Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRODE FOR AN ELECTROCHEMICAL BUNDLE OF A METAL-ION STORAGE BATTERY OR A SUPERCAPACITOR, METHOD FOR PRODUCING THE ASSOCIATED BUNDLE AND STORAGE BATTERY
Document Type and Number:
WIPO Patent Application WO/2017/216021
Kind Code:
A1
Abstract:
The present invention relates to an electrode (2, 3) for an electrochemical bundle of a metal-ion storage battery or of a supercapacitor, comprising a substrate (2S, 3S) formed from a metal strip that supports an active metal-ion insertion material (2I, 3I) in its central portion (22, 32), while its lateral band, referred to as the edge (20, 30), is devoid of active insertion material, the lateral band comprising an end area (21, 31), in which the properties of the metal material and/or geometry of which is/are modified in relation to the rest of the strip in the edge (20, 30) and in the central portion (22, 32), so as to cause localized plastic buckling in the end area when a predetermined compressive force (E) is applied to the end area, the central portion not deforming under the predetermined compressive force.

Inventors:
CHAMI MARIANNE (FR)
DEWULF FRÉDÉRIC (FR)
Application Number:
PCT/EP2017/063910
Publication Date:
December 21, 2017
Filing Date:
June 08, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COMMISSARIAT ENERGIE ATOMIQUE (FR)
International Classes:
H01G9/15; H01M10/0587; H01M50/536; H01M50/538
Foreign References:
JP2001148238A2001-05-29
JP2001118562A2001-04-27
US20050142436A12005-06-30
US6187473B12001-02-13
FR3011128A12015-03-27
US20060121348A12006-06-08
US7348098B22008-03-25
US7338733B22008-03-04
US20080060189A12008-03-13
US20080057392A12008-03-06
US7335448B22008-02-26
FR2094491A51972-02-04
EP1102337A12001-05-23
EP1596449A22005-11-16
EP1223592B12007-02-28
US6631074B22003-10-07
Attorney, Agent or Firm:
CABINET NONY (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Electrode (2, 3) pour faisceau électrochimique d'un accumulateur métal- ion ou d'un supercondensateur, comprenant un substrat (2S, 3 S) formé d'un feuillard métallique qui supporte dans sa portion centrale (22, 32) un matériau actif d'insertion d'ion métal (21, 31), tandis que sa bande latérale, dite rive (20, 30), est dépourvue de matériau actif d'insertion, la bande latérale comprenant une zone d'extrémité (21, 31) dont les propriétés de son matériau métallique et/ou sa géométrie est(sont) modifîée(s) par rapport au reste du feuillard dans la rive (20, 30) et dans la portion centrale (22, 32), de sorte à provoquer le flambage plastique localisé sur la zone d'extrémité lorsqu'un effort de compression prédéterminé (E) est appliqué sur ladite zone d'extrémité, la portion centrale ne se déformant pas sous l'effort de compression prédéterminé.

2. Electrode (2, 3) selon la revendication 1, la bande latérale comprenant une zone intermédiaire (23, 33), entre la portion centrale et la zone d'extrémité, dont les propriétés de son matériau métallique et/ou sa géométrie sont choisies de sorte que ladite zone intermédiaire ne se déforme pas sous l'effort de compression prédéterminé.

3. Electrode (2, 3) selon la revendication 3, la zone intermédiaire comprenant des raidisseurs répartis uniformément sur sa longueur.

4. Electrode (2, 3) selon l'une des revendications précédentes, le module d'Young et/ou la limite d'élasticité de la zone d'extrémité est (sont) modifïée(s) par l'application d'un ou plusieurs traitements thermomécaniques.

5. Electrode (2, 3) selon la revendication 4 en combinaison avec la revendication 2 ou 3, le feuillard présentant un gradient d'état métallurgique entre la zone d'extrémité et la zone intermédiaire.

6. Electrode (2, 3) selon l'une des revendications précédentes, l'épaisseur du feuillard dans la zone d'extrémité étant inférieure à celle du reste du feuillard dans la rive et dans la portion centrale.

7. Electrode (2, 3) selon l'une des revendications précédentes, le feuillard étant percé de trous ou de fentes ou d'empreintes uniformément répartis dans la zone d'extrémité.

8. Electrode (2, 3) selon l'une des revendications précédentes, le feuillard étant muni d'au moins une rainure continue sur la longueur de la zone d'extrémité.

9. Electrode (2, 3) selon l'une des revendications précédentes, la largeur de la zone d'extrémité, une fois l'effort de compression appliqué, étant comprise entre 0,5 et 4 mm.

10. Electrode (2, 3) selon l'une des revendications précédentes, le feuillard présentant une épaisseur comprise entre 5 et 20 μιη dans la zone d'extrémité et une épaisseur comprise entre 10 et 20 μιη dans la portion centrale.

11. Electrode (2, 3) selon l'une des revendications précédentes, le feuillard étant en en aluminium ou en cuivre.

12. Procédé de réalisation d'un faisceau électrochimique (F) d'un accumulateur (A) métal- ion tel qu'un accumulateur Li-ion, ou d'un supercondensateur, en vue de son raccordement électrique aux bornes de sortie de l'accumulateur, comportant les étapes suivantes :

a/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode (2) selon l'une des revendications précédentes et d'une anode (3) selon l'une des revendications précédentes, de part et d'autre d'un séparateur (4) adapté pour être imprégné d'un électrolyte, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une (10) de ses extrémités latérales, la bande latérale (30) de l'anode et à l'autre (11) de ses extrémités latérales la bande latérale (20) de la cathode;

b/ tassage axial selon l'axe XI d'au moins l'une des bandes latérales (20, 30) du faisceau électrochimique; le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau (10, 11), une zone d'extrémité (21, 31) tassée formant un socle (20T, 30T) sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

13. Procédé de réalisation d'un faisceau électrochimique (F) d'un accumulateur

(A) métal-ion tel qu'un accumulateur Li-ion, ou d'un supercondensateur, en vue de son raccordement électrique aux bornes de sortie de l'accumulateur, comportant les étapes suivantes :

a'/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode (2) et d'une anode (3) de part et d'autre d'un séparateur (4) adapté pour être imprégné d'un électrolyte, la cathode et l'anode comprenant chacune un substrat, formé d'un feuillard métallique qui supporte dans sa portion centrale un matériau actif d'insertion d'ion métal, tandis que sa bande latérale, dite rive, est dépourvue de matériau actif d'insertion et dont les propriétés de son matériau métallique et sa géométrie sont identiques au reste du feuillard dans la rive et dans la portion centrale, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une (10) de ses extrémités latérales, la bande latérales (30) de l'anode et à l'autre (1 1) de ses extrémités latérales la ou les bandes latérales (20) de la cathode;

b'/ tassage axial selon l'axe XI d'au moins l'une des bandes latérales (20, 30) du faisceau électrochimique avec au préalable ou simultanément modification de la température d'une zone d'extrémité (21, 31) de ladite bande latérale, le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau (10, 11), une zone d'extrémité (21, 31) tassée formant un socle sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

