Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTROCHEMICAL ACTIVATION OF WATER
Document Type and Number:
WIPO Patent Application WO/2016/054572
Kind Code:
A1
Abstract:
The methods, systems, and apparatus disclosed herein employ natural, common salts that are electrochemically activated (ECA) in an aqueous solution to result in an ECA product solution that is safe and non-toxic. Using a metal halide salt, such as NaCl with acetic acid may produce a sanitizer or disinfectant of variable pH and FAC, but with the property of long shelf-life.

Inventors:
SHANAHAN JOHN P (US)
GONZALEZ REMIGIO BENAVIDES (US)
Application Number:
PCT/US2015/053826
Publication Date:
April 07, 2016
Filing Date:
October 02, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GENEON TECHNOLOGIES LLC (US)
International Classes:
C02F1/467
Foreign References:
US20080047844A12008-02-28
US20030164286A12003-09-04
US20100219372A12010-09-02
US20020017496A12002-02-14
US20110129758A12011-06-02
Attorney, Agent or Firm:
OKEY, David W. (c/o CPA GlobalP.O. Box 5205, Minneapolis Minnesota, US)
Download PDF:
Claims:
What is claimed is:

1 . A process for generating hypochlorous acid (HOC!) of a specified FAC, comprising:

providing a receptacle containing an aqueous salt solution comprising reactants acetic acid and sodium chloride;

disposing at least two electrodes adapted to be immersed in the aqueous salt solution each disposed at a distance from one another into the receptacle, wherein upon the application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged;

providing electricity to the electrodes in order to produce an ECA product solution from the reactants in the aqueous salt solution; and

determining an FAC of the ECA product solution and controlling a timing and a pausing of the pro vision of electricity to the electrodes in order to achieve a specific FAC of the ECA product solution.

2. The process of claim 1, wherein the acetic acid is in sufficient

concentration in the aqueous salt solution to lower a pH of the aqueous salt solution prior to application of electricity to offset or chemically neutralize the effect of formation of sodium hydroxide in the ECA product solution,

3. The process of claim 1, wherein as an amount of sodium chloride included increases in the aqueous salt solution, an amount of acetic acid required is also increased.

4. The process of claim 1, wherein an amount of acetic acid included in the aqueous salt solution depends on a specific system in which the acetic acid is to be provided, a level of FAC desired, an amount of sodium chloride to be added before application of electricity, and a desired pH range in the ECA product solution.

5. The process of claim 1, wherein the ECA product solution is buffered such that a pH of the ECA product solution is maintained between pH 5 and pH 6.5,

6. The process of claim L wherein the aqueous salt solution is formed by dissolving 1.5 ounces of the fo! lowing solution into a half gallon of water: 3.5 g of powdered acetic acid and 6 g of sodium chloride dissolved in 6.5 ounces of water.

7. The process of claim 1, wherein a proportion of materials by volume in the aqueous salt solution is 74.1 % water, 25% sodium chloride, and 0.9% acetic acid.

8. The process of claim 1, wherein a shelf-life of the EC A product solution is at least 14 days.

9. The process of claim 1, wherein the aqueous salt solution includes seawater.

10. The process of claim 1, wherein the aqueous salt solution includes non- potable water.

11. The process of claim 1 , wherein the acetic acid undergoes at least one of a Kolbe electrolysis and a decarboxylative dimerization during production of the ECA product solution.

12. The process of claim 11, wherein hydrogen is evolved in solution.

Description:
ELECTROCHEMICAL ACTIVATION OF WATER

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of the following U.S.

provisional application: United States Provisional Application No. 62/059,685, filed

October 3, 2014 (GENE-0003-P01).

[0002] The entirety of each of the foregoing applications is incorporated by reference herein.

BACKGROUND

[0003J Field:

[Θ004] The inventive methods and systems described herein generally relate to electrochemical treatment of water to produce cleaning, sanitizing, and antimicrobial solutions.

[0005] Description of the Related Art:

[0006] Many cleaners, sanitizers, disinfectants and antimicrobial products employ harsh chemical s, many of which are toxic. These cause problems when disposed and make their way into the natural water system. Therefore, there have been a number of attempts to make safe and effective cleaners, sanitizers,

disinfectants and antimicrobials.

[Θ007] There have been various prior art publications describing electrochemical activation of salt-containing water. It is possible to use these systems for creating solutions useful for cleaning and sanitizing, however, they typically require bulky apparatus and complicated means for separating anolytes and catholytes.

There remains a need for cleaning, sanitizing and antimicrobial solutions that are created using harmless compounds in a compact apparatus.

SUMMARY

[ΘΘΘ8] The present disclosure provides natural, common salts, electrochemically activated in an aqueous solution to result in an EGA product which is safe and non-toxic, with properties of a cleaner, sanitizer, disinfectant, degreaser, antimicrobial and the like. The materials used allow inexpensive production of large amounts of the ECA product at a site where it is being used. This reduces the expenses of purchasing, storing and shipping large amounts of cleaners, sanitizers, degreasers, disinfectants, antimicrobials and the like, especially for large industrial uses.

[0009] The systems and methods disclosed herein may include a system, comprising at least two electrodes adapted to be immersed in an aqueous salt solution each disposed at a distance from one another, wherein upon the application of electricity a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged and a control module electrically coupled to the electrodes, wherein the control module controls operation of the at least two electrodes and wherein the electrodes are coated with iridium wherein the control module may control the provision of electricity to the electrodes in a manner to perform ECA of the aqueous salt solution to create an EC A product solution. In embodiments, the system may additionally include an ECA product solution selected from a group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. Additionally, the systems and methods disclosed herein may include a salt that is at least one of sodium ch loride and a mixture of sodium chloride and citric acid, acetic acid, or some other additive. The system may include an ECA product solution containing at least HOC1. The system may include a salt which is potassium carbonate. The system may include an ECA product solution containing at least KOH. The system may include a salt which is present in a trace amount. In embodiments, the system may include an ECA product solution containing at least ionized water. The system may include a spray nozzle to distribute the ECA product solution from the system. The system may include a reservoir to collect the ECA product solution. The system may be adapted to provide ECA product solution in a hydraulic tracking application. In embodiments, the system may be adapted to pro vide ECA product solution in at least one of an airplane, a vehicle, a cruise ship, a humidifier, a vaporizer, a furnace, a floor scrubber, a warewashing facility, a laundry facility, a shower head, a faucet, a food sprayer, and a custodial sprayer. In embodiments, the system may include a control module programmed to reverse the polarity of the electrodes after a pre-determined period of time. Additionally the system may include an impeller for mixing the solution. The system may be powered by at least one of line power, a battery, solar energy and kinetic energy. The system may be deployed such that the distance between the at least two electrodes is adjustable by at least one of a manual mechanism and an automatic mechanism. In embodiments, the system may be deployed such that the distance between the at least two electrodes is adjustable in response to a

measurement by a sensor. Additionally, the system may be deployed such the distance between the at least two electrodes is controlled by the control module. The system may include an EGA product solution generated by the operation of the system, wherein the active species is at least one of OH " and CI " .

{0010] The systems and methods disclosed herein may include a device, comprising a portable receptacle adapted to contain an aqueous solution of a carbonate salt, at least two electrodes spaced apart from each other within the portable receptacle, at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes and a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon the provision of electricity to the receptacle contacts, an electrochemical activation (ECA) of the aqueous solution is caused in the portable receptacle to convert the aqueous solution into an ECA product solution. In embodiments, the device may include a carbonate salt, which may be potassium carbonate (K 2 C0 3 ). The device may include a base with a control module that determines the magnitude, timing and polarity of the electricity provided to the electrodes. In embodiments, the electrodes may be made of a highly conductive, non-corrosive metal or made of titanium and have a platinum coating or made of titanium and have an iridium coating. The base and receptacle may include alignment features that cause the receptacle to properly be received by the base. In embodiments, the device may include a receptacle with a magnet and the base includes a sensor for detecting when the magnet is in its vicinity indicating that the receptacle has been received by the base. The device may include a user interface coupled to the control module for indicating at least one of when ECA is progressing and has been completed. In embodiments, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. In embodiments, the EC A product solution may be generated by operation of such a device. Additionally, the active species of the ECA product solution generated may be OH " . In

embodiments, the salt present with the device may be in a trace amount. Θ011] In embodiments, the systems and methods disclosed herein may include a device, comprising a portable receptacle adapted to contain an aqueous solution of a halide salt, at least two electrodes spaced apart from each other within the portable receptacle, at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes, and a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon provision of electricity, an electrochemical activation (ECA) of the aqueous solution in the portable receptacle is caused to convert the aqueous solution into an ECA product solution. In embodiments, the halide salt may be sodium chloride (NaCl) or mixed with citric acid, acetic acid, or some other additive. The base may include a processor that determines the magnitude, timing and polarity of the electricity provided to the electrodes. In embodiments, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The ECA product solution may be generated by the operation of the device and in certain embodiments, the active species may be CI " . Additionally, the salt present in the device may be present in a trace amount.

{0012] The systems and methods disclosed herein may include a device for creating a cleaning solution comprising a portable receptacle adapted to contain water, at least two electrodes spaced apart from each other within the portable receptacle, at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes, a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon provision of electricity, ionization of the water in the portable receptacle is caused to convert the water into a cleaning solution. In embodiments, the systems and methods disclosed herein may include the cleaning solution generated by operation of the device.

Additionally, the salt present in the device may be present in a trace amount,

[Θ013] The systems and methods disclosed herein may include an immersion wand device for immersion into a receptacle containing an aqueous carbonate salt solution, comprising, an elongated housing having a handle at a first end and an immersion head at a second end, at least two electrodes spaced apart from each other within the immersion head, a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, EC A of the aqueous carbonate salt solution in the receptacle is caused to convert the solution in-situ into an EC A product solution. The elongated housing may be extendable to allow the immersion head to extend to the bottom of various sized receptacles. Additionally, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. ECA. product solution may be generated by the operation of the device. Additionally, the active species of the ECA product solution generated by operation of the device may be OH " . Furthermore, the salt present in the device may be present in a trace amount.

[0014] The systems and methods disclosed herein may include an immersion wand device for immersion into a receptacle containing an aqueous metal halide salt solution, comprising an elongated housing having a handle at a first end and an immersion head at a second end, at least two electrodes spaced apart from each other within the immersion head, a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, ECA. of the aqueous metal halide salt solution in the receptacle is caused to convert the solution in-situ into an ECA product solution. The elongated housing may extendable to allow the immersion head to extend to the bottom of various sized receptacles. The ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system or device and/or the disclosed methods. Additionally, the active species of the ECA product solution generated may be CI " . Furthermore, the salt present in the device may be present in a trace amount,

[0015] The systems and methods disclosed herein may include a system for creating an ECA product solution from an aqueous metal halide salt solution comprising at least two electrodes adapted to be immersed in the aqueous metal halide salt solution each disposed at a distance from one another, wherein upon application of electricity , a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and a control module electrically coupled to the electrodes, wherein the control module controls operation of the at least two electrodes. The control module may control the provision of electricity to the electrodes in a manner to perform ECA. of the aqueous metal halide salt solution to create an ECA product solution. The system may also include a pump that directs at least one of air, water, or the metal halide salt-containing solution to the at least two electrodes. In embodiments, the metal halide salt may be a metal chloride salt or sodium chloride. The system may operate at variable amperage. In embodiments, the control module causes the system to operate for a specific amount of time to deliver a specific amount of electrical energy. In embodiments, the system may be operated continuously. The salt may be a mixture of sodium chloride and citric acid, acetic acid, or some other additive. The salt may be present in a trace amount. The system may include a control module which causes the system to operate for a specific amount of time to deliver a specific amount of electrical energy to achieve a specific level of Free Available Chlorine. The system may include varying the operation time of the system varies one or more of the products and the concentration of the products of the ECA.

[0016] An included pump may be an air pump that pushes air through the solution or a water pump that directs the solution to the at least two electrodes. The pump may be controlled to vary a speed of flow of the solution, in embodiments, the EC A product solution may include at least bypochlorous acid. The system may include electrodes which are iridium-coated. The electrodes may also be disposed at a predetermined spacing for use in ECA. The system may include a sensor that measures at least one of FAC and pH. in embodiments, the control module may be programmed to reverse the polarity of the electrodes after a pre-determined period of time. The system may further include an impeller for mixing the solution. The system may be powered by at least one of line power, a battery, solar energy and kinetic energy. In embodiments, the system may operate at less than or equal to 120 Volts or 240 Volts. The system may operate at 4 Amps, 8 Amps, or at least 10 Amps. In embodiments, the time may be at least one minute, five minutes, ten minutes, or fifteen minutes, in embodiments, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The sensor may provide feedback to the control module, wherein the control module modifies operation of the system based on the sensor feedback. The system may further include a user interface in communication with the control module, wherein the user interface is adapted to provide information about the status of at least one of the operation of the system and a condition of the solutions. An ECA product solution may be generated by the operation of the system and/or the disclosed methods, and the active species may be cr.

[0017] The systems and methods disclosed herein may include a system for creating an ECA product solution from an aqueous carbonate salt solution, comprising at least two electrodes adapted to be immersed in the aqueous carbonate solution each disposed at a distance from one another, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged and a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes wherein the control module controls the provision of electricity to the electrodes in a manner to perform ECA of the aqueous carbonate solution to create an EC A product solution. The system may also include at a pump that directs at least one of air, water, or the carbonate-containing solution to the at least two electrodes.

Additionally, the system may further mclude an aqueous carbonate salt which is a metal carbonate salt solution of potassium carbonate. In embodiments, the system may operate at variable amperage. The system may include a control module causes the system to operate for a specific amount of time to deliver a specific amount of electrical energy. The system may be operated continuously. The system may include a control module which causes the system to operate for a specific amount of time to deliver a specific amount of electrical energy to achieve a specific level of potassium hydroxide. The system may include varying the operation time of the system varies one or more of the products and the concentration of the products of the ECA. In embodiments, the system may include a pump which is an air pump that pushes air through the solution. The pump may be controlled to vary a speed of flow of the solution. In embodiments, the system may include electrodes that are iridium-coated. In embodiments, the electrodes may be disposed at a predetermined spacing for use in ECA. The system may include a sensor that measures at least one of concentration and pH. In embodiments, the control module may be programmed to reverse the polarity of the electrodes after a pre-determined period of time. In embodiments, the system may mclude an impeller for mixing the solution. The system may be powered by at least one of line power, a battery, solar energy and kinetic energy. In

embodiments, the system may operate at less than or equal to 120 Volts or less than or equal to 2.40 Volts. The system may operate at 4 Amps, 8 Amps, or at least 10 Amps. In embodiments, the time is at least one minute, at least five minutes, at least ten minutes, or at least fifteen minutes. The system may include a sensor which provides feedback to the control module, wherein the control module modifies operation of the system based on the sensor feedback. The system may include a user interface in communication with the control module, wherein the user interface is adapted to provide information about the status of at least one of the operation of the system and a condition of the solutions. The EC A product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasiiig solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The active species of the ECA product solution may be OH " . The system may include sale which is present in a trace amount.

[0018] The systems and methods disclosed herein may include a system comprising a control module that controls the electrical operation of at least two electrodes, the at least two electrodes disposed at a distance from one another in communication with the control module, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and a pump that is adapted to direct at least one of air or water to the at least two electrodes, wherein the electrodes are adapted to perform electrolysis of water containing trace quantities of salts. In embodiments the electrodes may be iridium-coated. In embodiments, the systems and methods disclosed may comprise a cleaning solution generated by operation of the system. The system may be powered by at least one of line power, a battery, solar energy and kinetic energy. The system may include a sensor that measures parameters of the water. In embodiments, the sensor may provide feedback to the control module, wherein the control module modifies operation of the system based on the sensor feedback. The system may include a user interface of in communication with the control module, wherein the user interface is adapted to provide information about the status of at least one of the operation of the system and a condition of the solutions.

