Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTROCOAT COMPOSITION AND PROCESS REPLACING PHOSPHATE PRETREATMENT
Document Type and Number:
WIPO Patent Application WO/2010/077896
Kind Code:
A2
Abstract:
An electrically conductive substrate is electrocoated with an aqueous electrodeposition coating composition comprising a cathodically electrodepositable binder, the binder comprising an amine-functional phosphorylated resin and at least one additional coating layer, such as a second primer layer, a topcoat layer, or both.

Inventors:
DECEMBER TIMOTHY S (US)
CHOUAI ABDELLATIF (US)
STANTS CYNTHIA A (US)
MENOVCIK GREGORY G (US)
Application Number:
PCT/US2009/068156
Publication Date:
July 08, 2010
Filing Date:
December 16, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF COATINGS GMBH (US)
DECEMBER TIMOTHY S (US)
CHOUAI ABDELLATIF (US)
STANTS CYNTHIA A (US)
MENOVCIK GREGORY G (US)
International Classes:
C23C28/00
Domestic Patent References:
WO2008127744A22008-10-23
Foreign References:
US5868820A1999-02-09
US6110341A2000-08-29
US4397970A1983-08-09
US7338989B22008-03-04
US7297742B22007-11-20
US6916877B22005-07-12
US6887526B12005-05-03
US6727316B12004-04-27
US6437036B12002-08-20
US6413642B12002-07-02
US6210758B12001-04-03
US6099899A2000-08-08
US5888655A1999-03-30
US5866259A1999-02-02
US5552487A1996-09-03
US5536785A1996-07-16
US4882003A1989-11-21
US4190569A1980-02-26
US7375174B22008-05-20
US7342071B22008-03-11
US7297749B22007-11-20
US7261926B22007-08-28
US7226971B22007-06-05
US7160973B22007-01-09
US7151133B22006-12-19
US7060357B22006-06-13
US7045588B22006-05-16
US7041729B22006-05-09
US6995208B22006-02-07
US6927271B22005-08-09
US6914096B22005-07-05
US6900270B22005-05-31
US6818303B22004-11-16
US6812300B22004-11-02
US6780909B22004-08-24
US6737468B12004-05-18
US6652919B12003-11-25
US6583212B22003-06-24
US6462144B12002-10-08
US6337139B12002-01-08
US6165618A2000-12-26
US6129989A2000-10-10
US6001424A1999-12-14
US5981080A1999-11-09
US5855964A1999-01-05
US5629374A1997-05-13
US5601879A1997-02-11
US5508349A1996-04-16
US5502101A1996-03-26
US5494970A1996-02-27
US5281443A1994-01-25
EP0505445B11994-11-17
Attorney, Agent or Firm:
BUDDE, Anna M. et al. (Dickey & Pierce P.L.C.,P.O. Box 82, Bloomfield Hills Michigan, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A method of coating a metal automotive vehicle body, comprising: (a) cleaning the metal automotive vehicle body;

(b) placing the cleaned metal automotive vehicle body into an aqueous electrocoat coating composition comprising an amine-functional phosphorylated resin.;

(c) connecting the metal automotive vehicle body as a cathode in an electric circuit and passing a current through the aqueous electrocoat coating composition to deposit an electrocoat coating layer onto the metal automotive vehicle body; and

(d) applying a further coating layer over the electrocoat coating layer.

2. A method according to claim 1, wherein the further coating layer is a primer coating layer.

3. A method according to claim 1, wherein the further coating layer is a topcoat coating layer.

4. A method according to claim 1, wherein the electrocoat coating layer is cured before step (d).

5. A method according to claim 1, wherein the electrocoat coating layer and the further coating layer are cured together after step (d).

6. A method according to claim 2, further comprising :

(e) applying a topcoat layer over the primer coating layer layer.

7. A method according to claim 6, wherein the topcoat layer comprises a basecoat/clearcoat composite coating.

8. A method according to claim 6, wherein the primer layer is cured before applying the topcoat layer.

9. A method according to claim 6, wherein the primer layer and the topcoat layer are cured together.

10. A method according to claim 6, wherein the electrocoat coating layer, the primer layer, and the topcoat layer are cured together.

11. A method according to claim 1, wherein the metal automotive vehicle body is free of a phosphate pre-treatment.

12. A method according to claim 1, wherein the phosphorylated resin comprises a phosphate ester of a polyepoxide resin, a phosphonic acid ester of a polyepoxide resin, or a combination thereof.

13. A method according to claim 1, wherein the phosphorylated resin comprises a diphosphate ester of a polyepoxide resin, a diphosphonic acid ester of a polyepoxide resin, or a combination thereof.

14. A method according to claim 1, wherein the phosphorylated resin is an epoxy resin.

15. A method according to claim 1, wherein the phosphorylated epoxy resin is at least about 5 weight percent of electrocoat coating binder.

Description:
ELECTROCOAT COMPOSITION AND PROCESS REPLACING PHOSPHATE PRETREATMENT

FIELD OF THE DISCLOSURE [0001 ] The invention relates to coating methods, particularly coating methods including electrocoating a coating layer and applying an additional coating layer over the electrocoat coating layer.

BACKGROUND OF THE DISCLOSURE [0002] The statements in this section merely provide background information related to this disclosure and may not constitute prior art.

[0003] Industrial coating of metal articles that will be used in corrosive environments may include application of one or more inorganic and organic treatments and coatings. Painting systems ("paint shops") in automotive assembly plants are large, complex, and expensive. Metal automotive vehicle bodies (the "body-in-white") and parts, for instance, are given a many- step treatment of cleaning in one or more cleaning baths or spray tanks, application of an aqueous phosphate coating material as a metal pretreatment step in a phosphating bath, then various rinses and additional finishing treatments, such as described in Claffey, U.S. Patent No. 5,868,820. The phosphating pre-treatment steps are undertaken to improve corrosion resistance of the metal and adhesion of subsequent coatings to the metal. The cleaning and phosphating steps may have 10 or 12 individual treatment stations of spray equipment or dip tanks.

[0004] An electrodeposition coating ("electrocoat") is applied after the pretreatment steps to the metal vehicle body. Electrocoat baths usually comprise an aqueous dispersion or emulsion of a principal film-forming epoxy resin ("polymer" and "resin" are used interchangeably in this disclosure), having ionic stabilization in water or a mixture of water and organic cosolvent. In automotive or industrial applications for which durable electrocoat films are desired, the electrocoat compositions are formulated to be curable (thermosetting) compositions. This is usually accomplished by emulsifying with the principal film-forming resin a crosslinking agent that can react with functional groups on the principal resin under appropriate conditions, such as with the application of heat, and so cure the coating. During electrodeposition, coating material containing the ionically-charged resin having a relatively low molecular weight is deposited onto a conductive substrate by submerging the substrate in the electrocoat bath and then applying an electrical potential between the substrate and a pole of opposite charge, for example, a stainless steel electrode. The charged coating material migrates to and deposits on the conductive substrate. The coated substrate is then heated to cure or crosslink the coating.

[0005] One of the advantages of electrocoat compositions and processes is that the applied coating composition forms a uniform and contiguous layer over a variety of metallic substrates regardless of shape or configuration. This is especially advantageous when the coating is applied as an anticorrosive coating onto a substrate having an irregular surface, such as a motor vehicle body. The even, continuous coating layer over all portions of the metallic substrate provides maximum anticorrosion effectiveness. The phosphate pre-treatment, however, has up to now been an indispensable step in protecting against corrosion for automotive vehicle bodies. McMurdie et al., U.S. Patent 6,110,341 teaches that hydrocarbyl phosphate and phosphonic acid esters, which may include polyepoxide linking groups, can be incorporated into electrodeposition baths in amounts of up to 500 ppm on total bath weight for improved corrosion protection. Examples including phenylphosphonic acid were reported to have a modest increase in corrosion protection over untreated steel panels.

