Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EFFICIENTLY PROVIDING OCCUPANCY INFORMATION ON THE SURROUNDINGS OF A VEHICLE
Document Type and Number:
WIPO Patent Application WO/2015/010902
Kind Code:
A1
Abstract:
The invention relates to a method for efficiently providing occupancy information on the surroundings of a vehicle, having the following steps: receiving sensor measurements of the surroundings of the vehicle; and ascertaining the occupancies of the surroundings by obstacles using the sensor measurements; wherein each occupancy in a first portion of the surroundings is specified in a first coordinate system, namely a polar coordinate system, by means of an angle specification and a distance specification; and each occupancy in a second portion of the surroundings is specified in a second coordinate system by means of two value specifications, said second coordinate system differing from the polar coordinate system.

Inventors:
MANZ MICHAEL (DE)
VANHOLME BENOIT (DE)
Application Number:
PCT/EP2014/064695
Publication Date:
January 29, 2015
Filing Date:
July 09, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYERISCHE MOTOREN WERKE AG (DE)
International Classes:
B60W30/095; G08G1/16
Domestic Patent References:
WO2011047730A12011-04-28
Foreign References:
EP1672390A12006-06-21
US6163252A2000-12-19
DE102009007395A12009-10-01
Other References:
MANUEL YGUEL ET AL: "Efficient GPU-based Construction of Occupancy Girds Using several Laser Range-finders", INTELLIGENT ROBOTS AND SYSTEMS, 2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON, IEEE, PI, 1 October 2006 (2006-10-01), pages 105 - 110, XP031006221, ISBN: 978-1-4244-0258-8
Download PDF:
Claims:
ANSPRÜCHE

1. Verfahren zum effizienten Bereitstellen von Belegungsinformationen für das Umfeld eines Fahrzeugs, umfassend:

Empfangen von Sensormessungen des Umfeldes des Fahrzeugs; Ermitteln der Belegungen des Umfeldes durch Hindernisse anhand der Sensormessungen;

Wobei Belegungen in einem ersten Abschnitt des Umfeldes in einem ersten Koordinatensystem, nämlich einem Polarkoordinatensystem, jeweils durch eine Winkelangabe und eine Entfernungsangabe angegeben werden; Wobei Belegungen in einem zweiten Abschnitt des Umfeldes in einem zweiten Koordinatensystem, insbesondere jeweils durch zwei Wertangaben, angegeben werden, wobei sich das zweite Koordinatensystem von dem Polarkoordinatensystem unterscheidet.

2. Verfahren nach Anspruch 1 , wobei die Winkelangaben jeweils einen Winkelbereich repräsentieren; wobei bei dem Ermitteln der Belegung ermittelt wird, ob ein Hindernis in dem jeweiligen Winkelbereich vorhanden ist und in welcher Entfernung.

3. Verfahren nach Anspruch 2, wobei das Ermitteln der Belegung umfasst; Ermitteln eines sicher erkannten Hindernisses; und Ermitteln des dem Fahrzeug nächsten Hindernisses;

Wobei für jede Winkelangabe als ermittelte Hindernisse nur das sicher ermittelte Hindernis und das nächste ermittelte Hindernis angegeben werden, sofern im entsprechenden Winkelbereich vorhanden.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste Abschnitt einen Abschnitt des Umfelds in Fahrtrichtung des Fahrzeugs vor dem Fahrzeug abdeckt.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das zweite Koordinatensystem einen Abschnitt des Umfelds in Fahrtrichtung des Fahrzeugs hinter dem Fahrzeug abdeckt.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei

Das zweite Koordinatensystem ein kartesisches Koordinatensystem ist, und die erste Wertangabe einen Bereich des Umfelds repräsentiert. 7. Verfahren nach einem der Ansprüche 1 bis 5, wobei die erste Wertangabe auf der Entfernung der Projektion der Belegung auf eine Trajektorie, gemessen entlang der Trajektorie, vom Fahrzeug aus basiert, wobei die Trajektorie der Pfad ist, der vom Fahrzeug durchfahren wurde; wobei die Projektion senkrecht zur Trajektorie ist. 8. Verfahren nach Anspruch 7, wobei die erste Wertangabe einen Entfernungsbereich repräsentiert.