[0019] The systems and methods disclosed herein may include a system, comprising a control module that controls the electrical operation of at least two electrodes the at least two electrodes disposed at a distance from one another in communication with the control module, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged and a pump that directs at least one of air or water to the at least two electrodes, wherein the electrodes are indium-coated, and wherein the electrodes are adapted to perform ECA. of a salt-containing solution to produce an ECA product solution. In embodiments, the salt may be sodium chloride, a mixture of sodium chloride and citric acid, or potassium carbonate. The salt may also be present in a trace amount. The system may be powered by at least one of line power, a batter} ' , solar energy and kinetic energy. The system may also include a sensor that measures a condition of the salt-containing solution, wherein the sensor provides feedback to the control module and wherein the control module modifies operation of the system based on the sensor feedback. The system may include a user interface in

communication with the control module, wherein the user interface is adapted to provide information about the status of at least one of the operation of the system and a condition of the solutions. The distance between the at least two electrodes may be adjustable by at least one of a manual mechanism and an automatic mechanism. In embodiments, the distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. The distance betw r een the at least two electrodes may be controlled by the control module. In embodiments, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The ECA product solution may be generated by the operation of the system. The active species of the ECA product solution may include at least one of CI " and Oil .

[0Θ20] The systems and methods disclosed herein may include an immersion device for immersion into a receptacle containing an aqueous metal halide salt solution, comprising a submersible housing, at least two electrodes spaced apart from each other within the submersible housing, a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, electrochemical activation (ECA) of the aqueous metal halide salt solution in the receptacle is caused to convert, the solution in-situ into an ECA product solution. In embodiments, the aqueous metal halide salt solution is a sodium chloride (NaCl) solution. In embodiments, the distance between the at least two electrodes is adjustable by at least one of a manual mechanism and an automatic mechanism. The distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. The distance between the at least two electrodes may be controlled by a control module in electrical communication with the device. The EGA. product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The systems and methods disclosed herein may include the EGA product solution generated by operation of the device. The active species of the EGA product solution may be CI " . In embodiments, the salt may be present in a trace amount.

[0021] The systems and methods disclosed herein may include an immersion device for immersion into a receptacle containing an aqueous metal carbonate salt solution, comprising, a submersible housing, at least two electrodes spaced apart from each other within the submersible housing, a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, electrochemical activation (EGA) of the aqueous metal carbonate salt solution in the receptacle is caused to convert the solution ίη-situ into an EGA product solution. The aqueous metal carbonate salt solution is a potassium carbonate ( CO.;) solution, in embodiments, the distance between the at least two electrodes is adjustable by at least one of a manual mechanism and an automatic mechanism. The distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. In embodiments, the distance between the at least two electrodes may be controlled by a control module in electrical

communication with the device. The EGA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The systems and methods disclosed herein, EGA. product solution generated by operation of the device. In embodiments, the active species may be OH " . In embodiments, the salt may be present in a trace amount,

[0022 J A continuous flow system for creating an EGA product solution from a solution of water and a dissolved metai halide salt additive comprising an intake that provides the water to the system, a source of additive that provides metal halide salt to the water to create a solution, a flow conduit that directs the solution through the system, at least two electrodes in the flow conduit adapted to be in contact with the solution, at least one flow control device in the flow conduit that regulates flow through the flow conduit, and a controller coupled to the flow control device adapted to produce a continuous stream of ECA product solution. In embodiments, the system may include at least one flow sensor that determines a flow rate of solution through the system. The system may include at least one chemical sensor that monitors chemical properties of the solution. In embodiments, the controller may be further coupled to at least one flow sensor and at least one chemical sensor to interactively provide power to the electrodes based upon readings from the sensors. In embodiments, the flow control device may be one of an intake valve and an outflow valve. In embodiments, the flow control sensor may be one of an intake sensor and an outflow sensor. In embodiments, the metal halide salt may be metal chloride salt or sodium chloride (NaCl). In embodiments, the system may be adapted to provide the continuous stream in a hydraulic tracking application. Additionally, the system may be adapted to provide the continuous stream in at least one of an airplane, a vehicle, a cruise ship, a humidifier, a vaporizer, a furnace, a floor scrubber, a warewashing facility, a laundry facility, a shower head, a faucet, a food sprayer, and a custodial sprayer. In embodiments, the distance between the at least two electrodes may be adj ustable by at least one of a manual mechanism and an automatic mechanism. In embodiments, the distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. Additionally, the distance between the at least two electrodes may be controlled by the controller. In embodiments, the ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The active species of the ECA product may be CI " . In embodiments, the salt may be present in a trace amount.

(0023] The systems and methods disclosed herein may include a continuous flow system for creating an ECA product solution from a solution of water and a dissolved metal carbonate salt additive comprising an intake that provides the water to the system, a source of additive that provides metal carbonate salt to the water to create a solution, a flow conduit that directs the solution through the system, at least two electrodes in the flow conduit adapted to be in contact with the solution, at least one flow control device in the flow conduit that regulates flow through the flow conduit, and a controller that operates the flow control device adapted to produce a continuous stream of the EGA product solution. The system may include at least one flow sensor that determines a flow rate of solution through the system. The system may also include at least one chemical sensor that monitors chemical properties of the solution. The controller may be further coupled to at least one flow sensor and at least one chemical sensor to interactively provide power to the electrodes based upon readings from the sensors. The flow control device may be one of an intake valve and an outflow valve. The flow control sensor may be one of an intake sensor and an outflow sensor. In embodiments, the metal carbonate salt ma ¬ be potassium carbonate (K 2 CO 3 ). The system may be adapted to provide the continuous stream in a hydraulic fracking application. The system may be adapted to provide the continuous stream in at least one of an airplane, a vehicle, a cruise ship, a humidifier, a vaporizer, a furnace, a floor scrubber, a warewashing facility, a laundry facility, a shower head, a faucet, a food sprayer, and a custodial sprayer. In embodiments, the distance between the at least two electrodes may be adjustable by at least one of a manual mechanism and an automatic mechanism. In embodiments, the distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. In embodiments, the distance between the at least two electrodes may be controlled by the controller. The ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The ECA product solution may include the active species OH " . In embodiments, the salt may be present in a trace amount.

[0Θ24] The systems and methods disclosed herein may include a food treatment system, comprising, at least two electrodes disposed at a distance from one another in communication with a control module, wherein upon application of electricity, a first electrode may be adapted to be positively charged and a second electrode is adapted to be negatively charged the control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes, and a pump that directs at least one of air, water, or a salt- containing solution to the at least two electrodes, wherein the electrodes are adapted to perform ECA of the salt-containing solution to produce an ECA. product solution, wherein the ECA product solution is suitable for treating food. In embodiments, the salt may be sodium chloride or a mixture of sodium chloride and citric acid, acetic acid, or some other additive. The system may include a reservoir to collect the ECA product solution. In embodiments, the salt may be present in a trace amount. The ECA product solution may contain at least HOCI and may contain at least ionized water. In embodiments, the electrodes may be iri.di urn-coated. The system may further include a spray nozzle to distribute the ECA product solution from the system. In embodiments, the salt may be potassium carbonate. The ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The active species of the ECA product may be OH " or CI " .

[0025] The systems and methods disclosed herein may include a hand and skin treatment system, comprising at least two electrodes disposed at a distance from one another in communication with the control module, wherein a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged upon application of electricity , a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes, a pump that directs at least one of air, water, or a salt-containing solution to the at least two electrodes, wherein the electrodes are adapted to perform ECA of the salt-containing solution to produce an ECA product solution, wherein the ECA product solution is suitable for hand and skin treatment. In embodiments, the salt may be sodium chloride or a mixture of sodium chloride and citric acid, acetic acid, or some other additive. In embodiments, the system may include a reservoir to collect the ECA product solution. In embodiments, the salt may be present in a trace amount. In embodiments, the ECA product solution may contain at least HOC!. In

embodiments, the ECA product solution may contain at least ionized water. In embodiments, the electrodes may be iridium-coated. In embodiments, the system may include a spray nozzle to distribute the ECA product solution from the system, in embodiments, the salt is potassium carbonate. The ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The system may include the ECA product solution with active species OH " or CI " . In embodiments, the ECA product solution may be an emollient.

[ΘΘ26] The systems and methods disclosed herein may include a surface treatment system, comprising at least two electrodes disposed at a distance from one another in communication with the control module, wherein a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged upon application of electricity, a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes and a pump that directs at least one of air, water, or a salt-containing solution to the at least two electrodes, wherein the electrodes are adapted to perform ECA of the salt-containing solution to produce an ECA product solution, wherein the ECA product solution is suitable for surface treatment. In embodiments, the salt may ¬ be sodium chloride or a mixture of sodium chloride and citric acid, acetic acid, or some other additive. In embodiments, the system may include a reservoir to collect the ECA product solution. In embodiments, the salt may be present in a trace amount. In embodiments, the ECA product solution may contains at least HOC1 or at least ionized water. The system may include electrodes which are iridium-coated.

Additionally, the system may further include a spray nozzle to distribute the ECA product solution from the system. In embodiments, the system may include salt which is potassium carbonate. The ECA product solution may be selected from the group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasmg solution, and an antimicrobial solution. An ECA product solution may be generated by the operation of the system and/or the disclosed methods. The ECA product solution may include an active species of OH " . The ECA product solution may include an active species C .

[0027] The systems and methods disclosed herein may include a method, comprising providing at least two electrodes adapted to be immersed in an aqueous salt solution each disposed at a distance from one another, wherein upon the application of electricity a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged and providing a control module electrically coupled to the electrodes, wherein the control module controls operation of the at least two electrodes and wherein the electrodes are coated with iridium wherein the control module may control the provision of electricity to the electrodes i a manner to perform ECA of the aqueous salt solution to create an ECA product solution, in embodiments, the method may generate an ECA product solution selected from a group comprising a sanitizing solution, a disinfecting solution, a cleaning solution, a degreasing solution, and an antimicrobial solution. The salt may be at least one of sodium chloride and a mixture of sodium chloride and citric acid, acetic acid, or some other additive. The ECA product solution may contain at least HOC1. The salt- may be at least potassium carbonate. The ECA product solution may contain at least KOH. The salt may be present in a trace amount. The ECA product solution may contain at least ionized water. The method may include using a spray nozzle to distribute the ECA product solution. The method may include using a reservoir to collect the ECA product solution. The method may be adapted to provide ECA product solution in a hydraulic tracking application. In embodiments, the method may be adapted to provide ECA. product solution in at least one of an airplane, a vehicle, a cruise ship, a humidifier, a vaporizer, a furnace, a floor scrubber, a warewashing facility, a laundry facility, a shower head, a faucet, a food sprayer, and a custodial sprayer. In embodiments, the method may include using a control module

programmed to reverse the polarity of the electrodes after a pre-determined period of time. Additional!)' the method may include operating a magnetic impeller powered from the base of a detachable vessel for mixing the solution. The method may include utilizing power from at least one of line power, a batter} ' , solar energy and kinetic energy. The distance between the at least two electrodes may be adjustable by at least one of a manual mechanism and an automatic mechanism. The distance between the at least two electrodes may be adjustable in response to a measurement by a sensor. The distance between the at least two electrodes may be controlled by the control module. An ECA product solution generated by the operation of the method may have active species of at least one of OH " and CI " .

(0028] The systems and methods disclosed herein may include a method, comprising providing a portable receptacle adapted to contain an aqueous solution of a carbonate salt, providing at least two electrodes spaced apart from each other within the portable receptacle, providing at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes; and providing a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon the provision of electricity to the receptacle contacts, an electrochemical activation (ECA) of the aqueous solution is caused in the portable receptacle to convert the aqueous solution into an ECA product solution.

[Θ029] The systems and methods disclosed herein may include a method, comprising providing a portable receptacle adapted to contain an aqueous solution of a halide salt, providing at least two electrodes spaced apart from each other within the portable receptacle, providing at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes, and providing a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon provision of electricity, an electrochemical activation (ECA) of the aqueous solution in the portable receptacle is caused to convert the aqueous solution into an ECA product solution,

[ΘΘ30] The systems and methods disclosed herein may include a method for creating a cleaning solution comprising, providing a portable receptacle adapted to contain water, providing at least two electrodes spaced apart from each other within the portable receptacle, providing at least two receptacle contacts being electrical contacts disposed on the container, electrically connected to the electrodes, providing a base adapted to receive the receptacle and provide electricity to the receptacle contacts, wherein upon provision of electricity, ionization of the water in the portable receptacle is caused to convert the water into a cleaning solution.

[0031 J The systems and methods disclosed herein may include a method for providing an immersion wand device for immersion into a receptacle containing an aqueous carbonate salt solution, comprising providing an elongated housing having a handle at a first end and an immersion head at a second end, providing at least two electrodes spaced apart from each other within the immersion head, providing a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, ECA of the aqueous carbonate salt solution in the receptacle is caused to convert the solution in-situ into an ECA product solution.

[0032] The systems and methods disclosed herein may include a method for providing an immersion wand device for immersion into a receptacle containing an aqueous metal halide salt solution, comprising, providing an elongated housing having a handle at a first end and an immersion head at a second end, providing at least two electrodes spaced apart from each other within the immersion head, providing a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, ECA of the aqueous metal haiide salt solution in the receptacle is caused to convert the solution in-situ into an ECA product solution,

[0033] The systems and methods disclosed herein may include a method for creating an ECA product solution from an aqueous metal haiide salt solution comprising, providing at least two electrodes adapted to be immersed in the aqueous metal haiide salt solution each disposed at a distance from one another, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and providing a control module electrically coupled to the electrodes, wherein the control module controls operation of the at least two el ectrodes wherein the control module controls the provision of electricity to the electrodes in a manner to perform ECA of the aqueous metal haiide salt solution to create an ECA product solution.

[0034] The systems and methods disclosed herein may include a method for creating an ECA. product solution from an aqueous carbonate salt solution, comprising providing at least two electrodes adapted to be immersed in the aqueous carbonate solution each disposed at a distance from one another, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and providing a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes, wherein the control module controls the provision of electricity to the electrodes in a manner to perform ECA of the aqueous carbonate solution to create an ECA product solution.

[0035] The systems and methods disclosed herein may include a method, comprising, providing a control module that controls the electrical operation of at least two electrodes, the at least two electrodes disposed at a distance from one another in communication with the control module, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and providing a pump that is adapted to direct at least one of air or water to the at least two electrodes, wherein the electrodes are adapted to perform electrolysis of water containing trace quantities of salts.

[0036] The systems and methods disclosed herein may include a method comprising providing a control module that controls the electrical operation of at least two electrodes, the at least two electrodes disposed at a distance from one another in communication with the control module, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, and providing a pump that directs at least one of air or water to the at least two electrodes, wherein the electrodes are iridium-coated, and wherein the electrodes are adapted to perform EGA of a salt-containing solution to produce an ECA product solution.

[ΘΘ37] The systems and methods disclosed herein may include a method for an immersion device for immersion into a receptacle containing an aqueous metal halide salt solution, comprising, providing a submersible housing, providing at least two electrodes spaced apart from each other within the submersible housing, providing a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, electrochemical activation (EGA) of the aqueous metal halide salt solution in the receptacle is caused to convert the solution in-situ into an EGA. product solution.

[0038] The systems and methods disclosed herein may include a method for an immersion device for immersion into a receptacle containing an aqueous metal carbonate salt solution, comprising, providing a submersible housing, providing at least two electrodes spaced apart from each other within the submersible housing, providing a base unit electrically coupled to the electrodes to provide electricity to the electrodes, wherein upon provision of electricity, electrochemical activation (ECA) of the aqueous metal carbonate salt solution in the receptacle is caused to convert the solution in-situ into an EGA product solution.

