Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRICAL POWER SUPPLY GRID AND METHOD FOR OPERATION THEREOF
Document Type and Number:
WIPO Patent Application WO/2018/167226
Kind Code:
A1
Abstract:
The invention relates to an electric power supply grid for supplying electrical consumers connected to the power supply grid with electrical energy, having at least one power electronic transformer (solid state transformer), by means of which primary electrical energy supplied to the energy supply grid is converted into secondary electrical energy supplied to the connected electrical consumers, wherein the secondary electrical energy is provided by the at least one power electronic transformer as an alternating voltage signal, which substantially has a square time profile, and the at least one power electronic transformer has, at least substantially, no secondary frequency filter. The invention also relates to a method for operating such an electrical energy supply grid.

Inventors:
LISERRE MARCO (DE)
DE CARNE GIOVANNI (DE)
BUTICCHI GIAMPAOLO (DE)
Application Number:
PCT/EP2018/056577
Publication Date:
September 20, 2018
Filing Date:
March 15, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV KIEL CHRISTIAN ALBRECHTS (DE)
International Classes:
H02J3/02
Foreign References:
EP3098956A12016-11-30
Other References:
BRUSKE SEBASTIAN ET AL: "Multi-frequency power transfer in a smart transformer based distribution grid", IECON 2014 - 40TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, IEEE, 29 October 2014 (2014-10-29), pages 4325 - 4331, XP032739485, DOI: 10.1109/IECON.2014.7049153
A Q HUANG ET AL: "The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet", PROCEEDINGS OF THE IEEE., vol. 99, no. 1, 1 January 2011 (2011-01-01), US, pages 133 - 148, XP055250528, ISSN: 0018-9219, DOI: 10.1109/JPROC.2010.2081330
GAGIC MLADEN ET AL: "Multifrequency electrical systems: From power transmission to power electronic converters", 2017 IEEE SOUTHERN POWER ELECTRONICS CONFERENCE (SPEC), IEEE, 4 December 2017 (2017-12-04), pages 1 - 7, XP033344623, DOI: 10.1109/SPEC.2017.8333595
Attorney, Agent or Firm:
GRAMM, LINS & PARTNER PATENT- UND RECHTSANWÄLTE PARTGMBB (DE)
Download PDF:
Claims:
Patentansprüche

1 . Elektrisches Energieversorgungsnetz zur Versorgung von an das Energiever- sorgungsnetz angeschlossenen elektrischen Verbrauchern mit elektrischer

Energie, aufweisend wenigstens einen Leistungselektroniktransformator (3) (Solid-State Transformator), durch den primärseitig dem Energieversorgungsnetz zugeführte elektrische Energie in sekundärseitige, den angeschlossenen elektrischen Verbrauchern zugeführte elektrische Energie gewandelt wird, dadurch gekennzeichnet, dass die elektrische Energie sekundärseitig von dem wenigstens einen Leistungselektroniktransformator (3) als Wechselspannungssignal (VLV) bereitgestellt ist, das im Wesentlichen einen rechteckförmigen Zeitverlauf aufweist, durch den Leistungshalbleiter-Schaltverluste reduziert sind, und der wenigstens eine Leistungselektroniktransformator (3) zumindest im We- sentlichen keine sekundärseitigen Frequenzfilter aufweist, wodurch die Effizienz des gesamten Systems durch Verringerung der Verluste in dem wenigstens einen Leistungselektroniktransformator und durch Eliminierung der sekundärseitigen Frequenzfilter gesteigert ist. 2. Energieversorgungsnetz nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass unterschiedliche elektrische Verbraucher frequenzselektiv durch jeweils zugeordnete, unterschiedliche Spektralanteile der sekundärseitig bereitgestellten Wechselspannung (VLV) versorgt sind. 3. Energieversorgungssystem nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet, dass die von dem wenigstens einen Leistungselektroniktransformator (3) sekundärseitig bereitgestellte elektrische Energie über einen einem jeweiligen Verbraucher oder einer Gruppe von Verbrauchern zugeordneten weiteren Leistungselektroniktransformator (4, 5) zugeführt ist. Energieversorgungssystem nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern zugeordnete weitere Leistungselektroniktransformator (4, 5) dazu eingerichtet ist, einen oder mehrere dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern jeweils zugeordnete Spektralanteile der sekundärsei- tig bereitgestellten Wechselspannung (VLV) ZU detektieren und dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern frequenzselektiv bereitzustellen.