SUMMARY OF THE DISCLOSURE

[0006] We disclose a process for finishing a metallic substrate including electrodepositing an electrocoat coating having phosphorous-containing groups on a metal substrate, particularly on an unphosphated metal substrate, (that is, a metal substrate that has not undergone a phosphate pretreatment) and applying at least one further coating layer over the electrocoat coating

[0007] The process uses an aqueous electrocoat coating composition, also called an electrocoat bath, with a binder comprising a cathodically electrodepositable resin having at least one phosphorous-containing group O

X P 0-

0

in which X is a hydrogen, a monovalent hydrocarbon group (i.e., hydrocarbyl group), an alkyl group such as an aminoalkyl group, an aryl group, an alkylaryl group, an arylalkyl group, or an oxygen atom having a single covalent bond to the phosphorous atom, and each oxygen atom has a covalent bond to a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, or the cathodically electrodepositable resin, with the caveat that at least one oxygen atom has a covalent bond to the cathodically electrodepositable resin. The alkyl groups may be cycloalkyl groups. For convenience, "resin" is used in this disclosure to encompass resin, oligomer, and polymer, and the cathodically electodepositable resin having the phosphorous-containing group will be referred to as an amine-functional phosphorylated resin. "Binder" refers to the film- forming components of the coating composition. Typically the binder is thermosetting or curable.

[0008] In one embodiment, the amine-functional phosphorylated resin comprises an amine-functional monophosphate ester or monophosphonic acid ester of a polyepoxide resin. In another embodiment, the amine-functional phosphorylated resin comprises an amine-functional diphosphate ester, triphosphate ester, or diphosphonic acid ester of a polyepoxide resin. In other embodiments, the amine-functional phosphorylated resin includes a combination of these esters. The remaining oxygens on the phosphorous atom that are not covalently bound between the resin and the phosphorous atom may also be esterified. In certain embodiments, at least one P — OH group remains unesterified; that is, the phosphorous containing group has at least one P-OH group.

[0009] In various embodiments, the amine-functional phosphorylated resin has one phosphorous atom or a plurality of phosphorous atoms. The amine-functional phosphorylated resin may be prepared using a polyepoxide extended by reaction with one or more extenders, an extender being a material having at least two active hydrogen- containing groups. [0010] In certain embodiments, the amine-functional phosphorylated resin may be from about 0.01 to about 99% by weight of the total binder in the electrodeposition coating composition. Among these embodiments are those in which the amine-functional phosphorylated resin is from about 1 to about 90% by weight of total binder in the electrodeposition coating composition and those in which the amine- functional phosphorylated resin is from about 5 to about 80% by weight of total binder in the electrodeposition coating composition. In certain embodiments, the binder comprises a crosslinker for the amine-functional phosphorylated resin. In certain embodiments, the binder comprises a second amine-functional resin other than the amine-functional phosphorylated resin. In any of these embodiments, the binder may also comprises a crosslinker which reacts during cure of the electrodeposited coating layer with the amine- functional phosphorylated resin, the second amine-functional resin, or both.

[0011 ] We disclose a method of coating an electrically conductive substrate, such as a metal automotive vehicle body or part, which comprises placing the electrically conductive substrate into the aqueous electrodeposition coating composition having a binder comprising an amine-functional phosphorylated resin salted with an acid and, using the electrically conductive substrate as the cathode, passing a current through the aqueous electrodeposition coating composition to deposit a coating layer comprising the binder onto the electrically conductive substrate. At least one additional coating layer is applied over the electrodeposited coating layer. The electrodeposited coating layer may be cured to a cured coating layer either before or after the additional coating layer is applied over it. Subsequent coating layers may be applied on the additional coating layer before or after the additional coating layer is cured. For example, other layers such as an optional spray- applied primer surfacer and a topcoat layer or topcoat layers (e.g., a colored basecoat layer and a clearcoat layer) may be applied over the electrodeposited coating layer. The electrodeposited layer may be cured before application of any of these additional layers or co-cured with one or more additional layer applied.

[0012] In one embodiment of the method, the electrically conductive substrate is unphosphated before it is coated with an electrodeposited coating comprising the phosphorylated resin; that is, the substrate is free of a phosphate pre-treatment.

[0013] In one embodiment of the method, a metal automotive vehicle body is cleaned, and the cleaned metal automotive vehicle body is electrodeposited with an aqueous coating composition comprising amine-functional phosphorylated resin salted with an acid and at least one further coating layer. Thus, no phosphate pretreatment is used. The binder of the electrocoat coating composition may include a second amine- functional resin that does not have phosphate groups, and generally a crosslinker reactive with one or both amine-functional resins is included in the coating composition so that the electrodeposited coating layer may be cured.

[0014] A coated, electrically conductive substrate comprises an electrically deposited coating layer on the substrate, the electrically deposited coating layer comprising a cured coating formed from a binder comprising an amine-functional phosphorylated resin; and at least one further coating layer applied over the electrically deposited coating layer. In various embodiments, the binder of the electrically deposited coating layer further comprises a crosslinker reactive with the phosphorylated epoxy resin, a second resin, or both which reacts during cure to form the cured coating. The at least one further coating layer may be a topcoat layer; in certain embodiments, at least a basecoat/clearcoat composite coating is applied over the electrically deposited coating layer.

[0015] By making the phosphorylated resin electrodepositable, a greater amount of the phosphorous-containing groups can be incorporated into the coating composition, resulting in significant improvement in corrosion protection over untreated, particularly unphosphated, metallic substrates such as cold rolled steel.

[0016] "A," "an," "the," "at least one," and "one or more" are used interchangeably to indicate that at least one of the item is present; a plurality of such items may be present. Other than in the working examples provides at the end of the detailed description, all numerical values of parameters (e.g., of quantities or conditions) in this specification, including the appended claims, are to be understood as being modified in all instances by the term "about" whether or not "about" actually appears before the numerical value. "About" indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by "about" is not otherwise understood in the art with this ordinary meaning, then "about" as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, disclosure of ranges includes disclosure of all values and further divided ranges within the entire range.

[0017] Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.

DETAILED DESCRIPTION

[0018] The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.

[0019] A metal substrate, which may be unphosphated, is electrocoated with an aqueous electrocoat coating composition having a binder comprising an amine- functional phosphorylated resin, then at least one additional coating layer is applied over the electrocoat coating layer. The amine-functional phosphorylated resin is salted with an acid. The electrodepo sited coating layer may be cured before being overcoated with the at least one additional coating layer. The amine-functional phosphorylated resin has at least one covalently bonded, phosphorous-containing group having a structure

O

X P 0

in which X is a hydrogen, a monovalent hydrocarbon group, an alkyl group such as an aminoalkyl group, an aryl group, an alkylaryl group, an arylalkyl group, or an oxygen atom singly bonded to the phosphorous atom, and each oxygen atom has a covalent bond to a hydrogen atom, an alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, or the cathodically electrodepositable resin, with the caveat that at least one oxygen atom has a covalent bond to the cathodically electrodepositable resin. In each case, an alkyl group may be a cycloalkyl group.