14. Procédé de réalisation d'un faisceau électrochimique (F) d'un accumulateur (A) métal-ion tel qu'un accumulateur Li-ion, ou d'un supercondensateur, en vue de son raccordement électrique aux bornes de sortie de l'accumulateur, comportant les étapes suivantes :

a"/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode (2) et d'une anode (3) de part et d'autre d'un séparateur (4) adapté pour être imprégné d'un électrolyte, la cathode et l'anode comprenant chacune un substrat, formé d'un feuillard métallique qui supporte dans sa portion centrale un matériau actif d'insertion d'ion métal, tandis que sa bande latérale, dite rive, est dépourvue de matériau actif d'insertion et dont les propriétés de son matériau métallique et sa géométrie sont identiques au reste du feuillard dans la rive et dans la portion centrale, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une (10) de ses extrémités latérales, la bande latérales (30) de l'anode et à l'autre (1 1) de ses extrémités latérales la ou les bandes latérales (20) de la cathode;

b"/ tassage axial selon l'axe XI d'au moins l'une des bandes latérales (20, 30) du faisceau électrochimique avec simultanément un serrage radialement à l'axe XI d'une zone intermédiaire (23, 33) de ladite bande latérale en laissant libre radialement une zone d'extrémité (21, 31), le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau (10, 11), une zone d'extrémité tassée formant un socle (20T, 30T) sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

15. Procédé de réalisation d'un faisceau électrochimique selon l'une des revendications 12 à 14, la hauteur de la zone d'extrémité (21, 31) tassée sur une extrémité latérale (10, 11) étant inférieure à 4 mm, de préférence comprise entre 0,5 et 2,5mm.

16. Procédé de réalisation d'un faisceau électrochimique selon l'une des revendications 12 à 15, le faisceau électrochimique étant constitué d'une seule cellule électrochimique (C) enroulée sur elle-même par bobinage.

17. Procédé de réalisation selon la revendication 16, l'espacement entre le feuillard d'anode et le feuillard de cathode, considéré dans leur portion centrale (22, 32) après bobinage, étant compris entre 100 et 500μιη.

18. Procédé de réalisation d'une partie de raccordement électrique entre un faisceau électrochimique (F) d'un accumulateur (A) métal-ion et l'une des bornes de sortie de l'accumulateur, comportant les étapes suivantes :

- réalisation d'un faisceau électrochimique (F) conformément au procédé selon l'une des revendications 12 à 17;

- soudage du socle (20T, 30T) obtenu à un collecteur de courant (13, 14) sous la forme d'une plaque, elle-même destinée à être liée ou connectée électriquement à une borne de sortie (40, 50) de l'accumulateur.

19. Batterie ou accumulateur au métal- ion, tel qu'un accumulateur lithium- ion

(Li-ion) comportant un boîtier (6) comportant :

- un fond (8) auquel est soudé un des collecteurs de courant soudé au faisceau électrochimique conformément au procédé selon la revendication 18; et

- un couvercle (9) avec une traversée formant une borne de sortie à laquelle est soudée l'autre des collecteurs de courant soudé au faisceau électrochimique conformément au procédé selon la revendication 18.

20. Batterie ou accumulateur Li-ion selon la revendication 19, dans laquelle :

- le boîtier est à base d'aluminium ;

- le feuillard métallique d'électrode(s) négative(s) est en cuivre ; - le matériau actif d'insertion d'électrode(s) négative(s) est choisi dans le groupe comportant le graphite, le lithium, l'oxyde de titanate Li4Ti050i2 ; ou à base de silicium ou à base de lithium, ou à base d'étain et de leurs alliages ; - le feuillard métallique d'électrode(s) positive(s) est en aluminium;

- le matériau actif d'insertion d'électrode(s) positive(s) est choisi dans le groupe comportant le phosphate de fer lithié LiFeP04, l'oxyde de cobalt lithié LiCo02, l'oxyde manganèse lithié, éventuellement substitué, LiMn204 ou un matériau à base de LiNixMnyCoz02 avec x+y+z = 1, tel que LiNio.33Mno.33Coo.33O2, ou un matériau à base de LiNixCoyAlzC avec x+y+z = 1, LiMn204, LiNiMnCo02 ou l'oxyde de nickel cobalt aluminium lithié LiNiCoA102.

Description:
ELECTRODE POUR FAISCEAU ELECTROCHIMIQUE D'UN

ACCUMULATEUR METAL-ION OU D'UN SUPERCONDENSATEUR, PROCEDE DE REALISATION DU FAISCEAU ET DE L'ACCUMULATEUR

ASSOCIES

Domaine technique

La présente invention concerne le domaine des générateurs électrochimiques métal-ion, qui fonctionnent selon le principe d'insertion ou de désinsertion, ou autrement dit intercalation- désintercalation, d'ions métalliques dans au moins une électrode.

Elle concerne plus particulièrement un accumulateur électrochimique métal-ion comportant au moins une cellule électrochimique constituée d'une anode et d'une cathode de part et d'autre d'un séparateur imprégné d'électrolyte, deux collecteurs de courant dont un est relié à l'anode et l'autre à la cathode, et un boîtier de forme allongée selon un axe longitudinal (X), le boîtier étant agencé pour loger la cellule électrochimique avec étanchéité tout en étant traversé par une partie des collecteurs de courant formant les bornes de sortie, aussi appelés pôles.

Le séparateur peut être constitué d'un ou plusieurs films.

Le boîtier peut comporter un couvercle et un conteneur, usuellement appelé godet, ou comporter un couvercle, un fond et une enveloppe latérale assemblée à la fois au fond et au couvercle.

La présente invention vise à améliorer la réalisation d'une partie du raccordement électrique entre au moins une cellule électrochimique de l'accumulateur et ses bornes de sortie intégrées à son boîtier.

Elle vise plus particulièrement à améliorer le procédé de tassage des bandes latérales d'électrodes dépourvues de matériau actif d'insertion, sur lesquelles une fois tassées un collecteur de courant sous la forme d'une plaque est soudé.

Bien que décrite en référence à un accumulateur Lithium-ion, l'invention s'applique à tout accumulateur électrochimique métal- ion, c'est-à-dire également Sodium-ion, Magnésium-ion, Aluminium-ion...