Energieversorgungsnetz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der wenigstens eine Leistungselektroniktransformator (3) dazu eingerichtet ist, einen oder mehrere Spektralanteile der sekundärseitigen Wechselspannung (VLV) gegenüber anderen Spektralanteilen zu priorisieren, indem nichtpriorisierte oder geringer priorisierte Spektralanteile abgeschaltet werden oder ihre Spannungsamplitude abgesenkt wird.

Energieversorgungssystem nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Priorisierung abhängig von wenigstens einem Kennwert der Primärseite (1 ) und/oder der Sekundärseite (2) des Energieversorgungssystems und/oder des wenigstens einen Leistungselektroniktransformators (3) erfolgt.

Energieversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Energieversorgungssystem zur dynamischen Rekonfiguration und Neuzuordnung der von den einzelnen Verbrauchern genutzten Spektralanteile der sekundärseitigen Wechselspannung (VLV) eingerichtet ist.

Verfahren zum Betrieb eines elektrischen Energieversorgungsnetzes nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Energie sekundärseitig von wenigstens einem Leistungselektroniktransformator (3) als Wechselspannungssignal (VLV) bereitgestellt ist, das im Wesentlichen einen rechteckförmigen Zeitverlauf aufweist, und dieses im wesentlichen rechteckförmige Wechselspannungssignal den angeschlossenen elektrischen Verbrauchern im Wesentlichen ohne Frequenzfilterung unmittelbar oder mittelbar zugeführt wird, wodurch die Effizienz des gesamten Systems durch Verringerung der Verluste infolge der verringerten Leistungshalbleiter-Schaltverluste in dem wenigstens einen Leistungselektroniktransformator und durch Eliminierung der sekundärseitigen Frequenzfilter gesteigert ist.

9. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das im Wesentlichen rechteckförmige Wechselspannungssignal den angeschlossenen elektrischen Verbrauchern mittelbar über wenigstens einen weiteren Leistungselektroniktransformator (4, 5) zugeführt wird.

Description:
Elektrisches Energieversorgungsnetz und Verfahren zu dessen Betrieb

Die Erfindung betrifft ein elektrisches Energieversorgungsnetz zur Versorgung von an das Energieversorgungsnetz angeschlossenen elektrischen Verbrauchern mit elektrischer Energie, aufweisend wenigstens einen Leistungselektroniktransformator (Solid-State Transformator), durch den primarseitig dem Energieversorgungsnetz zugeführte elektrische Energie in sekundärseitige, den angeschlossenen elektrischen Verbrauchern zugeführte elektrische Energie gewandelt wird. Die Erfindung betrifft außerdem ein Verfahren zum Betrieb eines derartigen elektrischen Energieversorgungsnetzes.

Elektrische Energieversorgungsnetze dienen der Versorgung elektrischer Verbraucher mit elektrischer Energie. Energieversorgungsnetze verbinden Kraftwerke und andere Energiequellen, z.B. erneuerbare Energiequellen wie Windenergieanlagen und Photovoltaikanlagen, mit den elektrischen Verbrauchern. Hierzu weist das Energieversorgungsnetz unterschiedliche Spannungsebenen auf, um die Netzverluste zu verringern. Es wird bspw. unterschieden zwischen einem Höchstspannungsnetz, einem Hochspannungsnetz, einem Mittelspannungsnetz und einem Niederspannungs- netz. Das Niederspannungsnetz eignet sich zum direkten Anschließen üblicher elektrischer Verbraucher, wie z.B. von Haushaltsgeräten oder Industriemaschinen. Das Niederspannungsnetz wird mit einer Spannung im Bereich von 380 Volt für Dreiphasenwechselstrom und etwa 220 Volt für Einphasenwechselstrom betrieben. Die Netzfrequenz ist in Europa im Wesentlichen fest auf 50 Hertz festgelegt. Zur Um- Wandlung der elektrischen Energie zwischen den verschiedenen Spannungsebenen sind Umspannstationen mit Transformatoren im Einsatz. Durch die vermehrte Einspeisung von Energie aus erneuerbaren Energiequellen sowie Fortschritte im Bereich der Leistungselektronik gibt es neue Konzepte zur Umwandlung und Verteilung der elektrischen Energie. Insbesondere wird der Einsatz sogenannter Leistungselektroniktransformatoren, die auch als Smart Transformer oder Solid-State Transformator bezeichnet werden, untersucht. Bei solchen Leistungselektroniktransformatoren erfolgt die Spannungswandlung durch getaktete Ansteue- rung von Leistungshalbleitern, z.B. Transistoren. Ein mit solchen Leistungselektroniktransformatoren ausgestattetes elektrisches Energieversorgungsnetz weist gegenüber konventionellen Energieversorgungsnetzen viele Vorteile auf, z.B. durch die Möglichkeit intelligenterer Steuerung und Verteilung der elektrischen Energie. Diesbezüglich wird beispielhaft auf die Veröffentlichung von Marco Liserre, Giovanni De Carne und Sebastian Brüske, Multi-frequency power transfer in a smart transformer based distribution grid, IEEE 2014, hingewiesen. Der Erfindung liegt die Aufgabe zugrunde, ein auf solchen Leistungselektroniktransformatoren beruhendes elektrisches Energieversorgungsnetz hinsichtlich der Leistungsfähigkeit weiter zu entwickeln.

