcc aa aagccaatggctcccagcccaactccggctcccctcagcctgctccgttg SEQ ID NO: 155 TBPL1 protein sequence MDADSDVALDILITNVVCVFRTRCHLNLRKIALEGANVIYKRDAGKVLMKLRKPRITATI WSSGKIICTGATSEEEAKFGARRLARSLQKLGFQVIFTDFKVVNVLAVCNMPFEIRLPEF TKNNRPHASYEPELHPAVCYRIKSLRATLQIFSTGSITVTGPNVKAVATAVEQIYPFVFE SRKEILL SEQ ID NO: 156 TBPL1 DNA sequence atggatgcagacagtgatgttgcattggacattctaattacaaatgtagtctgtgttttt ag aacaagatgtcatttaaacttaaggaagattgctttggaaggagcaaatgtaatttataa ac gtgatgctggaaaagtattaatgaagcttagaaaacctagaattacagctacaatttggt cc tcaggaaaaattatttgcactggagcaacaagtgaagaagaagctaaatttggtgccaga cg cttagcccgtagtctgcagaaactaggttttcaggtaatatttacagattttaaggttgt ta acgttctggcagtgtgtaacatgccatttgaaatccgtttgccagaattcacaaagaaca at agacctcatgccagttacgaacctgaacttcatcctgctgtgtgctatcggataaaatct ct aagagctacattacagattttttcaacaggaagtatcacagtaacagggcccaatgtaaa gg ctgttgctactgctgtggaacagatttacccatttgtgtttgaaagcaggaaagaaattt ta ttg SEQ ID NO: 157 VPS72 protein sequence MSLAGGRAPRKTAGNRLSGLLEAEEEDEFYQTTYGGFTEESGDDEYQGDQSDTEDEVDSD FDIDEGDEPSSDGEAEEPRRKRRVVTKAYKEPLKSLRPRKVNTPAGSSQKAREEKALLPL ELQDDGSDSRKSMRQSTAEHTRQTFLRVQERQGQSRRRKGPHCERPLTQEELLREAKITE ELNLRSLETYERLEADKKKQVHKKRKCPGPIITYHSVTVPLVGEPGPKEENVDIEGLDPA PSVSALTPHAGTGPVNPPARCSRTFITFSDDATFEEWFPQGRPPKVPVREVCPVTHRPAL YRDPVTDIPYATARAFKIIREAYKKYITAHGLPPTASALGPGPPPPEPLPGSGPRALRQK IVIKL SEQ ID NO: 158 VPS72 DNA sequence Atgagtttggctgggggccgggcaccccggaagaccgctgggaaccggctttctgggctt tt ggaggcagaggaggaagatgagttctaccagacgacttatgggggtttcacagaggaatc cg gagatgatgagtatcaaggggaccagtcagacacagaggacgaagtggactctgactttg ac attgatgaaggggatgaaccatccagtgatggagaagcagaagagccaagaaggaagcgc cg agtagtcaccaaggcctataaggaacctctcaagagcttaaggcctcgaaaggtcaacac cc cggctggtagctctcagaaggcgcgagaagagaaggcactactgccattagaactacaag at gacggctctgacagtcggaagtctatgcgtcagtctacagctgagcatacacgacaaacg tt ccttcgggtacaggagaggcagggccagtcaagacggcgaaaggggccccactgtgagcg gc cactaacccaggaggaactgctccgggaggccaagatcacagaagagcttaatttacggt ca