[0020] The amine-functional phosphorylated resin may be prepared using any resin or polymerizable monomer that may be esterified with the phosphorous-containing group. Electrocoat coating binders often include epoxy resins, and the amine-functional phosphorylated resin may, for example, be an epoxy resin.

[0021 ] An amine-functional phosphorylated epoxy resin may be prepared in various ways, n a first way, an amine-functional phosphorylated epoxy resin may be prepared by reaction of an epoxide-functional or hydroxyl-functional epoxy resin with a — P(OR) 2 =O group-containing acid or acid derivative, with at least one R being a hydrogen atom or a low alkyl group (by which we mean an alkyl group having one to four carbon atoms), particularly methyl, ethyl, propyl, isopropyl, isobutyl, butyl, or tert- butyl, that can be transesterified, such as phosphoric acid, a mono- or diester of phosphoric acid, hypophosphoric acid, a monoester of hypophosphoric acid, alkyl- or arylphosphonic acid, a monoester of alkyl- or arylphosphonic acid, and combinations of these. The epoxide-functional resin has at least one epoxide or hydroxyl group for reaction with the phosphorous-containing acid or acid derivative and has either an amine group or a further group (which may also be an epoxide group) for reaction with a compound containing an amine group.

[0022] Suitable, nonlimiting examples of polyepoxide resins that may be reacted with the — P(OR) 2 =O group-containing acid include epoxy resins with a plurality of epoxide groups, such as diglycidyl aromatic compounds such as the diglycidyl ethers of polyhydric phenols such as 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 2,2- bis(4-hydroxy-3-methylphenyl)propane, 4,4'-dihydroxybenzophenone, dihydroxyacetophenones, l,l-bis(4hydroxyphenylene)ethane, bis(4-hydroxyphenyl) methane, l,l-bis(4hydroxyphenyl)isobutane, 2,2-bis(4-hydroxy-tert-butylphenyl) propane, 1 ,4-bis(2-hydroxyethyl)piperazine, 2-methyl- 1 , 1 -bis(4-hydroxyphenyl)propane, bis-(2-hydroxynaphthyl)methane, l,5-dihydroxy-3-naphthalene, and other dihydroxynaphthylenes, catechol, resorcinol, and the like, including diglycidyl ethers of bisphenol A and bisphenol A-based resins having a structure

wherein Q is

R is H, methyl, or ethyl, and n is an integer from 0 to 10. In certain embodiments, n is an integer from 1 to 5. Also suitable are the diglycidyl ethers of aliphatic diols, including the diglycidyl ethers of 1,4- butanediol, cyclohexanedimethanols, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, Methylene glycol, tripropylene glycol, polypropylene glycol, polyethylene glycol, poly(tetrahydrofuran), 1,3- propanediol, 2,2,4-trimethyl-l,3-pentanediol, 1,6-hexanediol, 2,2-bis(4- hydroxycyclohexyl) propane, and the like. Diglycidyl esters of dicarboxylic acids can also be used as polyepoxides. Specific examples of compounds include the diglycidyl esters of oxalic acid, cyclohexanediacetic acids, cylcohexanedicarboxylic acids, succinic acid, glutaric acid, phthalic acid, terephthalic acid, isophthalic acid, naphthalene dicarboxylic acids, and the like. A polyglycidyl reactant may be used, preferably in a minor amount in combination with diepoxide reactant. Novolac epoxies may be used as a polyepoxide-functional reactant. The novolac epoxy resin may be selected from epoxy phenol novolac resins or epoxy cresol novolac resins. Other suitable higher-functionality polyepoxides are glycidyl ethers and esters of triols and higher polyols such as the triglycidyl ethers of trimethylolpropane, trimethylolethane, 2,6-bis(hydroxymethyl)-p- cresol, and glycerol; tricarboxylic acids or polycarboxylic acids. Also useful as polyepoxides are epoxidized alkenes such as cyclohexene oxides and epoxidized fatty acids and fatty acid derivatives such as epoxidized soybean oil. Other useful polyepoxides include, without limitation, polyepoxide polymers such as acrylic, polyester, polyether, and epoxy resins and polymers, and epoxy-modified polybutadiene, polyisoprene, acrylobutadiene nitrile copolymer, or other epoxy-modified rubber-based polymers that have a plurality of epoxide groups. [0023] The polyepoxide resin may be reacted with an extender to prepare a polyepoxide resin having a higher molecular weight having beta-hydroxy ester linkages. Suitable, nonlimiting examples of extenders include polycarboxylic acids, polyols, polyphenols, and amines having two or more amino hydrogens, especially dicarboxylic acids, diols, diphenols, and diamines. Particular, nonlimiting examples of suitable extenders include diphenols, diols, and diacids such as those mentioned above in connection with forming the polyepoxide; polycaprolactone diols, and ethoxylated bisphenol A resins such as those available from BASF Corporation under the trademark MACOL®. Other suitable extenders include, without limitation, carboxy- or amine- functional acrylic, polyester, polyether, and epoxy resins and polymers. Still other suitable extenders include, without limitation, polyamines, including diamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, dimethylaminopropylamine, dimethylaminobutylamine, diethylaminopropylamine, diethylaminobutylamine, dipropylamine, and piperizines such as l-(2-aminoethyl)piperazine, polyalkylenepolyamines such as triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, tripropylenetetramine, tetrapropylenepentamine, pentapropylenehexamine, N,N'-bis(3-aminopropyl)ethylenediamine, N-(2-hydroxyethyl) propane- 1,3 -diamine, and polyoxyalkylene amines such as those available from BASF AG under the trademark POLYAMIN® or from Huntsman under the trademark JEFFAMINE®. [0024] A monofunctional reactant may optionally be reacted with the polyepoxide resin and the extender or after reaction of the polyepoxide with the extender to prepare an epoxide-functional resin. Suitable, nonlimiting examples of monofunctional reactants include phenol, alkylphenols such as nonylphenol and dodecylphenol, other monofunctional, epoxide-reactive compounds such as dimethylethanolamine and monoepoxides such as the glycidyl ether of phenol, the glycidyl ether of nonylphenol, or the glycidyl ether of cresol, and dimer fatty acid.

[0025] Useful catalysts for the reaction of the polyepoxide resin with the extender and optional monofunctional reactant include any that activate an oxirane ring, such as tertiary amines or quaternary ammonium salts (e.g., benzyldimethylamine, dimethylaminocyclohexane, triethylamine, N-methylimidazole, tetramethyl ammonium bromide, and tetrabutyl ammonium hydroxide.), tin and/or phosphorous complex salts (e.g., (CHs) 3 SNI, (CH 3 ) 4 PI, triphenylphosphine, ethyltriphenyl phosphonium iodide, tetrabutyl phosphonium iodide) and so on. It is known in the art that tertiary amine catalysts may be preferred with some reactants. The reaction may be carried out at a temperature of from about 100°C. to about 350°C. (in other embodiments 160 0 C to 250 0 C.) in solvent or neat. Suitable solvents include, without limitation, inert organic solvent such as a ketone, including methyl isobutyl ketone and methyl amyl ketone, aromatic solvents such as toluene, xylene, Aromatic 100, and Aromatic 150, and esters, such as butyl acetate, n-propyl acetate, hexyl acetate.

