Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRODE
Document Type and Number:
WIPO Patent Application WO/2017/050873
Kind Code:
A1
Abstract:
An electrode (10) is disclosed. The electrode (10) comprises an electrode substrate (20). A layer of TiOx (30, 40) with a total thickness in the range of between 40 - 200 μm is present on at least one surface of the electrode substrate (20) and a porosity of layer of TiOx (30, 40) is below 15%. An electro-catalytic layer (50) comprising oxides of ruthenium and cerium according comprising at least 50 molar % ruthenium oxides is present on layer of TiOx (30, 40) and wherein x is in the range 1 - 2 for the layer of TiOx. A process for the manufacture of the electrode (10) is disclosed as are uses thereof.

Inventors:
ROSVALL MAGNUS (SE)
AMERIO EZIO (NL)
GUSTAVSSON JOHN (SE)
HOLMIN SUSANNE (SE)
BERGMAN LARS-ERIK (SE)
Application Number:
PCT/EP2016/072511
Publication Date:
March 30, 2017
Filing Date:
September 22, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AKZO NOBEL CHEMICALS INT BV (NL)
International Classes:
C25B11/04
Foreign References:
US4039400A1977-08-02
EP0298055A11989-01-04
CN1900368A2007-01-24
US4140813A1979-02-20
US4039400A1977-08-02
EP0298055A11989-01-04
CN1900368A2007-01-24
US4140813A1979-02-20
Attorney, Agent or Firm:
AKZO NOBEL IP DEPARTMENT (NL)
Download PDF:
Claims:
Claims

1 . An electrode (10) comprising:

- an electrode substrate (20),

- a layer of TiOx (30, 40) with a total thickness in the range of between 40 - 200 μιτι on at least one surface of the electrode substrate (20) wherein a porosity of the layer of TiOx (30, 40) is below 15%,

- an electro-catalytic layer (50) comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxide on the layer of TiOx (30, 40) and wherein x is in the range 1 - 2 for the layer of TiOx (30, 40).

2. The electrode (10) according to claim 1 , wherein the electrode substrate (20) is titanium.

3. The electrode (10) according to any one of the above claims wherein the layer of TiOx (30, 40) comprises at least 50 molar % TiOx.

4. The electrode (10) according to any one of the above claims, wherein a first layer of TiOx (30) has a porosity lower than a second layer of TiOx (40).

5. The electrode (10) according to any one of the above claims, wherein a thickness of a first layer of TiOx (30) is in the range of between 20 - 120μηη and a thickness of the second layer of TiOx (40) is in the range of between 20 - 120μηη.

6. The electrode (10) according to any one of the above claims wherein the at least one layer of TiOx (30, 40) comprises oxides of chromium.

7. The electrode (10) according to any one of the above claims, wherein x is between 1 .6 - 1 .9 for the at least one layer of TiOx (30, 40).

8. The electrode (10) according any one of the above claims, wherein the electro-catalytic layer (50) provides a ruthenium content in an amount of between 2 - 25 gm"2.

9. The electrode (10) according to any one of the above claims, wherein the electro-catalytic layer (50) comprises ruthenium oxide in an amount of between 50 - 95 molar % and cerium oxide in an amount of between 5 - 25 molar %.

10. The electrode (10) according to any one of the above claims, wherein at least 95% of the ruthenium from the electro-catalytic layer (50) penetrates the layer of TiOx (30, 40) to no more than 30% of a total thickness of the layer of TiOx (30, 40).

1 1 . A use of the electrode (10) according to any one of the above claims as a cathode in an electrolytic process.

12. The use according to claim 1 1 , wherein the electrolytic process is a manufacture of hydrogen gas at the cathode.

13. A process of manufacturing an electrode (10), the process comprising the steps:

i) providing an electrode substrate (20),

ii) coating at least one surface of the electrode substrate (10) by plasma spraying to form a layer of TiOx (30, 40) with a total thickness in the range of between 40 - 200 μιτι on at least one surface of the electrode substrate (20) to provide a porosity of the layer of TiOx (30, 40) of below 15%,

iii) forming an electro-catalytic layer (50) comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxide on the layer of TiOx (30, 40) and wherein x is in the range 1 - 2 for the layer of TiOx (30, 40).

14. The process according to claim 13, wherein the electrode substrate (20) is titanium.

15. The process according to any one of claims 13 - 14, wherein a surface of the electrode substrate (20) is roughened to provide a Ra value in the range of between 1 - 6μηη prior to step ii).