[0039] The systems and methods disclosed herein may include a continuous flow method for creating an ECA product solution from a solution of water and a dissolved metal halide salt additive comprising, providing an intake that provides the water to the system, providing a source of additive that provides metal halide salt to the water to create a solution, providing a flow conduit that directs the solution through the system, providing at least two electrodes in the flow conduit adapted to be in contact with the solution, providing at least one flow control device in. the flow conduit that regulates flow through the flow conduit, and providing a controller coupled to the flow control device adapted to produce a continuous stream of EGA product solution. [0040] The systems and methods disclosed herein may include a continuous flow method for creating an EGA product solution from a solution of water and a dissolved metal carbonate salt additive comprising, providing an intake that provides the water to the system, providing a source of additive that provides metal carbonate salt to the water to create a solution, providing a flow conduit that directs the solution through the system, providing at least two electrodes in the flow conduit adapted to be in contact with the solution, providing at least one flow control device in the flow conduit that regulates flow through the flow conduit, and providing a control ler that operates the flow control device adapted to produce a continuous stream of the EC A product solution.

[0041 J The systems and methods disclosed herein may include a food treatment method, comprising providing at least two electrodes disposed at a distance from one another in communication with a control module, wherein upon application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged;, providing the control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes, and providing a pump that directs at least one of air, water, or a salt-containing solution to the at least two electrodes, wherein the electrodes are adapted to perform EC A of the salt-containing solution to produce an EGA product solution, wherein the EGA product solution is suitable for treating food.

[ΘΘ42] The systems and methods disclosed herein may include a hand and skin treatment method, comprising, providing at least two electrodes disposed at a distance from one another in communication with the control module, wherein a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged upon application of electricity, providing a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes and providing a pump that directs at least one of air, water, or a salt-containing solution to the at least two electrodes, wherein the electrodes are adapted to perform EGA of the salt-containing solution to produce an EGA product solution, wherein the EGA product solution is suitable for hand and skin treatment.

[0043] The systems and methods disclosed herein may include a surface treatment method, comprising providing at least two electrodes disposed at a distance from one another in communication with the control module, wherein a first electrode is adapted to be positiveiy charged and a second electrode is adapted to be negatively charged upon application of electricity, providing a control module electrically coupled to the at least two electrodes, wherein the control module controls operation of the at least two electrodes, and providing a pump that directs at least one of air, water, or a salt-containing solution to the at least two electrodes, wherein the electrodes are adapted to perform ECA of the salt-containing solution to produce an ECA product solution, wherein the ECA product solution is suitable for surface treatment.

[0044] In an aspect, a process for generating a potassium hydroxide (KOH) and surfactant mixture may include providing a receptacle containing an aqueous salt solution comprising a surfactant and potassium bicarbonate, disposing at least two electrodes adapted to be immersed in the aqueous salt solution each disposed at a distance from one another into the receptacle, wherein upon the application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, providing electricity to the electrodes in order to produce an ECA product solution from the reactants in the solution, and determining a concentration of KOH in the ECA product solution and controlling a timing and a pausing of the provision of electricity to the electrodes in order to achieve a specific concentration of KOH in the ECA product solution. The surfactant may be selected from the group consisting of: sodium dodecyl sulfate (SDS), sodium lauryl sulfate (SLS), and sodium lauryl sulfoacetate (SLSa). The aqueous salt solution may include potassium bicarbonate at 0.5% by volume, 0.1% by volume, or 1.0% by volume. The surfactant does not precipitate or otherwise separate from the aqueous salt solution during application of electricity.

[0045] In an aspect, a process for generating hypochlorous acid (HOC1) of a specified FAC may include providing a receptacle containing an aqueous salt solution comprising acetic acid and sodium chloride, disposing at least two electrodes adapted to be immersed in the aqueous salt solution each d sposed at a distance from one another into the receptacle, wherein upon the application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, providing electricity to the electrodes in order to produce an ECA product solution from the reactants in the solution, and determining an FAC of the EC A product solution and controlling a timing and a pausing of the provision of electricity to the electrodes in order to achieve a specific FAC of the ECA product solution. The acetic acid may be in sufficient concentration in the aqueous salt solution to lower the pH of the solution prior to application of electricity to offset or chemically neutralize the effect of formation of sodium hydroxide in the ECA product solution. As the amount of sodium chloride included increases in aqueous salt- solution, the amount of acetic acid required may also be increased. The amount of acetic acid included in the aqueous salt solution depends on the specific system, level of FAC desired, the amount of sodium chloride to be added before application of electricity, and the desired pH range in the ECA product solution. The ECA product solution is buffered such that the pH is maintained between pH 5 and pH 6.5. The aqueous salt solution may be formed by dissolving 1.5 ounces of the following solution into a half gallon of water: 3.5 g of powdered acetic acid and 6 g of sodium chloride dissolved in 6.5 ounces of water. The proportion of materials by volume in the aqueous salt solution is 74.1 % water, 25% sodium chloride, and 0.9% acetic acid. The shelf-life of the ECA product solution may be at least 14 days. The aqueous salt solution includes seawater, ocean water, or non-potable water.

(0046] These and other systems, methods, objects, features, and advantages of the present disclosure will be apparent to those skilled in the art from the follo wing detailed description of the preferred embodiment and the drawings.

[Θ047] All documents mentioned herein are hereby incorporated in their entirety by reference. References to items in the singular should be understood to include items in the plural, and vice versa, unless explicitly stated otherwise or clear from the text. Grammatical conjunctions are intended to express any and all disjunctive and conjunctive combinations of conjoined clauses, sentences, words, and the like, unless otherwise stated or clear from the context. Titles and headings have been added solely for the convenience of the reader and are not intended to limit or reduce the coverage of the descriptions.

BRIEF DESCRIPTION OF THE FIGURES

[0048] The disclosure and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:

[0049] Fig. 1 depicts a block diagram of an ECA system. [Θ050] Fig, 2 depicts embodiments of electrodes useful in an ECA system, [0051 J Fig. 3 depicts an elevational view of an embodiment as it would appear in use.

[0052] Fig. 4 depicts an elevational view of the immersion wand of Fig. 3 with stabilizer assembly.

[0053] Fig. 5 shows the inside chamber of the immersion head 300.

[0054] Fig. 6 shows an alternative embodiment of an immersion wand.

[0055] Fig. 7 depicts an elevational view of another embodiment, showing a first alternative handle design.

[ΘΘ56] Fig. 8 depicts an elevational view of another embodiment, showing a second alternative handle design.

[0057] Fig. 8A depicts a perspective view of another embodiment, showing an extendable immersion head design.

[0058] Fig. 8B depicts a perspective view of another embodiment of the immersion heads.

[0059] Fig. 8C depicts a view of the immersion head design of Fig. 8B with the top housing removed.

[0060] Fig. 8D depicts an exploded view of the immersion head of Fig, 8B.

[0061] Fig. 9 depicts an enlarged view of the top of the handle 100 of the immersion wand.

[0062] Fig. 10 depicts an enlarged view of the base unit 500.

[0063] Fig. 1 OA depicts another embodiment of a base unit 500.

[0064] Fig. 11A depicts an elevational view of another embodiment.

[0065] Fig. 11B depicts a plan view of the embodiment shown in Fig. 11 A.

[0066] Fig. I IC depicts a perspective view of another embodiment similar to that shown in Figs. HA and 1 IB.

[0067] Fig. 12 depicts a schematic diagram of an electrode-integrated receptacle apparatus,

[0068] Fig. 12A. depicts a perspective view of an embodiment consistent with the schematic of Fig. 12. [0069] Fig. 12B depicts a perspective view of the receptacle of the embodiment shown in Fig. 12A.

[ΘΘ70] Fig. 12C depicts a perspective view of the charging base receptacle of the embodiment shown in Fig. 12A.

[0071] Fig. 12D depicts a plan view of the bottom of the receptacle of Fig.

72] Fig. 12E depicts a sectional view of the receptacle of Fig. 13B viewing the bottom of the receptacle.

(0073] Fig. 12F depicts an exploded view of t he receptacl e apparatus of Fig. 12A.

[0074 J Fig. 12G depicts an exploded view of another receptacle embodiment.

[0075] Fig. 13 depicts an instant flow apparatus.

[0076] Fig. 13A depicts a front eievational view of the apparatus of Fig.

13.

[0077] Fig. 13 B depicts a rear eievational view of the apparatus of Fig. 13 with the cover removed.

[0078] Fig. 13C depicts another rear eievational view of the apparatus of Fig. 13 with the cover removed.

[0079 J Fig. 13D depicts a pie chart illustrating an example of the composition of fracking fluids.

[0080] Fig. 13E depicts a continuous flow apparatus for use in the frack ng industry.

[0081] Fig. 13F depicts an exploded view of an alternative embodiment of an instant flow apparatus.

[0082] Fig. 13G is an enlarged view of elements of the instant flow apparatus of Fig. 13F.

[0083] Fig. 13H is an enlarged view of elements of the instant flow apparatus of Fig. 13F.

[Θ084] Fig. 131 is an enlarged view of elements of the instant flow apparatus of Fig. 13F.

[0085] Fig. 13 J depicts an exploded view of an alternative embodiment of an instant flow apparatus, showing the system electronics. Θ086] Fig. 13K depicts an exploded view of the front panel of an al ternati ve embodiment of an instant flo w apparatus.

DETAILED DESCRIPTION

[0087] By applying an electric current to a solution of water and common salts, an electrolysis of the salts in solution occurs, which is known as electrochemical activation or "EGA". Depending on the salt, various products and active species can be generated via ECA. In the prior art, the current was delivered to the solution via an anode and a cathode to produce an electrolyte solution that was separated into both an anolyte and a catholyte. Such separation required various technologies, such as membranes, receptacles, and the like, to separate the anolyte from the catholyte.

While delivering electrical current to the solution via an anode and a cathode, the instant application discloses systems and methods of ECA that do not require the separation of the resultant ECA product solution. The instant application discloses a variety of apparatus, including embodiments that are handheld, tabletop, wall- mounted, bath, sprayer, floor scmbber, device integrated and many others, for ECA where the salt-containing solution interacts with the electrodes to produce an ECA. product solution in a blended stream. Certain of these embodiments are sized to enable portability and/or easy deployment. Certain embodiments are battery-powered to enable portability and various applications where other power sources are not readily available. The ECA product may be environmentally safe cleaners, sanitizers, disinfectants, antimicrobials, degreasers and the like. Further, the instant application discloses various reactants to be used in ECA. One reactant is a sodium chloride (NaCl) and citric acid (C6¾0 7 ) mixture wherein ECA produces a product comprising a hypochlorous acid (HOC1) solution that exhibits a shelf life of up to 60 days, a pH in the range of about 3 - 7 and a free available chlorine concentration (FAC) of about 20 ppm to 1240 ppm. The apparatus may also be used to perform with non-potable w r ater as well as seawater directly from the ocean or seas. This device can expand or contract its electrical power curve automatically to increase or reduce power curves to ensure that the seawater or non-potable water is sufficiently charged to generate FAC. For example, an apparatus deployed on a cruise ship may have an inlet positioned to draw sea or ocean water from outside the ship into the apparatus for electrolysis. The sea or ocean water may be optionally filtered to remove contaminants or particulate matter.

[ΘΘ88] Another reactant is potassium carbonate (K7CO 3 ) wherein ECA produces a product comprising a potassium hydroxide (KOH) solution. In any event, the pH of ECA product solutions produced may range from pH 2 to a high of pH 12. The pH may be lower or higher in certain embodiments. These apparatus, solutions and their various designs and uses are further described herein.

[Θ089] Referring now to Fig. 1 , a block diagram depicting the various components of an embodiment of an ECA system 1000 as described herein is shown. The ECA system 1000 may include at least two electrodes 1004 but can include more than two in various embodiments, as described herein. A control module 1010 may include a processor 1024 and the necessary memory, programs and logic to control the system. The control module 1010 may provide current to the electrodes 1004 as described herein or may control the current provided by the power source 1018. When the control module 1010 provides a DC current to the electrodes 1004, one electrode 1004 may become positively charged while the other electrode 1004 may be negatively charged, depending on the current flow. In this way, the electrodes 1004 form an anode (the negatively charged electrode 1004) and a cathode (the positive!)' charged electrode 1004). When electrodes 1004 are placed in a liquid, such as water or a salt solution, the electrodes cause an electrolysis reaction in the water or salt solution. The products of the reaction may be allowed to blend as they are formed and as they remain in solution. The anolyte may be charged to a higher energy level to draw the chloride from the NaCl. A lower power on the catholyte provides for lower production of NaOH and creates less of this solution allowing for HOC! to become the predominant solution. These reactions are described herein. As shown in Fig. 1 and described in more detail herein, the ECA system 1000 may further include a water pump 1008, impeller 1020, sensor 1022, air pump 1012 and reservoir 1014.

Θ090] The control module may also evaluate the amount of NaCl or KOH in solution and can spread the current in tighter or expanding current waves to ensure the proper electrolysis of the solution. The spreading or compression of the current flow ensures proper performance and ensures that t e solutions meet the design goals of FAC or KOH concentration. [0091] The conductivity of the solution is based upon the amount of dissolved particles in the solution. In a high concentration, the water is very conductive. In a low concentration, the water is less conductive. Low conductivity allows for slower electro-chemical reactions but has less energy dissipated. High conductivity allows for faster electro-chemical reactions, but draws a great deal of power. The amount of power dissipated can cause the electrodes, or system electronics to overheat and to become damaged. Therefore, the spacing between the electrodes is important, as well as the power and duration of the power to provide to the electrodes. A further discussion is provided herein.

[0092] The electrodes 1004 may be disposed at a particular distance from one another. The distance between surfaces of the electrodes 1004 may be selected to optimize the operation of the electrodes 1004. For example, the distance may be about 8 ram.. In some embodiments, the distance may be less than 8 mm, while in other embodiments the distance may be greater than 8 mm. In any event, the distance may be modified to improve or alter the operation of the electrodes 1004. The electrodes may be mounted on a rack or other attachment system that allows for movement along a continuous path or a path that is limited to obtain set. electrode spacing. In other embodiments, the electrodes may be attached at discrete attachment points and the electrodes can be moved between various attachment points to obtain different spacing.

[0093] The distance between electrodes may be adjusted manually, automatically, or in response to sensor feedback, such as for example to operate the system with different concentrations of salts, and with different power settings. For example, the electrodes may be automatically adjusted such, as when a user inputs a parameter to the system and the optimal electrode distance based on the parameter is different from the current setting. In an embodiment, the distance between the electrodes may be adjusted in response to sensor feedback. For example, as the concentration of HOC! increases as ECA proceeds, the resistance of the solution also increases. The device may additionally employ the use of on board solution flow technology and sensors that allow the user to measure the FAC and pH of the solution being produced. A sensor may measure the concentration of F AC, the temperature of the electrodes and/or the resistance of the solution and make an adjustment in the distance of the el ectrodes in response to the measurement. By making this sen sor- based adjustment, the spacing of the electrodes may be kept optimal, such as to keep the temperature in the electrodes from becoming too high. In embodiments, automatic and sensor-based electrode adjustment may be controlled by the control module 1010. In embodiments, while electrodes may generally be disposed in parallel to one another, in other embodiments, electrodes may be disposed at an angle with respect to one another. If the electrodes were angled with respect to each other, most of the current flow would occur where the electrodes are the closest. This may result in uneven reaction rates that may take longer to create a uniform solution. However, as conditions change in the EGA product solution, certain portions of the electrodes may be optimally spaced due to the angling. Indeed, as conditions continue to change in the ECA product solution, other portions of the electrodes may be optimally spaced. By angling the electrodes with respect to one another, the electrodes may on average function well enough, but the range of spacing between the electrodes may be optimal for conditions throughout the reaction.