[0026] The polyepoxide resin may be reacted with the phosphorous- containing acid or acid derivative before, during, or after reaction of the polyepoxide resin with the extender and optional monofunctional reactant. The reaction with the acid or acid derivative, if carried out before or after the reaction with the extender, may be carried out at a temperature of from about 50°C. to about 150°C. in solvent, including any of those already mentioned, or neat. The polyepoxide resin may also be reacted with the phosphorous-containing acid or acid derivative and optionally a monofunctional reactant such as those already described and not be reacted with an extender.

[0027] The amine-functional phosphorylated resin has at least one amine group, and this amine functionality may introduced before or after the phosphorylating reaction. If before, the amine functionality may be introduced by reaction of the polyepoxide resin with an extender having a tertiary amine group or with a monofunctional reactant having a tertiary amine group. Suitable, nonlimiting examples of extenders and monofunctional reactants having an amine group include diethanolamine, dipropanolamine, diisopropanolamine, dibutanolamine, diisobutanolamine, diglycolamine, methylethanolamine, dimethylaminopropylamine, and compounds having a primary amine group that has been protected by forming a ketimine, such as the ketimine of diethylenetriamine.

[0028] The polyepoxide resin, extended polyepoxide resin, or epoxide- functional resin is then reacted with the phosphorous-containing acid or acid derivative to make a phosphorylated resin. Suitable phosphorous containing acid derivatives include esterifiable esters and anhydrides of phosphorous-containing acids. Among suitable examples, are those — P(OR) 2 =O group-containing acids or acid derivatives having at least one R that is a hydrogen atom or a low alkyl group (up to four carbon atoms, particularly methyl, ethyl, propyl, isopropyl, and tert-butyl) than can be transesterified, such as phosphoric acid, an mono- or diester of phosphoric acid, hypophosphoric acid, a monoester of hypophosphoric acid, alkyl- or arylphosphonic acid, a monoester of alkyl- or arylphosphonic acid, and combinations of these.

Phosphoric acid or a source of phosphoric acid that may be used in the reaction may be nonaqueous phosphoric acid, 85% in water, a more dilute aqueous phosphoric acid, pyrophosphoric acid, or polyphosphoric acid. Other suitable phosphoric acid sources are described in Campbell et al., U.S. Patent No. 4,397,970, incorporated herein by reference. In certain particular embodiments, the polyepoxide resin, extended polyepoxide resin, or epoxide-functional resin is reacted with phosphoric acid or a source of phosphoric acid to make a phosphorylated resin. The phosphoric acid or source of phosphoric acid used in the reaction may be nonaqueous phosphoric acid, 85% in water, a more dilute aqueous phosphoric acid, pyrophosphoric acid, or polyphosphoric acid. Other suitable phosphoric acid sources are described in Campbell et al., U.S. Patent No. 4,397,970, incorporated herein by reference. In other embodiments, the polyepoxide resin, extended polyepoxide resin, or epoxide-functional resin is reacted with another phosphorous-containing acid or acid derivative such as one of those mentioned above. [0029] The phosphorylated resin may include monophosphonic acid esters, diphosphonic acid esters, monophosphate ester, diphosphate esters, and triphosphate esters, as well as combinations of these. In addition, the phosphorylated resin may have one or a plurality of the phosphorous-containing ester groups. The extent of esterification of phosphorous-containing acid or acid derivative and the number of phosphorous-containing ester groups incorporated into the resin is controlled, inter alia, by the relative equivalents of the reactants. In one example, from about 1 to about 3 equivalents of resin (based on epoxide and hydroxyl groups) is reacted with each equivalent of phosphoric acid or phosphoric acid derivative. In another example, from about 1 to about 2 equivalents of resin (based on epoxide and hydroxyl groups) is reacted with each equivalent of phosphonic acid or phosphonic acid derivative. The equivalents of the resin reactive groups may also be in excess of the equivalents of acid or acid derivative. The resin and phosphoric or phosphonic acid or acid derivative may be mixed together and allowed to react until a desired extent of reaction is obtained. In certain embodiments, the weight per epoxide after reaction of an epoxide-functional resin is from about 180 to about 1200.

[0030] Other reactants that may be used in addition to the resin and phosphorous-containing acid or acid derivative may include alcohols such as n-butanol, isopropanol, and n-propanol; glycol ethers such as ethylene glycol monobutyl ether, propylene glycol monobutyl ether, and propylene glycol monopropyl ether; amines such as any of those mentioned above; water; and combinations of these. These reactants can also be used to react with excess oxirane groups after the reaction of the resin with the acid or acid derivative.

[0031 ] The amine functionality may be imparted to the phosphorylated resin in one of two ways. In a first way, an amine having at least one active hydrogen reactive with an epoxide group is included as a reactant in the reaction of the epoxide-functional resin and phosphoric acid or source of phosphoric acid. In a second way, the reaction product of the epoxide-functional epoxy resin and phosphoric acid (and any further reactants) is an epoxide-functional product that is then further reacted with an amine having at least one active hydrogen reactive with an epoxide group. Examples of suitable amine compounds include, without limitation, dimethylaminopropylamine, N 5 N- diethylaminopropylamine, dimethylaminoethylamine, N-aminoethylpiperazine, aminopropylmorpholine, tetramethyldipropylenetriamine, methylamine, ethylamine, dimethylamine, dibutylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, dimethylaminobutylamine, diethylaminopropylamine, diethylaminobutylamine, dipropylamine, methylbutylamine , alkanolamines such as methylethanolamine, aminoethylethanolamine, aminopropylmonomethylethanolamine, and diethanolamine, diketimine (a reaction product of 1 mole diethylenetriamine and 2 moles methyl isobutyl ketone), and polyoxyalkylene amines.

[0032] In certain embodiments, the phosphorylated resin is an epoxide- functional resin that is reacted with an extender, such any of those already mentioned.

[0033] The amine-functional phosphorylated resin is used to prepare an electrocoat coating composition (also known as an electrocoat bath). In general, a binder is prepared comprising the amine-functional phosphorylated resin, then the binder is dispersed in an aqueous medium by salting amine groups present in the binder with an acid.

[0034] In certain embodiments, the amine-functional phosphorylated resin comprises from about 0.01 to about 99% by weight of binder in the electrodeposition coating composition. The amine-functional phosphorylated resin may comprise from about 0.01 to about 99% by weight of binder, 1 to about 90% by weight of binder, or from about 5 to about 80% by weight of binder in the electrodeposition coating composition. The binder may also comprise a crosslinker that reacts with the amine- functional phosphorylated resin during curing of a coating layer formed on a substrate. Suitable examples of crosslinking agents, include, without limitation, blocked polyisocyanates. Examples of aromatic, aliphatic or cycloaliphatic polyisocyanates include diphenylmethane-4,4'-diisocyanate (MDI), 2,4- or 2,6-toluene diisocyanate (TDI), p-phenylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, mixtures of phenylmethane-4,4'-diisocyanate, polymethylene polyphenylisocyanate, , 2- isocyanatopropylcyclohexyl isocyanate, dicyclohexylmethane 2,4'-diisocyanate, 1,3- bis(iso-cyanatomethyl)cyclohexane, diisocyanates derived from dimer fatty acids, as sold under the commercial designation DDI 1410 by Henkel, l,8-diisocyanato-4- isocyanatomethyloctane, l,7-diisocyanato-4-isocyanato-methylheptane or 1-isocyanato- 2-(3-isocyanatopropyl)-cyclohexane, and higher polyisocyanates such as triphenylmethane-4,4',4"-triisocyanate, or mixtures of these polyisocyanates. Suitable polyisocyantes also include polyisocyanates derived from these that containing isocyanurate, biuret, allophanate, iminooxadiazinedione, urethane, urea, or uretdione groups. Polyisocyanates containing urethane groups, for example, are obtained by reacting some of the isocyanate groups with polyols, such as trimethylolpropane, neopentyl glycol, and glycerol, for example. The isocyanate groups are reacted with a blocking agent. Examples of suitable blocking agents include phenol, cresol, xylenol, epsilon-caprolactam, delta-valerolactam, gamma-butyrolactam, diethyl malonate, dimethyl malonate, ethyl acetoacetate, methyl acetoacetate, alcohols such as methanol, ethanol, isopropanol, propanol, isobutanol, tert-butanol, butanol, glycol monoethers such as ethylene or propylene glycol monoethers, acid amides (e.g. acetoanilide), imides (e.g. succinimide), amines (e.g. diphenylamine), imidazole, urea, ethylene urea, 2- oxazolidone, ethylene imine, oximes (e.g. methylethyl ketoxime), and the like. [0035] The binder may include one or more additional resins. Nonlimiting examples of suitable additional resins include epoxy resins, polyesters, polyurethanes, vinyl resins such as polyacrylate resins, and polybutadiene resins. The additional resin may be, for example, any of the polyepoxide resins, extended polyepoxide resins, or epoxide-functional resins already mentioned, optionally reacted with a compound having at least one epoxide-reactive group.