16. The process according to any one of claims 13 - 15, wherein forming the electro-catalytic layer (50) on the layer of TiOx (30, 40) comprises a heating step and a thermolysis step of a combination of ruthenium and cerium compounds.

17. The process according to any one of claims 13 - 16, wherein the combination of ruthenium and cerium compounds provides ruthenium oxide in an amount of between 50 - 95 molar % and cerium oxide in an amount of between 5 - 25 molar %.

18. The process according to claim 16, wherein the heating step is carried out for a time of between 5 - 15 mins at a temperature of between 70 - 100 °C.

19. The process according to claim 16, wherein the thermolysis step is carried out for a time of between 10 - 15 mins at a temperature of between 450 - 550 °C.

Description:
ELECTRODE Field of Invention

The present invention relates to an electrode, a use of the electrode and a method for the manufacture of the electrode.

Background of Invention

During an electrolytic process in an aqueous solution, a reaction that occurs at a cathodically polarised electrode is a production of hydrogen gas. The formation of hydrogen can be as H 2 and/or atomic hydrogen. An example of the electrolytic process is a manufacture of sodium chlorate (NaCIOs).

In the electrolytic process for the manufacture of NaCIO3 a titanium comprising cathode is sometimes used as an alternative to steel, as the titanium comprising cathode is corrosion resistant. However the titanium comprising cathode has limitations, such as a poor overpotential (i.e. extra voltage is needed to drive a current) and a tendency to form titanium hydrides. The poor overpotential can to an extent be overcome by a use of a conductive layer, comprising for example, an active catalytic species such as RuO 2 on the titanium comprising cathode.

However due to the production of hydrogen (H 2 and/or atomic hydrogen), problems associated with titanium hydride formation exist.

Hydrogen (H 2 and/or atomic hydrogen) can penetrate the conductive layer to the titanium comprising core (i.e. electrode substrate) and react with the titanium comprising core (i.e. electrode substrate) to form titanium hydride. The hydrides of titanium are more brittle than the titanium comprising core (i.e. electrode substrate) and therefore compromise a longevity and/or mechanical integrity of the electrode. The hydrides of titanium have an expanded lattice structure which compromises an adhesion of the conductive layer on the titanium comprising core (i.e. electrode substrate), which causes a detachment of the conductive layer from the titanium comprising core (i.e. electrode substrate).

The detachment of the conductive layer from the titanium comprising core (i.e. electrode substrate) leads to a loss of efficiency of the cathode and a loss of efficiency of the electrolytic process. The detachment of the conductive layer from the titanium comprising core (i.e. electrode substrate) leads a reduction of an active surface area of the electrode, which in turn leads to an increased current density in other parts of the cathode which are not damaged, resulting in increased hydrogen evolution and therefore accelerated deterioration of the cathode. The hydrogen (H 2 and/or atomic hydrogen) penetrates to the titanium comprising core (i.e. electrode substrate) and leads to the formation of titanium hydrides, which in turn compromises an electrical effectiveness of the conductive layer on the electrode.

Over time, the cathodes need to be machined to remove the spent catalytic layer and other conductive layers on the titanium comprising core (i.e. electrode substrate) and to remove the hydrides, before the titanium comprising core (i.e. electrode substrate) can be re-coated. This machining and re-coating is an expensive, time consuming procedure and causes down-time in the electrolytic process.

There is a need to provide an electrode, a method for the manufacture of the electrode and uses thereof, which overcome at least some of the aforementioned problems.

US 4,039,400 discloses an electrode and a process for the manufacture of an electrode. The process comprises inserting an electrode substrate which has a surface of nickel or lead, into a solution of titanium ions and forming a first electro-coating of titanium oxide by electro-coating the solution of titanium ions onto the electrode substrate by drying and calcination. The process is repeated to form a second electro-coating of titanium oxide on the first electro-coating of titanium oxide. The process further comprises applying a metal or an oxide thereof of the platinum group (platinum-iridium alloys and ruthenium dioxide) to the second electro-coating of titanium oxide.

EP 0298055 discloses a cathode for electrolysis. The cathode comprises a nickel electrode substrate, or a nickel coated steel electrode substrate. The electrode substrate is coated with a layer comprising at least one platinum group metal, oxide or hydroxide and at least one cerium group metal, oxide or hydroxide.

CN1900368A discloses a titanium anode in the manufacture of chlorine. The titanium anode is coated with oxides of ruthenium and cerium in an amount of RuO 2 :CeO 2 molar ratio 1 :3 - 3:1 .