[0094] if it is assumed that the concentration is higher in one location as opposed to other locations, it may be beneficial to adjust the distances between the electrodes accordingly.

[0095] Consider, for example, an embodiment where there are three electrodes arranged horizontally parallel to each other each higher that the last. In this embodiment, the top and bottom electrodes would both be either anodes or cathodes with the middle electrode being the opposite polarity. If salt is dropped in the container at the bottom, it has its highest concentration at the bottom with lower concentrations as one moves vertically upward. Therefore, for uniform reactions, one should have the spacing between the lowest and middle electrodes being larger than the spacing between the top and middle electrodes. The differences would be based upon the relative differences in the concentration between each pair of electrodes. In other embodiments, the opposite spacing may be present.

Θ096] In embodiments, at least two electrodes may be needed by the ECA system 1000. In embodiments, more than two electrodes may be employed by the system. For example, electrodes may operate in pairs, however, the pairs may utilize shared electrodes. For example, an ECA system 1000 may utilize three electrodes. In this configuration, two of the electrodes may be positively charged and one of the electrodes may be negatively charged. The negatively charged electrode may be shared electrode so that two pairs of electrodes are formed in this configuration.

When the polarity is reversed in this configuration, only one of the electrodes is positively charged while two of the electrodes are negatively charged and the positively charged electrode is the shared electrode. In embodiments, certain embodiments of the EGA system 1000 may use arrays of a plurality of electrodes, such as might be useful in large scale applications of the ECA system 1000.

[0097] In embodiments, the electrodes 1004 may be sized and shaped for particular embodiments and applications of the ECA system 1000. For example, the electrodes 1004 may be in a generally round shape, in a generally rectangular shape, in a generally square shape, or in any other shape or geometry that is conducive to operation as electrodes in the system. For example, Fig. 22 depicts several embodiments of electrodes 1004 in different shapes. Electrode 1100 is shaped in a generally rectangular shape. In certain embodiments, such as in an elongated immersive apparatus embodiment such as that shown in Figs. 3, 4, 7, 8, and 8A, two or more electrodes 1100 may be disposed adjacent to one another in operation. The generally rectangular shape is conducive to being disposed within the generally elongated apparatus.

(0098] The environment in which the electrodes operate is harsh and corrosive to metals. Applying electric current to the electrodes further promotes corrosion. The electrical conductivity of the electrodes decreases as the electrodes become corroded. This causes them to operate in a less efficient manner. The electrodes also tend to warp and lose structural integrity as they corrode. This leads to misaligned electrodes or electrodes that may touch each other and short circuit.

Therefore, it is necessary to use materials that both conduct electricity well, and do not corrode.

[0099] In an embodiment, the electrodes may include pure forms, oxides or alloys of various metals, such as platinum, ti tanium, iri dium and the like. Other materials are also contemplated for use in electrodes, such as various metals, graphite, and semiconductors.

[0010Θ] For example, an embodiment of an electrode 1004 used in the ECA system 1000 is a chip containing an alloy of platinum and titanium coated with pure iridium, in another example, an embodiment of an electrode 1004 used in the ECA system 1000 is a chip containing an alloy of platinum and ti anium coated with iridium oxide. In yet another example, an electrode 1004 for use in the ECA system 1000 may be a pure iridium or an iridium oxide electrode,

[Θ0101] The iridium coating increases the efficiency with which current is passed through the water or solution. Iridium is a more effective conductor and is substantially resistant to corrosion.

[00102] In embodiments, the electrodes 1004 are in communication with the control module 1010. The control module 1010 controls the operation of the electrodes 1004 to perform electrolysis of the components of the water or solution that is in contact with the electrodes 1004. The control module 1010 delivers or controls the deliver} ' of current to the electrodes to maintain either a positive or a negative charge on each electrode 1004. The control module 1010 may include a processor 1024 that has the necessary hardware and software to sense conditions directly or based on input from separate sensors, determine actions and operate the system. In other embodiments, the control module 1010 may include a processor 1024 in communication with external sensors, wherein the processor processes sensor measurements in order to determine conditions, determine actions, and operate the system. The control module 1010 is adapted to control the delivery of current in timed patterns, to modify the voltage, to reverse or modify the polarity, to change the current flowing to the electrodes, to control the speed of flow of water or solution into or through the ECA system, to control the speed of an impeller, and the li ke.

[Θ0103] The control module 1010 can be programmed to control delivery of the current to the electrodes 1004 in a timed fashion. In embodiments, the timing may be selected to generate a particular level of FAC in solution or concentration of another active species, to obtain a particular pH level, to obtain a particular molarity / ' concentration of products in solution, to obtain completion of a chemical reaction, and the like. In some embodiments, the control module 1010 may deliver current for a period of at least one minute, at least two minutes, at least three minutes, at least four minutes, at least five minutes, at least ten minutes, at least fifteen minutes, and the like. In some embodiments, the control module 1010 can be programmed to operate the electrodes 1004 continuously. The control module 1010 may cause the EC A system 1000 to operate for a specific amount of time to d eliver a specific amount of electrical energy to the electrodes 1004. The control module 1010 may cause the ECA system 1000 to operate for a specific amount of time to deliver a specific amount of electrical energy to the electrodes 1004 to achieve a specific level of FAC or concentration of another active species. In embodiments, the FAC or concentration of another active species may be determined by a sensor 1022 that feeds back information to the control module 1010 such as to cause operation of the electrodes 1004 to stop when reaching a particular FAC or concentration of another active species or continue if an FAC or concentration of another active species has not been reached. Varying the operation time of the electrodes 1004 of the EC A system 1000 may vary one or more of the products and the concentration of the products in solution after operation of the electrodes 1004.

[00104] In an embodiment, the control module 1010 can be programmed to alter the current delivered to the electrodes 1004. Dissolved materials in the water migrate to various electrodes based upon their polarity. For example positively charged calcium ions are drawn toward the anode. Over time, there is a calcium accumulation. In order to minimize this effect, the control module 1010 reverses the polarity of the current provided to the electrodes 1004. In an embodiment, the control module 1010 may be programmed to reverse the polari ty of the el ectrodes 1004 during operation. For example, if the cycle time is 5 minutes, the control module 1010 may be programmed to reverse the polarity of the electrodes at the 2,5 minute mark, or halfway through the cycle. In another embodiment, the control module 1010 may be programmed to reverse the pol arity of the electrodes at pre-determined intervals during operation. For example, upon the completion of each two minute period, the control module 1010 may reverse the polarity of the electrodes 1004. In yet another embodiment, the control module 1010 may be programmed to pause operation for a pre-determined period of time during operation. For example, the control module 1010 may be programmed to pause for thirty seconds for every two minutes of operation. In certain embodiments, the pause feature may be combined with the polarity reversal feature. For example, the current delivery may be paused for thirty seconds after two minutes of operation then the polarity may be reversed when operation commences. Reversing the polarity of the electrodes may result in improved electrode operation, such as by limiting calcification of the electrodes.

[00105] In an embodiment, the control module 1010 may support operation of the EC A system 1000 at less than or equal to 120 volts or at less than or equal to 240 volts or in other embodiments at higher voltages. In an embodiment, the control module 1010 may support operation of the ECA system 1000 at variable amperage, such as 4 amps, 8 amps, 10 amps, 17 amps, and the like. The amperage may be selected for optimum operation of particular embodiments of the ECA system 1000, For example, while the elongated immersive apparatus may be operated at amperages between 8 and 15, certain versions of the electrode-integrated receptacle apparatus are operated at only 4 amps. Further details of the amperages at use in various embodiments of the ECA system 1000 are further described herein. In some embodiments, the AC current is converted to DC.

[00106] In an embodiment of the current disclosure, the control module 1010 operates to sense various conditions of the system through sensors 1022. For example, a sensor located near the electrodes 1004 may monitor the temperature of the electrodes 1004. During high current flow, these can reach a temperature which may damage the electrodes 1004. The control module 1010 may then reduce the current provided to the electrodes 1004 or stop the current flow until they cool off to an operating temperature.

[00107] As indicated above, the control module 1010 may also monitor a sensor 1022 that measures the concentration of the product or active species. It may operate or continue operation of the device until the amount of an active species is reached. It may also increase power provided to the electrodes to increase the measured active species amount if it is below a desired amount. Sensors 1022 external or internal to the ECA system may be adapted to measure pH, concentration (in ppm or FAC), oxygen levels, voltage, resistance, temperature, fluid level, and the like.

[00108J The control module may also have an internal logic in the form of a program or other executable commands that would determine if the ECA system may not reach its desired goal of a programmed F AC level. For example, it may have a timeout trigger that monitors the amount of power provided and the change in FAC over a period of time. If it appears that it is not possible to reach the FAC goal within a predetermined amount of time, it will indicate an error reading or other message to the user. This is useful in the case where there is not enough reactant provided to the solution. The control module may be adapted to detect other errors, such as incorrect reactants added to a starting solution, excess reactants added in solution, incorrect reaction conditions, incorrect outputs, early reaction completion as determined by measurement of the ECA product solution or other factors, and the like. For example, if excess reactants are detected, current may be barred from flowing to the electrodes or the amount of current may be increased. Error detection may be aided or enabled by the use of sensors 1022 that feedback to the control module 1010.

[00109] The control module 1010 may have an internal logic to determine when too much or too little power is being used by the electrodes. A short, circuit will draw a great deal of current. The control module 1010 will sense this draw, such as by an internal or external sensor 1022 that monitors current provided to the electrodes, and shut down the device.

[00110] In another situation, there may be no solution between the electrodes. In this case the, the control module 1010 may determine, such as by receiving feedback from a fluid sensor that there is no fluid between the electrodes or by monitoring the activity of the electrodes that, no current, is being drawn by the electrodes, and shut down the power or not deliver current to the electrodes in the first place.

[00111] The control module 1010 may include integrators and clocks to perform a summation/integration of the current provided over time and use this to make decisions. I t may also perform an integration/summation of the power dissipated over a period of time, again to make determinations. It may also calculate and provide information on the FAC or concentration of another active species for given periods of time, the periods of time that the unit was operational/non- operational, error reports and other reports.

[00112] Embodiments of the ECA system may include a user interface, such as to display visual information or provide audio or electronic information regarding the operation of the system. For example, a display screen may provide the FA C or concentration of another active species, the amount of reactants present or a measure of the elapsed time from starting a particular action or the time to completion of an action or attaining a particular objective. For example, a visual indicator of the user interface may dis lay information regarding the polarity of the electrodes. In the example, when the polarity of the electrodes is in a particular configuration, particular colors or icons may be displayed or animated. When the polarity changes, the visual indicator may become altered to indicate the change in polarity. In a further example, the polarity indicator may be a light or icon that is operated in a first pattern when the current is being applied in a first polarity and a second pattern when the current is being provided in a second polarity. In this embodiment, the lights are in a circular pattern. The lights are lit in a circular pattern in a clockwise direction when it is operating in a first polarity and in a counterclockwise direction when it is operating in a second polarity. In another example, the user interface may provide alerts or information, either visually or in audio, to a user of the ECA system. Such an alert, may indicate a pause in the system, a termination of a programmed time of operation, commencement of operation, and the like. Alerts may be tied to sensor operation. For example, a sensor may measure a scarcity of reactants and feedback the information to a control module 1010 in order to generate an alert to a user indicating the scarcity. In another example, a sensor may measure the pH and feedback the information to a control module 1010 in order to generate an alert to a user indicating the pH. In other embodiments, such as large scale operations, messages may be generated and displayed or delivered to a user of the system. All information pertaining to operation of the system and its components may be displayed or otherwise provided by a user interface of the system. The device may employ the use of a liquid crystal display to allow the user to monitor and modify the flow rate with a touch control to shift to a different set of units, variables or dimensions, such as changing from a liters per minute rate to US gallons per minute. In addition, the liquid crystal display may allo the user to monitor the current, or amps, in the electrolytic cell. This overvoit display may also provide confirmation of FAC and KOH measurement. The device may have a touch screen that can allow the user to increase the internal pump speed to increase both pH and FAC with an interactive display. The display may allow the user to change which solution is produced, sanitizer, cleaner, or heavy-duty degreaser, with the touch of the liquid crystal display and optionally with an interactive confirmation display.

{00113] In embodiments, the ECA sysiem 1000 may optional!)' include a pump. The pump may be an air pump 1012 that directs air through the housing 1002 to support the flow of water or solution through the housing 1002. An air pump 1012 may be useful when the ECA system 1000 is embodied as an elongated immersive apparatus, referred to as the Immerse~A-Clean ii¾ Wand design, as any other immersive apparatus, such as the immersion disk design or as an electrode-integrated portable receptacle design, referred to as the "Trio IM , a Medical Receptacle Design referred to as the "Trio Rx lM design and an Enlarged Receptacle Design referred to as "Trio Maxx iM . The pump may be a water pump 1008 to direct water or a salt- containing solution to the at least two electrodes 1004. A water pump 1008 may be useful in any apparatus embodying the EGA system 1000. The air pump 1012 or water pump 1008 may be under the control of the control module 1010. For example, the pumps 1008, 1012 may engage for a period of time prior to activation of the electrodes 1004 to provide agitation for proper mixing of the reactants in solution. In another example, the pumps 1008, 1012 are controlled to vary the speed of flow of the water or the solution, in other embodiments, the pumps 1008, 1012 may pump reactants.

|0Θ114] In an embodiment, an optional impeller 1020 may be included in the ECA system 1000. Certain embodiments of the ECA system 1000, such as the elongated immersive apparatus, may include an impeller 1020 within the housing 1002 to mix solution contained within the housing 1002. Alternatively, the impeller 1020 may be mounted on an end of on a surface of, or around the housing 1002 to agitate the solution in which the apparatus is immersed. In other embodiments, such as an electrode-integrated portable receptacle designs, the impel ler 1020 may be disposed in a lower portion of the receptacle. The impeller 1020 may be removably connected. In some embodiments, the impeller 1020 may operate using magnetic forces. In embodiments, the magnetic impeller may be powered from the base of a detachable vessel, wherein the detachable vessel contains the reactant solution and may be seated onto the apparatus where it makes an electrical connection that enables electrolysis. The impeller 1020 may be under the control of the control module 1010. For example, the control module 1010 may time the operation of the impeller 1020 so that the impeller 1020 operates for a sufficient amount of time to ensure the adequate mixing of the reactants into solution prior to commencing electrode 1004 activation.

{00115] In an embodiment, the ECA sy.Mem 1000 may be powered by various power sources 1018. For example, the ECA system 1000 may operate on an alternating current power supply. The power can be supplied at various voltages between 110 volts and 240 volts or other voltages. All of the embodiments described herein may work with standard household voltage of 120/240 VAC. The 1 10 volt power may be stepped down to 12 volts (or other voltages) for safety or other reasons, to power devices embodying the system, and/or charge the system battery. The ECA system 1000 may operate on a car charger, an external battery pack, a wall plug, and the like. A power cord of the EC A system 1000 may be adapted to terminate in a way to facilitate receiving power from many different sources. For example, in Fig, 8 A, a US B cord 470 connects a control module/air pump 472 of the immersive wand to either a 1 10 V wall plug 474, a 12V car charger 478, or a battery pack 480. The EGA system 1000 may operate on solar energy. For example, a component of the ECA system 1000 itself, such as the housing 1002 or the control module 1010, may support a solar cell for collecting solar energy. Appropriate electronics for converting the solar energy for use in the ECA system 1000 may be included in the ECA system 1000, such as in the control module 1010. In certain embodiments, the ECA system 1000 may operate on battery power, such as on a 12 volt battery. The battery may be a part of the ECA system or may be part a device into which the ECA system is integrated. The power source may include a 12 volt converter attached to certain equipment. The battery may be rechargeable or disposable. In other embodiments, the ECA system 1000 may be powered by using kinetic energy harnessed by a generator of the ECA system 1000. For example, a hand crank generator may be disposed on the elongated immersive apparatus or on its control module 1010 or otherwise in electrical communication with the apparatus or components thereof. For example, the kinetic energy may result from the cleaning motion of the device, for example, as a result of a user using the device. In another example, the ECA system embodied in or as a floor scrubber may be powered by the kinetic energy generated from moving the floor scrubber. In embodiments, power may be supplied as an alternating current (AC) or in other embodiments as direct current (DC), in other embodiments, the power supplied as AC may first be converted to DC before its use in the ECA system. Embodiments of the ECA system may include quick-connect batter terminals for powered cleaning equipment. Embodiments of the ECA system may include an on-board ground fault circuit interrupter (GFCI) or other GFCI technology. In embodiments, the ECA system, possibly the power source, may include one or more fuses.