Diese Aufgabe wird bei dem eingangs genannten elektrischen Energieversorgungs- netz dadurch gelöst, dass die elektrische Energie sekundärseitig von dem wenigstens einen Leistungselektroniktransformator als Wechselspannungssignal bereitgestellt ist, das im Wesentlichen einen rechteckförmigen Zeitverlauf aufweist, und der wenigstens eine Leistungselektroniktransformator zumindest im Wesentlichen keine sekundärseitigen Frequenzfilter aufweist. Durch die Erfindung wird die gesamte Energieübertragung in einem elektrischen Energieversorgungsnetz, das auf Leistungselektroniktransformatoren beruht, erheblich effizienter gestaltet und besondere Synergieeffekte, die mit der getaktet geschalteten Ansteuerung der Transistoren der Leistungselektroniktransformatoren zusammenhängen, sinnvoll genutzt. Bei bisherigen Ansätzen sollten die Leistungselektroniktransformatoren immer mit relativ stark wirkenden Frequenzfiltern ausgangsseitig beschaltet werden, um sekundärseitig die gewünschte sinusförmige Wechselspannung, wie sie im Niederspannungsnetz bisher gebräuchlich ist, bereitzustellen. Mit solchen stark dimensionierten Ausgangsfiltern steigen aber die Verluste, insbesondere die Schaltverluste der Halbleiter. In Abkehr von bekannten Ansätzen wird daher bei der vorliegenden Erfindung die drastische Änderung vorgeschlagen, solche sekundarseitigen Frequenzfilter von Leistungselekt- roniktransformatoren vollständig zu eliminieren oder zumindest so stark zu minimieren, dass keine wesentlichen Leistungsverluste damit mehr einhergehen. Ein weiterer Vorteil des Entfallens der sekundarseitigen Frequenzfilter besteht darin, dass unerwünschte Resonanzeffekte durch solche Filter entfallen.

Bei bisherigen Ansätzen wurden die Leistungselektronikbauteile der Leistungselektroniktransformatoren verstärkt im linearen Arbeitsbereich geschaltet, um hierdurch bereits möglichst sinusförmige Ausgangssignale zu erzeugen. Durch die vorliegende Erfindung wird auch dies überflüssig. Vielmehr können die Leistungselektronikkomponenten unter weitgehender Vermeidung der Nutzung des linearen Bereiches zwischen zwei diskreten Schaltzuständen hin- und hergeschaltet werden, was die Schaltverluste der Halbleiter weiter verringert.

Dementsprechend kann ein ohne Aufwand im Leistungselektroniktransformator se- kundärseitig erzeugbares Rechteck-Wechselspannungssignal im Wesentlichen ungefiltert in das sekundärseitige Netz abgegeben werden. Hierbei sind bei modernen angeschlossenen Verbrauchern keine besonderen Zusatzmaßnahmen zu treffen, da diese bereits eine Leistungselektronik-Schnittstelle zur elektrischen Netzversorgung aufweisen und daher im Wesentlichen unbeeinflusst von der Kurvenform der bereitgestellten Wechselspannung sind. Für Verbraucher, die bezüglich der Kurvenform empfindlich reagieren, was hauptsächlich ältere Geräte sein dürften, kann ein entsprechendes Vorschaltgerät eingesetzt werden.