L'invention s'applique également à la réalisation d'un faisceau électrochimique d'un supercondensateur et le raccordement à son boîtier. Art antérieur

Telle qu'illustrée schématiquement en figures 1 et 2, une batterie ou accumulateur lithium-ion comporte usuellement au moins une cellule électrochimique C constituée d'un séparateur imprégné d'un constituant électrolyte 1 entre une électrode positive ou cathode 2 et une électrode négative ou anode 3, un collecteur de courant 4 connecté à la cathode 2, un collecteur de courant 5 connecté à l'anode 3 et enfin, un emballage 6 agencé pour contenir la cellule électrochimique avec étanchéité tout en étant traversé par une partie des collecteurs de courant 4, 5, formant les bornes de sortie.

L'architecture des batteries lithium-ion conventionnelles est une architecture que l'on peut qualifier de monopolaire, car avec une seule cellule électrochimique comportant une anode, une cathode et un électrolyte. Plusieurs types de géométrie d'architecture monopolaire sont connus :

- une géométrie cylindrique telle que divulguée dans la demande de brevet US 2006/0121348,

- une géométrie prismatique telle que divulguée dans les brevets US 7348098,

US 7338733;

- une géométrie en empilement telle que divulguée dans les demandes de brevet US 2008/060189, US 2008/0057392, et brevet US 7335448.

Le constituant d'électrolyte peut être de forme solide, liquide ou gel. Sous cette dernière forme, le constituant peut comprendre un séparateur en polymère ou en composite microporeux imbibé d'électrolyte (s) organique (s) ou de type liquide ionique qui permet le déplacement de l'ion Lithium de la cathode à l'anode pour une charge et inversement pour une décharge, ce qui génère le courant. L'électrolyte est en général un mélange de solvants organiques, par exemple des carbonates dans lesquels est ajouté un sel de lithium typiquement LiPF6.

L'électrode positive ou cathode est constituée de matériaux d'insertion du cation Lithium qui sont en général composite, comme le phosphate de fer lithié LiFeP0 4 , l'oxyde de cobalt lithié LiCo0 2 , l'oxyde manganèse lithié, éventuellement substitué, LiMn 2 0 4 ou un matériau à base de LiNi x Mn y Co z 0 2 avec x+y+z = 1, tel que LiNio.33Mno.33Coo.33Ch, ou un matériau à base de LiNi x Co y Al z 0 2 avec x+y+z = 1, LiMn 2 0 4 , LiNiMnCo0 2 ou l'oxyde de nickel cobalt aluminium lithié LiNiCoA10 2 .

L'électrode négative ou anode est très souvent constituée de carbone, graphite ou en Li4Ti0 5 0i2 (matériau titanate), éventuellement également à base de silicium ou à base de lithium, ou à base d'étain et de leurs alliages ou de composite formé à base de silicium. Cette électrode négative tout comme l'électrode positive peut également contenir des additifs conducteurs électroniques ainsi que des additifs polymères qui lui confèrent des propriétés mécaniques et des performances électrochimiques appropriées à l'application batterie lithium- ion ou à son procédé de mise en œuvre

L'anode et la cathode en matériau d'insertion au Lithium peuvent être déposées en continu selon une technique usuelle sous la forme d'une couche active sur une feuille ou feuillard métallique constituant un collecteur de courant.

Le collecteur de courant connecté à l'électrode positive est en général en aluminium.

Le collecteur de courant connecté à l'électrode négative est en général en cuivre, en cuivre nickelé ou en aluminium.

Traditionnellement, une batterie ou accumulateur Li-ion utilise un couple de matériaux à l'anode et à la cathode lui permettant de fonctionner à un niveau de tension élevé, typiquement entre 3 et 4,1 Volt.

Une batterie ou accumulateur Li-ion comporte un emballage rigide ou boîtier lorsque les applications visées sont contraignantes où l'on cherche une longue durée de vie, avec par exemple des pressions à supporter bien supérieures et un niveau d'étanchéité requis plus strict, typiquement inférieure à 10 "6 mbar.l/s d'hélium, ou dans des milieux à fortes contraintes comme le domaine aéronautique ou spatial. L'avantage principal des emballages rigides est ainsi leur étanchéité élevée et maintenue au cours du temps du fait que la fermeture des boîtiers est réalisée par soudure, en générale par soudure au laser.

La géométrie de la plupart des boîtiers rigides d'emballages d'accumulateurs Li-ion est cylindrique, car la plupart des cellules électrochimiques des accumulateurs sont enroulées par bobinage selon une géométrie cylindrique. Des formes prismatiques de boîtiers ont également déjà été réalisées.

Un des types de boîtier rigide de forme cylindrique, usuellement fabriqué pour un accumulateur Li-ion de forte capacité et à durée de vie supérieure à 10 ans, est illustré en figure 3.

Le boîtier 6 d'axe longitudinal X comporte une enveloppe latérale cylindrique 7, un fond 8 à une extrémité, un couvercle 9 à l'autre extrémité. Le couvercle 9 supporte les pôles ou bornes de sortie du courant 40, 50. Une des bornes de sortie (pôles), par exemple la borne positive 40 est soudée sur le couvercle 9 tandis que l'autre borne de sortie, par exemple la borne négative 50, passe à travers le couvercle 9 avec interposition d'un joint non représenté qui isole électriquement la borne négative 50 du couvercle.

On a reproduit à la figure 4 les photographies d'un faisceau électrochimique F de forme allongée selon un axe longitudinal XI et comportant une seule cellule électrochimique C telle qu'elle est usuellement enroulée par bobinage avant les étapes de logement dans un boîtier, de raccordement électrique aux bornes de sortie de l'accumulateur et son imprégnation par un électrolyte. La cellule C est constituée d'une anode 3 et d'une cathode 4 de part et d'autre d'un séparateur (non visible) adapté pour être imprégné de l'électrolyte. Comme cela est visible, l'une 10 de ses extrémités latérales du faisceau F est délimitée par la bande 30 de l'anode 3 non revêtue, tandis que l'autre 11 de ses extrémités latérales est délimitée par la bande 20 de la cathode 2 non revêtue.

Par « bande non revêtue » ou « rive », on entend ici et dans le cadre de l'invention, une portion latérale d'une feuille métallique, aussi appelée feuillards, formant un collecteur de courant, qui n'est pas recouverte d'un matériau d'insertion aux ions métal, tel que le lithium dans le cas d'un accumulateur Li-ion.