Summary of Invention

In a first aspect the present invention relates to an electrode. The electrode comprises an electrode substrate. A layer of TiO x with a total thickness in the range of between 40 - 200μηη is present on at least one surface of the electrode substrate and a porosity of the layer of TiO x is below 15%. An electro-catalytic layer comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxides is present on the layer of TiO x and wherein x is in the range 1 - 2 for the layer of TiO x .

In the electrode according to the present invention, it has been found that the electro-catalytic layer remains adhered to the layer of TiO x and does not unfavourably percolate within the layer of TiO x . The electrode according to the present invention has enhanced durability and/or mechanical integrity whilst maintaining catalytic activity. The electrode is resilient to hydrogen diffusing to the electrode substrate, therefore the electrode substrate does not suffer from hydride formation and maintains its structural integrity. The electrode exhibits enhanced structural integrity of the layer of TiO x in the vicinity of the electro- catalytic layer. The electrode exhibits enhanced adhesion of the layer of TiO x to the electrode substrate and is devoid of any cracking.

In a further aspect the present invention relates to a use of the electrode as a cathode in an electrolytic process.

The cathode maintains its cathodic current efficiency, i.e. the production of hydrogen gas remains constant at the same current, indicating that no degradation of the cathode occurs due to hydrogen (H 2 and/or atomic hydrogen) penetration. The titanium comprising core (i.e. electrode substrate) is devoid of hydrides and therefore a need for machining and recoating is eliminated meaning that the cathode has a longer service life. The cathode maintains its voltage in that no, or only minor extra voltage is needed to drive a current to maintain the same hydrogen production level in the electrolysis process.

The cathode does not show significant changes in its morphology during the production of hydrogen gas. The cathode is impermeable to hydrogen (H 2 and/or atomic hydrogen) penetration whilst maintaining catalytic activity at its surface. The electrode exhibits reduced dissolution of the electro-catalytic layer into a bulk electrolyte when used in an electrolytic process.

In a further aspect the present invention relates to a process of manufacturing an electrode. The process comprising the steps:

i) providing an electrode substrate,

ii) coating at least one surface of the electrode substrate by plasma spraying to form a layer of TiO x with a total thickness in the range of between 40 - 20Όμηη on at least one surface of the electrode substrate to provide a porosity of the layer of TiO x of below 15%, iii) forming an electro-catalytic layer comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxides on the layer of TiOx and wherein x is in the range 1 - 2 for the layer of TiO x .

The process according to the present invention provides an electrode that exhibits enhanced adhesion of the layer of TiO x to the electrode substrate and enhanced adhesion of the electro-catalytic layer on the layer of TiO x . The process ensures that the electro-catalytic layer does not substantially percolate within the layer of TiO x . The process provides a mechanically stable electrode with a high catalytic activity.

Brief Description of Figures

Figure 1 shows a cross section of an electrode according to an aspect of the present invention.

Figure 2a shows a cross section of an electrode according to a comparative example of the present invention.

Figure 2b shows a cross section of an electrode according to a comparative example of the present invention, after being used in an electrolytic process.

Figure 3a shows a cross section of an electrode according to an aspect of the present invention.

Figure 3b shows a cross section of an electrode according to an aspect of the present invention, after being used in an electrolytic process.

Figure 4a shows a cross section of an electrode according to an aspect of the present invention. Figure 4b shows a cross section of an electrode according to an aspect of the present invention, after being used in an electrolytic process.

Figure 5 shows a cross section of an electrode according to an aspect of the present invention.

Figure 6 shows a cross section of an electrode according to an aspect of the present invention, after being used in an electrolytic process.

Figure 7 shows a cross section of an electrode according to an aspect of the present invention, after being used in an electrolytic process.

Detailed Description

For a complete understanding of the present invention and the advantages thereof, reference is made to the following detailed description taken in conjunction with the accompanying figures.

It should be appreciated that the various aspects and embodiments of the detailed description as disclosed herein are illustrative of the specific ways to make and use the invention and do not limit the scope of invention when taken into consideration with the claims and the detailed description. It will also be appreciated that features from different aspects and embodiments of the invention may be combined with features from different aspects and embodiments of the invention.

In a first aspect the present invention relates to an electrode 10. The electrode 10 comprises:

- an electrode substrate 20,

- a layer of TiO x 30, 40 with a total thickness in the range of between 40 - 200μηη on at least one surface of the electrode substrate 20 wherein a porosity of the layer of TiO x 30, 40 is below 15%, - an electro-catalytic layer 50 comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxides on the layer of TiOx 30, 40 and wherein x is in the range 1 - 2 for the layer of TiO x 30, 40.