[0036] In certain embodiments the binder comprises another amine- functional resin. Nonlimiting examples of suitable amine-functional resins include amine-functional epoxy resins, polyesters, polyurethanes, vinyl resins such as polyacrylate resins, and polybutadiene resins. Amine-functional epoxy resins may be prepared by reacting any of the polyepoxide resins, extended polyepoxide resins, or epoxide-functional resins already mentioned with an amine, including any of those mentioned above as suitable for preparing the amine-functional phosphorylated resin.

[0037] Cationic polyurethanes and polyesters may also be used. Such materials may be prepared by endcapping with, for example, an aminoalcohol or, in the case of the polyurethane, the same compound comprising a saltable amine group previously described may also be useful. [0038] Polybutadiene, polyisoprene, or other epoxy- modified rubber-based polymers can be used as the resin in the present invention. The epoxy-rubber can be capped with a compound comprising a saltable amine group.

[0039] Cationic acrylic resins may be made cathodic by incorporation of amino-containing monomers, such as acrylamide, methacrylamide, N 5 N'- dimethylaminoethyl methacrylate tert-butylaminoethyl methacrylate. 2-vinylpyridine, A- vinylpyridine, vinylpyrrolidine or other such amino monomers. Alternatively, epoxy groups may be incorporated by including an epoxy-functional monomer in the polymerization reaction. Such epoxy-functional acrylic polymers may be made cathodic by reaction of the epoxy groups with amines according to the methods previously described for the epoxy resins. The polymerization may also include a hydroxyl- functional monomer. Useful hydroxyl-functional ethylenically unsaturated monomers include, without limitation, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, the reaction product of methacrylic acid with styrene oxide, and so on. Preferred hydroxyl monomers are methacrylic or acrylic acid esters in which the hydroxyl -bearing alcohol portion of the compound is a linear or branched hydroxy alkyl moiety having from 1 to about 8 carbon atoms.

[0040] The monomer bearing the hydroxyl group and the monomer bearing the group for salting (amine for a cationic group or acid or anhydride for anionic group) may be polymerized with one or more other ethylenically unsaturated monomers. Such monomers for copolymerization are known in the art. Illustrative examples include, without limitation, alkyl esters of acrylic or methacrylic acid, e.g., methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, t-butyl acrylate, t-butyl methacrylate, amyl acrylate, amyl methacrylate, isoamyl acrylate, isoamyl methacrylate, hexyl acrylate, hexyl methacrylate, 2-ethylhexyl acrylate, decyl acrylate, decyl methacrylate, isodecyl acrylate, isodecyl methacrylate, dodecyl acrylate, dodecyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, substituted cyclohexyl acrylates and methacrylates, 3,5,5- trimethylhexyl acrylate, 3,5,5-trimethylhexyl methacrylate, the corresponding esters of maleic, fumaric, crotonic, isocrotonic, vinylacetic, and itaconic acids, and the like; and vinyl monomers such as styrene, t-butyl styrene, alpha-methyl styrene, vinyl toluene and the like. Other useful polymerizable co-monomers include, for example, alkoxyethyl acrylates and methacrylates, acryloxy acrylates and methacrylates, and compounds such as acrylonitrile, methacrylonitrile, acrolein, and methacrolein. Combinations of these are usually employed. [0041 ] The binder may also comprise a crosslinker that reacts with the amine- functional resin other than the phosphorylated resin during curing of a coating layer formed on a substrate, or the binder may also comprise a crosslinker that reacts with both the amine-functional resin other than the phosphorylated resin and the phosphorylated resin during curing of a coating layer formed on a substrate. Optionally, plasticizer or solvents or both can be added to the binder mixture. Nonlimiting examples of coalescing solvents include alcohols, glycol ethers, polyols, and ketones. Specific coalescing solvents include monobutyl and monohexyl ethers of ethylene glycol, phenyl ether of propylene glycol, monoalkyl ethers of ethylene glycol such as the monomethyl, monoethyl, monopropyl, and monobutyl ethers of ethylene glycol or propylene glycol; dialkyl ethers of ethylene glycol or propylene glycol such as ethylene glycol dimethyl ether and propylene glycol dimethyl ether; butyl carbitol; diacetone alcohol. Nonlimiting examples of plasticizers include ethylene or propylene oxide adducts of nonyl phenols, bisphenol A, cresol, or other such materials, or polyglycols based on ethylene oxide and/or propylene oxide. The amount of coalescing solvent is not critical and is generally between about 0 to 15 percent by weight, preferably about 0.5 to 5 percent by weight based on total weight of the resin solids. Plasticizers can be used at levels of up to 15 percent by weight resin solids. [0042] The binder is emulsified in water in the presence of an acid. Nonlimiting examples of suitable acids include phosphoric acid, phosphonic acid, propionic acid, formic acid, acetic acid, lactic acid, or citric acid. The salting acid may be blended with the binder, mixed with the water, or both, before the binder is added to the water. The acid is used in an amount sufficient to neutralize enough of the amine groups to impart water-dispersibility to the binder. The amine groups may be fully neutralized; however, partial neutralization is usually sufficient to impart the required water-dispersibility. By saying that the resin is at least partially neutralized, we mean that at least one of the saltable groups of the binder is neutralized, and up to all of such groups may be neutralized. The degree of neutralization that is required to afford the requisite water-dispersibility for a particular binder will depend upon its composition, molecular weight of the resins, weight percent of amine-functional resin, and other such factors and can readily be determined by one of ordinary skill in the art through straightforward experimentation. [0043] The binder emulsion is then used in preparing an electrocoat coating composition (or bath). The electrocoat bath may contain no pigment so as to produce a colorless or clear electrodeposited coating layer, but the electrocoat bath usually includes one or more pigments, separately added as part of a pigment paste, and may contain any further desired materials such as coalescing aids, antifoaming aids, and other additives that may be added before or after emulsifying the resin. Conventional pigments for electrocoat primers include titanium dioxide, ferric oxide, carbon black, aluminum silicate, precipitated barium sulfate, aluminum phosphomolybdate, strontium chromate, basic lead silicate or lead chromate. The pigments may be dispersed using a grind resin or a pigment dispersant. The pigment-to-resin weight ratio in the electrocoat bath can be important and should be preferably less than 50:100, more preferably less than 40:100, and usually about 10 to 30:100. Higher pigment-to-resin solids weight ratios have been found to adversely affect coalescence and flow. Usually, the pigment is 10-40 percent by weight of the nonvolatile material in the bath. Preferably, the pigment is 15 to 30 percent by weight of the nonvolatile material in the bath. Any of the pigments and fillers generally used in electrocoat primers may be included. Inorganic extenders such as clay and anti-corrosion pigments are commonly included. [0044] The electrodeposition coating compositions can contain optional ingredients such as dyes, flow control agents, plasticizers, catalysts, wetting agents, surfactants, UV absorbers, HALS compounds, antioxidants, defoamers and so forth. Examples of surfactants and wetting agents include alkyl imidazolines such as those available from Ciba-Geigy Industrial Chemicals as AMINE C® acetylenic alcohols such as those available from Air Products and Chemicals under the tradename SURFYNOL®. Surfactants and wetting agents, when present, typically amount to up to 2 percent by weight resin solids.