On a représenté plus en détail, respectivement en figures 5 A et 5 B et en figures 6A et 6B, une électrode positive ou cathode 2 et une électrode négative ou anode 3 à partir desquelles un faisceau électro chimique actuel est réalisé par bobinage avec un séparateur 4 intercalé entre cathode 2 et anode 3. La cathode 2 est constituée d'un substrat 2S formé d'un feuillard métallique qui supporte dans sa portion centrale 22, un matériau actif d'insertion au lithium 21, tandis que sa bande latérale (rive) 20 est dépourvue de matériau actif d'insertion. De même, l'anode 3 est constituée d'un substrat 2S formé d'un feuillard métallique qui supporte dans sa portion centrale 32, un matériau actif d'insertion au lithium 31, et sa rive 30 est dépourvue de matériau actif d'insertion. Chaque feuillard métallique 2S, 3S est réalisé en un seul tenant, c'est-à-dire caractéristiques géométriques et métallurgiques sur toute sa surface.

L'objectif des fabricants d'accumulateurs est d'augmenter l'autonomie d'une cellule constituant l'accumulateur ou leur aptitude à pouvoir fonctionner sous des régimes de puissance élevés tout en améliorant leur durée de vie, i.e. leur nombre de cycles possible, leur légèreté et les coûts de fabrication de ces composants. Les voies d'améliorations des accumulateurs Li-ion concernent, majoritairement, la nature des matériaux et les méthodes d'élaboration des composants de cellule électrochimique.

D'autres voies d'améliorations possibles, moins nombreuses, concernent les boîtiers d'accumulateurs et les méthodes et moyens de raccordement électrique d'un faisceau électrochimique aux deux bornes de sortie, aussi appelés terminaux ou encore, pôles de polarité différente de l'accumulateur.

A ce jour, lorsqu'on souhaite réaliser un raccordement électrique entre le faisceau électrochimique et les bornes de sortie d'un accumulateur Li-ion de géométrie cylindrique ou prismatique, qui soit de qualité, on vise à respecter au mieux les règles de conception suivantes:

- satisfaire aux besoins d'une application en conduction électrique entre chaque polarité d'électrodes et les bornes de sortie intégrées au boîtier de l'accumulateur, par exemple en vue de répondre à des pics de puissance tout en limitant les échauffements internes à l'accumulateur susceptibles d'accélérer son vieillissement électrochimique ;

- minimiser le niveau de résistance interne global de l'accumulateur en réalisant le raccordement électrique directement sur les collecteurs de courant des électrodes pour chaque polarité et en connectant une pièce intermédiaire de raccordement entre le faisceau électrochimique et le boîtier de l'accumulateur ;

- simplifier le raccordement au faisceau électrochimique, en réalisant le raccordement directement sur les bandes latérales non revêtue d'électrode, aussi appelées rives, délimitant respectivement les deux extrémités latérales opposées du faisceau;

- optimiser les caractéristiques (épaisseur, hauteur, masse) et profils des bandes latérales non revêtues d'électrodes pour réaliser ledit raccordement électrique, afin de satisfaire au mieux les étapes d'assemblage finales, c'est-à-dire les étapes d'intégration du faisceau électrochimique dans le boîtier, de fermeture du boîtier de l'accumulateur, de remplissage d'électrolyte....

- minimiser la masse et le volume nécessaires à la réalisation du raccord électrique qui en tant que tel n'est pas générateur d'énergie électrochimique, mais qui sont nécessaires au transfert de l'énergie par le faisceau électrochimique vers l'extérieur du boîtier d'accumulateur. Dans la littérature décrivant des solutions de réalisation de faisceau électrochimique d'un accumulateur de forme cylindrique ou prismatique et de son raccordement électrique aux bornes de sortie intégrées à son boîtier, on peut citer les documents suivants.

Le brevet FR 2094491 divulgue un accumulateur alcalin dont le raccordement électrique entre la cellule électrochimique enroulée et bornes de sortie est obtenu par découpe des rives des électrodes par fentes espacées régulièrement puis, rabattement radial des rives ainsi fendues de l'extérieur de l'intérieur sous la forme d'écaillés superposées afin de constituer un socle sensiblement plan sur lequel est enfin soudé un collecteur de courant, constitué le cas échéant par le couvercle du boîtier.

La demande de brevet EP 1102337 divulgue un accumulateur Li-ion dont le raccordement électrique entre la cellule électrochimique enroulée et bornes de sortie est obtenu par un unique pressage de chaque extrémité des feuillards d'électrodes de la cellule enroulée, selon l'axe d'enroulement, au moyen d'un mandrin de pressage puis, par soudure au laser de chaque extrémité des feuillards d'électrodes avec un collecteur de courant terminal constitué par un clinquant sous la forme d'un disque et d'une languette de connexion elle-même soudée par laser par la suite au couvercle du boîtier, à une extrémité et au fond de boîtier, à l'autre extrémité. Des nervures sont réalisées chacune sur un diamètre du disque et sont elles-mêmes pressées au préalable de la soudure contre les extrémités de feuillards d'électrodes pressées.

La demande de brevet EP 1596449 décrit un accumulateur Li-ion dont le raccordement électrique entre la cellule électrochimique enroulée et bornes de sortie est obtenu tout d'abord par pressage multiple de chaque extrémité latérale délimitée par les bandes non revêtues d'électrodes de la cellule enroulée, au moyen d'un mandrin de pressage de diamètre extérieur compris entre 15 et 20 mm. Le mandrin de pressage se déplace selon une très faible course alternativement de l'extérieur vers l'intérieur de la cellule parallèlement à l'axe d'enroulement en balayant toute la surface latérale des bandes non revêtues d'électrodes pour réaliser un enchevêtrement entre ces derniers en formant un socle plan et dense sur lequel est soudé par laser ou par transparence un collecteur de courant terminal constitué par un clinquant sous la forme d'un bande de connexion plane elle-même soudée par laser ou par transparence par la suite à une borne de sortie intégrée au couvercle à une extrémité latérale et au fond de boîtier, à l'autre extrémité latérale. Le brevet EP1223592B1 qui concerne plutôt le domaine des supercondensateurs, décrit une technique de raccordement électrique de collecteurs de courant au faisceau électrochimique par mise en appui directe des collecteurs sous la forme de plaque sur les rives.

Le brevet US6631074B2 qui concerne également les supercondensateurs, décrit une solution qui consiste à projeter une matière électriquement conductrice, telle que de l'aluminium, sur les surfaces à chaque extrémité du faisceau électrochimique, de façon à obtenir pour chaque extrémité une continuité de surface de contact électrique entre tous les feuillards au niveau des rives électrodes, chaque surface étant ensuite soudée par soudage laser au collecteur de courant.

En analysant toutes les solutions connues de réalisation de faisceau électrochimique d'un accumulateur au lithium et de son raccordement électrique aux bornes de sortie de l'accumulateur, telles que décrites ci-dessus, les inventeurs sont parvenus à la conclusion que celles-ci étaient encore perfectibles sur de nombreux aspects.