The term electrode substrate 20 as used herein refers to a core of the electrode 10.

The electrode substrate 20 is preferably titanium. Where the electrode substrate 20 is titanium it is preferable that the titanium is selected, according to the American Society of Testing Materials (ASTM) from one of:

B313: 6-4 Titanium in Sheet, Strip and Plate

5-2.5 Titanium in Sheet, Strip and Plate

Commercially Pure Grade 1 Titanium in Sheet, Strip and Plate

Commercially Pure Grade 2 Titanium in Sheet, Strip and Plate B314: Commercially Pure Grade 4 Titanium in Sheet, Strip and Plate

Commercially Pure Grade 7 Titanium in Sheet, Strip and Plate B316: Commercially Pure Grade 1 1 Titanium in Sheet, Strip and Plate

Commercially Pure Grade 12 Titanium in Sheet, Strip and Plate

The electrode substrate 20 is preferably selected from commercially pure grade 1 or 2 as noted above.

The aforementioned types of electrode substrate 20 retain their physical and chemical integrity, also during manufacture of the electrode 10 and during its use, for e.g. in an electrolytic process.

A configuration of the electrode substrate 20 and therefore the resulting electrode 10 may be in the form of a flat sheet or plate, a curved surface, a convoluted surface, a punched plate, a woven wire screen, an expanded mesh sheet, a rod, or a tube. The electrode substrate 20 preferably has a configuration of a planar shape, in the form of the flat sheet, mesh or plate.

The layer of TiO x 30, 40 has total thickness in the range of between 40 - 200μηη and is present on at least one surface of the electrode substrate 20. A porosity of the layers of TiO x 30, 40 is below 15%.

The layer of TiO x 30, 40 can be a first layer of TiO x 30 and a second layer of TiO x 40. The first layer of TiO x 30 is present on at the least one surface of the electrode substrate 20 and the second layer of TiO x 40 is present on the first layer of TiO x 30 as shown in figure 1 .

As noted the porosity of the layers of TiOx 30, 40 is below 15%.

The first layer of TiO x 30 may have a porosity of below 5%, and more preferably in the range of between 0 - 4% and even more preferably in the range of between 0 - 3%.

The second layer of TiO x 40 may have a porosity of greater than 0 up to 15%. The second layer of TiO x 40 may have a porosity in the range 2 - 15%, more preferably in the range 3 - 9% and even more preferably in the range 3 - 7%.

Nevertheless it is to be appreciated that the layer of TiO x 30, 40 may have the same porosity and therefore it would be seen as one layer.

The layer of TiO x 30, 40 may further comprise an oxide of chromium.

The porosity of the layers of TiO x 30, 40 is indicative of the density and therefore a lower porosity means a denser layer and a higher porosity means a less dense layer.

A total thickness of the layer of TiO x 30, 40 is preferably in the range of between 70 - 1 ΘΟμιτι. It is more preferable that the total thickness of the layer of TiO x 30, 40 is in the range of between 90 - 140μηη. It is preferable that a thickness of the first layer of TiO x 30 is in the range of between 20 - 120μηη, preferably between 50 - 80μηη. It is preferable that a thickness of the second layer of TiO x 40 is in the range of between 20 - 120μηη, preferably between 50 - 80 μηη.

The thickness of the layer of TiO x 30, 40 and their total thickness is determined according to a ASTM Designation F1854-98 - Standard Test Method for Stereological Evaluation of Porous Coatings on Medical Implants. x is between 1 - 2 for the layer of TiO x 30, 40. When x is between 1 - 2, an optimal balance between corrosion resistance and electrical conductivity is achieved in the electrode 10. It is preferable that x is between 1 .6 - 1 .9, for each or either layer of TiO x 30, 40. It is more preferable that x in the second layer of TiO x 40 is between 1 .7 -1 .9. It is to be appreciated that value x can be readily determined by common general knowledge using various spectroscopic techniques.

The electro-catalytic layer 50 comprises oxides of ruthenium and cerium. The electro-catalytic layer 50 comprises at least 50 molar % ruthenium oxide. The electro-catalytic layer 50 is present on the layer of TiO x 30, 40.

The electro-catalytic layer 50 preferably provides a ruthenium content in an amount of between 2 - 25 gm "2 on the layer of TiO x 30, 40. The electro-catalytic layer 50 more preferably provides a ruthenium content in an amount of between 10 - 15 gm "2 on the layer of TiO x 30, 40.