ctggagacatatgagcggctcgaggctgataaaaagaagcaggttcataagaagcggaag tg ccccgggcccataatcacctatcattcagtgacagtgccacttgttggggagccaggccc ca aggaagagaacgttgacatagaaggacttgatcctgctccctcggtgtctgcattgactc ct catgctgggactggacccgtcaacccccctgctcgctgctcacgtaccttcatcactttt ag tgatgatgcaactttcgaggaatggttcccccaagggcggcccccaaaagtccctgttcg tg aggtctgtccagtgacccatcgtccagccctataccgggaccctgttacagacataccct at gccactgctcgagccttcaagatcattcgtgaggcttacaagaagtacattactgcccat gg actgccgcccactgcctcagccctgggccccggcccgccacctcctgagcccctccctgg ct ctgggccccgagccttgcgccagaaaattgtcattaaattg SEQ ID NO: 159 ZNF133 protein sequence MAFRDVAVDFTQDEWRLLSPAQRTLYREVMLENYSNLVSLGISFSKPELITQLEQGKETW REEKKCSPATCPDPEPELYLDPFCPPGFSSQKFPMQHVLCNHPPWIFTCLCAEGNIQPGD PGPGDQEKQQQASEGRPWSDQAEGPEGEGAMPLFGRTKKRTLGAFSRPPQRQPVSSRNGL RGVELEASPAQTGNPEETDKLLKRIEVLGFGTVNCGECGLSFSKMTNLLSHQRIHSGEKP YVCGVCEKGFSLKKSLARHQKAHSGEKPIVCRECGRGFNRKSTLIIHERTHSGEKPYMCS ECGRGFSQKSNLIIHQRTHSGEKPYVCRECGKGFSQKSAVVRHQRTHLEEKTIVCSDCGL GFSDRSNLISHQRTHSGEKPYACKECGRCFRQRTTLVNHQRTHSKEKPYVCGVCGHSFSQ NSTLISHRRTHTGEKPYVCGVCGRGFSLKSHLNRHQNIHSGEKPIVCKDCGRGFSQQSNL IRHQRTHSGEKPMVCGECGRGFSQKSNLVAHQRTHSGERPYVCRECGRGFSHQAGLIRHK RKHSREKPYMCRQCGLGFGNKSALITHKRAHSEEKPCVCRECGQGFLQKSHLTLHQMTHT GEKPYVCKTCGRGFSLKSHLSRHRKTTSVHHRLPVQPDPEPCAGQPSDSLYSL SEQ ID NO: 160 ZNF133 DNA sequence ATGGCATTCAGGGATGTGGCTGTGGATTTCACCCAGGATGAGTGGAGGCTGCTGAGCCCT GC TCAAAGGACTCTGTACAGAGAGGTGATGCTGGAGAACTACAGCAACCTGGTCTCACTGGG AA TTTCATTTTCTAAACCAGAACTCATCACCCAGCTGGAGCAAGGGAAAGAGACCTGGAGAG AG GAAAAAAAATGTTCACCGGCAACCTGTCCAGATCCAGAGCCAGAGCTCTACCTCGATCCT TT CTGCCCTCCGGGTTTCTCCAGTCAGAAATTCCCCATGCAGCATGTGCTGTGTAATCATCC CC CCTGGATCTTCACATGCTTGTGTGCAGAAGGTAACATCCAGCCTGGGGATCCAGGCCCAG GG GACCAGGAGAAGCAGCAACAAGCCTCTGAGGGGAGACCCTGGAGTGATCAAGCAGAAGGT CC TGAGGGAGAAGGTGCCATGCCTTTGTTTGGAAGAACCAAGAAAAGGACTCTGGGAGCGTT CT CCAGGCCACCCCAGAGGCAGCCAGTCAGCTCTCGGAACGGCCTCAGAGGGGTGGAGTTAG AA GCCAGCCCAGCTCAGACAGGGAACCCTGAGGAAACAGACAAATTGTTGAAGAGGATAGAA GT