Tout d'abord, la masse et le volume des bandes latérales non revêtues d'électrodes (rives) nécessaires au raccordement électrique avec les collecteurs de courant selon l'état de l'art ne sont pas nécessairement optimisés, ce qui implique au final une masse et un volume de l'accumulateur également non encore optimisés.

Ensuite, les inventeurs ont constaté que de facto les rives d'une même extrémité latérale n'étaient pas nécessairement raccordées électriquement entre elles, en particulier les parties de ces rives situées dans la zone la plus périphérique du faisceau. Cela implique une capacité spécifique réelle du faisceau électrochimique diminuée, ce qui peut être préjudiciable en particulier pour les applications de puissance élevée pour l'accumulateur.

En outre, l'étape de remplissage d'électrolyte dans un faisceau électrochimique d'accumulateur au lithium, peut s'avérer relativement longue et délicate du fait que les collecteurs de courant selon l'état de l'art tels qu'ils sont soudés sur les rives de faisceau électrochimique d'accumulateur constituent un obstacle conséquent au passage de l'électrolyte.

Enfin, pour ce qui concerne les techniques avec tassage axial des feuillards d'électrodes au niveau de leurs rives, plusieurs inconvénients spécifiques peuvent se produire. Ainsi, la contrainte mécanique de compression à appliquer lors du tassage pour obtenir un matelas de rives denses et repliées doit être élevée. Or, actuellement, tous les feuillards métalliques des électrodes d'une même polarité présentent la même tenue mécanique sur toute la largeur du faisceau. Et cela peut entraîner, une différence de pliage entre les feuillards, avec en particulier, un pliage plus important au niveau du cœur du faisceau qui peut aller jusqu'à entraîner des court-circuits.

On a illustré en figure 7, une telle configuration : la zone Zdl entourée montre le pliage plus conséquent de la rive 20 d'électrode au cœur du faisceau électrochimique F.

Par ailleurs, lorsque le matelas de rive tassée est insuffisant, l'opération de soudure d'une pièce métallique formant un collecteur de courant ou de différentes parties enroulées d'un même feuillard peut produire des forts échauffements qui peuvent se propager jusqu'au séparateur qui font alors, ce qui provoque des court-circuits également.

On a illustré en figure 7 A, qui est une vue de détail de la figure 7, une configuration selon laquelle le matelas de rives 20 insuffisamment dense en périphérie a provoqué une fusion localisée indésirable lors de la soudure du collecteur de courant 13: la zone Zd2 entourée est une zone de moindre densité et dans laquelle la rive 20 a localement fondu.

La figure 8 illustre une zone Zd3 de fusion entre elles des parties de la rive 20 d'électrode.

Il existe donc un besoin d'améliorer la réalisation de faisceau électrochimique d'un accumulateur au lithium, et plus généralement d'un accumulateur métal-ion ou d'un supercondensateur et de son raccordement électrique aux bornes de sortie, notamment en vue de mieux maîtriser le tassage axial des rives d'électrode tout en le densifîant de manière uniforme sur toute la largeur du faisceau électrochimique.

Le but de l'invention est de répondre au moins en partie à ce besoin.

Exposé de l'invention

Pour ce faire, l'invention concerne, sous l'un de ses aspects, une électrode pour faisceau électrochimique d'un accumulateur métal-ion ou d'un supercondensateur, comprenant un substrat formé d'un feuillard métallique qui supporte dans sa portion centrale un matériau actif d'insertion d'ion métal, tandis que sa bande latérale, dite rive, est dépourvue de matériau actif d'insertion, la bande latérale comprenant une zone d'extrémité dont les propriétés de son matériau métallique et/ou sa géométrie est(sont) modifïée(s) par rapport au reste du feuillard dans la rive et dans la portion centrale, de sorte à provoquer le flambage plastique localisé sur la zone d'extrémité lorsqu'un effort de compression prédéterminé (E) est appliqué sur ladite zone d'extrémité, la portion centrale ne se déformant pas sous l'effort de compression prédéterminé.

Par « flambage plastique », on entend le sens usuel, c'est-à-dire un flambage induit par effort de compression, avec l'obtention d'une déformation mécanique irréversible.

Selon un mode de réalisation avantageux, la bande latérale comprend une zone intermédiaire, entre la portion centrale et la zone d'extrémité, dont les propriétés de son matériau métallique et/ou sa géométrie sont choisies de sorte que ladite zone intermédiaire ne se déforme pas sous l'effort de compression prédéterminé. Cette zone intermédiaire augmente la sécurité de réalisation, en protégeant mécaniquement le cœur du faisceau électrochimique comprenant les matériaux actifs d'insertion, lors des étapes de tassage et de soudure du collecteur de courant à la zone d'extrémité tassée.

Pour modifier les propriétés matériaux dans les zones à déformer de façon à obtenir un gradient de caractéristiques mécaniques sur la hauteur du faisceau électrochimique, selon une autre variante de réalisation, le module d'Young et/ou la limite d'élasticité de la zone d'extrémité est (sont) modifïé(s) par l'application d'un ou plusieurs traitements thermomécaniques. Le feuillard peut aussi présenter un gradient d'état métallurgique entre la zone d'extrémité et la zone intermédiaire.

Ainsi, on peut modifier la microstructure (taille de grains, écrouissage, apparition de précipités) de la zone d'extrémité par différents traitements thermomécaniques (contrôle des vitesses de trempe, choix de la température d'un revenu), ce qui génère un gradient de microstructure entre zone intermédiaire et zone d'extrémité.

Il est préférable d'utiliser des traitements thermiques usuels (trempe, revenu, recuit), qui entraînent une modification des caractéristiques mécaniques dans la structure cristalline existante, plutôt que des traitements chimiques qui pourraient entraîner des pollutions. On pourra se reporter à la publication [1] pour ces traitements usuels. On peut indépendamment modifier la géométrie de la zone d'extrémité. Ainsi, selon une autre variante, l'épaisseur du feuillard dans la zone d'extrémité peut être inférieure à celle du reste du feuillard dans la rive et dans la portion centrale.

Pour procéder à la diminution d'épaisseur localisée, on peut mettre en œuvre un laminage localisé du feuillard métallique avant son enduction dans sa portion centrale par le matériau d'insertion actif.

Selon encore une variante de réalisation, la zone intermédiaire peut comprendre des raidisseurs répartis uniformément sur sa longueur, c'est-à-dire sur la hauteur du faisceau électrochimique.

Afin d'affaiblir mécaniquement le feuillard, celui-ci peut être avantageusement percé de trous ou de fentes ou d'empreintes uniformément répartis dans la zone d'extrémité.