[Θ0116] In an embodiment, the ECA system 1000 may optionally include one or more sensors 1022. The sensor 1022 may be adapted to determine any of pH, FAC/ppm, CI " amounts, OH " amounts, oxygen amounts, ion amounts, temperature, alkalinity, acidity, particulate level, pathogen level, volume, pressure, fluid presence/moisture, specific reactants, specific active species, voltage, current, resistance and the like. Sensor 1022 feedback to a control module 1010 of the ECA system 1000 may cause a change in control of a parameter of the ECA system 1000. For example, if the sensor 1022 determines that a particul ar pH has been reached in solution, the control module 1010 may use the sensor 1022 reading as an indication that electrode 1004 activation should terminate,

[Θ0117] In the embodiment employing continuous flow, sensors 1022 are included that may monitor the rate of input flow, the reservoir fluid level, the rate of output fluid flow and the like, it may also measure concentrations of various chemical entities entering the system, in its reservoir and exiting the system. The sensors 1022 may determine handoff from one component of the system to another.

[Θ0118] A sensor 1022 may be a voltmeter or over-volt meter or multimeter to indicate how much voltage or current is being applied to or across the electrodes. The voltmeter can tie in to an auto safety shut off. Feedback from the voltmeter may cause a user to vary a setting of the system, such as the amperage.

[00119] The ECA system 1000 may include a reservoir 1014 in various embodiments. For example, the reservoir 1014 may be a receptacle exterior to the ECA system 1000 into which the ECA product solution may flow, such as when the ECA system 1000 is embodied in an instant flow apparatus, which is described herein. In another example, the reservoir 1014 may be a receptacle exterior to the ECA system 1000 into which an apparatus embodying the system, such as an immersive apparatus, may be placed, in this example, the reactants may be placed in solution in the reservoir 1014 and at least a portion of the immersive apparatus may be placed into the reservoir 1014 containing the reactant solution. In yet other embodiments, such as when the ECA system 1000 is embodied in an electrode- integrated receptacle apparatus, the reservoir 1014 may be the receptacle itself. The electrodes 1004 are constantly exposed to solution in the reservoir 1014 as they are integrated into the receptacle.

[00120] The ECA sy.Mem 1000 may enable various salt-mediated electrolysis reactions to electrochemically activate water. In embodiments, the salts may be present in trace amounts in a municipal water supply. In other embodiments, the salts may be added to a reactant solution as the reaction proceeds. In any event, solutions produced by the ECA system 1000 may be useful for sanitization. disinfecting, antimicrobial applications, aseptic applications, cleaning, and the like, as further described herein. According to the FDA, "sanitization" means the application of cumulative heat or chemicals on cleaned food-contact surfaces that, when evaluated for efficacy, is sufficient to yield a reduction of 5 logs, which is equal to a 99.999% reduction, of representative disease microorganisms of public health importance. Typically, sanitizing solutions are regulated by law in accordance wit 21 CFR 178.1010 to provide not more than 200 ppm of available halogen determined as FAC. US FIFRA Act 7 U.S.C. Section 136g (C)(3) Section 12(a)(1)(A) governs the designation of disinfectants that contain greater than 200 ppm. in certain embodiments herein, the terms sanitizer and disinfectant may have these meanings.

[00121 ] In one example, the starting material for the ECA system 1000 is a mixture of sodium chloride and citric acid (or acetic acid, or some other additive). In an embodiment, the citric acid is blended with the sodium chloride in a ratio sufficient to support a buffering reaction in the ECA product solution and prevent the pH from being too low or too high. In embodiments, the pH of the HOC1 ECA product solution is maintained between pH 5.5 and pH 7.2 by the buffering reaction. In an embodiment, the ratio is 96% NaCl to 4 % citric acid. For example, as the ECA production solution acidifies, Cl 2 may bubble out of solution and lower the FAC concentration. When the soiution of sodium chloride and citric acid is exposed to the electrodes of the ECA system 1000, an electrolysis reaction occurs. Electrolysis of the sodium chloride may produce at least hypochlorous acid, which is a mild acid that, depending on the circumstances, has sanitizing properties, disinfectant properties, antimicrobial properties and the like. Other chloride containing species are also possible products of the electrolysis reaction. Further, sodium hydroxide (NaOH) may be produced by the electrolysis reaction. Various other components and gases may also be produced by the electrolysis reaction, such as chlorine gas (Cl 2 ), hydrogen gas (H 2 ), oxygen (0 2 ), and, when water ionizes, ozone (0 3 ). Ozone itself may act as an antimicrobial and/or disinfectant. In embodiments, the oxygen being released may saturate the aqueous soiution so that it may act as an antimicrobial agent.

[00122] In certain embodiments, the reactant salt is sodium chloride alone without any citric acid, acetic acid, or some other additive. Θ0123] The product solution of hypochlorous acid may exhibit a pH in the range of 3 to 7. In certain embodiments, the ECA product solution of hypochlorous acid may exhibit a pH in the range of 5 - 7. In embodiments, the relative

concentration of NaOH and HOC! in the EC A product solution is 85% HOC! to 15% NaOH. Depending on the operational parameters of the particular apparatus and user requirement, the product solution of hypochlorous acid may exhibit an FAC in the range of 20 ppm - 1000 ppm. For example, hypochlorous acid produced at FAC's of about 100 - 200 ppm are suitable for basic sanitizing while higher FAC's, such as about 1000 ppm, are useful in disinfecting, anti-microbial applications and hospital sanitizing applications. Thus, operation of the ECA system 1000 embodied in any apparatus where the reactant solution includes sodium chloride, and optionally citric acid, may result in a sanitizing solution or an antimiciObia disinfecting solution depending on the operation parameters of that apparatus, as described h erein. Once electrode activation has terminated, the ECA product solution may have a stable shelf life. For example, the HOG ECA product solution may have a shelf life of 30 days. In another example, the HOG ECA product solution may have a shelf life of up to 60 days. As such, the ECA system 1000 can provide a stable output of 100 ppm to 1000 ppm HOG that has significant shelf life, enabling the ECA product solution to be bottled and used at a later date or sold. Both sanitizing solutions wherein the FAC is at or below 200 ppm FA ' and disinfecting solutions where the FAC is over 200 ppm can be stable outputs of the ECA system.

[00124] In some embodiments, halide salts or metal halide salts, such as sodium bromide (NaBr) or potassium bromide (KBr) or iodine salts, may also be used in the ECA. system.

[00125] In embodiments, the reactants may be pigmented to indicate the identity of the reactants. In embodiments, the pigments used may be selected to match the international training symbols for the particular kind of solution being generated.

[ΘΘ126] In an embodiment, a possible electrolysis reaction that occurs is: 2NaCl + 2H 2 0 => Cl 2 + H 2 + 2NaOH. The reaction can also be considered as following: 2G " + 2¾0 => Cl 2 + H ? + 20H " . A further reaction may occur with the products of this initial reaction: Cl 2 + OH " > HOG + Q " . The directions and equilibrium poin ts of these reactions will depend on the reaction conditions and may be controlled by the control module 1010. Θ0127] Without being held to any particular mechanism of action, one proposed mechanism of action that may be occurring in the system may be as fol lows: as voltage is applied and current is passed through the conductive solution, the positively charged sodium ions are drawn to the negatively charged cathode, where water molecules can be broken down to form hydroxyl anions. The net effect of the half-cell reaction is a localized increase in pH d ue to the formation of the strong base, sodium hydroxide. At the anode, the negatively charged chloride ion with excess electrons, is oxidized through the intermediate stage of molecular chlorine, followed by the immediate reaction with water to form hypochlorous acid, HOC).

Hypochlorous acid is a weak inorganic acid, but the net effect of the oxidation reaction at the anode is a slight reduction in pH from the formation of the weak acid. Since both electrodes are contained in the same homogeneous electrolytic solution, with no physical separation, such as with a membrane, the net effect is the mixing of the reaction products at both electrodes, hypochlorous acid and sodium hydroxide. Since sodium hydroxide is a strong base, and hypochlorous acid is a weak acid, the result is an increase in the pH of the solution as a result of the electrolysis reaction. The degree of change in pH may depend on the concentration of salt added to the water in the electrolysis cell. The greater the concentration of salt, the greater will be the increase in pH, In another example, the starting material for the EC A system 1000 is potassium carbonate. When the solution of potassium carbonate is exposed to the electrodes of the ECA system 1000, an electrolysis reaction occurs. Electrolysis of the potassium carbonate produces at least potassium hydroxide, in certain

embodiments in a mild alkaline solution that is useful as an environmentally friendly cleaner or degreaser. Other potassium containing species are also possible products of the electrolysis reaction. Various other components and gases may also be produced by the electrolysis reaction, such as hydrogen gas, oxygen, and ozone.

Various carbonate salts may be present in solution. The product solution of potassium hydroxide may exhibit a pH in the range of 7.5 to 1 1.2, or possibly higher or lower. Thus, operation of the ECA system 1000 embodied in any apparatus where the reactant solution includes potassium carbonate may result in a cleaning solution depending on the operation parameters of that apparatus, as further described herein. Once electrode activation has terminated, the product solution may have a shelf life of 2 to 14 days. As such, the EC A system 1000 can provide a stable output of KOH that has significant shelf life, enabling the ECA product solution to be bottled and used at a later date or sold. Both cleaning solutions wherein the hydroxide ion concentration is at or below 6 mM and degreasing solutions where the hydroxide ion concentration is above 6 mM can be stable outputs of the ECA. system.

[00128] In an embodiment, a possible electrolysis reaction that occurs is: K 2 CG 3 + H 2 0 - 2 KOI f + CO;..

[00129] Potassium carbonate may be referred to as a carbonate salt or a metal carbonate salt. Other members of the periodic family may be used in place of the potassium to form a reaciant used in the ECA system. For example, sodium carbonate (Na 2 C0 ) or sodium bicarbonate (NaHC0 3 ) may also be used in the system. In embodiments, the reactants may be pigmented to indicate the identity of the reactants.

[Θ0130] KOH in solution may react with the grease and oils in oily dirt during cleaning. Since grease and oil contain lipids, the KOH reacts with them to undergo saponification in which a non-polar lipid molecule is attached to an OFT radical. The non-polar end of the molecule dissolves in the non-polar grease, while the polar OH " radical is attracted to the water molecules. This allows the complex to remain suspended in the water allowing grease and oily dirt to be washed into the liquid and removed during cleaning/degreasing. In other embodiments, micelles or hydrophobic-hydrophilic interactions may be involved in the cleaning/degreasing mechanism.

[ΘΘ131] In yet another example, the starting material for the ECA system 1000 is water, such as municipal water, so long as the water contains trace quantities of salts sufficient to initiate an electrolysis reaction in the water. When the trace- containing water is exposed to the electrodes of the ECA system 1000, an electrolysis reaction occurs. Electrolysis of the water produces at least hydrogen ions (ΚΓ) and hydroxide ions (OFF). Hydroniurn ions (H 3 0 " ') may also be produced. In this example, continuous electrode activation is required to maintain the electrochemical activation of water as the disassociated water radicals can only exist for a short period of time before re-associating back into w r ater molecules once the power is turned off and the electrodes are de-activated. However, if they are used in the dissociated state, the cleaning and other properties of ionized water may be realized. Such

eleetrochemiealiy activated water is useful in many applications, as described herein. [00132] Certain of the embodiments described herein produce one or more of sanitizers, cleaners, antimicrobials, disinfectants and degreasers. Certain

embodiments, such as the Medical Receptacle Design, are more particularly designed to produce a high FAC concentration disinfectant; however other embodiments described herein may also produce disinfecting solutions.

[00133J Fig, 3 shows one embodiment of a system 301 for electrochemically activating water. Here, an immersion wand 101, also described herein as an elongated immersive apparatus, has an immersion head 300 that is adapted to be immersed in an aqueous salt solution 3 in container 1 . In some embodiments, additional substances may be added such as small amounts of citric acid, acetic acid, or some other additive,

[00134] The immersion wand 101 may optionally include an extendable shaft 200 that connects immersion head 300 with a handle 100. The extendable shaft 200 has an upper shaft 210 which may telescope from the lower shaft 230 resulting in an adjustable length shaft. In embodiments, the connection between the immersion head 300 and handle 100 may be supported by a cable with two wires for power and a hollow tube to move air from the controller to the immersion wand. This cable may contain the hollow tube and control wires in a clear flexible format allowing the user to inspect the cables and air tube as needed.

[00135] An adjustable fastener 220 secures upper shaft 210 relative to lower shaft 230 to keep the extendable shaft 200 at a desired length.

[00136] A stabilizer assembly 240 connects to the extendable shaft 200 of immersion wand 101 , connected to and extending from, the immersion head. The stabilizer assembly 240 holds the immersion wand 101 in a vertical position generally in the center of container 1.

[00137] The solution 3 is an aqueous salt solution which may include common, non-toxic salts such as sodium chloride (NaCl), Potassium chloride (KC1), and potassium carbonate ( >( ' ()¾ or other salts, as described herein.

[00138] A base unit 500 is connected to the immersion wand 101 through an umbilical 515 which provides electrical power to electrodes (not shown here) in immersion head 300. Base unit 500 controls the system,

[00139] Base unit 500 has a user interface to allow a user to select varying amounts of electrical power to be provided to the immersion head 300. In one embodiment, the power selection controls 520 includes at least three buttons indicating a low output for the first button, a medium output for the second button, and a high output for the third button,

[00140] These three buttons indicate varying amounts of time that power would be provided to immersion head 300, wherein the high output indicated by the third button would result in additional power being provided to the immersion head or power being provided for a longer period of time than it would be if the first or second buttons were selected. In other embodiments, buttons may be provided for varying the properties of the electrical power (such as current and voltage) applied to the solution.

[00141] For example, in a 3 -stage power setting: low would apply to creating cleaning fluid for mop buckets and small use cleaning amounts. This would be approximately 2 to 4 minutes of power provided to the immersion head 300.

[00142] For medium amounts, for use in midsized power equipment carpet extractors, automatic scrubbers, or larger cleaning buckets, a brewing time of 4 to 6 minutes would be performed.

[00143] For large powered cleaning equipment and industrial cleaning needs, the power would be provided for 7 to 9 minutes.

[00144] Fig. 4 depicts an elevational view of the immersion wand of Fig. 3 with stabilizer assembly. The stabilizer assembly 240 includes a collar 241 which may be slidingly attached to the extendable shaft 200, Radiating from the collar 241 are stabilizer arms 243 having adjustabie connectors 245 on their peripheral end. The adjustable connectors 245 are designed to removably attach to a container (1 of Fig. 3) into which it is placed. The stabilizer arms may also be extendable to accommodate different sized containers. Alternatively, the adjustable connectors 245 may not be required if the stabilizer arms 243 are long enough to rest on the top edge of the container.