In the electrode 10 it was found that the at least 95% of ruthenium of the electro-catalytic layer 50 penetrates the layer of TiO x 30, 40 to no more than 30% depth of a total thickness of the layer of TiO x 30, 40 to the electrode substrate 20. This is measured by SEM-EDX (Scanning electron microscopy with energy dispersive X-ray spectroscopy). The electro-catalytic layer 50 preferably comprises ruthenium oxides in an amount of between 50 - 95 molar % and cerium in an amount of between 5 - 25 molar %.

The electro-catalytic layer 50 may also include any one of titanium, zirconium and lanthanum or any combination thereof. The titanium, zirconium and lanthanum or any combination thereof further increase a cathodic current efficiency in an electrolytic process, such as the manufacture of sodium chlorate (i.e. not to reduce hypochlorite). The presence of titanium was found to further prevent ruthenium dissolution from the electro-catalytic layer 50 into the bulk material (electrolyte) and stabilises the ruthenium structure in the electro- catalytic layer 50. This therefore further overcomes problems of reduced lifetime of the electrode 10.

Preferably a thickness of the electro-catalytic layer 50 is in the range of between 0.01 - 5μηη, preferably in the range of between 2 - 3μηη. The thickness of the electro-catalytic layer 50 is determined according to an ASTM Designation F1854-98 - Standard Test Method for Stereological Evaluation of Porous Coatings on Medical Implants.

The porosity of the layer of TiO x 30, 40 is measured according to ISO/TR26946 (E) - Standard method for porosity measurement of thermally sprayed coatings as described below.

In this method the electrode 10 is cut into square specimens with sides of about 15mm by means of a precision saw to form an electrode specimen. The electrode specimen is embedded with an epoxy resin (Struers Specifix-20) in a mounting cup with a diameter of 30 mm. The epoxy resin is cured at room temperature for about 8 hours and post-treated at 50°C for 2 hours to improve resin hardness.

The mounted electrode specimen is ground by SiC paper with grit sizes of 180, 320, 800 and 1200 in turn for 2 minutes each turn, lubricated with water at a circling speed of 300rpm using rotation with a force of 20N per stub (cylinder of mounted electrode). After the mounted electrode specimens are polished using water based diamond suspensions of 6, 3 and 1 μηη grade (Struers DiaPro). Complementary rotation at a speed of 150rpm for 6 minutes was used for each step. After polishing, the samples were cleaned with demineralised water, swabbed with lint-free tissue and allowed to air dry.

To determine the porosity by Secondary Electron Microscopy (SEM), the polished electrode specimen was adhered to an aluminium stub using double sided conductive tape. To facilitate charge drainage, an electric connection from the top to the stub was made using conductive tape. In order to prevent charging in the SEM, a thin carbon coating was applied using a Balzers MED 010 sputter coater. SEM images were recorded on a Zeiss LEO 1550 FE-SEM, equipped with an Oxford PentaFET-3x detector. Backscattered electron mode was used at a work distance of -5.5 mm, using a quadruple backscattered electron detector. The primary electron energy was 10 keV. A minimum of 5 random areas (all above 0.12 mm 2 ) per electrode specimen were imaged. Three batches of electrode specimen were polished at different times giving a minimum of 15 images for each porosity level.

A quantitative assessment of the porosity is carried out by image analysis on the basis that for random distributed pores the surface fraction is equal to volumetric fraction of pores.

The images were analysed using ImageJ software. The images were cropped to a rectangular shape that excludes the interface between the mounting resin and the first 30 and second layer 40 of TiO x and between the first 30 and second layer 40 of TiO x and the electrode substrate 20. Images were then binarised using the "default" automatic threshold algorithm provided by ImageJ (http://fiji.se/wiki/index.php/Auto_Threshold). The noise was then removed by means of a despeckle filter. The area fraction represents the porosity by volume.

The electrode 10 may be part of a bipolar electrode that is to say that the electrode 10 functions as an anode of one cell and a cathode of another cell. When the electrode 10 is bipolar electrode, the cathode side is according to the present invention and the anode side is according to an electrode known in the art, depending on the final application. When used as a bipolar electrode, the electrode 10 provides a more compact cell system which circumvents a need for back-plates in the cell. Furthermore the electrode 10 when used as a bipolar electrode can be easily replaced if need be.

The electrode 10 is preferably a cathode.

In a further aspect of the present invention, the electrode 10 is used as a cathode in an electrolytic process. The electrolytic process can be a process where hydrogen gas is manufactured at the cathode.