CTTAGGATTTGGAACAGTCAACTGTGGAGAGTGTGGACTGAGCTTCAGCAAGATGACAAA CC TGCTCAGTCACCAGCGGATACACTCAGGGGAGAAGCCCTACGTGTGTGGGGTATGTGAGA AG GGCTTCAGCCTAAAGAAGAGCCTCGCCAGACACCAGAAGGCACACTCGGGGGAGAAGCCA AT TGTGTGCAGGGAGTGTGGACGAGGCTTTAACCGGAAGTCAACGCTAATCATACACGAACG GA CACACTCCGGTGAGAAACCTTACATGTGCAGTGAGTGTGGGCGAGGCTTCAGCCAGAAGT CA AACCTCATCATACACCAGAGGACACACTCAGGGGAAAAGCCTTATGTGTGCCGGGAATGT GG CAAAGGCTTCAGCCAGAAGTCAGCTGTCGTGAGACACCAGAGGACACACTTGGAGGAGAA GA CCATCGTGTGCAGTGACTGTGGCCTGGGCTTCAGCGACAGGTCAAACCTCATCTCCCACC AG AGGACGCACTCTGGGGAGAAGCCCTACGCCTGCAAGGAGTGTGGGCGATGCTTCAGGCAG AG GACCACCCTTGTCAACCACCAGAGGACACACTCAAAGGAGAAGCCCTATGTGTGCGGGGT GT GTGGGCACAGCTTCAGCCAGAATTCAACCCTCATCTCTCACAGGCGGACACACACTGGGG AG AAGCCGTATGTTTGTGGGGTGTGTGGGCGAGGCTTTAGTCTCAAGTCACACCTCAACAGA CA CCAGAACATACACTCAGGAGAGAAGCCCATTGTGTGCAAGGACTGTGGCCGGGGCTTCAG CC AGCAATCCAACCTCATCAGACACCAGAGGACGCACTCAGGCGAGAAGCCCATGGTGTGTG GG GAGTGCGGGCGAGGCTTCAGCCAGAAGTCAAACCTTGTTGCACACCAGAGGACGCACTCA GG GGAGAGGCCGTATGTGTGCCGAGAGTGCGGGCGAGGCTTTAGCCACCAGGCCGGTCTCAT CA GGCACAAGCGGAAGCACTCGAGGGAGAAGCCCTACATGTGCAGGCAGTGTGGACTGGGCT TT GGCAATAAGTCAGCTCTAATCACACACAAGCGGGCTCACTCGGAAGAGAAGCCTTGTGTG TG CAGAGAGTGTGGCCAAGGCTTTCTCCAAAAGTCACACCTCACCTTACATCAAATGACACA TA CGGGGGAGAAGCCATATGTGTGCAAGACGTGTGGGCGGGGCTTCAGCCTCAAGTCTCACC TC AGCAGACACAGGAAGACCACGTCTGTCCACCACAGACTGCCAGTGCAGCCCGACCCTGAG CC GTGTGCAGGGCAACCTTCGGATTCCTTATACTCTCTCTGA SEQ ID NO: 161 ZNF140 protein sequence MSQGSVTFRDVAIDFSQEEWKWLQPAQRDLYRCVMLENYGHLVSLGLSISKPDVVSLLEQ GKEPWLGKREVKRDLFSVSESSGEIKDFSPKNVIYDDSSQYLIMERILSQGPVYSSFKGG WKCKDHTEMLQENQGCIRKVTVSHQEALAQHMNISTVERPYGCHECGKTFGRRFSLVLHQ RTHTGEKPYACKECGKTFSQISNLVKHQMIHTGKKPHECKDCNKTFSYLSFLIEHQRTHT GEKPYECTECGKAFSRASNLTRHQRIHIGKKQYICRKCGKAFSSGSELIRHQITHTGEKP YECIECGKAFRRFSHLTRHQSIHTTKTPYECNECRKAFRCHSFLIKHQRIHAGEKLYECD ECGKVFTWHASLIQHTKSHTGEKPYACAECDKAFSRSFSLILHQRTHTGEKPYVCKVCNK SFSWSSNLAKHQRTHTLDNPYEYENSFNYHSFLTEHQ SEQ ID NO: 162 ZNF140 DNA sequence