[00145] Referring now to both Figs. 4 and 5, an impeller 391 draws the solution into the immersion head 300 through the bottom of the immersion head 300, the lower end ports 395 and side ports 387 and through an internal chamber 380. internal chamber 380 includes electrode chips 311, 313 positioned on either side of the internal chamber 380, typically about eight (8") inches from the bottom of the immersion head 300. When the electrode chips 31 1 , 313 are provided with a proper amount of electric power, the electrode chips 31 1 , 313 cause electricity to pass through the solution in the internal chamber 380, electrochemically activating the solution to create an ECA product solution.

[00146] The ECA product solution is then expelled back out of internal chamber 380 of the immersion head 300 through upper end ports 395 to be mixed with the solution 3 in container 1.

[00147J Fig. 6 shows an alternative embodiment of an immersion wand. This includes an upper housing 703 which has a 2 inch to 2.5 inch diameter, in this embodiment. A top end of the upper housing 703 has a rubber grip 701 that acts as a handle.

[00148] A pair of power supply lines 705, 707 run through the center of the upper housing 703 and connect to electrodes 713, 715, respectively.

[00149] The upper housing 703 connects to a wider lower housing 719 that encloses submersible circulating fan 721. Lower housing 719 includes openings to allow a fluid, such as an aqueous solution, to enter and pass through a portion of upper housing 703, past electrodes 713 and 715. This requires the lower housing 719 and a portion of upper housing 703 to be submerged in the aqueous solution.

[00150] The aqueous solution enters through the screen 723 covering the openings in the lower housings 719 and exits through openings in the upper housing covered by protective screen 711. The submersible circulating fan 721 draws the water in through the lower housing 719 and causes it to flow past the electrodes 713, 715 and out of the openings and screen 711.

[ 00151] A power consumption LED 717 is located on the upper side of the lower housing 719 and illuminates when power is being supplied to the immersion wand 700.

[00152] It is to be noted that the immersion wand design may be employed in water without adding any salts or other additives. Therefore, a cleaning device in which the immersion wand design is present and operating in the solution as it is being used would be beneficial. This would be the case of a floor or carpet cleaning machine which has its own 12 VDC power supply . The immersion wand device can be placed in the cleaning solution receptacle and it can operate continuously as the machine cleans the floor or carpet. Similarly, it could be used on riding cleaners or scrubbers to produce a cleaner, but with no harmful byproducts. [00153] Fig. 7 shows an alternative embodiment of the handle 100 being a loop handle 130. Loop handle 130 has a circular loop design within the inner loop grip 131. Loop handle 130 also includes indicator lights 113 on its outer side to indicate operation of the device. It includes an exit port 171 where the umbilical 515 from the immersion head exits the loop handle 130.

[00154J Fig. 8 shows another alternative embodiment of the handle 100 of the present disclosure, that is a straight handle 150. As with the other embodiments of the handle 100, the umbilical 515 exits the handle at the exit port 171.

[00155] Fig. 8A shows another alternative embodiment of the present disclosure that includes an immersion head 400 that detaches from an upper housing 703. The immersion head 400 is attached to the remainder of the device by an extension rod 405. This arrangement allows the immersion head 400 to adjust to extend to the bottom of a large container, while still being able to retract to fit into smaller containers.

[00156] A first part of a fastener 401 is attached to the lower part of the upper housing 703. The second part of the fastener 403 is attached to the top of immersion head 400. When retracted the first part of the fastener 401 and the second part of the fastener 403 attach to each other holding the immersion head 400 in its retracted position. In the embodiment shown, the fastener used is a twist lock-type fastener in which the first part 401 and second part 403 of the fastener are pushed together then twisted to lock. To unfasten them, it is twisted in the opposite direction then pulled apart.

[00157] This embodiment shares the same straight handle 151 and umbilical 515 as the embodiment of Fig. 8. In Fig. 8A, the umbilical 515 presents a cord 482 that connects to a control module/air pump 472 to receive both air and power.

[00158] In this embodiment, vanes 407 or louvers are employed instead of screens (as shown in previous embodiments). The vanes or louvers allow r gas bubbles produced during the EC A to be more easily released from the interior of the wand. In certain embodiments, the louvers may be opened or closed. In certain embodiments, the control module 1010 may control the degree to which the louvers are opened or closed.

[00159] This embodiment employs an air pump, similar to air pump 1012 described in connection with Fig. 3. The air bubbles escape from the air pump venting chamber 409 and agitate the solution causing mixing of the solution and any undissolved reactants or additives.

[00160] Fig. 8B is a perspective view of another embodiment of an immersion head 450, similar to that shown in Fig. 8A. As with the previous embodiment, it employs vanes 457 or louvers to direct escaping bubbles and the solution out of the immersion head 450. It also includes an air pump venting chamber 459 for the release of air pumped down through the immersion head 450 by an air pump, similar to air pump 1012 of Fig. 3.

[00161] Fig. 8C is a view of the immersion head of Fig. 813 with its upper housing 451 removed. The lower housing 453 is shown holding the internal structures in place. The parallel generally rectangular electrodes 31 1 , 313 are positioned at the center of the lower housing 453. An extension support assembly 460 receives and secures an extension rod, similar to extension rod 405 of Fig. 8 A.

[00162] Fig. 8D is an exploded view of the immersion head 450 of Fig. 8B. Here the extension support 460 is shown to be constructed from an extension support, collar 461 which fits inside of an extension support body 463.

[00163] Fig. 9 is an enlarged view of the top of the handle 100 of the immersion wand, it includes a power LED 181 that is lit when power is provided to the immersion head 300. A fan LED 183 is lit when the fan (impeller) in the immersion head 300 is operating. An alert LED 185 is lit when the device senses a power failure, such as a low voltage. In other embodiments, various displays and indicators may be provided to provide information regarding various properties of the device, solution and process. For example, a timer may provide the time remaining and a screen may provide the pH of the solution and the level of salt remaining.

[00164] Fig. 10 is an enlarged view of the base unit 500 which operates in a similar manner as the control module 1010 of Fig. 3. In this embodiment, an operator can select one of three buttons, low output 521 , medium output 523 or high output 525 depending upon the strength of the cleaning fluid required. Base unit 500 also has a power confirmation LED 527 which flashes indicating that power is being transmitted to the immersion head 300. The base unit 500 is equipped with a time and the ability to start and shut off power to the immersion wand or the Power Disc. It also may include logic to determine when there is not enough power and light the Power LED.

[00165} When the power is operating correctly, it flashes the Power LED 181. [00166] The base unit 500 is connected to and able to receive input from liquid sensor 397 of immersion wand 101, and liquid sensor 725 of the second embodiment of the immersion wand 700. These indicate when there is enough aqueous solution to cover the functional portion of the immersion wand. The base unit 500 will only supply electrical power when the liquid sensors indicate that there is enough solution.

[00167J The base unit 500 also has the ability to reverse polarity of the power being sent to the chips (electrodes). The reversal of polarity allows charged particles that migrate to one or the other electrode to be removed from the electrode. This is an effective way of cleaning the electrodes.

[00168] The immersion wand is designed to be inserted into a number of different receptacles to operate and produce an EGA product solution. It can be used in tanks, mop buckets, jugs, bottles, and other devices and containers that hold water,

[00169] In addition, due to its compact design it may be inserted into a receptacle of an existing carpet scrubber, power floor scrubber, or other existing cleaning or sanitizer equipment.

[00170] In another embodiment, the immersion wand design operates off of a 12 V DC car voltage. In this embodiment, it can be inserted into a cleaning solution reservoir of a riding floor scrubber to create the EGA product solutions. It would be powered from the 12 V DC system of the riding floor scrubber.

[00171 ] The embodiments described herein may produce a sanitizer, disinfectant, glass cleaner, general purpose cleaner, heavy duty cleaner and degreaser for use in a variety of devices and applications, including power scrubbers, and carpet extractors.

[00172] Fig. 10A shows another embodiment of a base unit 550. This functions in a similar manner as base unit 500 shown in Fig. 10, but includes a continuous use button. Instead of having three different levels of output, the embodiment of Fig. 10A has a low output button 551 that may function the same as button 521 of Fig. 10, a high output button 559 that may function the same as 525, but includes a continuous use button 559 which may cause the power to be continuously applied to the electrodes. This is typically used to ionize water. The naturally occurring solutes allow the current to pass between the electrodes ionizing water. The ionized water is intended to be used immediately, before it re-associates back into water. [00173] In this embodiment, the handle 563 has a concave shape allowing the wand that is used with this embodiment to snap into the concave handle allowing the user to easily carry both with one hand.

[00174] Fig. 1.1 A, Fig. 11B, and Fig. 11C show still another embodiment of the ECA system, embodied as an immersive apparatus. It includes all of the functional parts as the immersion wand designs, but physically has a much lower elevational height. It is designed to be fully immersible and fit in a bucket in a solution and operates to activate a salt water solution to create sanitizer and/or detergent solutions.

[00175] Here it is shown that the solution enters through ports 887 of a lower housing 819 drawn in by an impeller (not shown). The solution passes through an internal chamber having electrode chips that electrochemical!)' activate the solution.

[00176] The electrochemically activated solution then passes out of ports 887 of the upper housing 803. A power consumption LED lights when the device is in operation.

[00177] The immersive apparatus may be capable of running on 12 volt power and may have an LED built into the disc to confirm operation of Clean Disc when submerged. The immersive apparatus may be tied into GFCI for safety when in operation and may employ larger power chips for maximum operation,

[00178] In embodiments, the Immersion Wand Design or Immerse-A-Clean may reverse polarity every 2 minutes and rest after 2 minutes for 30 seconds.

[00179] In embodiments, the Immersion Wand Design may provide between 8 and 15 amps of current to the solution in a receptacle depending upon the amount of solution to be activated and the concentration of salts in solution.

[00180] In embodiments, the Immersion Wand Design when ionizing water may be continuously operating. The Immersion Wand Design may also have a 2 minute cycle time and 10 minute cycle time for producing sanitizing and cleaning solutions.

[00181] In embodiments, the Immersion Wand Design may utilize flat, rectan gul ar e 1 ectrodes .

[00182] In embodiments of the immersion wand design, various starting concentrations of reactants may be used. For example, 3 - .12 g of NaCl may be added to a ½ gallon of water. In other words, concentrations ranging from 36 mM to over 100 mM of NaCl may be used as a starting solution. More particularly, a smart chlorine solution may utilize 12 g NaCl in a ½ gallon of water to provide

approximately 108.5 mM NaC!. In another example of a genera! purpose cleaner, 4 g of potassium carbonate may be added to a half gallon of water to provide

approximately 15.3 mM potassium carbonate to start. Heavy duty c!eaners and degreasers may utilize additional potassium carbonate such as to provide

approximately 23 mM to start.

[00183] All the elements of the above described embodiments may be incorporated into other self-contained or other embodiments.

[00184] Embodiments of the ECA system may have a housing, such as housing 1002, that is constructed from a non-conductive plastic that is bis-phenol A (BPA)- free.

[00185] The immersion wand may include a clip to be attached to powered equipment to hold the immersion wand and to allow on board use.

[ 00186] A power LED lamp may be included on the bottom of wand to assure user of its operation. One or more LEDs on the handle may light to confirm operation of wand when submerged.

[00187] A wet detection/moisture sensor may operate to insure that there is no operation unless the device, or at least the electrodes, is submerged.

[00188] The base unit may contain one or more circuit cards with timers and ground fault circuit interrupter (GFCI) to ensure user safety.

[00189] The wand length may be adjustable to set depth in water and user needs.

[00190] Another embodiment of the ECA system 1000 is the electrode- integrated receptacle apparatus. All of the electrode-integrated receptacle apparatus described herein, such as the Portable Receptacle, Enlarged Receptacle and Medical Receptacle Designs, can be used as table top units with circular, flat electrodes. One embodiment of the electrode-integrated receptacle apparatus 1200 is shown in Fig. 12. The embodiment in Fig, 12 is referred to as the "Trio iM " design, in this embodiment, the electrodes 1204 are disposed within a receptacle 1202 that serves as a reservoir for the input of water or a reactant salt-containing solution 1214. In this embodiment, the electrodes 1204 may resemble flat circular plates or grids, such as those shown as circular electrodes 1102 in Fig. 2. In this embodiment, the electrodes are placed horizontally and parallel to each other. A spacer is designed to keep these electrodes a specific distance apart. [00191] The receptacle 1202 is designed to fit into the base 1208, The electrical contacts on the base 1208 make contact with receptacle contacts 1226 on the bottom of the receptacle 1202 that connect to the electrodes 1204. When the receptacle 1202 is properly placed on the base 1208, power from a power supply 1210 is passed through the contact of the base 1208, into the receptacle 1202 and to the electrodes 1204, The electrical power provided causes an electrolysis reaction, such as any of those described herein to occur in the receptacle 1202. The base 1208 or the receptacle itself 1202 may have a display, such as a digital readout or digital user interface 1212 to indicate various parameters of the operation of the electrode- integrated receptacle apparatus 1200.

[00192] Fig. 12A is a perspective vie w of an embodiment of the apparatus consistent with the schematic of Fig. 12. Fig. 12A shows the electrode-integrated receptacie 1200 in its base 1208 operating to produce an ECA product solution. In this embodiment, a light underneath the receptacle lights when the solution is being created.

[00193] Also note that the digital UI 1212 shows a number of indicator lights.

The UI 1212, as described herein, may be controlled by the control module 1010 which is integrated into base unit 1208, This same operation may also be used on the other embodiments such as that shown in Fig. 13,

[00194] Fig. 12B is a perspective view of the receptacle 1202 of the

embodiment of the present disclosure shown in Fig, 12 A,

[00195] Fig, 12C is a perspective view of the base 1208 of the embodiment of the present disclosure shown in Fig. 12A. In this view, the electrical contact 1216 can be seen that make contact with those of the receptacle 1202 when it is placed on th e base 1208. An alignment feature is either a protrusion or a recess that has a complementary shape on the receptacle 1202 causing it to align the receptacle 1202 in the proper location and orientation to have the electrical contacts 1216 meet those of the receptacle 1202.

[00196] The digital UI 1212 can easily be seen. It is driven by the control module 1010 and may provide any number of indications or prompts to a user, as described herein.

[ 00197] Fig. 12D shows the bottom of the receptacle 1202. The receptacle contacts 1226 are visible. These are sized and positioned to touch the electrical contacts 1216 on base 1208 when the receptacle 1202 is properly positioned on the base 1208. The receptacle alignment feature 1218 on the base 1208 is the

complement of the alignment feature 1228 on the bottom of the receptacle 1202 causing them to fit together when the receptacle 1202 is properly placed on the base 1208. A magnet 1230 in the receptacle 1202 lines up with a magnet sensor 1206 in the base 1208. The control module 1010 identifies when the magnet sensor 1206 senses magnet 1230 indicating that the receptacle is properly positioned on the base 1208. Power is provided when the receptacle is on the base 1208, and is not provided once the receptacle 1202 is removed.

[00198] Fig. 12E is a sectional view of the receptacle of Fig. 12B viewing the bottom of the receptacle, in this view the electrode 1204 is visible indicating its circular shape and that it is positioned parallel to the bottom of the receptacle 1202,

[00199] In embodiments, the receptacle can hold 40 ounces of solution, the current flow is reversible at the halfway point during the 5 minute cycle, the operating amperage is 4 amps, the operating voltage ranges from 110 to 240 volts, and the narrowing shape of the receptacle ensures proper mixing.

[002Θ0] In embodiments of the portable receptacle design, various starting concentrations of reactants may be used. For example, 3 g of NaCl may be added to 40 ounces of water to provide approximately 43.5 mM NaCl, In another example of a general purpose cleaner, 0.75 g of potassium carbonate may be added to 40 ounces of water to provide approximately 4.6 mM potassium carbonate to start. Heavy duty cleaners and degreasers may utilize additional potassium carbonate (e.g. 2 g) such as to provide approximately 12.3 mM to start.