[0045] Curing catalysts such as tin catalysts can be used in the coating composition. Typical examples are without limitation, tin and bismuth compounds including dibutyltin dilaurate, dibutyltin oxide, and bismuth octoate. When used, catalysts are typically present in amounts of about 0.05 to 2 percent by weight tin based on weight of total resin solids.

[0046] The electrocoat coating composition is electrodeposited onto a metallic substrate. The substrate may be, as some nonlimiting examples, cold-rolled steel, galvanized (zinc coated) steel, electrogalvanized steel, stainless steel, pickled steel, GALVANNEAL® GALVALUME®, and GALV AN® zinc-aluminum alloys coated upon steel, and combinations of these. Nonlimiting examples of useful non-ferrous metals include aluminum, zinc, magnesium and alloys of these. The electrodeposition of the coating preparations according to the invention may be carried out by known processes. The electrodeposition coating composition may be applied preferably to a dry film thickness of 10 to 35 μm. In one embodiment of the method, the electrically conductive substrate is unphosphated; that is, it is free of a phosphate pre-treatment The article coated with the composition of the invention may be a metallic automotive part or body. A method of coating an electrically conductive substrate, such as a metal automotive vehicle body or part, comprises placing an electrically conductive substrate, cleaned but preferably not given a phosphate pre-treatment, into the electrocoat coating composition and, using the electrically conductive substrate as the cathode, passing a current through the electrocoat coating composition causing a coating layer to deposit onto the electrically conductive substrate. After application, the coated article is removed from the bath and rinsed with deionized water. The coating may be cured under appropriate conditions, for example by baking at from about 275° F to about 375° F for between about 15 and about 60 minutes, before applying an additional coating layer over the electrodepo sited coating layer.

[0047] An automotive vehicle body may be electrocoated. The automotive vehicle body is cleaned, and the cleaned metal automotive vehicle body is electrocoated with an aqueous electrodeposition coating composition comprising the phosphorylated resin.

[0048] One or more additional coating layers, such as a spray-applied primer- surfacer, single topcoat layer, or composite color coat (basecoat) and clearcoat layer, may be applied over the electrocoat layer. A single layer topcoat is also referred to as a topcoat enamel. In the automotive industry, the topcoat is typically a basecoat that is overcoated with a clearcoat layer. A primer surfacer and the topcoat enamel or basecoat and clearcoat composite topcoat may be waterborne, solventborne, or a powder coating, which may be a dry powder or an aqueous powder slurry.

[0049] The composite coating of the invention may have, as one layer, a primer coating layer, which may also be termed a primer- surfacer or filler coating layer. The primer coating layer can be formed from a solventborne composition, waterborne composition, or powder composition, including powder slurry composition. The primer composition preferably has a binder that is thermosetting, although thermoplastic binders are also known. Suitable thermosetting binders may have self-crosslinking polymers or resins, or may include a crosslinker reactive with a polymer or resin in the binder.

Nonlimiting examples of suitable binder polymers or resins include acrylics, polyesters, and polyurethanes. Such polymers or resins may include as functional groups hydroxyl groups, carboxyl groups, anhydride groups, epoxide groups, carbamate groups, amine groups, and so on. Among suitable crosslinkers reactive with such groups are aminoplast resins (which are reactive with hydroxyl, carboxyl, carbamate, and amine groups), polyisocyanates, including blocked polyisocyanates (which are reactive with hydroxyl groups and amine groups), polyepoxides (which are reactive with carboxyl, anhydride, hydroxyl, and amine groups), and polyacids and polyamines (which are reactive with epoxide groups). Examples of suitable primer compositions are disclosed, for example, in U.S. Patents No. 7,338,989; 7,297,742; 6,916,877; 6,887,526; 6,727,316; 6,437,036; 6,413,642; 6,210,758; 6,099,899; 5,888,655; 5,866,259; 5,552,487; 5,536,785; 4,882,003; and 4,190,569, each assigned to BASF and each incorporated herein by reference.

[0050] The primer coating composition applied over the electrocoat primer may then be cured to form a primer coating layer. The electrocoat primer may be cured at the same time as the primer coating layer in a process known as "wet-on-wet" coating.

[0051 ] A topcoat composition may be applied over the electrocoat layer or primer coating layer and, preferably, cured to form a topcoat layer. In a preferred embodiment, the electrocoat layer or primer layer is coated with a topcoat applied as a color-plus-clear (basecoat-clearcoat) topcoat. In a basecoat-clearcoat topcoat, an underlayer of a pigmented coating, the basecoat, is covered with an outer layer of a transparent coating, the clearcoat. Basecoat-clearcoat topcoats provide an attractive smooth and glossy finish and generally improved performance.

[0052] Crosslinking compositions are preferred as the topcoat layer or layers. Coatings of this type are well-known in the art and include waterborne compositions, solventborne compositions, and powder and powder slurry compositions. Polymers known in the art to be useful in basecoat and clearcoat compositions include, without limitation, acrylics, vinyls, polyurethanes, polycarbonates, polyesters, alkyds, and polysiloxanes. Acrylics and polyurethanes are among preferred polymers for topcoat binders. Thermoset basecoat and clearcoat compositions are also preferred, and, to that end, preferred polymers comprise one or more kinds of crosslinkable functional groups, such as carbamate, hydroxy, isocyanate, amine, epoxy, acrylate, vinyl, silane, acetoacetate, and so on. The polymer may be self-crosslinking, or, preferably, the composition may include a crosslinking agent such as a polyisocyanate or an aminoplast resin. Examples of suitable topcoat compositions are disclosed, for example, in U.S. Patents No 7,375,174; 7,342,071; 7,297,749; 7,261,926; 7,226,971; 7,160,973; 7,151,133; 7,060,357; 7,045,588; 7,041,729; 6,995,208; 6,927,271; 6,914,096; 6,900,270; 6,818,303; 6,812,300; 6,780,909; 6,737,468; 6,652,919; 6,583,212; 6,462,144; 6,337,139; 6,165,618; 6,129,989; 6,001,424; 5,981,080;5,855,964; 5,629,374; 5,601,879; 5,508,349; 5,502,101; 5,494,970; 5,281,443; and , each assigned to BASF and each incorporated herein by reference.