ATGTCTCAGGGGTCAGTGACATTCAGAGATGTGGCCATAGACTTCTCCCAGGAGGAGTGG AA ATGGCTTCAGCCTGCTCAAAGAGATTTGTACAGATGTGTAATGTTGGAGAACTATGGCCA TC TGGTCTCACTGGGTCTTTCCATTTCTAAGCCAGATGTGGTTTCCTTATTGGAGCAAGGGA AA GAACCCTGGCTGGGGAAAAGGGAAGTGAAAAGAGATCTGTTTTCAGTTTCAGAGTCAAGT GG TGAGATCAAAGACTTTTCACCAAAAAATGTCATTTATGATGACTCATCCCAGTATTTGAT CA TGGAAAGAATTCTAAGTCAAGGCCCTGTGTATTCCAGTTTTAAAGGAGGCTGGAAATGCA AG GATCATACTGAGATGCTGCAAGAAAATCAGGGATGTATTAGGAAAGTAACAGTCTCTCAT CA AGAAGCCCTGGCTCAACATATGAATATCAGTACTGTGGAGAGGCCCTATGGATGCCATGA AT GTGGAAAAACTTTTGGTCGACGCTTTTCCCTGGTGTTACACCAGAGGACTCATACTGGAG AG AAACCATATGCATGTAAGGAATGTGGCAAAACCTTTAGCCAGATTTCAAACCTTGTGAAA CA CCAAATGATACATACTGGAAAGAAACCCCATGAGTGTAAGGACTGTAATAAAACATTCAG TT ACCTTTCATTTCTTATTGAACACCAGAGAACGCACACTGGGGAGAAACCTTATGAATGTA CT GAGTGTGGAAAGGCCTTTAGCCGTGCCTCCAACCTCACTCGACATCAAAGAATTCACATA GG AAAGAAACAATATATATGTAGGAAATGTGGTAAAGCATTTAGCAGTGGCTCAGAACTCAT TC GCCACCAGATTACACATACTGGAGAGAAACCTTATGAATGCATTGAATGTGGGAAGGCAT TT CGCCGTTTCTCACACCTTACTCGACATCAGAGCATCCATACAACCAAAACCCCGTATGAA TG TAATGAATGTAGGAAAGCTTTCCGTTGTCACTCATTCCTTATTAAACATCAGAGAATTCA TG CTGGAGAAAAGCTCTATGAATGTGATGAATGTGGTAAAGTTTTCACTTGGCATGCATCCC TT ATTCAACATACGAAGAGTCACACTGGAGAGAAACCCTATGCGTGTGCTGAATGTGATAAA GC CTTCAGCCGGAGCTTTTCCCTCATTCTACATCAGAGAACTCATACTGGAGAGAAACCCTA TG TATGTAAGGTATGCAACAAATCCTTCAGCTGGAGCTCAAACCTTGCTAAACATCAGAGGA CA CACACTCTTGACAACCCCTATGAATATGAAAATTCATTTAATTACCACTCATTCCTTACT GA ACACCAGTGA SEQ ID NO: 163 ZNF169 protein sequence MSPGLLTTRKEALMAFRDVAVAFTQKEWKLLSSAQRTLYREVMLENYSHLVSLGIAFSKP KLIEQLEQGDEPWREENEHLLDLCPGRRITRSGVRD SEQ ID NO: 164 ZNF169 DNA sequence ATGTCACCAGGACTCCTGACAACCAGGAAGGAGGCATTGATGGCCTTCCGGGATGTGGCT GT GGCCTTCACCCAGAAGGAGTGGAAGCTATTGAGTTCTGCTCAGAGGACCCTGTACAGGGA GG TGATGCTGGAGAACTACAGCCATCTGGTCTCCCTGGGAATTGCATTTTCCAAACCAAAAC TC ATCGAACAGCTGGAGCAAGGCGACGAACCTTGGAGAGAGGAGAACGAACATCTTCTGGAC CT TTGTCCAGGCAGGCGGATCACAAGGTCGGGAGTTCGAGACTAG SEQ ID NO: 165 ZNF254 protein sequence MPGPPRSLEMGLLTFRDVAIEFSLEEWQHLDIAQQNLYRNVMLENYRNLAFLGIAVSKPD