The electrode 10 may be used in an electrolytic cell for a reduction of water- based electrolytes to hydrogen and hydroxide ions. The electrode 10 may be used in an electrolytic cell for treatment of water. The electrolytic process can be the manufacture of alkali metal chlorate.

In the manufacture of alkali metal chlorate, the electrode 10 can be installed into a chlorate cell as a cathode. As an anode an electrode known in the art can be used. An electrolyte with a composition of 580 ± 50 gl_ "1 NaCIO 3 , 120 ± 20 gl_ "1 NaCI and 4 ± 3 gl_ "1 Na2Cr 2 O7 * 2H 2 O all of which were dissolved in deionized water is used. The electrolyte in the electrolytic process can be maintained at a temperature of approximately 70 ± 20 °C.

The chlorate cell can be polarised to a current density of between 0.8 - 5 kA m 2 , and more preferably to a current density of between 2 - 3 kA m 2 . In a further aspect the present invention relates to a process of manufacturing an electrode 10. It is to be appreciated that the process of manufacturing the electrode 10, relates to the electrode 10 as previously described. The process of manufacturing the electrode 10 comprises the steps:

i) providing an electrode substrate 20,

ii) coating at least one surface of the electrode substrate 10 by plasma spraying to form a layer of TiO x 30, 40 with a total thickness in the range of between 40 - 200 μιτι on at least one surface of the electrode substrate 20 to provide a porosity of the layer of TiO x 30, 40 of below 15%,

iii) forming an electro-catalytic layer 50 comprising oxides of ruthenium and cerium comprising at least 50 molar % ruthenium oxides on the layer of TiO x 30, 40 and wherein x is in the range 1 - 2 for the layer of TiOx 30, 40.

The electrode substrate 20 is provided by any one of those as previously mentioned.

The electrode substrate 20 may be pre-treated by a cleaning procedure and/or a roughening procedure and/or a pickling procedure or any combination thereof prior to the coating step (ii).

The cleaning procedure is used to remove impurities present on a surface of the electrode substrate 20. The impurities may adversely affect adhesion of the first layer 30 of TiO x to the at least one surface of the electrode substrate 20. The impurities include stains, such as oils and fats; cutting wastes; and salts. The cleaning procedure includes any one of alcohol washing, alkaline washing, acid washing, ultrasonic cleaning, steam cleaning and scrubbing cleaning or any combination thereof. The cleaning procedure further includes washing of the electrode substrate with water and drying. The roughening procedure is used to roughen a surface of the electrode substrate 20. The roughening procedure includes any one of machining the electrode substrate 20, blasting the electrode substrate 20 with particulates or laser etching or any combination thereof. It is preferable that the roughening procedure is blasting the electrode substrate 20 with particulates. As the surface of the electrode substrate 20 is roughened, a surface area of the electrode substrate 20 increases. The increase in the surface area of the electrode substrate 20 provides a means for mechanical interlocking for the first layer 30 of TiO x when coated on at least one surface of the electrode substrate 20 and improves its mechanical adhesion.

The particulates include sand, grit, and aluminium oxide or any combination thereof. It is preferable that the particulates are selected from aluminium oxide. It is preferable that the particulates have an average particle size of between 50 - 300μηη. The particulates are blasted at the electrode substrate 20 to roughen the surface of the electrode substrate 20. The particulates are blasted at the electrode substrate 20 with a pressure of between 1 .5 - 5 bar and can be directed to the surface of the electrode substrate 20 at an angle of between 45 - 60°. Following blasting the electrode substrate 20 with particulates, the electrode substrate 20 may be cleaned as mentioned above and may be subjected to compressed air to remove any remaining particulates.

It is preferable that the roughening procedure is done by a robotically controlled movement during the machining, blasting, or laser etching over the electrode substrate 20.

It is preferable that the roughening procedure is used to roughen a surface of the electrode substrate 20 to provide a R a value in the range of between 1 - 6μηη, preferably in the range of between 1 - 5μηη and most preferably in the range of between 2 - 4μηη. The R a value is measured according to SS-EN ISO 4287:1998. The pickling procedure is a process in which the electrode substrate 20 is treated in acid at a temperature in the range of between 60 - 90°C. The acid can be selected from one of hydrochloric acid, nitric acid, sulphuric acid and phosphoric acid. The acid is an aqueous acid with between 10 - 50 wt% acid. The electrode substrate 20 can be treated in the aqueous acid for a time of up to 8 hours. Where the electrode substrate 20 is roughened, the pickling procedure may not be preferred, this is because the pickling procedure smoothens away the roughness, which may comprise an ability of the first layer 30 of TiOx to adhere to the at least one surface of the electrode substrate 20 during the plasma spraying process.