[0053] The further coating layers can be applied to the electrocoat coating layer according to any of a number of techniques well-known in the art. These include, for example, spray coating, dip coating, roll coating, curtain coating, and the like. For automotive applications, the further coating layer or layers are preferably applied by spray coating, particularly electrostatic spray methods. Coating layers of one mil or more are usually applied in two or more coats, separated by a time sufficient to allow some of the solvent or aqueous medium to evaporate, or "flash," from the applied layer. The flash may be at ambient or elevated temperatures, for example, the flash may use radiant heat. The coats as applied can be from 0.5 mil up to 3 mils dry, and a sufficient number of coats are applied to yield the desired final coating thickness.

[0054] A primer layer may be cured before the topcoat is applied. The cured primer layer may be from about 0.5 mil to about 2 mils thick, preferably from about 0.8 mils to about 1.2 mils thick.

[0055] Color-plus-clear topcoats are usually applied wet-on- wet. The compositions are applied in coats separated by a flash, as described above, with a flash also between the last coat of the color composition and the first coat the clear. The two coating layers are then cured simultaneously. Preferably, the cured basecoat layer is 0.5 to 1.5 mils thick, and the cured clear coat layer is 1 to 3 mils, more preferably 1.6 to 2.2 mils, thick.

[0056] Alternatively the primer layer and the topcoat can be applied "wet-on- wet." For example, the primer composition can be applied, then the applied layer flashed; then the topcoat can be applied and flashed; then the primer and the topcoat can be cured at the same time. Again, the topcoat can include a basecoat layer and a clearcoat layer applied wet-on- wet. The primer layer can also be applied to an uncured electrocoat coating layer, and all layers cured together.

[0057] The coating compositions described are preferably cured with heat. Curing temperatures are preferably from about 7O 0 C to about 18O 0 C, and particularly preferably from about 17O 0 F to about 200 0 F for a topcoat or primer composition including an unblocked acid catalyst, or from about 24O 0 F to about 275 0 F for a topcoat or primer composition including a blocked acid catalyst. Typical curing times at these temperatures range from 15 to 60 minutes, and preferably the temperature is chosen to allow a cure time of from about 15 to about 30 minutes. In a preferred embodiment, the coated article is an automotive body or part. [0058] The invention is further described in the following example. The example is merely illustrative and does not in any way limit the scope of the invention as described and claimed. All parts are parts by weight unless otherwise noted. EXAMPLES [0059] Preparation A: Preparation of Amine-Functional Phosphorylated

Epoxy Resin

[0060] A reactor equipped with an agitator and reflux condenser is charged with 25.85 parts by weight of normal butanol, 10.20 parts by weight of ethylene glycol monobutyl ether, and 55.62 parts by weight of the diglycidyl ether of Bisphenol A. The reactor contents are stirred for aboutl5 minutes followed by addition of a 3.11 parts of diethanolamine. The resulting mixture is heated to 77 0 F (25 0 C); heat is then discontinued, and the reaction mixture is allowed to exotherm. The temperature of the reaction continues to increase to 120.2-122 0 F (49-50 0 C). The reaction mixture is maintained at 140-149 0 F (60-65 0 C) for 30 minutes. To the reactor is added a mixture of 4.261 parts by weight phosphoric acid (75% aqueous) and 1.77 parts by weight normal butanol. During the addition the temperature is held to below 102.2 0 F (49 0 C). The reaction mixture is stirred for about 15 minutes, then the reactor is heated to 220-250 0 F (104.4-121.1 0 C). Reaction is continued until the weight per epoxide of the product is 800 or greater. Then, deionized water is added in a first portion of 0.899 parts by weight, and the reaction mixture is maintained at 220-250 0 F (104.4-121.1 0 C) for one hour. A second portion of deionized water, 0.70 parts by weight, is then added to the reaction mixture. Again the reaction mixture is maintained at 220-250 0 F (104.4-121.1 0 C) for one hour. A final portion of deionized water, 0.70 parts by weight, is then added to the reaction mixture. Again the reaction mixture is maintained at 220-250 0 F (104.4-121.1 0 C) for one hour. The product is then diluted with normal butanol to 72% nonvolatile by weight.

[0061 ] Preparation B: Preparation of Binder Emulsion with Amine- Functional Phosphorylated Epoxy Resin

[0062] The following materials are combined in a 5-L flask with an associated heating mantle: diglycidyl ether of bisphenol A, (18.03 parts by wieght), bisphenol A, (4.1 parts by weight), phenol (1.41 parts by weight), and propylene glycol n-butyl ether (0.36 parts by weight). [0063] While stirring, the temperature is raised to 257 0 F (125 0 C). Subsequently, triphenylphosphine (0.04 parts by weight) is added and the exotherm is recorded as 392 0 F (200 0 C). The mixture is then allowed to cool to 275 0 F (135 0 C), and a weight per epoxide (WPE) determination (target = 525 +/- 25) is conducted and is 526. After cooling to 194 0 F (90 0 C) and turning off the heating mantle, 2.36 parts by weight of PLURACOL® 710R (sold by BASF Corporation) is added, then 1.73 parts by weight of diethanolamine is introduced and the exotherm is recorded 239 0 F (115 0 C). The reaction mixture is allowed to stir for an additional 30 minutes at 221 0 F (105 0 C) after reaching exotherm. After stirring for 30 minutes, 3-dimethylaminopropylamine is added at 221 0 F (105 0 C) (0.84 parts by weight), and the exotherm is recorded as 280.4 0 F (138 0 C). The mixture is stirred for an additional hour. A crosslinker (a blocked isocyanate based on polymeric MDI and monofunctional alcohols) (13.6 parts by weight) is added. The mixture is stirred for 30 minutes at 221-230 0 F (105-110 0 C). Preparation A, the amine-functional phosphorylated epoxy resin, (6.47 parts by weight) is added and the mixture is stirred for an additional 15 minutes at 221-230 0 F (105-110 0 C).

[0064] After achieving a homogeneous mixture, the resins and crosslinker blend are added to an acid/water mixture, under constant stirring, of deionized water (34.95 parts by weight) and formic acid (88%) (0.62 parts by weight). After thoroughly mixing all components using a metal spatula, the solids are further reduced by addition of water (18.55 parts by weight). A flow-additive package (2.51 parts by weight) is added to the acid mixture.

[0065] Preparation C: Grinding Resin Solution having Tertiary Ammonium Groups

[0066] In accordance with EP 0 505 445 Bl, an aqueous-organic grinding resin solution is prepared by reacting, in the first stage, 2598 parts of bisphenol A diglycidyl ether (epoxy equivalent weight (EEW) 188 g/eq), 787 parts of bisphenol A, 603 parts of dodecylphenol, and 206 parts of butyl glycol in a stainless steel reaction vessel in the presence of 4 parts of triphenylphosphine at 130 0 C until an EEW of 865 g/eq is reached. In the course of cooling, the batch is diluted with 849 parts of butyl glycol and 1534 parts of D.E.R® 732 (polypropylene glycol diglycidyl ether, DOW Chemical, USA) and is reacted further at 90 0 C with 266 parts of 2,2'- aminoethoxyethanol and 212 parts of N,N-dimethylaminopropylamine. After 2 hours, the viscosity of the resin solution is constant (5.3 dPas; 40% in SOLVENON® PM (methoxypropanol, BASF/Germany); cone and plate viscometer at 23 0 C). It is diluted with 1512 parts of butyl glycol and the base groups are partly neutralized with 201 parts of glacial acetic acid, and the product is diluted further with 1228 parts of deionized water and discharged. This gives a 60% strength by weight aqueous-organic resin solution whose 10% dilution has a pH of 6.0. The resin solution is used in direct form for paste preparation.