9. Verfahren nach Anspruch 8, wobei das Ermitteln der Belegung umfasst:

Ermitteln eines sicher erkannten Hindernisses; und

Ermitteln des nächsten Hindernisses; Wobei für jede Entfernungsangabe als ermittelte Hindernisse nur das sicher ermittelte Hindernis und das nächste ermittelte Hindernis angegeben werden, sofern im entsprechenden Entfernungsbereich vorhanden.

10. Verfahren nach einem der vorhergehenden Ansprüche,

Wobei Belegungen in einem dritten Abschnitt des Umfelds durch ein drittes Koordinatensystem angegeben werden.

1 1. Verfahren nach Anspruch 10, wobei die Winkelangaben des ersten Koordinatensystems jeweils einen Winkelbereich repräsentieren; wobei die Winkelangaben des dritten Koordinatensystems jeweils einen Winkelbereich repräsentieren, der jeweils größer ist als die Winkelbereiche des ersten Koordinatensystems.

12. Verfahren nach Anspruch 10 oder 11 , wobei der erste Abschnitt die Verlängerung der Längsachse des Fahrzeugs umfasst und wobei der dritte Abschnitt an den ersten Abschnitt angrenzt.

13. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend:

Verknüpfen von benachbarten ermittelten Belegungen, insbesondere verknüpfen von benachbarten erkannten Hindernissen, zu einer durchgängigen Belegung bzw. einem durchgängigen Hindernis.

14. Rechenvorrichtung, wobei die Rechenvorrichtung dazu eingerichtet ist, ein Verfahren nach einem der vorhergehenden Ansprüche auszuführen.

Description:
Effizientes Bereitstellen von Belegungsinformationen für das Umfeld eines Fahrzeugs

Die Erfindung betrifft ein Verfahren zum effizienten Bereitsteilen von Belegungsinformationen für das Umfeldes eines Fahrzeugs und eine entsprechend eingerichtete Rechenvorrichtung.

In Zukunft werden Kraftfahrzeuge über eine Fülle von Fahrerassistenzsystemen verfügen, die den Fahrer vor Kollisionen warnen und gegebenenfalls auch durch Eingriffe versuchen, Kollisionen zu vermeiden. Beispiele solcher Fahrerassistenzsysteme sind ein Notbremsassistent, ein Spur-Halte-Assistent, ein Toter-Winkel- Assistent, ein Einparkassistent und ein sogenannter Automatic Cruise Control Assistent (ACC), insbesondere für Autobahnfahrten. Um diese Funktionen bereit zu stellen, ist für Fahrerassistenzsysteme die Kenntnis des Umfeldes des Fahrzeugs entscheidend. Dazu wird das Umfeld mit einem oder mehreren Sensoren wie Radar, Lidar, Kamera, Ultraschallsensoren oder ähnlichen aus dem Stand der Technik be- kannten Sensoren abgetastet bzw. aufgenommen. Mithilfe ebenfalls im Stand der Technik bekannter Signalverarbeitungsverfahren kann dann die Belegung des Umfeldes durch ein Hindernis erkannt werden. Die Belegung zeigt an, dass das Umfeld in diesem Bereich nicht durch das Fahrzeug befahren werden kann.

Bisher ist es bekannt, dass das Umfeld in gleichmäßige, bevorzugt rechteckige, Bereiche aufgeteilt wird und bestimmt wird, welche Bereiche des Umfeldes belegt sind. So entsteht ein Belegungsraster bzw. Belegungs-Grid. Die Druckschrift WO 2013/060323 beschreibt ein solches Belegungsraster. In einem solchen System ist häufig vorgesehen, dass die Größe der Bereiche den jeweils höchsten Anforderung der Fahrerassistenzsysteme entspricht. Durch diese Aufteilung des Umfeldes ent- stehen sehr große Datenmengen. Gleichzeitig kann eine Verringerung der Größe der Bereiche zur Datenreduktion eine unzureichende Genauigkeit bieten.