Le feuillard peut aussi être avantageusement muni d'au moins une rainure continue sur la longueur de la zone d'extrémité. Ainsi, la géométrie modifiée de la zone d'extrémité par des défauts de structure (empreintes, rainure continue) ou des affaiblissements d'épaisseur (trous, fentes) va favoriser l'apparition de l'instabilité de déformation de ladite zone lors du tassage axial du faisceau à cette extrémité.

La largeur de la zone d'extrémité, une fois l'effort de compression appliqué, est de préférence comprise entre 0,5 et 4 mm.

De préférence, le feuillard peut présenter une épaisseur comprise entre 5 et

20 μιη dans la zone d'extrémité et une épaisseur comprise entre 10 et 20 μιη dans la portion centrale.

Le feuillard d'électrode peut être en en aluminium ou en cuivre.

L'invention concerne également sous un autre aspect, et selon une première alternative, un procédé de réalisation d'un faisceau électrochimique (F) d'un accumulateur (A) métal-ion tel qu'un accumulateur Li-ion, ou d'un supercondensateur, en vue de son raccordement électrique aux bornes de sortie de l'accumulateur, comportant les étapes suivantes :

a/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode telle que décrite ci-dessus et d'une anode telle que décrite ci-dessus, de part et d'autre d'un séparateur adapté pour être imprégné d'un électrolyte, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une de ses extrémités latérales, la bande latérale de l'anode et à l'autre de ses extrémités latérales la bande latérale de la cathode;

b/ tassage axial selon l'axe XI d'au moins l'une des bandes latérales du faisceau électrochimique; le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau, une zone d'extrémité tassée formant un socle sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

Selon une deuxième alternative, on peut réaliser les étapes suivantes : a'/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode et d'une anode de part et d'autre d'un séparateur adapté pour être imprégné d'un électrolyte, la cathode et l'anode comprenant chacune un substrat, formé d'un feuillard métallique qui supporte dans sa portion centrale un matériau actif d'insertion d'ion métal, tandis que sa bande latérale, dite rive, est dépourvue de matériau actif d'insertion et dont les propriétés de son matériau métallique et sa géométrie sont identiques au reste du feuillard dans la rive et dans la portion centrale, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une de ses extrémités latérales, la bande latérales de l'anode et à l'autre de ses extrémités latérales la ou les bandes latérales de la cathode;

b'/ tassage axial selon l'axe XI d'au moins l'une des bandes latérales du faisceau électrochimique avec au préalable ou simultanément modification de la température d'une zone d'extrémité de ladite bande latérale, le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau, une zone d'extrémité tassée formant un socle sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

Selon une troisième alternative, on peut réaliser les étapes suivantes : a"/ fourniture d'un faisceau électrochimique (F) comportant au moins une cellule électrochimique (C) constituée d'une cathode et d'une anode de part et d'autre d'un séparateur adapté pour être imprégné d'un électrolyte, la cathode et l'anode comprenant chacune un substrat, formé d'un feuillard métallique qui supporte dans sa portion centrale un matériau actif d'insertion d'ion métal, tandis que sa bande latérale, dite rive, est dépourvue de matériau actif d'insertion et dont les propriétés de son matériau métallique et sa géométrie sont identiques au reste du feuillard dans la rive et dans la portion centrale, le faisceau ayant une forme allongée selon un axe longitudinal XI, avec à l'une de ses extrémités latérales, la bande latérales de l'anode et à l'autre de ses extrémités latérales la ou les bandes latérales de la cathode;

b'7 tassage axial selon l'axe XI d'au moins l'une des bandes latérales du faisceau électrochimique avec simultanément un serrage radialement à l'axe XI d'une zone intermédiaire de ladite bande latérale en laissant libre radialement une zone d'extrémité, le tassage axial étant réalisé en une ou plusieurs reprises de sorte à obtenir, sur au moins une extrémité latérale du faisceau, une zone d'extrémité tassée formant un socle sensiblement plan et continu, destiné à être soudé à un collecteur de courant.

Ainsi, selon les deuxième et troisième alternatives, la zone d'extrémité modifiée par rapport au reste de l'électrode, l'est pendant le process de tassage.

Autrement dit, on peut partir ici d'électrodes usuelles et modifier les conditions (chauffe localisé de l'extrémité du faisceau, raidissement localisé de la zone intermédiaire des électrodes par serrage radial) du process pour modifier le comportement mécanique de la zone d'extrémité lors de la compression due au tassage axial.

La hauteur de la zone d'extrémité tassée sur une extrémité latérale est de préférence inférieure à 4 mm, de préférence entre 0,5 et 2,5mm.

Selon un mode de réalisation avantageux, le faisceau électrochimique est constitué d'une seule cellule électrochimique enroulée sur elle-même par bobinage.

Selon ce mode, l'espacement entre le feuillard d'anode et le feuillard de cathode, considéré dans leur portion centrale après bobinage, est de préférence compris entre 100 εί 500μιη.

L'invention concerne également sous un autre de ses aspects, un procédé de réalisation d'une partie de raccordement électrique entre un faisceau électrochimique (F) d'un accumulateur (A) métal-ion et l'une des bornes de sortie de l'accumulateur, comportant les étapes suivantes :

- réalisation d'un faisceau électrochimique (F) conformément à l'un des procédés qui vient d'être décrit;

- soudage du socle obtenu à un collecteur de courant lui-même destiné à être lié ou connecté électriquement à une borne de sortie de l'accumulateur. L'invention concerne enfin une batterie ou accumulateur métal-ion, tel qu'un accumulateur au lithium (Li-ion) ou un supercondensateur comportant un boîtier comportant :

- un fond auquel est soudé un des collecteurs de courant soudé au faisceau électrochimique conformément au procédé décrit précédemment ; et

- un couvercle avec une traversée formant une borne de sortie à laquelle est soudée l'autre des collecteurs de courant soudé au faisceau électrochimique conformément au procédé décrit précédemment.

De préférence, pour une batterie ou accumulateur li-ion :

- le boîtier est à base d'aluminium ;

- le feuillard métallique d'électrode(s) négative(s) est en cuivre ;

- le matériau actif d'insertion d'électrode(s) négative(s) est choisi dans le groupe comportant le graphite, le lithium, l'oxyde de titanate Li 4 Ti050i2 ; ou à base de silicium ou à base de lithium, ou à base d'étain et de leurs alliages ;

- le feuillard métallique d'électrode(s) positive(s) est en aluminium;

- le matériau actif d'insertion d'électrode(s) positive(s) est choisi dans le groupe comportant le phosphate de fer lithié LiFeP0 4 , l'oxyde de cobalt lithié LiCoC , l'oxyde manganèse lithié, éventuellement substitué, LiMn 2 0 4 ou un matériau à base de LiNixMnyCozC avec x+y+z = 1, tel que LiNio.33Mno.33Coo.33O2, ou un matériau à base de LiNixCoyAlzC avec x+y+z = 1, LiMn 2 0 4 , LiNiMnCo0 2 ou l'oxyde de nickel cobalt aluminium lithié LiNiCoA10 2 .