[00201 J Another embodiment of the electrode-integrated receptacle apparatus 1200 is referred to as the Medical Receptacle Design or the "Trio Rx' M " design. This is similar to the apparatus 1200 described herein, but is designed to produce disinfecting solutions having up to 1240 ppm of FAC 1 . This is intended for medically- related disinfecting applications. The higher FAC is effective against many common microbes including Methicillin Resistant microbes (MRS A). The medical receptacle design is intended to use more NaCl and receive additional electrical power from the electrodes as compared with the portable receptacle design,

[00202] To dissolve the larger amount of salt, the Medical Receptacle Design may further include an impel ler, as described herein, in the receptacle 1202 that rotates to agitate the salt. The impeller may be in the form of paddles at the bottom of the receptacle. The control module 1010 in the base 1208 includes the logic to operate the impeller to dissolve the salt before operating the electrodes. Optionally, there may be sensors that determine the amount of undissolved salt in the receptacle 1202 that are sensed by the control module 1010. The control module 1010 then operates the electrodes at the appropriate time taking into account the amount of undissolved salt.

[00203] Further, this embodiment may operate for longer time periods, such as fifteen ten minutes, to ensure reaction completion. In embodiments, the receptacle can hold 64 ounces of solution, the current flow reverses every 2.5 minutes during operation, the operating amperage is 10 amps, the operating voltage ranges from 1 10 to 240 volts.

[002Θ4] In embodiments of the medical receptacle design, various starting concentrations of reactants may be used. For example, 12 g of NaCl may be added to a ½ gallon of water to provide approximately 108.5 mM NaCl to start.

[00205] The Enlarged Receptacle Design, which may also be referred to as

"Trio Maxx," shares much of the same components of the Portable Receptacle Design with several notable exceptions. For example, it employs an enlarged receptacle 1202 to be able to make a larger amount of ECA product solution. It may employ titanium electrodes that are coated with platinum, or any other electrode described herein, such as the iridium-coated electrodes, to resist corrosion and to have high electrical conductivity. This results in a device that has a cycle time of 3 to 5 minutes as opposed to the Portable Receptacle Design that has a cycle time of 5 minutes. In embodimen ts, the receptacle can hold 64 ounces of solution , the current flow is reversible at the halfway point during the 3 to 5 minute cycle, the operating amperage is 4 amps, the operating voltage ranges from 110 to 240 volts, and the wide mouth design facilitates brewing of 64 ounces of ECA product solution. Electrodes used in the Enlarged Receptacle Design may be platinum and/or titanium.

[00206] In embodiments of the en larged receptacle desi gn, various starting concentrations of reactants may be used. For example, 4 g of NaCl may be added to a ½ gallon of water to provide approximately 36 mM NaCl. In another example of a general purpose cleaner, 1.5 g of potassium carbonate may be added to a half gal lon of water to provide approximately 5.7 mM potassium carbonate to start. Heavy duty cleaners and degreasers may utilize additional potassium carbonate (e.g. 4 g) such as to provide approximately 15.3 niM to start,

[00207] Fig, 12F depicts an exploded view of the receptacle apparatus of Fig.

12 A.

[00208] Here grating 1224 can be seen that prevents undissolved additives from building up around the electrodes 1204 and interfering with their performance.

[00209] Fig. 12G depicts an exploded view of another receptacle embodiment.

[00210] In this alternative embodiment, all parts having reference numbers that are the same as those described above (without the appended "a") serve a similar function and perform in a similar manner.

[0021 ί ] This includes a receptacle 1202a that fits into a base 1208a. Contact between electrodes 1216a and 1226a cause power to flow from the base 1208a to the electrodes 1204a in receptacle 1202a.

[00212] Power is provided to the system by a power supply 1210a.

[00213] It is shown here that a grating 1224a stops additives, such as salts from falling to the bottom of the container and affecting the operation of the electrodes

1204a.

[00214] A digital user interface 1212a interacts with the user to take commands and to provide status of the system.

[00215] Another embodiment of the system 1000 is the instant flow apparatus

1300 which is also referred to as a Continuous Flow Design or the "InstaFlow™ design. In this embodiment, water is received through an intake 1304 into an internal reservoir or electrode and reactant cell 1320. An optional intake sensor 1329 monitors the amount of fluid flow over a period of time and/or the rate of fluid flow being received. Also, an optional intake valve 1331 operates under the control of the controller 1312 and interactively regulates the amount of fluid received and/or the rate of fluid flow . An optional backflow preventer may prevent reactants from mo ving in a rearward direction into the water system. In addition, in embodiments, the system may contain various solenoids and valves to control the flow of fluids and air.

[00216] A salt is added to the water in the reservoir 1320. Alternatively, a salt- containing solution is taken into the apparatus 1300 via an intake 1304 into the reservoir 1320. The salt-containing solution comes in contact with the two or more electrodes 1310, A. controller 1312, similar to the controller 1010 of Fig. 3, provides, or controls the provision of, electrical power to the electrodes 1310 to cause the electrochemical reactions to produce an EGA product solution.

[00217] The salt-containing solution may be held in the reservoir 1320 for a period of time or the reservoir 1320 may be continuously emptied of the product solution through the product outflow 1308 and refilled with fresh salt-containing solution. Optionally, an outflow sensor 1333 measures the rate of fluid flow and/or the accumul ated fluid flow for a defined period of time. This information is provided to the controller 1312 that interactively operates an optional outflow valve 1335 that regulates the total amount of fluid released or the rate at which fluid is released,

[00218] The reservoir 1320 may optionally include an impeller 1322 for agitating the solution inside the reservoir 1320, The controller 1312 operates in a similar manner as the control module 1010 of Fig. 3 controlling various aspects and parameters of the system. In addition, the controller 1312 can adjust the rate in which the water is received as well as the rate in which the solution is removed from the internal reservoir 1320. Therefore, the rate at which the solution passes over the electrodes 1310 is controlled. The slower the solution passes over the electrodes 1310, the more time that it experiences becoming electrochemically activated. This causes an increase in the FAC (when producing the sanitizer solution, for example) and an increase in the concentration of OFF radicals (when producing the cleaning and degreasing solutions, for example) or an increase in the active species in other embodiments. A user may input the amount of reactant used or FAC desired and the controller 1312 may automatically program operation of the apparatus 1300.

[00219] The controller 1312 may include or be in communication with the sensors 1022 described herein to sense temperature, pH, FAC, current flow, solution level, and the other parameters noted herein and the like. It may also include additional sensors to monitor flow of water/solution in through the intake.

[00220] The controller 1312 may be operated by a user via manual means or via a digital user interface (UI) 1314, The apparatus 1300 may be powered by a power supply 1318, or other power means described herein.

[00221] Fig, 13A shows the Continuous Flow Design 1300 without the power supply 1318, the intake 1304 and product outflow 1308. The outer housing 1302 has a window for the digital UI 1314 which may have the features of the UI as described herein. It may include intuitive indications of the operation of the apparatus 1300, As indicated for the portable receptacle design above, there are operation indicators 1324 that are lights in a circular arrangement that sequentially light in a clockwise fashion when power is being provided in a first polarity to the solution, and in a counterclockwise fashion when power is being provided in a second polarity. The lights may also signify other activity, such as simultaneously flashing if an error has been sensed, or the system has run out of additives.

[00222] Fig. 13B shows water handl ing elements of the system for the

Continuous Flow Design 1300. Here an in-line filter 1326 filters out impurities from the tap water.

[00223] Fig. 13C shows the system electronics for the Continuous Flow Design

1300. The controller 1312 is visible in this view.

[00224] The apparatus 1300 may have a reserve tank with automatic shut off.

[00225] In an embodiment, the Continuous Flow Design reverses current even'

2 mmutes when in operation and provides a continuous flow of ECA product solution of up to 2.5 gallons per minute. The Continuous Flow Design provides up to 17 Amps of current to the electrodes. The system can adjust the flow rate past the electrodes to adjust the amount of ECA activation of the solutions. The Continuous Flow Design may continuously operate at voltages ranging from 110 - 240 V and amperages of 17 to 28 amps or so. The Continuous Flow Design may be used as a tabletop unit or a wall-mounted unit. The Contmuous Flow Design may utilize flat, rectangular electrodes.

[00226] In an embodiment, the continuous flow design may produce up to 450 gallons of ECA product solution per tank of reactant starting solution. In

embodiments, at least 19 to 39 ounces of sodium chloride/citric acid mixture may be utilized in generating at least 70 gallons of the sanitizer, at least 13 ounces of potassium carbonate may be used to generate at least 65 gallons of the Heavy Duty Cleaner/ Degreaser, and at least 6 Ounces of potassium carbonate may be used to generate at least 75 gallons of the Window and Glass Cleaner.

[00227] One of the uses for the products of the currently described system and method is in hydraulic fracturing, commonly called "tracking". Tracking typically requires large amounts of water with some sand and a small amount of other additives. Fig. 13D is an example of the volumetric composition of fracking fluids. Here it can be seen that the fracking fluid, is approximately 90% water by volume. Approximately 9 % is sand and the other additives make up approximately 0.5% by volume. The 0.5% of the other additives includes biocides such as Glutaraldehyde that eliminate bacteria in the water that produces corrosive by-products, as well as other chemicals, (from Volumetric Composition rf ' Shale Gas Fracture Fluid" , http:/yw^\ v.shalegaswiki.com/mdex.php/Fracturing_fluid ^

[00228] The tracking fluid is forced down into a natural gas or oil well far below the surface into geological formations under high pressure by large fluid pumps. Up to 2 million gallons of water per day may be required to perform tracking for a single wel l. The biocide is about 0.001% by volume of this amount and may be needed in amounts of 2000 gallons of product per day.

[00229] Any of the embodiments described herein could be scaled to produce larger amounts of the ECA products. In particular, the continuous flow embodiment is well suited for use in connection with tracking. Referring now to Fig. 13E, an enlarged continuous flow system is shown. This functions in the same manner and employs the same functional structures as the continuous flow apparatus 1300 of Fig. 13, but is designed to be much larger to be able to provide the amount of ECA product required for tracking. In particular, the system may include a cell with an array of many electrodes as opposed to only a pair of electrodes.

[00230] Water to be used for frackmg is shown here provided by a tanker truck 1501. In alternative embodiments, water may be provided by a water line leading to a water source such as a settling pool, pipeline, reservoir or other water source. The water is provided to the intake 1304, A salt, such as those described herein, is introduced into the water and mixed with the impeller 1322. The controller 1312 provides power to the electrodes 1310 in a manner to produce an ECA product that will be able to perform the function of a biocide or other functions useful for tracking applications. In other embodiments, potassium salts may be used to produce OH used as a pH balancer. The ECA product exits the apparatus through the product outflow 1308 and into a holding tank 1503.

[00231] The ECA product is then provided to the (racking equipment that mixes it with water and sand, adds anticorrosion chemicals and other additives, gels the

components into a tracking fluid and provides the components to a high pressure pump (typically part of tracking equipment 1505). The high pressure pump forces the fracking fluid through the casing of the well 1507, and down the well 1509 to perform its function underground.

[00232] The non-toxic ECA products may be used to replace at least some of the biocides currently used in fracking. The systems and methods described herein may also be used to develop other additives, such as hydrochloric acid that helps dissolve minerals and initiate cracks in rocks.

[00233] Fig. 13F depicts an exploded view of an alternative embodiment of an instant flow apparatus. Here are various pumps, valves, filters, sensors, etc. employed by the apparatus 1300a, In this view the reservoir 1320a is visible. Water filter 1326a is also visible. Fig. 13F is sectioned into three parts, each which is shown in subsequent Figs., Fig. 13G, Fig, 13H and Fig. 13L

[00234] Fig, 13G is an enlarged view of elements of the instant flow apparatus of Fig. ! 3F, The filter 1326 is shown here.

[00235] Fig. 13H is an enlarged view of elements of the instant flow apparatus of Fig. 13F. In this view, both the reservoir 1320a and the filter 1326a are shown, [00236] Fig. 131 is an enlarged view of elements of the instant flow apparatus of Fig. ! 3F, Here, intake valves 1340 can be seen. In this embodiment, three intake val ves 1340 are shown but it is understood that a plurality of intake val ves 1340 may be used in the apparatus. For example, the plurality of intake valves 1340 may be useful for making a plurality of solutions readily. For example, a tank of starting solution containing reactants may be attached to the apparatus through the intake valve 1340. in the example of this apparatus, three tanks may be attached through the three intake valves 1340, each perhaps holding a different solution of starting reactants. For example, one tank could hold the sodium chloride/citric acid mixture, another holds potassium carbonate in sufficient quantity to produce a general purpose or glass cleaner, and yet another holds potassium carbonate in sufficient quantity to produce a degreaser/heavy duty cleaner. In any event, reactant solution taken up through the intake valve 1340 may be mixed with water either in the plumbing on the way to the reservoir 1320a or electrolysis chamber or within the reservoir 1320a or electrolysis chamber. In embodiments, the intake valve 1340 may take up water.

[00237] Fig. 13J depicts an exploded view of an alternative embodiment of an instant flow apparatus, showing the system electronics. Here, controller 1312a, which may be a 200 amp power controller, and housing 1302a are shown. On the housing 1302a, a three- line input 1342 for reactant intake is shown.

[00238] Fig. 13K depicts an exploded view of the front panel assembly of an alternative embodiment of an instant flow apparatus.

[00239] Here it can be seen that a front panel 1337a has a latch 1339a. This latch 1339a attaches to the apparatus housing.

[00240] A digital User Interface (UI) 1314a allows the user to interact with the

UI to receive input and provide status of the apparatus. The digital UI 1314a may comprise a liquid crystal display or any other display technology.

[00241] Table I shows sample operating specifications for various particular embodiments of the present disclosure, it is to be understood that these are being provided as examples of specific embodiments keeping in mind that many variations and modifications of these specifications may also be used for additional

embodiments of the current disclosure.

)Ie I , Sample Operating

Portable Enlarged Continuous Flow immersion Wand

Medical Receptacle

Parameters Receptacle Design Receptacle Design Design (!mmerse-a- De-sign (TRIO-Rx™)

(TRIO™) (TR!O-Maxx"'') iinstaF!ow"'') Clean"'')

Detachable electrodes powered by battery or 100/240 volt allows portability of design. On board

Has paddle system

air pump engages 5 to allow for ultra

Utilizes non seconds prior to high FAC

Marrowing shape of membrane electrodes to

Wide mouth design production of

decanter insures technology to provide agitation provides up to 2 solution, Has

proper mixing of provide proper for proper mixing liters, 64 ounces delayed chip

HOC! and Sodium balance of of solutions/ or per brewing, Uses activation to

hydroxide Uses solutions to create ionized technology

Design assist magnet provide NaCI to be

magnet the exact amount .Louvers on end of identification mixed before ECA

identification of Sodium wand ensure system to ensure process begins.

system to ensure Hydroxide and proper ascension proper mating with Uses magnet

proper mating with HOC! to build of ionization, air charging base identification

charging base stable sanitizing vent on bottom system to ensure

solution ensures proper proper mating with

mixing of charging base

supplements in process. Twist lock handle allows for electrodes to achieve proper orientation in each application.