Die Aufgabe, die der Erfindung zugrunde liegt, ist es, effizient Belegungsinformationen für das Umfeld eines Fahrzeugs bereit zu stellen. Die Aufgabe wird durch das Verfahren und die Rechenvorrichtung gemäß den unabhängigen Ansprüchen gelöst. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen definiert.

In einem Aspekt umfasst ein Verfahren zum effizienten Bereitstellen von Belegungs- Informationen für das Umfeld eines Fahrzeugs: Empfangen von Sensormessungen des Umfeldes des Fahrzeugs; Ermitteln der Belegungen des Umfeldes durch Hindernisse anhand der Sensormessungen; Wobei Belegungen in einem ersten Abschnitt des Umfeldes in einem ersten Koordinatensystem, nämlich einem Polarkoordinatensystem, jeweils durch eine Winkelangabe und eine Entfernungsangabe an- gegeben werden; Wobei Belegungen in einem zweiten Abschnitt des Umfeldes in einem zweiten Koordinatensystem jeweils durch zwei Wertangaben angegeben werden, wobei sich das zweite Koordinatensystem von dem Polarkoordinatensystem unterscheidet.

Durch die Verwendung von verschiedenen Koordinatensystemen, einerseits einem Polarkoordinatensystem und andererseits beispielsweise von einem kartesischen Koordinatensystem, ist es möglich in denjenigen Abschnitten des Umfeldes dasjenige Koordinatensystem zu verwenden, das für diesen Abschnitt vorteilhafte Eigenschaften bietet. Diese Eigenschaften sind beispielsweise der Speicherplatzbedarf im Vergleich zur relevanten Information. So ist im Abschnitt des Umfeldes vor einem Fahrzeug beispielsweise eine Beschreibung von erkannten Hindernissen in Polar- koordinatenform sinnvoll: Die Entscheidung, in welche Richtung zu fahren ist, findet eine Entsprechung im Winkel des Polarkoordinatensystems. Darüber hinaus ist bei einem Polarkoordinatensystem die Darstellung in der Nähe des Fahrzeugs genauer. Die Position von Hindernissen, die nah sind, wird durch ein Polarkoordinatensystem genauer vermerkt. Gleichzeitig stellt das Polarkoordinatensystem für Rückwärtsfahrten beim Einparken oder zur Beobachtung des rückwärtigen Verkehrs keine geeignete Darstellungsform dar. Hier eignet sich beispielsweise die kartesische Darstellung, oder eine kurvilineare Darstellung für den hinteren Bereich des Fahrzeugs. Ein Hindernis im ersten Abschnitt des Umfeldes wird also beispielsweise durch die An- gäbe des Winkels und der Entfernung vom Fahrzeug beschrieben. Entsprechend kann ein Hindernis im zweiten Abschnitt des Umfeldes in x- und y- Koordinaten eines kartesischen Koordinatensystems beschrieben werden. Um den Speicher- und Rechenbedarf einer Beschreibung des Umfeldes zu reduzieren kann die Winkelangabe des Polarkoordinatensystems diskretisiert werden. Jede Winkelangabe repräsentiert dann einen Winkelbereich. Bei dem Ermitteln der Belegung wird dann ermittelt, ob ein Hindernis in dem Winkelbereich vorhanden ist und in welcher Entfernung. Die bei einer gegebenen Diskretisierung entstehende Unge- nauigkeit bei einem Polarkoordinatensystem für den Bereich vor einem Fahrzeug ist aufgrund der Entsprechung der Winkelangabe zur Wahl der Fahrtrichtung weniger schwerwiegend als die Ungenauigkeiten, die für eine vergleichbare Speicherbedarfsreduktion bei einem kartesischen Koordinatensystem in Kauf genommen wer- den müssen. Die Verwendung von zwei Darstellungsformen des Umfeldes ermöglicht so eine Diskretisierung, deren Ungenauigkeiten an die Eigenschaften der Fortbewegung eines Fahrzeugs und der Anforderungen von Fahrerassistenzsystemen angepasst sind und möglichst wenig Einfluss ausüben.