Les avantages de l'invention qui vient d'être décrite sont nombreux :

- une meilleure maîtrise des déformations plastiques induites par mise en compression des zones d'extrémité du faisceau, ce qui permet d'obtenir un matelas dense dans des zones afin de réaliser de manière sûre et efficace une soudure du collecteur de courant à chaque zone d'extrémité du faisceau. Ainsi, pour un concepteur de batterie ou de supercondensateur, cela permet une optimisation de la hauteur des zones d'extrémités du faisceau habituellement comprise entre 1 et 5mm. Avec l'invention, les inventeurs pensent qu'on peut envisager de réduire d'une valeur de l'ordre de 20 à 50% cette hauteur, en fonction des formats et des types d'électrodes (plus ou moins épaisses) utilisées ;

- un maintien des étapes usuelles de fabrication et d'assemblage de l'accumulateur ou supercondensateur, avec notamment un maintien de l'outillage de tassage axial des extrémités du faisceau électrochimique.

Description détaillée

D'autres avantages et caractéristiques de l'invention ressortiront mieux à la lecture de la description détaillée d'exemples de mise en œuvre de l'invention faite à titre illustratif et non limitatif en référence aux figures suivantes parmi lesquelles :

- la figure 1 est une vue schématique en perspective éclatée montrant les différents éléments d'un accumulateur lithium-ion,

- la figure 2 est une vue de face montrant un accumulateur lithium- ion avec son emballage souple selon l'état de l'art,

- la figure 3 est une vue en perspective d'un accumulateur lithium- ion selon l'état de l'art avec son emballage rigide constitué d'un boîtier ;

- la figure 4 est une reproduction d'une vue photographique en perspective d'un faisceau électrochimique d'un accumulateur lithium- ion selon l'état de l'art, le faisceau étant constitué d'une seule cellule électrochimique enroulée sur elle-même par bobinage;

- les figures 5A et 5B sont des vues respectivement de côté et de dessus d'une électrode positive du faisceau électrochimique selon la figure 4 ;

- les figures 6A et 6B sont des vues respectivement de côté et de dessus d'une électrode négative du faisceau électrochimique selon la figure 4 ;

- la figure 7 est une vue photographique en coupe d'une extrémité latérale d'un faisceau selon l'état de l'art sur laquelle les étapes de tassage axial et de soudure de collecteur de courant ont été réalisées, la figure 7 montrant une première zone de défaut;

- la figure 7A est une vue photographique de détail de la figure 7, montrant une deuxième zone de défaut;

- la figure 8 est une vue photographique en coupe d'une extrémité latérale d'un faisceau selon l'état de l'art sur laquelle les étapes de tassage axial et de soudure de collecteur de courant ont été réalisées, la figure 8 montrant une troisième zone de défaut;

- les figures 9A et 9B sont des vues respectivement de côté et de dessus d'un feuillard d'électrode positive conforme à l'invention;

- la figure 9C montre une variante de réalisation d'un feuillard d'électrode positive conforme à l'invention ; - la figure 10 est une reproduction d'une vue photographique en perspective d'un faisceau électrochimique d'un accumulateur lithium- ion selon l'invention, le faisceau étant constitué d'une seule cellule électrochimique enroulée sur elle-même par bobinage;

- les figures 11 et HA à 11D sont des reproductions de vues photographiques montrant en perspective et en vue de dessus chacun des deux collecteurs de courant soudé à l'une des extrémités latérales d'un faisceau réalisé conformément à l'invention;

- la figure 12 est une vue photographique en coupe d'une extrémité latérale d'un faisceau selon l'invention sur laquelle les étapes de tassage axial et de soudure de collecteur de courant ont été réalisées;

- la figure 13 est une vue photographique en coupe de l'autre extrémité latérale d'un faisceau selon la figure 12.

Par souci de clarté, les mêmes références désignant les mêmes éléments d'un accumulateur au lithium-ion selon l'état de l'art et selon l'invention sont utilisées pour toutes les figures 1 à 13.

On précise que les différents éléments selon l'invention sont représentés uniquement par souci de clarté et qu'ils ne sont pas à l'échelle.

On précise également que le terme de « longueur » et « latéral » se rapportant à une électrode est à considérer lorsqu'elle est à plat avant son bobinage.

Les termes de «hauteur » et « latéral » se rapportant au faisceau électrochimique est à considérer en configuration à la verticale avec ses extrémités latérales respectivement sur le haut et sur le bas.

Les figures 1 à 8 ont déjà été commentées en détail en préambule. Elles ne sont donc pas décrites ci-après.

Pour améliorer le raccordement électrique entre un faisceau électrochimique d'un accumulateur Li-ion et ses bornes de sortie, les inventeurs proposent une nouvelle réalisation d'électrode et un nouveau procédé de réalisation du faisceau électrochimique à partir de cette électrode.

Les feuillards métalliques de section carrée ou rectangulaire supportant les matériaux actif d'insertion d'électrodes peuvent avoir une épaisseur comprise entre 5 et 50 μιη. Pour un feuillard d'anode 3, il peut s'agir avantageusement d'un feuillard en cuivre d'épaisseur de l'ordre de 12 μιη. Pour un feuillard de cathode 2, il peut s'agir avantageusement d'un feuillard en aluminium d'épaisseur de l'ordre de 20 μιη. Selon l'invention, une électrode positive 2 ou négative 3 comprend une bande latérale métallique avec une zone d'extrémité 21 ou 31 dont les propriétés de son matériau métallique de feuillard et/ou sa géométrie est(sont) modifïée(s) par rapport au reste du feuillard, c'est-à-dire dans une zone intermédiaire 23 ou 33 de la rive 20 ou 30 et dans la portion centrale 22 ou 32.

Ainsi, grâce à cette zone d'extrémité modifiée 21 ou 31, comme décrit ci-après, lorsque l'opération de tassage axiale du faisceau sur l'une et/ou l'autre de ses extrémités latérales, c'est-à-dire un tassage appliqué sur ladite zone d'extrémité, il va se produire un flambage inélastique uniquement localisé sur la zone d'extrémité.

La zone intermédiaire 23 ou 33 assure une sécurité de protection mécanique lors du tassage car elle ne va pas se déformer.