LITCLEQGKEPWNMKRHEMVDEPPGLDFSLL SEQ ID NO: 166 ZNF254 DNA sequence ATGCCAGGACCCCCTAGAAGCCTAGAAATGGGACTGTTGACATTTAGGGATGTGGCCATA GA ATTCTCTCTGGAGGAGTGGCAACACCTGGACATTGCACAGCAGAATTTATATAGAAATGT GA TGTTAGAGAACTACAGAAACCTGGCCTTCCTGGGTATTGCTGTCTCTAAGCCAGACCTGA TC ACCTGTCTGGAACAAGGGAAAGAGCCCTGGAATATGAAGCGACATGAGATGGTGGATGAA CC CCCAGGATTGGATTTTTCATTACTGTGA SEQ ID NO: 167 ZNF566 protein sequence MAQESVMFSDVSVDFSQEEWECLNDDQRDLYRDVMLENYSNLVSMGHSISKPNVISYLEQ GKEPWLADRELTRGQWPVLESRCETKKLFLKKEIYEIESTQWEIMEKLTRRDFQCSSFRD DWECNRQFKKELGSQGGHFNQLVFTHEDLPTLSHHPSFTLQQIINSKKKFCASKEYRKTF RHGSQFATHEIIHTIEKPYECKECGKSFRHPSRLTHHQKIHTGKKPFECKECGKTFICGS DLTRHHRIHTGEKPYECKECGKAFSSGSNFTRHQRIHTGEKPYECKECGKAFSSGSNFTQ HQRIHTGEKPYECKECGNAFSQSSQLIKHQRIHTGEKPYECKECEKAFRSGSDLTRHQRI HTGEKPYECKICGKAYSQSSQLISHHRIHTSEKPYEYRECGKNFNYDPQLIQHQNLYWL SEQ ID NO: 168 ZNF566 DNA sequence atggctcaggagtcagtgatgttcagtgatgtgtccgtagacttctctcaggaggagtgg ga atgcctgaatgatgatcagagagatttatacagagatgtgatgttggagaattacagcaa cc tggtttcaatggggcattctatttctaaaccaaatgtgatctcctacttggagcaaggga ag gagccctggttggctgacagagagctaacaagaggccagtggccagtcctggaatcaaga tg tgagaccaagaaattatttctgaagaaagaaatttatgaaatagaatcaacccagtggga aa taatggaaaaactcacaagacgtgattttcagtgctccagtttcagagatgattgggaat gt aatcggcagtttaagaaagaactcggctctcaggggggacatttcaatcaattggtattc ac tcatgaagatctgcccactttgagtcaccatccatccttcacattacagcaaatcattaa ca gtaaaaagaaattctgtgcatctaaagaatataggaaaacctttagacatggctcacagt tt gctacacatgagataattcataccattgagaagccttatgaatgtaaggaatgtggaaag tc ctttagacatccctcaagactcactcatcatcagaaaattcatactggcaagaaaccctt tg aatgtaaggaatgtggaaaaacctttatttgtggctcagaccttactcgacatcacagaa tt cacactggtgagaaaccctatgaatgtaaggaatgtgggaaagcctttagtagtggttca aa cttcactcgacatcagagaattcacacaggtgagaagccttatgaatgcaaagaatgcgg ga aggcctttagtagtggctcaaactttactcaacatcagagaattcatactggggaaaaac cc tatgaatgtaaggaatgtggcaatgcctttagtcagagctcacaacttattaaacatcaa ag