Ein Hindernis stellt eine Grenze des Freiraums für das Fahrzeug dar. Jeder Winkel- bereich kann als Segment aufgefasst werden. Die Größe der Winkelbereiche kann entsprechend der Leistungsfähigkeit der Hardware gewählt werden.

In einer Weiterbildung umfasst das Ermitteln der Belegung: Ermitteln eines sicher erkannten Hindernisses; und Ermitteln des dem Fahrzeug nächsten Hindernisses; Wobei für jeden Winkelbereich als ermittelte Hindernisse nur das sicher ermittelte Hindernis und das nächste ermittelte Hindernis angegeben werden, sofern im Winkelbereich vorhanden. Bei dem Ermitteln der Hindernisse kann für die jeweilige Anwesenheit eine Wahrscheinlichkeit festgestellt werden. Ein sicher ermitteltes Hindernis ist ein solches, dessen festgestellte Wahrscheinlichkeit einen Schwellwert überschreitet, oder dessen Wahrscheinlichkeit im Vergleich zu Wahrscheinlichkeiten anderer Hindernisse hoch ist. Auf diese Weise kann die zu verarbeitende und zu speichernde Datenmenge auf relevante Informationen begrenzt werden. Es findet eine Komprimierung der Information statt. Für viele Assistenzsysteme stellen das nächste und das am sichersten erkannte Hindernisse die wichtigsten Entscheidungsgrundlagen dar. Beispielsweise kann in einem Fahrerassistenzsystem, das automatisch ein Ausweichmanöver einleitet, schon die ungewisse Anwesenheit eines nächsten Hindernisses einen Eingriff in dessen Richtung verhindern. Gleichzeitig werden Eingriffe nur aufgrund von sicher erkannten Hindernissen überhaupt erst ausgelöst. Mit anderen Worten: Die Erkennung des nächsten Hindernisses ist auf die Verhinderung einer Auslösung einer Aktion hin optimiert (Hindernisse dürfen nicht übersehen werden), wohingegen die sichere Erkennung von Hindernissen auf die Auslösung einer Aktion hin optimiert ist (Hindernisse müssen mit hoher Wahrscheinlichkeit erkannt werden). In einer Ausgestaltung ist das zweite Koordinatensystem ein kartesisches Koordinatensystem, und die erste Wertangabe repräsentiert einen Bereich des Umfelds. Beispielsweise kann das kartesische Koordinatensystem Wertangaben in x- und y- Richtung umfassen. Die erste Wertangabe kann dann Bereiche von e.g. jeweils 10 m angeben, so dass eine x-Wertangabe den Bereich von 0 m bis 10 m abdeckt, die nächste x-Wertangabe den Bereich von 10 m bis 20 m, usw. Ein Entfernungsbereich kann als Segment angesehen werden.

In einer bevorzugten Weiterbildung basiert die erste Wertangabe auf der Entfernung der Projektion der jeweiligen Belegung auf eine Trajektorie, gemessen entlang der Trajektorie, vom Fahrzeug aus; wobei die Trajektorie der Pfad ist, der vom Fahrzeug durchfahren wurde; wobei die Projektion senkrecht zur Trajektorie ist. Anstatt eines kartesischen Koordinatensystems wird somit sozusagen eine gebogene Variante des kartesischen Koordinatensystems verwendet, wobei die x-Achse des kartesischen Koordinatensystems auf dem Pfad liegt, der vom Fahrzeug durchfahren wurde. Der x-Wert eines Hindernisses wird dann durch eine (punktweise) senkrechte Projektion des Hindernisses auf die x-Achse errechnet. Ein solches Koordinatensystem wird manchmal kurvilinear genannt. Im hinteren Bereich eignet sich die kurvilineare (auf die Ego Trajektorie bezogene) Darstellung am besten, da der vergangene Fahrweg bekannt ist und so die rechte und linke Fahrwegseite eindeutig auseinander gehalten werden können. Außerdem ist diese Aufbereitung für darauf aufbauende Funktionen wie Spurwechselassistent usw. besonders geeignet. Für kleine Wahrnehmungsbereiche hinter dem Fahrzeug kann eine lineare Darstellung statt der kurvilinearen Darstellung genutzt werden. Die genannten Vorteile gelten auch für die kartesische Darstellung bei geraden Fahrtstrecken und in abgeschwächter Form auch für Kurvenfahrten. Auch in einem kurvilinearen Koordinatensystem können Wertebereiche verwendet werden und nur sicher erkannte und nächste Hindernisse dargestellt werden, um die Datenmengen zu reduzieren. Es ergeben sich die oben für das Polarkoordinatensystem beschriebenen Vorteile.