A contrario, la portion centrale et le cas échéant une zone intermédiaire de sécurité dans la bande dénuée de matériau actif d'insertion ne se déforme pas lors du tassage.

Les figures 9 A et 9B montrent un exemple de réalisation de cette zone d'extrémité 21 sur un feuillard métallique 2S de cathode 2.

Dans cet exemple, le feuillard est de même épaisseur sur toute sa surface. En revanche, la zone d'extrémité 21 a subi un traitement thermique, comme un recuit différencié par rapport à la zone intermédiaire 23 et la portion centrale 22 destinée à être revêtue du matériau d'insertion au lithium. Typiquement, après traitement, la zone d'extrémité 21 peut présenter un coefficient de résistance à la rupture Rm inférieur à celui du reste de la surface (zone 23, portion centrale 22).

Typiquement également, après traitement de recuit, la zone d'extrémité 21 peut présenter un état métallurgique, faiblement durci, de type 0, H 12, ou H22 et H24 pour l'aluminium, tandis que le reste de la surface (zone 23, portion centrale 22 conserve un état écroui, de type H14 à H18 pour l'aluminium.

On procède de la même manière pour réaliser une zone d'extrémité 31 sur un feuillard métallique 3 S d'anode 3.

On a représenté en figure 9C, une variante de réalisation selon laquelle tout le feuillard métallique 2S présente la même microstructure, et n'a donc pas subi de traitements différenciés. En revanche, la zone d'extrémité 21 est de moindre épaisseur que le reste de la surface (zone 23, portion centrale 22). Cette variante selon la figure 9C permet, lors du tassage axial, une maîtrise de la déformation inélastique de la zone d'extrémité en limitant les perturbations d'alignement jusque-là observées dans les zones intermédiaires 23 ou 33 des faisceaux réalisés selon l'état de l'art. La réduction d'épaisseur du feuillard dans la zone d'extrémité 21, par exemple d'un facteur 2, nécessite d'en augmenter sa hauteur, avant déformation, d'un facteur de l'ordre de 1,5 à 1,7 seulement compte tenu de cette meilleure maîtrise des déformations plastiques au cours de la phase de compression par tassage axial.

On décrit maintenant en référence aux figures 10 à 11 les différentes étapes de ce procédé de réalisation selon l'invention.

Etape a/: On enroule par bobinage l'anode 3, la cathode 2 et au moins un film de séparateur 4 de la cellule électrochimique C autour d'un support non représenté.

Le faisceau a donc une forme cylindrique allongée selon un axe longitudinal XI, avec à l'une 10 de ses extrémités latérales, une bande 30 d'anode 3 non revêtue avec une zone d'extrémité 31 modifiée par rapport à la zone intermédiaire 33 et, à l'autre 11 de ses extrémités latérales, une bande 20 de cathode 2 non revêtue avec une zone d'extrémité 31 modifiée par rapport à la zone intermédiaire 33.

Etape b/: On effectue alors un tassage axial selon l'axe XI des bandes 20, 30 du faisceau électrochimique, sur toute la surface des extrémités latérales 10, 11.

Le tassage axial consiste en une compression par un outil plan ou structuré de surface d'appui sensiblement égale à la surface de chacune des extrémités latérales des bandes 20 ou 30.

Lorsque la géométrie recherchée de l'accumulateur est cylindrique, l'outil et le faisceau électrochimique sont disposés de manière coaxiale lors du tassage axial.

Le tassage axial est réalisé à une ou plusieurs reprises. Il peut consister en une compression suivant un ou plusieurs mouvements relatifs de va et vient, i.e. au moins un aller-retour selon l'axe XI du faisceau, et ce jusqu'à atteindre soit une dimension voulue de faisceau suivant XI, soit un effort maximal de compression dont la valeur est prédéterminée au préalable.

Lors de l'application de cet effort de compression, les zones d'extrémité 21 et 31 subissent un flambage inélastique et se plient tandis que les zones intermédiaires 23 et 33 et les portions centrales 22 et 32 revêtues des matériaux d'insertion ne se déforment pas. On obtient ainsi sur la partie de surface tassée 20T, 30T et non rabattue de chaque extrémité latérale, un socle sensiblement plan.

On soude alors à l'une des extrémités latérales 11 du faisceau, le socle formé par la partie tassée 20T de la cathode (rives positives) avec un collecteur de courant 14 usuel sous la forme d'un disque plein, lui-même destiné à être soudé par la suite avec le fond 8 du boîtier 6 d'accumulateur (figures 11, 11A, 11B).

On procède de la même manière à l'autre des extrémités latérales 10 du faisceau, le socle formé par la partie tassée 30T de l'anode (rives négatives) avec une partie de collecteur de courant 13 usuel sous la forme d'un disque plein percé en son centre et d'une languette 130 faisant saillie latéralement du disque 13 (figure 11, 11C, 11D).

Pour finaliser la réalisation définitive de l'accumulateur, on procède comme usuellement.

Ainsi, bien que non représenté, on introduit le faisceau avec le collecteur 13 dans un récipient rigide en aluminium formant uniquement l'enveloppe latérale 7 du boîtier 6. On veille en particulier lors de cette étape à ce que la languette 130 ne gêne pas l'introduction. Pour ce faire, on replie celle-ci avantageusement vers le haut.

On soude le collecteur 14 avec le fond 8 du boîtier 6.

On soude le collecteur 13 à un pôle négatif 50 formant une traversée d'un couvercle 9 de boîtier 6.

On soude alors le couvercle 9 au récipient rigide métallique 7.

Puis on effectue une étape de remplissage du boîtier 6 à l'aide d'un électrolyte, au travers d'une ouverture débouchante non représentée qui est pratiquée dans le couvercle 9.

La réalisation de l'accumulateur Li-ion selon l'invention prend fin par le bouchage de l'ouverture de remplissage.

D'autres variantes et améliorations peuvent être apportées sans pour autant sortir du cadre de l'invention.

Enfin, bien que le boîtier 6 dans les modes de réalisation illustrés qui viennent d'être détaillés soit en aluminium, il peut également être en acier, ou en acier nickelé. Dans une telle variante, un boîtier en acier ou en acier nickelé constitue le potentiel négatif, la traversée 9 constituant alors le pôle positif. L'invention n'est pas limitée aux exemples qui viennent d'être décrits ; on peut notamment combiner entre elles des caractéristiques des exemples illustrés au sein de variantes non illustrées.

Référence citée

[1] : MÉTAUX & ALLIAGES, TECHNOLOGIE DES MÉTAUX ET ALLIAGES PARTICULIÈREMENT en AÉRONAUTIQUE, Dominique Ottello, pages 1-36, http ://aviatechno .net/ fi 1 es m et a u x a 11 i a gcs .pdf