Hierdurch wird zudem die Effizienz der elektrischen Energieübertragung deutlich verbessert. Dadurch, dass die Leistungselektroniktransformatoren durch ihre Leistungselektronikkomponenten insbesondere besonders geeignet zur Erzeugung rechteck- förmiger Schaltsignale sind, lässt sich die Erfindung bei einem elektrischen Energie- Versorgungsnetz, das auf Leistungselektroniktransformatoren beruht, besonders effizient realisieren. Zudem kann die Tatsache, dass in einem solchen rechteckförmigen Zeitverlauf des Wechselspannungssignals ein hoher Anteil an Oberwellen vorhanden ist, für bestimmte Steuerungszwecke im sekundärseitigen Teil des Energieversorgungsnetzes genutzt werden, z.B. zur Energieverteilung zu bestimmten Verbrauchern bis hin zum Abschalten bestimmter Verbraucher. Ein weiterer Vorteil ist somit, dass eine gezieltere Steuerung der Energiebereitstellung auf der Sekundärseite des Leistungselektroniktransformators möglich wird.

Ein weiterer Vorteil besteht darin, dass der Leistungselektroniktransformator mit ver- gleichsweise geringen Frequenzen, z.B. im Bereich von einigen 100 Hertz, betrieben werden kann. Auch hierdurch können die Schaltverluste minimiert und somit die Effizienz gesteigert werden.

Das Energieversorgungsnetz kann primärseitig ein Mittelspannungsnetz und sekun- därseitig ein Niederspannungsnetz sein.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass unterschiedliche elektrische Verbraucher frequenzselektiv durch jeweils zugeordnete, unterschiedliche Spektralanteile der sekundärseitig bereitgestellten Wechselspannung versorgt sind. Auf diese Weise können unterschiedliche Verbraucher oder Gruppen von Verbrauchern zentral gesteuert mit elektrischer Energie versorgt werden, d.h. sie können durch die zentrale elektrische Energieversorgung ein- und ausgeschaltet werden oder, sofern der Verbraucher dazu geeignet ist, mit einer geringeren elektrischen Leistung versorgt werden. Hierfür sind insbesondere keine lokalen Leistungs- unterbrechungseinrichtungen, die bei den Verbrauchern angeordnet sind, erforderlich, wie dies bisher der Fall war. Zudem kann hierdurch auch ein direkter elektrischer Energietransfer zwischen einzelnen Verbrauchern realisiert werden. Auf diese Weise kann die elektrische Energie sozusagen über unterschiedliche Kanäle übertragen werden, die durch bestimmte Spektralanteile im Frequenzspektrum des Wechsel- spannungssignals festgelegt sind. Auf diese Weise wird ein Punkt-zu-Punkt Leistungstransfer der elektrischen Energie möglich. Mit dem Begriff„Spektralanteile" sind Anteile des Frequenzspektrums der bereitgestellten Wechselspannung gemeint. Dies können einzelne Frequenzen sein, oder einer oder mehrere Frequenzbereiche (entsprechend einem oder mehreren Spektralbereichen).

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die von dem wenigstens einen Leistungselektroniktransformator sekundärseitig bereitgestellte elektrische Energie über einen einem jeweiligen Verbraucher oder einer Gruppe von Verbrauchern zugeordneten weiteren Leistungselektroniktransformator zugeführt ist. Auf diese Weise kann verbraucherseitig die als Wechselspannungssignal bereitgestellte elektrische Energie in eine für den Verbraucher geeignete Form umgewandelt werden, z.B. in Gleichspannung. Ein solcher weiterer Leistungselektroniktransformator ist besonders geeignet für die Umwandlung des zugeführten Rechteck-Wechselspannungssignals.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass der dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern zugeordnete weitere Leistungselektroniktransformator dazu eingerichtet ist, einen oder mehrere dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern jeweils zugeordnete Spekt- ralanteile der sekundärseitig bereitgestellten Wechselspannung zu detektieren und dem jeweiligen Verbraucher oder der Gruppe von Verbrauchern frequenzselektiv bereitzustellen. Auf diese Weise dient der weitere Leistungselektroniktransformator als verbraucherseitiger Decoder zum Dekodieren (oder Detektieren) der für den jeweiligen Verbraucher oder der Gruppe von Verbrauchern vom zentralen Leistungselektro- niktransformator frequenzselektiv bereitgestellten elektrischen Energie. Diese Aufgabe muss dann nicht von den Verbrauchern selbst übernommen werden.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass der wenigstens eine Leistungselektroniktransformator dazu eingerichtet ist, einen oder mehrere Spektralanteile der sekundärseitigen Wechselspannung gegenüber anderen Spektralanteilen zu priorisieren, indem nichtpriorisierte oder geringer priorisierte Spektralanteile abgeschaltet werden oder ihre Spannungsamplitude abgesenkt wird. Auf diese Weise können bestimmte Verbraucher bevorzugt mit elektrischer Energie versorgt werden, z.B. sicherheitsrelevante Systeme in Krankenhäusern. Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Prio- risierung abhängig von wenigstens einem Kennwert der Primärseite und/oder der Sekundärseite des Energieversorgungssystems und/oder des wenigstens einen Leis- tungselektroniktransformators erfolgt. Der Kennwert der Primärseite kann z.B. eine primärseitig nicht ausreichend verfügbare elektrischer Energie, Spannungsschwankungen oder sonstige Störungen der Primärseite sein. Auf diese Weise können die höher priorisierten Verbraucher auch bei Störungen des primärseitigen Energieversorgungsnetzes zuverlässig weiter betrieben werden. Ein anderer Kennwert, in die- sem Fall ein Kennwert des Leistungselektroniktransformators, kann z.B. die Belastungssituation des Leistungstransformators sein. So kann bei einer Überbelastung des Leistungstransformators die Versorgung der niedriger priorisierten Verbraucher reduziert werden.