In einer vorteilhaften Weiterbildung werden die Belegungen in einem dritten Abschnitt des Umfelds durch ein drittes Koordinatensystem angegeben. Ein weiteres Koordinatensystem ermöglicht die weiter an die Anforderungen der Fahrerassistenzsysteme angepasste Komprimierung der Datenmengen.

In einer vorteilhaften Weiterbildung repräsentieren die Winkelangaben des ersten Koordinatensystems jeweils einen Winkelbereich; wobei die Winkelangaben des dritten Koordinatensystems jeweils einen Winkelbereich repräsentieren, der jeweils größer ist als die Winkelbereiche des ersten Koordinatensystems. Der erste Abschnitt kann die Verlängerung der Längsachse des Fahrzeugs umfassen, wobei der dritte Abschnitt an den ersten Abschnitt angrenzt. Auf diese Weise wird der Abschnitt, der direkt vor dem Fahrzeug liegt, mit höherer Genauigkeit erfasst als der Abschnitt der im Prinzip fast seitlich neben dem Fahrzeug liegt. Diese Abstufung der Genauigkeit dient ebenfalls der Datenreduktion, die wenig Auswirkungen für die Funktionsweise von Fahrerassistenzsystemen hat.

In einer Fortbildung umfasst das Verfahren ferner: Verknüpfen von benachbarten ermittelten Belegungen, insbesondere verknüpfen von benachbarten erkannten Hindernissen, zu einer durchgängigen Belegung bzw. einem durchgängigen Hinder- nis. Die Verknüpfung kann als Poiyiinie aufgefasst werden. Auf diese Weise können in der Praxis häufig auftretende Begrenzungen wie Leitplanken oder Häuserwände beschrieben werden.

In einem anderen Aspekt ist eine Rechenvorrichtung dazu eingerichtet, eines der obenstehenden Verfahren auszuführen. Die Rechenvorrichtung kann ein Computer mit einem gespeicherten Computerprogramm sein, oder ein anwendungsspezifischer Schaltkreis.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

Fig. 1 zeigt schematisch eine Aufteilung des Umfeldes in Segmente gemäß einem Ausführungsbeispiel. Fig. 2 zeigt schematisch eine weitere Aufteilung des Umfeldes in Segmente gemäß einem weiteren Ausführungsbeispiel.

Fig. 3 zeigt schematisch eine Variante der Erkennung von Belegungen im Umfeld gemäß einem Ausführungsbeispiel. Fig. 4 zeigt schematisch eine weitere Variante der Erkennung von Belegungen im Umfeld gemäß einem weiteren Ausführungsbeispiel.

Gleiche Bezugszeichen beziehen sich auf sich entsprechende Elemente über die Figuren hinweg.