aatccatacaggtgagaaaccttacgaatgtaaggaatgtgaaaaggcttttcgttctgg ct cagaccttactagacatcagagaattcatactggggagaaaccctatgaatgtaagatat gt gggaaggcttattctcagagttcacagcttattagtcatcatagaattcatactagtgag aa accctatgaatatagggaatgtggaaagaactttaattatgacccacaacttattcagca tc aaaatttgtactggttg SEQ ID NO: 169 ZNF585A protein sequence MPANWTSPQKSSALAPEDHGSSYEGSVSFRDVAIDFSREEWRHLDPSQRNLYRDVMLETY SHLLSIGYQVPEAEVVMLEQGKEPWALQGERPRQSCPAPCLVNSHHLQESFRG SEQ ID NO: 170 ZNF585A DNA sequence ATGCCAGCTAATTGGACCTCACCTCAGAAATCCTCAGCCCTGGCTCCAGAGGATCATGGC AG CTCCTATGAGGGATCAGTGTCCTTCAGGGATGTGGCTATCGATTTCAGCAGAGAGGAATG GC GGCACCTGGACCCTTCTCAGAGAAACCTGTACCGGGATGTGATGCTGGAGACCTACAGCC AC CTGCTCTCAATAGGATATCAAGTTCCTGAAGCAGAGGTGGTCATGTTGGAGCAAGGAAAG GA ACCATGGGCACTGCAGGGTGAGAGGCCACGTCAGAGCTGCCCAGCACCGTGTCTTGTGAA CT CCCATCACCTTCAAGAAAGCTTCCGAGGGTGA SEQ ID NO: 171 ZNF689 protein sequence MAPPSAPLPAQGPGKARPSRKRGRRPRALKFVDVAVYFSPEEWGCLRPAQRALYRDVMRE TYGHLGALGCAGPKPALISWLERNTDDWEPAALDPQEYPRGLTVQRKSRTRKKNGEKEVF PPKEAPRKGKRGRRPSKPRLIPRQTSGGPICPDCGCTFPDHQALESHKCAQNLKKPYPCP DCGRRFSYPSLLVSHRRAHSGECPYVCDQCGKRFSQRKNLSQHQVIHTGEKPYHCPDCGR CFRRSRSLANHRTTHTGEKPHQCPSCGRRFAYPSLLAIHQRTHTGEKPYTCLECNRRFRQ RTALVIHQRIHTGEKPYPCPDCERRFSSSSRLVSHRRVHSGERPYACEHCEARFSQRSTL LQHQLLHTGEKPYPCPDCGRAFRRSGSLAIHRSTHTEEKLHACDDCGRRFAYPSLLASHR RVHSGERPYACDLCSKRFAQWSHLAQHQLLHTGEKPFPCLECGRCFRQRWSLAVHKCSPK APNCSPRSAIGGSSQRGNAH SEQ ID NO: 172 ZNF689 DNA sequence ATGGCGCCACCTTCGGCTCCGCTCCCTGCGCAGGGACCAGGAAAGGCCAGACCCAGTCGG AA AAGGGGCAGGAGGCCGAGGGCTCTGAAGTTCGTGGACGTGGCCGTGTACTTCTCCCCGGA GG AGTGGGGCTGCCTGCGGCCCGCGCAGAGGGCCCTGTACCGGGACGTGATGCGGGAGACCT AC GGTCACCTGGGCGCGCTCGGGTGCGCAGGTCCCAAACCAGCCCTCATCTCCTGGTTGGAA CG AAACACCGATGACTGGGAACCGGCTGCTCTAGATCCGCAGGAGTACCCGAGAGGGCTAAC AG TCCAGAGAAAAAGCAGAACCAGAAAGAAGAATGGGGAGAAGGAAGTATTCCCGCCTAAGG AG GCACCCCGAAAGGGGAAGCGAGGCCGGAGGCCCAGCAAACCCCGACTGATTCCTAGGCAG AC GTCCGGGGGCCCCATCTGCCCTGACTGCGGCTGTACCTTCCCTGATCATCAGGCCCTGGA GA GCCACAAGTGCGCCCAGAATCTAAAAAAGCCTTACCCTTGCCCAGACTGTGGGCGCCGCT