Ein anderer Anwendungsfall für die Priorisierung kann z.B. eine Frequenz- oder Spannungsunterstützung im primärseitigen Netz sein, oder einem dem primärseitigen Netz übergeordneten Teil des Energieversorgungsnetzes, z.B. im Hochspannungsnetz. Dies kann durch ein Variieren des Energieverbrauchs der Verbraucher abhängig von Anforderungen, die von einer Steuerung des Energieversorgungsnetzes gestellt werden, erfolgen. Wenn bspw. eine Reduzierung der Leistung eines Verbrauchers für eine kurze Zeit, z.B. 10 % der Einschaltdauer, erforderlich wird, kann dies kurzfristig durch den Leistungselektroniktransformator bzw. dessen Steuerungseinrichtung ausgeführt werden, indem die elektrische Energie von einem niedrig priorisierten Verbraucher dem höher priorisierten Verbraucher bereitgestellt wird, indem der Spektralanteil des niedrig priorisierten Verbrauchers verringert oder auf Null gesetzt wird.

Ein weiterer Anwendungsfall kann eine Interaktion des Leistungselektroniktransformators bzw. dessen Steuereinrichtung mit lokalen Energieerzeugern und Lasten sein, die in einem bestimmten Spektralbereich des Wechselspannungssignals betrieben werden. Der Leistungselektroniktransformator kann dabei die Energieversorgung niedrig priorisierter Verbraucher reduzieren, um lokal die Energie mit den lokalen Energieerzeugern auszugleichen. Es ist ebenfalls möglich, die lokale Energieerzeu- gung anzupassen, indem der Leistungselektroniktransformator oder dessen Steuereinrichtung mit entsprechenden Steuereinrichtungen der lokalen Energieerzeugung kommuniziert und sich abstimmt. Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass das Energieversorgungssystem zur dynamischen Rekonfiguration und Neuzuordnung der von den einzelnen Verbrauchern genutzten Spektralanteile der sekundärseitigen Wechselspannung eingerichtet ist. Eine solche Rekonfiguration und Neuzordnung kann bspw. softwaremäßig erfolgen, z.B. in einer elektronischen Steuerungseinrich- tung des Energieversorgungsnetzes. Zudem können auch die Verbraucher Einfluss darauf nehmen, über welchen oder welche Spektralanteile der bereitgestellten Wechselspannung sie mit elektrischer Energie versorgt werden. Dies können die Verbraucher entweder autark festlegen, oder durch Kommunikation mit einer zentralen Steuerungseinrichtung des elektrischen Energieversorgungsnetzes, die solche Anforde- rungen der Verbraucher empfängt und in eine Energieversorgungskonfiguration übernimmt.

Die eingangs genannte Aufgabe wird ferner durch ein Verfahren zum Betrieb eines derartigen elektrischen Energieversorgungsnetzes gelöst, bei dem die elektrische Energie sekundärseitig von wenigstens einem Leistungselektroniktransformator als Wechselspannungssignal bereitgestellt ist, das im Wesentlichen einen rechteckförmi- gen Zeitverlauf aufweist, und dieses im wesentlichen rechteckförmige Wechselspannungssignal den angeschlossenen elektrischen Verbrauchern im Wesentlichen ohne Frequenzfilterung unmittelbar oder mittelbar zugeführt wird. Auch hierdurch können die zuvor erläuterten Vorteile realisiert werden.