110-240/ 12 volt

Volt 110-240 110-240 110-240 110-240

battery

Am 4 4 10 ■ 7 8 to 15

2/10/ContinuoiJS

Cycle Time 5 minutes 3 to 5 Minutes 10 Minutes Continuous

for ionization

Platinum/Titanium

Electrodes Iridium iridium iridium Iridium or iridium

Flat/recta ngu!ar 9

Shape of Electrode Flat Circular 42 cm Flat Circular 42 cm Fiat Circular 42 cm Flat/recta ngu!ar

cm X 11 cm

Stationary Wall

Mounted or Table Portable devices mounted unit. that works with

Portable Table Top Portable Table Top Portable Table Top

Utility Needs to be ■ 10/240 volts

Unit Unit Unit

connected to 3 and/or battery water source and powered catalyst reservoir(s)

Produces a sanitizer, disinfectant, glass

Produces sanitizing cieaner, general

Produces a glass Produces a

solution with FAC purpose cleaner, and general saniiizer,

less that 200 pprn. Produces high FAC heavy duty cieaner purpose cleaner disinfectant, glass

Also produces a disinfectant for and degreaser for and a heavy duty cieaner, general

Products glass cleaner, health care use use in power cieaner/degreaser. purpose cleaner,

general purpose with up to 1000 scrubbers, carpet

It can also produce heavy duty cleaner

cleaner and heavy pprn of FAC extractors, tanks, a sanitizing and degreaser in a

duty mop buckets, jugs, solution continuous flow

cieaner/de-greaser bottles, and other devices and containers that hold water [00242] Since the ECA product solutions are non-toxic, they can be used in a variety of settings and applications. ECA product solutions may be used for cleaning, sanitizing and disinfecting food, kitchen utensils, cooking implements, hands, skin or any surfaces that may come in contact with microbes or dirt. Embodiments described herein may be deployed in various settings/environments or ECA product solutions may be used in various settings/environments applications, such as: airplanes, trains, buses, taxis, cars, showers, bathrooms, schools, day cares, playgrounds, in situ micro fiber cloth treatment, retail environments, hospitals, doctor's offices, medical facilities, wound care, veterinary facilities (e.g. as a halitosis treatment as well), pet stores, animal shelters, dental facilities (e.g. as an irrigant as well), nursing

homes/elder care, pharmacies, emergency triage units, hotels, cruise ships, boats, shipboard wastewater treatment, spas, pools, gyms, saunas, salons, delis, butcher shops, grocery/produce section (e.g. in the produce sprayers), slaughterhouses, pelt cleaning, dairy farms (e.g. to clean milk production machinery), nut processing, mechanic shop, military/battlefield, mold remediation, laundry, warewashing, indoor air quality management, camping, third world/remote settlements, skin emollient, agricultural sprayer, plant mite killer, hydroponics irrigation, greenhouses, agricultural potassium source, wineries/vineyards, hydraulic tracking and the like.

[00243] ECA product solutions may also be used in food preparation, such as in restaurants and in fast food preparation, such as to clean fruits and vegetables or in warewashing. The ability to easily create ECA product solutions useful in food preparation may enable the use of local produce since such local produce, which may not be subject to regulatory inspection, can nevertheless meet regulatory standards. ECA. product solutions may be used in food manufacturing/bottling/processing and in aseptic packaging. For example, in order to sanitize produce on site in a restaurant, the lettuce must be sprayed or soaked in a sanitizing solution. For large restaurants, keeping the quantity of sanitizing solution needed to soak produce, such as large heads of lettuce, that is discarded immediately to mitigate cross-contamination may require significant cost and storage. Utilizing the embodiments described herein to produce ECA product solutions suitable for sanitizing mitigates the need for maintaining an inventory of sanitizing solutions. Instead, sanitizing solutions can be made on demand in batches or in a continuous flow. Further, the only inventories required are the reactants and the generally compact embodiments. [00244] In embodiments, the ECA system 1000 may be embodied as a produce sprayer or as a produce bath. For example, a produce sprayer may include a nozzle connected to a reservoir of embodiments of the ECA system 1000 or an outflow from embodiments of the EC A system 1000.

[00245] The ECA product solutions may be used for improving air quality by adding it to humidifiers or vaporizers for the home or in large building air handling facilities, it is also safe enough for use in a nursery, especially if someone in the house has contracted a cold. In embodiments, the ECA system 1000 may be integrated with the humi difier. For example, electrodes may be disposed within the reservoir of the humidifier to produce an ECA product solution such that it is the ECA product solution that gets released into the air by the humidifier, via any of the mechanisms by which humidifiers work. Use of the ECA product solutions in humidifiers and air handling facilities may be useful to mitigate the effects of asthma and allergies.

Further, the humidifier need not be cleaned as frequently since the ECA product solution will clean, sanitize, and/or disinfect during use. It can be used in the exhaust for hot air furnaces. This will sanitize these hidden locations. Once in the air, ECA product solution can act as an airborne dust remover.

[00246] The ECA system, or its outputs, may be used in various form factors for hand and skin washing and sanitizing. In one embodiment of soapless hand washing, the ECA sysiem may be deployed such that the outflow is directed to faucets for hand washing. In another embodiment, a wall-hanging dispenser may be filled with a stable output of the ECA sysieni. such as the HOC1 solution at a ppm below 200.

[00247] The ECA system may be integrated with various devices to produce ECA product solutions in situ, such as dishwasher/warewashing facilities, floor scrubber, washing machine/laundry facilities, produce sprayer, food washing bath, faucets (such as to provide soapless hand washing), shower heads, custodial sprayer, food sprayer/food bath, wall-mounted hand sanitizers, and the like. In certain embodiments, the ECA system may be retrofitted into existing devices. For example, a floor scrubber may have an onboard ECA system to produce ionized water or OH on demand. In this example, the floor scrubber may have a reservoir. The electrodes used for ECA may be disposed within the reservoir. Control of the electrodes might be located among the controls for the floor scrubber itself such that a user of the scrubber can control production of the EC A product solution while operating, or not operating, the floor scrubber. The EC A product solution may be dispensed onto floors by an outflow from the reservoir. In another embodiment, the ECA system may be integrated with ware-washing facilities. For example, as a warewashing facility takes up water for cleaning, the integrated ECA system may mix the water with reactants and flow the reactant solution over electrodes prior to dispensing it to the warewashing facility, which then dispenses the ECA product solution.

[00248] Wherever there are microbes and a need to sanitize/disinfect or if there is a need to clean, the ECA product solutions created by embodiments described herein may be used.

[00249] One way to stabilize the pH of the ECA product solution where aCl is the starting reactant is by using a buffer, such as acetic acid, in combination with sodium chloride as the reactant. Commercial vinegar (( ' / ·! f ;() . ·) is a distilled solution of acetic acid, typically with the concentration of 5% by weight of acetic acid. Acetic acid is a mild organic acid that is used to lower the pH level in clear brine completion fluids. Acetic acid is less corrosive than strong mineral acids. The addition of acetic acid to the electrolysis cell containing salt has the desired effect of reducing the solution pH prior to commencing electrolysis. Without being held to one particular mechanism of action, the lower pH in the starting solution may offset or chemically neutralize the effect of formation of sodium hydroxide, which has the tendency to increase the pH. Variations in salt concentration in the homogenous Blended Stream electrolysis cell may vary the final pH of electrolysis. With higher salt concentrations, more sodium hydroxide is formed and more acetic acid may be required depending on the specific system, level of FAC desired, the amount ofNaCl to be added before electrolysis, and the desired pH range in the final electrolyte. Acetic acid may buffer the ECA product solution such that the pH is maintained between pH 5 and pH 6.5. Since the acetic acid buffering agent is added in combination with the reactants before electrolysis, and in embodiments is pre-mixed with the reactants and sold as a pre- mixed combination, the resultant ECA product solution may have a consistent pH and consistent chlorine concentration.

[00250] Without being bound by theory, it is believed that, in embodiments, the acetic acid may undergo olbe electrolysis, or other decarboxylative dimerization that may or may not proceed by a radical reaction mechanism, per the following reaction: 2 CH 3 COOH -> CH 3 -CH 3 + 2 C0 2 + 2 e " + 2 H + . Hydrogen evolution may also occur in solution. The hydrogen may stabilize the ECA product solution. Remo val of the C0 2 by NaOH may occur in solution with the ECA product solution.

[00251] In embodiments, the ECA system may be used to "re-brew" or further electro lyze in-process solutions to achieve a higher FAC (e.g. above 250 ppm FAC). In re-brewing, the pH of the resultant ECA product solution must be stabilized so that it does not exceed pH 8 whereupon the reaction would favor other species, such as sodium hypochlorite. Utilization of certain species in solution with sodium chloride, such as acetic acid or citric acid, may stabilize the pH during initial ECA product formation or during re-brewing.

[00252] One formulation utilizing acetic acid may be as follows: 3.5 g of powdered acetic acid and 6 g of sodium chloride are dissolved in 6.5 ounces of water to form an acetic acid/sodium chloride mixture, then a 1.5 ounce aliquot of this mixture is diluted into ½ gallon of water. In an embodiment, the proportion of materials by volume in the final starting solution may be 74.1 % water, 25% sodium chloride, and 0.9% acetic acid. Upon brewing an ECA product solution, and even upon re-brewing the solution to achieve higher FAC levels, the pH of the resultant ECA product solution remains at or near pH 6.5. At this pl:I, the HOG in solution is relatively stable and the ECA product solution has a shelf-life that may be 14 days, 30 days, or beyond. As with generation of other solutions described herein, the ECA system may employ rests in operation and reversal of polarity to optimize the generation of an ECA product solution.

[ 00253] In one embodiment, a process for generating HOC1 of a specified FAC may include mixing acetic acid with sodium chloride in water to form an aqueous salt solution, placing the solution into a receptacle, disposing at least two electrodes adapted to be immersed in the aqueous salt solution each disposed at a distance from one another into the receptacle, wherein upon the application of electricity, a first electrode is adapted to be positively charged and a second electrode is adapted to be negatively charged, providing electricity to the electrodes in order to produce an ECA product solution from the reactants in the solution, and determining an FAC of the EC A product solution and controlling a timing and a pausing of the provision of electricity to the electrodes in order to achieve a specific FAC of the ECA product solution. [00254] Other additives may also be used to stabilize or buffer the ECA product solution, such as organic acids (e.g. boric acid, sulfuric acid, muriatic acid), carbonates (e.g. calcium carbonate, sodium bicarbonate), oxides (e.g. magnesium oxide), ammonia, phosphates (e.g. monopotassium phosphate, diammonium phosphate), N-CycIohexyI-2-aminoethanesulfonic acid (CHES), horates/boric acid, barbituric acid, 3- {[tris(hydroxymfithyl)methy l]ammo}propanesulfonic acid (TAPS), N,N-bis(2-hydroxyethyl)glycine (bicine), tris(hydroxymethyl)methylamine (Tris), N- tris(hydiOxymethyl)methyiglycine (Tricine), 3-[N-

Tris(hydroxymethyl)methylamino]-2-hydroxypropanes lfonic Acid (TAPSO), 4-2- hydroxyethyH-piperaziiieethanesuifonic acid (HEPES), 2- {[tris(hydroxymethy!)methyl]amino} ethanesulfonic acid (TES), 3-(N- morpholmo)propanesulfonic acid (MOPS), piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES), dimeth larsimc acid (cacodylate), saline sodium citrate (SSC), 2~(N~ morpholino)ethanesulfonic acid (MES), 2(R)-2-(methylamino)succinic acid (2(R)-2- (methylamino)succmic acid), and the like. Additionally, certain surfactants, such as sodium dodecyi sulfate (SDS), sodium lauryl sulfate (SLS), sodium lauryl sulfoacetate (SLSa), or others may be used in combination with citric acid, acetic acid, or any of the additives/buffering agents disclosed herein.

[00255] In embodiments, the surfactant may be placed in solution with the potassium carbonate starting material and may be present throughout the generation of the ECA product solution. For example, the surfactant may be included in the starting material solution at about 0.5% by volume, 0.1 % by volume, 1% by volume, or the like. Since the surfactant is in solution with the starting materials, it also undergoes electrolysis, and in embodiments, does not precipitate or otherwise separate from the solution during electrolysis. Certain uses of the resultant ECA product solution with surfactant may require post-use rinsing, such as in the food industry.

[00256] In embodiments, when citric acid is used in conjunction with sodium chloride to produce an ECA product solution, an alcohol such as isopropyl alcohol, may be generated. Production of isopropyl alcohol during generation of HOG can alter the Total Available Chlorine (TAC) and/or the FAC. Such a solution may be used as a lime scale cleaning solution and/or grout cleaner. In embodiments, a formulation of a lime scale cleaning solution and/or grout cleaner may be 4 g of a powdered mix of 75% Citric Acid and 25% sodium chloride by weight dissolved in 64 ounces of water.

[00257] In embodiments, certain free radical species and other transient active species may be produced when generating HOCl, such as hydrogen, ozone and other chlorides. These species coupled with an ultra-high oxidation-reduction potential (ORP), such as in the range of +680 to +730 mV, enables the HOCl with its near neutral pH to have high FAC and long-term stability. It may be that the presence of the free radicals and transient actives along with the HOCl that enable the fast kill of organisms such as TB and pseudomonas in a short period of time (e.g. 30 seconds).

[00258] In embodiments, the system may employ buffers for the purpose of providing essential cofactors for enzymatically driven reactions.

[00259] While only a few embodiments of the present disclosure have been shown and described, it will be obvious to those skilled in the art that many changes and modifications may be made thereunto without departing from the spirit and scope of the present disclosure as described in the following claims. All patent applications and patents, both foreign and domestic, and all other publications referenced herein are incorporated herein in their entireties to the full extent permitted by law.

[00260] The methods and systems described herein may transform physical and/or or intangible items from one state to another. The methods and systems described herein may also transform data representing physical and/or intangible items from one state to another.

[00261] The elements described and depicted herein, including in flow charts and block diagrams throughout the figures, imply logical boundaries between the elements. However, according to software or hardware engineering practices, the depicted elements and the functions thereof may be implemented on machines through computer executable media having a processor capable of executing program instructions stored thereon as a monolithic software structure, as standalone software modules, or as modules that employ external routines, code, sendees, and so forth, or any combination of these, and all such implementations may be within the scope of the present disclosure. Examples of such machines may include, but may not be limited to, personal digital assistants, laptops, personal computers, mobile phones, other handheld computing devices, medical equipment, wired or wireless

communication devices, transducers, chips, calculators, satellites, tablet PCs, electronic books, gadgets, electronic devices, devices having artificial intelligence, computing devices, networking equipment, servers, routers and the like. Furthermore, the elements depicted in the flow chart and block diagrams or any other logical component may be implemented on a machine capable of executing program instructions. Thus, while the foregoing drawings and descriptions set forth functional aspects of the disclosed systems, no particular arrangement of software for implementing these functional aspects should be inferred from these descriptions unless explicitly stated or otherwise clear from the context. Similarly, it will be appreciated that the various steps identified and described above may be varied, and that the order of steps may be adapted to particular applications of the techniques disclosed herein. All such variations and modifications are intended to fall within the scope of this disclosure. As such, the depiction and/or description of an order for various steps should not be understood to require a particular order of execution for those steps, unless required by a particular application, or explicitly stated or otherwise clear from the context.

[00262] The methods and/or processes described above, and steps associated therewith, may be realized in hardware, software or any combination of hardware and software suitable for a particular application. The hardware may include a general- purpose computer and/or dedicated computing device or specific computing device or particular aspect or component of a specific computing device. The processes may be realized in one or more microprocessors, microcontrollers, embedded

microcontrollers, programmable digital signal processors or other programmable device, along with internal and/or external memory. The processes may also, or instead, be embodied in an application specific integrated circuit, a programmable gate array, programmable array logic, or any other device or combination of devices that may be configured to process electronic signals. It will further be appreciated that one or more of the processes may be realized as a computer executable code capable of being executed on a machine-readable medium.

[00263] While the disclosure has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art.

Accordingly, the spirit and scope of the present disclosure is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law. [00264] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the disclosure (especial ly in the context of the fol lowing claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having,"

"including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value failing within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and ail examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure.

[00265] While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations,

combinations, and equivalents of the specific embodiment, method, and examples herein. The disclosure should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the disclosure.

[00266J All documents referenced herein are hereby incorporated by reference.