TT TCCTATCCATCCCTGCTGGTCAGTCACCGGCGGGCACACTCCGGCGAGTGCCCCTATGTT TG TGACCAGTGTGGCAAACGTTTCTCCCAGCGCAAGAACCTCTCCCAGCACCAGGTCATCCA TA CAGGGGAGAAGCCCTATCACTGCCCTGACTGTGGTCGCTGCTTCCGGAGGAGCCGGTCCT TG GCCAATCACCGGACCACACACACAGGTGAAAAACCCCACCAGTGCCCTAGCTGTGGACGT CG CTTCGCCTACCCCTCCCTGCTAGCCATCCACCAGCGTACACACACGGGAGAGAAGCCCTA CA CTTGCCTCGAGTGCAACCGCCGCTTCCGCCAGCGCACGGCCCTCGTCATCCACCAGCGCA TC CACACGGGCGAGAAGCCCTACCCGTGCCCGGACTGCGAGCGGCGCTTCTCCTCCTCCTCT CG CCTGGTCAGTCACCGGCGTGTGCACTCTGGGGAGCGTCCCTATGCCTGCGAGCACTGTGA GG CCCGCTTCTCCCAGCGCAGCACGCTGCTCCAGCACCAGCTCTTGCACACCGGAGAGAAGC CC TACCCCTGCCCAGACTGTGGGCGTGCCTTCCGGCGGAGCGGCTCCCTGGCCATCCATCGC AG CACGCACACAGAGGAGAAGCTGCACGCCTGCGACGACTGTGGTCGCCGCTTTGCCTACCC CT CACTGCTGGCCAGCCACCGGCGCGTGCACTCGGGCGAGCGGCCCTATGCCTGCGACCTTT GC TCCAAGCGTTTTGCTCAGTGGAGCCACCTGGCCCAGCACCAGCTGCTGCACACGGGGGAG AA GCCTTTCCCCTGCCTCGAGTGTGGCCGGTGCTTCCGCCAGAGGTGGTCTCTGGCTGTCCA CA AGTGTAGCCCCAAGGCCCCAAACTGTAGCCCTAGATCTGCTATCGGGGGCTCCAGTCAGA GG GGCAACGCCCATTAG SEQ ID NO: 173 ZNF765 protein sequence MALPQGLLTFRDVAIEFSQEEWKCLDPAQRTLYRDVMLENYRNLVSLELSGECPLAAPAS LDPAFLC SEQ ID NO: 174 ZNF765 DNA sequence atggctcttcctcagggtctattgacattcagggatgtggccatagaattctctcaggag ga gtggaaatgcctggaccctgctcagaggactctatacagggacgtgatgctggagaatta ta ggaacctggtctccctggagttgtcaggggagtgtccattggcagcacctgcctccttgg ac ccagctttcttgtgc SEQ ID NO: 175 ZNF81 protein sequence MPANEDAPQPGEHGSACEVSVSFEDVTVDFSREEWQQLDSTQRRLYQDVMLENYSHLLSV GFEVPKPEVIFKLEQGEGPWTLEGEAPHQSCSDGKFGIKPSQRRISGKSTFHSEMEGEDT LCSGLM SEQ ID NO: 176 ZNF81 DNA sequence atgccagctaacgaggacgctccccagccaggggaacatggcagtgcctgtgaggtatca gt gtcatttgaggatgtgactgtggacttcagtagagaggagtggcagcaactggactctac tc aaagacgcctgtaccaggatgtaatgttggagaactacagccacctgctctcagtggggt tc gaagttcctaaaccagaggtcatcttcaagttggagcaaggagaggggccatggacattg ga aggggaagccccacatcagagctgttcagatgggaaatttggaattaagccttcccagag ga gaatttctgggaaatctacatttcatagtgaaatggagggtgaagacacactgtgttcag gc ctcatggg