Hierbei kann das im Wesentlichen rechteckförmige Energieversorgungssignal den angeschlossenen elektrischen Verbrauchern mittelbar über wenigstens einen weiteren Leistungselektroniktransformator zugeführt werden. Auf diese Weise kann eine Anpassung der bereitgestellten elektrischen Energie an die Erfordernisse des jeweiligen Verbrauchers realisiert werden. Zudem kann der verbraucherseitige weitere Leistungselektroniktransformator für die Dekodierung der für die Energieversorgung der Verbraucher genutzten Spektralanteile der sekundärseitigen Wechselspannung genutzt werden. Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Verwendung einer Zeichnung näher erläutert. Die Zeichnung Figur 1 zeigt in schematischer Darstellung ein elektrisches Energieversorgungsnetz mit einer Primärseite 1 und ei- ner Sekundärseite 2. Das elektrische Energieversorgungsnetz kann primärseitig bspw. ein Mittelspannungsnetz sein, und sekundärseitig bspw. ein Niederspannungsnetz. Die Primärseite 1 ist mit der Sekundärseite 2 durch einen Leistungselektroniktransformator 3 gekoppelt. In diesem Fall wird davon ausgegangen, dass primärseitig als Eingangsspannung VDC.LV eine Gleichspannung zur Verfügung steht, die über einen Kondensator C mit der Primärseite des Leistungselektroniktransformators 3 gekoppelt ist.

Der Leistungselektroniktransformator 3 gibt an der Sekundärseite 2 eine im Wesentlichen rechteckförmige Wechselspannung ab. An der Ausgangsseite des Leistungs- elektroniktransformators 3, d.h. an der Sekundärseite 2, wird die von dem Leistungselektroniktransformator 3 eingespeiste elektrische Energie hinsichtlich Spannung VLV und Strom Lv überwacht. Die Größen VLV und ILV werden einer Steuereinrichtung 6 zugeführt, die den Leistungselektroniktransformator 3 entsprechend einer vorgegebenen Steuerungs- oder Regelungsstrategie steuert. Beispielsweise kann die Aus- gangsspannung VLV durch die Steuereinrichtung 6 auf einen Sollwert vlv geregelt werden. Das Zeitdiagramm unterhalb der Steuereinrichtung 6 zeigt die Steuerung des Leistungselektroniktransformators 3 zur Abgabe des rechteckförmigen Wechselspannungssignals mit einem Spitzenwert Vmax. Im dargestellten Ausführungsbeispiel sind an die Sekundärseite 2 zwei Lastzweige dargestellt, an die entsprechende Verbraucher angeschlossen werden können. Ein erster Lastzweig A wird über einen ersten Spektralanteil des Wechselspannungssignals mit einer Leistung PA versorgt. Der Lastzweig A ist über eine Koppelinduktivität LA mit Verbrauchern verbunden, die an einem Anschlusspunkt 7 angeschlossen wer- den können. Die Verbraucher können entweder direkt mit der Koppelinduktivität LA verbunden sein, oder über den dargestellten weiteren Leistungselektroniktransformator 4. In diesem Sinne kann auch der weitere Leistungselektroniktransformator 4 bereits als Verbraucher auf der Sekundärseite 2 angesehen werden. Die Figur 1 zeigt einen zweiten Lastzweig B, der über eine Koppelinduktivität LB angeschlossen ist. Entsprechende Verbraucher können hier an einem Anschlusspunkt 8 angeschlossen werden. Die Verbraucher können direkt an die Koppelinduktivität LB angeschlossen sein oder, wie dargestellt, über einen weiteren Leistungselektro- niktransformator 5. In diesem Sinne ist der weitere Leistungselektroniktransformator 5 auch bereits als Verbraucher im Lastkreis B anzusehen. Der Lastkreis B wird über einen zweiten Spektralanteil des Wechselspannungssignals mit einer Leistung PB versorgt. Wie in den jeweiligen Strom-Zeit-Diagrammen unterhalb der Lastkreise A, B erkennbar ist, wird der Lastkreis A mit einem anderen Spektralanteil des Frequenzspektrums des Wechselspannungssignals versorgt als der Lastkreis B, bei dem ein höher- frequenter Spektralanteil als beim Lastkreis A genutzt wird. Die entsprechende Deko- dierung der einem Lastkreis A, B zugeordneten Spektralanteile kann entweder von den angeschlossenen Verbrauchern selbst durchgeführt werden, oder durch den jeweiligen weiteren Leistungselektroniktransformator 4, 5, der auf die zugeordnete Frequenz oder den Frequenzbereich eingestellt ist.