Coating at least one surface of the electrode substrate 20 by plasma spraying to form the first layer 30 of TiO x and coating by plasma spraying on the first layer 30 of TiOx to form the second layer 40 of TiO x is achieved by plasma spraying a powder of TiO x to form the respective layer of TiO x 30, 40.

The powder of T1O1.9 may be provided by Oerlikon Metco (Metco 102). The powder of T1O1.7 may be provided by Oerlikon Metco (Metco 6231A). The powder of TiOi.s may be provided by Oerlikon Metco (Metco 6232B). The powder of T1O1.9 may be provided by Oerlikon Metco (Metco 6233C). The powder of T1O2 which contains 45 wt.% Cr 2 O3 may be provided by Oerlikon Metco (Metco 1 1 1 ).

An example of plasma spraying is described in US 4,140,813. Plasma spraying may be achieved using a Triplex II plasma spraying system by Oerlikon Metco, a TriplexPro-200 plasma spraying system by Oerlikon Metco or a F4 plasma spraying system by Oerlikon Metco.

Plasma spraying is advantageous in that it allows the creation of uniform layers of TiOx 30, 40. Plasma spraying is advantageous in that it allows the creation of layers of TiO x 30, 40 with the desired thickness easily. Plasma spraying is advantageous in that it allows the creation of layers of TiO x 30, 40 with the desired porosity by altering parameter settings of the plasma spray gun process such as speed, energy, temperature and gas composition.

It is preferable that a speed at which the powder of TiO x is applied is in the range of between 30 - 670ms "1 during the plasma spray gun process. It is preferable that the speed at which the powder of TiO x is applied is in the range of between 300 - 670ms "1 as this ensures that as the powder of TiO x hits the electrode substrate 20, the powder deforms, thus minimising the amounts of voids in the layers 30 and 40 of TiO x .

It is preferable that a temperature during the plasma spray gun process is in the range of between 1000 - 3500°C.

It is preferable that the energy during the plasma spray gun process is in the range of between 300 - 600Amps.

The gas composition is at least one of helium, hydrogen, nitrogen or argon or any combination thereof.

The gas composition preferably comprises at least one of argon or nitrogen as these gases are advantageous for the flow and particle entrainment during the plasma spraying process. The gas composition preferably also comprises in addition to at least one of argon or nitrogen, at least one of hydrogen and helium as these gases are advantageous for heat transfer during the plasma spraying process.

In order to achieve the layer of TiO x 30, 40 with the desired porosity, the important parameters (gas composition and amperage) can be according to table 1 . Porosity target value of c.a. 0 - 5% c.a. 3 - 10% c.a. 8-25%

TiO x layer type

Ar [nlpm] 25-50 35-55 35-50

N 2 [nlpm] 0 0-6 0-6

He [nlpm] 0-25 0 0

Amperage [A] 500±75 450±75 425±75

Table 1 . Parameter setting of plasma gun spray parameters

Further adjustment of the porosity is preferably carried out by adjusting the amperage.

It is preferable that the gas is applied with a flow rate in the range of between 0 - 80nlpm (normal litres per minute).

Once the aforementioned parameters have been stabilised for the plasma spray gun process, the powder of TiO x is plasma sprayed on the electrode substrate 20 to form the coating on at least one surface of the electrode substrate 20 to form the first layer of TiO x 30.

The powder of TiO x is plasma sprayed on the electrode substrate 20 preferably in a direction perpendicular to the electrode substrate 20 where the electrode substrate 20 is flat. However when the powder of TiO x is plasma sprayed on edges of the electrode substrate 20 it is preferable that the powder of TiO x is plasma sprayed on the electrode substrate 20 preferably at an angle of 45° to the electrode substrate 20 to ensure uniform coverage to the electrode substrate 20.

The powder of TiO x is plasma sprayed on the electrode substrate 20 at a distance of 175mm ± 50mm from a tip of a plasma spray gun to the electrode substrate 20 and more preferably at a distance of 150mm.

To achieve the first layer of TiO x 30 of TiO x the plasma spraying process can be repeated in a stepwise procedure. By repeating the plasma spraying process it has been found that this provides better control in forming the layer and has the advantage of filling in defects (e.g. cracks) in the previously applied layer. By repeating the plasma spraying process the desired thickness of the first layer of TiOx 30 can be achieved in a stepwise manner.