[0067] Preparation D: Pigment Paste

[0068] For this purpose, a premix is first formed from 1897 parts of water and 1750 parts of the grinding resin solution of Preparation C. Then 21 parts of

DISPERB YK® 110 (Byk-Chemie GmbH/Germany), 14 parts of Lanco Wax®. PE W 1555 (Langer & Co./Germany), 42 parts of carbon black, 420 parts of aluminum hydrosilicate ASP 200 (Langer & Co./Germany), 2667 parts of titanium dioxide TI- PURE® R 900 (DuPont, USA) and 189 parts of di-n-butyl tin oxide are added. The mixture is predispersed for 30 minutes under a high-speed dis solver stirrer. The mixture is subsequently dispersed in a small laboratory mill (Motor Mini Mill, Eiger Engineering Ltd, Great Britain) until it measures a Hegmann fineness of less than or equal to 12 μm and is adjusted to solids content with additional water. A separation- stable pigment paste is obtained. Solids content: 60.0% by weight (1/2 h at 180 0 C). [0069] Example 1

[0070] A bath was prepared by combining 964.4 parts Preparation B, 144.8 parts Preparation D, and 1290.8 parts deionized water. The water and Preparation B resin emulsion are combined in a container with constant stirring, and Preparation D is added with stirring. The bath solids content is 19% by weight. [0071 ] Example 1 is tested by coating both phosphated and bare cold rolled steel 4-inch-by-6-inch test panels at 225 volts (0.5 ampere) in the Example 1 bath at bath temperatures from 88-98 0 F (31-36.7 0 C) for 2.2 minutes, dehydrating and/or baking the coated panels for 28 minutes at 35O 0 F (177 0 C). The deposited, baked coating has a filmbuild of about 0.8 mil (20 μm). Three panels were coated for each temperature and substrate.

[0072] Control [0073] Control panels were prepared as described for Example 1 but using U32AD500 (commercial product sold by BASF Corporation).

[0074] After dehydrating and/or baking, panels are tested as follows or further coated with a top coat and then tested. [0075] Description of Corrosion test GMW15288: Each panel is scribed directly down the middle and tested by corrosion test (GMW15288) The description of GMW 15288 is as follows: On a Monday, each panel is held at 6O 0 C for one hour in an air-circulating oven and is then subjected to a cold cabinet at -25 0 C for 30 minutes. Following, the panels are immersed for 15 minutes in a 5 wt.% NaCl solution in water (saline solution). After removal, the panels are allowed to air dry for 75 minutes at room temperature. The panels are then transferred to a humidity cabinet (6O 0 C, 85% humidity) with an air flow not exceeding 15 m/ft across the panel and held for 21 hours. From Tuesday to Friday, the panels are immersed again in the saline solution for 15 minutes, allowed to air dry to 75 minutes at room temperature, and then returned to the humidity cabinet (22 hours). On Saturday and Sunday the panels remain in the humidity cabinet. The entire exposure sequence from Monday to the following Monday constitutes 5 cycles. The test is then repeated for a total of 20 cycles. After completion, each panel is rinsed with water and scraped with a metal spatula. The corrosion is measured as the average of scribe width of selected points along the scribe length. [0076] Description SAE J2334 DEC2003: After baking, each panel is scribed directly down the middle and tested in accordance with SAE J2334 DEC2003. The test description is as follows: For 6 hours the test panels are subjected to 100% relative humidity (RH) at 50°C, 15 minute salt solution dip at ambient conditions, where the salt solution consists of 0.5% NaCl, 0.1% CaCl 2 and 0.075% NaHCO 3 . For the remaining 17 hours and 45 minutes the test panels are placed in a cabinet at 60°C and 50% RH. The cycle is repeated 20 times. After completion, each panel is rinsed with water and scraped with a metal spatula. The corrosion is measured as the average of scribe width of selected points along the scribe length.

[0077] The top coating process for each of the following systems were preformed by hand application using the following products/procedure: [0078] Integrated Process Solventborne : — U28AU227 (commercial product sold by BASF Corporation) applied to 0.9 mils followed by 5 minute, room-temperature flash

— E38WU466L (commercial product sold by BASF Corporation) applied to 0.9 mils followed by 8 minute, room-temperature flash — R10CG392 (commercial product sold by BASF Corporation) applied to 1.8 mils followed by 8 minutes, room-temperature flash, followed by 5 minutes at 200 0 F , followed by 17 minutes at 285 0 F.

[0079] Waterborne Basecoat/2K Clearcoat Process:

— U28WW554 (commercial product sold by BASF Corporation) applied to 1.0 mils, flash 5 minutes room temperature ("RT") followed by 30 minutes at 265F

— E54WW301 (commercial product sold by BASF Corporation) applied to 0.5 mils flash 5 minutes at 15O 0 F

— E211WW328 (commercial product sold by BASF Corporation) applied to 0.4 mils flash 5 minutes at 15O 0 F — E10CG081 (commercial product sold by BASF Corporation) applied tol.8 mils, flashed 10 minutes at room temperature followed by 10 minutes at 180°F followed by 25 minutes at 255 0 F.

[0080] Urethane Powder Topcoat Process:

— 960KM0002 (commercial product sold by BASF Corporation) applied to 2.0 mils and cured 20 minutes at 34O 0 F

[0081 ] Co-Cure with Urethane Powder Topcoat

— 960KM0002 (commercial product sold by BASF Corporation) applied to the dehydrated but uncured electrocoat at 2.0 mils and the two films are cured together for

20 minutes at 34O 0 F [0082] Co-Cure with Powder Primer/Solventborne Topcoat

— G27AM258 (commercial product sold by BASF Corporation) applied to the dehydrated but uncured electrocoat at 2.0 mils and the two films are cured together for

20 minutes at 34O 0 F.

— E38WU466L (commercial product sold by BASF Corporation) applied to 0.9 mils followed by 8 minute, room-temperature flash — R10CG392 (commercial product sold by BASF Corporation) applied to 1.8 mils followed by 8 minutes, room- temperature flash, followed by 5 minutes at 200 0 F , followed by 17 minutes at 285 0 F.

[0083] Co- Cure with Powder Primer /Waterborne Topcoat

— G27AM258 (commercial product sold by BASF Corporation) applied to the dehydrated but uncured electrocoat at 2.0 mils and the two films are cured together for

20 minutes at 34O 0 F.

— E54WW301 (commercial product sold by BASF Corporation) applied to 0.5 mils flash 5 minutes at 15O 0 F

— E211WW328 (commercial product sold by BASF Corporation) applied to 0.4 mils flash 5 minutes at 15O 0 F

— E10CG081 (commercial product sold by BASF Corporation) applied tol.8 mils, flashed 10 minutes at RT followed by 10 minutes at 180F followed by 25 minutes at

255 0 F.

[0084] Humidity testing was performed in accordance with ASTM D3359 and chip testing was performed in accordance with GMW 14700.

[0085] Results of testing are shown in the following Tables 1-3. TABLE 1. Corrosion test GMW15288

TABLE 2. SAE J2334 Corrosion on to coated anels

TABLE 3. Chip and Humidity on topcoated panels

*ASTM D3359 **GMW14700

[0086] Throw power was performed in accordance with FORD Laboratory Test method Bl 120-02 Results are shown in Table 4.

TABLE 4. Throwpower

[0087] The description is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are a part of the invention. Variations are not to be regarded as a departure from the spirit and scope of the disclosure.