DETAILLIERTE BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE Fig. 1 zeigt schematisch eine Aufteilung des Umfeldes eines Fahrzeugs 1 in Segmente gemäß einem Ausführungsbeispiel. Das Fahrzeug 1 verfügt über Sensoren zur Umfelderkennung und eine Rechenvorrichtung zum Erstellen einer Umfeldkarte, die Belegungen angibt. Für die Aufteilung des Umfeldes wird das Umfeld in vier Abschnitte 2, 3a, 3b und 4 unterteilt. In den Abschnitten 2, 3a und 3b, die sich im Wesentlichen vor dem Fahrzeug 1 befinden, wird zur Angabe von Belegungen ein Polarkoordinatensystem verwendet. Im Abschnitt 4, der sich im Wesentlichen hinter dem Fahrzeug 1 befindet, werden die Belegungen über ein kartesisches Koordinatensystem angegeben. In jedem der Abschnitte werden zur Diskretisierung Bereiche gebildet. In den Abschnitten 2, 3a und 3b werden Winkelbereiche gebildet, die je- weils durch eine Winkelangabe repräsentiert werden. In den Abschnitten 3a und 3b, ist ein Winkelbereich jeweils 20° groß. Im Abschnitt 2 ist ein Winkelbereich je 10° groß. Im Abschnitt 2 ist die Aufteilung somit feiner. Auch im Abschnitt 4 wird die Entfernung in x-Richtung in Entfernungsbereiche unterteilt. Die einzelnen Entfernungsbereiche und Winkelbereiche bilden Segmente. Mithilfe der Sensormessungen des Fahrzeugs 1 werden Hindernisse im Umfeld des Fahrzeugs 1 erkannt. Ergebnis dieser Erkennung ist eine Aussage über den Ort eines Hindernisses und die Wahrscheinlichkeit der Sicherheit der Erkennung. Zur Angabe der Belegungen (zur Verwendung durch Assistenzsysteme beispielsweise) wird jedoch nur das nächste erkannte Hindernis (also die nächste erkannte Bele- gung), unabhängig von der Wahrscheinlichkeit mit der dieses erkannt wurde, und das erkannte Hindernis, das in diesem Segment mit der höchsten Wahrscheinlichkeit erkannt wurde, angegeben. Dies verringert den Speicherbedarf der so entstehenden Umfeldkarte aufgrund einer Auswahl von anzugebenen Informationen, die sich an den Anforderungen der Fahrerassistenzsysteme orientiert. In Fig. 1 sind die nächsten Hindernisse 6 durch gestrichelte Kreise dargestellt. Die am sichersten erkannten Hindernisse 5 sind durch Kreise mit durchgehender Linie gezeichnet. Wenn das am sichersten erkannte Hindernis auch gleichzeitig das nächste ist, wird in diesem Segment nur dieses eine Hindernis angegeben. Fig. 2 zeigt schematisch eine weitere Aufteilung des Umfeldes in Segmente gemäß einem weiteren Ausführungsbeispiel. Dieses Beispiel baut auf dem der Fig. 1 auf, wobei in Abschnitt 4a die Angaben nicht ein einem kartesischen Koordinatensystem , sondern einem kurvilinearen Koordinatensystem gemacht werden. Die Trajektorie, die die x-Linie bildet, entspricht dabei dem Pfad, auf dem das Fahrzeug gefahren ist. Auch der Abschnitt 4a wird in Entfernungsbereiche unterteilt, wobei diese senkrecht zur Trajektorie verlaufen.

Fig. 3 zeigt schematisch eine Variante der Erkennung von Belegungen im Umfeld gemäß einem Ausführungsbeispiel. Von der Rechenvorrichtung werden Freiraumgrenzen erkannt und angegeben. Auch bei diesen kontinuierlichen Freiraumgrenzen wird zwischen der nächsten erkannten Grenze 8 und der am sichersten erkannten Grenze 7 unterschieden. Nur diese beiden Grenzen werden angegeben, um die Verarbeitung an die Leistungsfähigkeit der Rechensysteme anzupassen.

Weiterhin können von erkannten Hindernissen oder Belegungen auch Attribute zu diesen gespeichert werden, wie bewegbar, nicht-bewegbar, Typ-Klassifikator (Fahr- zeug, Fußgänger, ...), Geschwindigkeiten usw.

Fig. 4 zeigt schematisch eine weitere Variante der Erkennung von Belegungen im Umfeld gemäß einem weiteren Ausführungsbeispiel, in dieser weiteren Variante werden einzelne erkannte benachbarte Hindernisse zu einer Polylinie verknüpft werden. Eine solche Linie kann beispielsweise Fahrbahnbegrenzungen oder Häu- serwände gut beschreiben.