To achieve the second layer of TiO x 40 of TiO x the plasma spraying process can be repeated in a stepwise procedure. By repeating the plasma spraying process it has been found that this provides better control in forming the layer and has the advantage of filling in defects (e.g. cracks) in the previously applied layer. By repeating the plasma spraying process the desired thickness of the second layer of TiO x 40 can be achieved in a stepwise manner.

It is preferable that the powder of TiO x is plasma sprayed by a robot controlled movement over the electrode substrate 20.

During the coating procedure, the electrode substrate 20 may be rotated so more surfaces are coated to form the first layer of TiO x 30.

Once the first layer of TiO x 30 has been formed on the electrode substrate 20, the parameter settings of the plasma spray gun process are accordingly altered and the coating procedure as described above is repeated to form the second layer of TiO x 40 of TiO x on the first layer of TiO x 30.

The electro-catalytic layer 50 is then coated on the layer of TiO x 30, 40.

Before application of the electro-catalytic layer 50 on the second layer 40, it is preferable that the surface of the second layer 40 has a surface roughness R a value in the range of between 2 - 20μηη, more preferably in the range of between 5 - 15μηη. The surface roughness may be achieved as a result of the plasma spraying process. The surface roughness may be achieved by the roughening procedure as previously described. The R a value is measured according to SS-EN ISO 4287:1998. It has been found that having a surface roughness in the aforementioned ranges as well as the porosity of the layer of ΤίΟχ 30, 40 provides an ability to form a good chemical bond between the electro-catalytic layer 50 and the layer of TiO x 30, 40.

The electro-catalytic layer 50 can be coated on the layer of TiO x 30, 40 by any one of a thermal spray method, a thermal decomposition method, a sol-gel method, a paste method, an electrophoresis method, a physical vapour deposition (PVD) method and an atomic layer deposition (ALD) method.

It is preferable that the electro-catalytic layer 50 is coated on layer of TiO x 30, 40 by the thermal decomposition method according to the following procedure.

A solution or suspension of the electro-catalytic layer compounds is applied on a surface of the layer TiO x 30, 40 heated to dry and then a thermolysis is performed. This process is repeated, as required to achieve the desired loading of the electro-catalytic layer 50.

It is preferable that the solution or suspension of the electro-catalytic layer compounds comprises an acid. The acid is preferably a mineral acid such as hydrochloric acid. The solvent used for the formation of the solution or suspension of the electro-catalytic layer compounds can be an aqueous solvent which may comprise at least one alcohol. The alcohol is selected from one of methanol, ethanol, 1 -propanol, 2-propanol, 1 -butanol, 2-butanol, 1 -pentanol, 2- pentanol and 3-methyl-2-butanol or any combination thereof. Where the solvent is an aqueous solvent which comprises at least one alcohol, it is preferable that the solvent comprises at least 50 volume% alcohol. It is preferable that the solvent is 1 -butanol and/or water as this solvent mixture optimises a wetting of the layer of TiO x 30, 40.

The electro-catalytic layer compounds, which are provided to the solution or suspension, can be a salt and/or an acid of the resultant electro-catalytic layer 50, for example, chlorides, nitrides, nitrites nitrates, iodides, bromides, sulphates, borates, carbonates, acetates, and citrates or any combination thereof of ruthenium and cerium.

Once the solution or suspension of the electro-catalytic layer compounds is applied on the layer of TiO x 30, 40, the solution or suspension is heated (5 - 15 mins at a temperature of between 70 - 100 °C) to dry and then the thermolysis (10 - 15 mins at a temperature of between 450 - 550 °C) performed. During the thermolysis, the electro-catalytic layer compounds form the electro-catalytic layer 50 on the layer of TiO x 30, 40. The thermolysis causes a conversion of the electro-catalytic layer compounds to metals and/or the oxides thereof.

As noted the electro-catalytic layer 50 comprises oxides of ruthenium and cerium. The electro-catalytic layer 50 comprises at least 50 molar % ruthenium oxides. The electro-catalytic layer 50 is present on the layer of TiO x 30, 40.

The electro-catalytic layer 50 preferably provides a ruthenium content in an amount of between 2 - 25 gm "2 on the layer of TiO x 30, 40. The electro-catalytic layer 50 more preferably provides a ruthenium content in an amount of between 10 - 15 gm "2 on the layer of TiO x 30, 40.

It is to be appreciated that the invention also relates to an electrode obtainable by the process as described herein.

The present invention is demonstrated by the following non-limiting examples.

Examples

1 . Comparative example

An electrode substrate (titanium, ASTM, B313, Grade 1 ) was degreased and cleaned using alcohol.

The electrode substrate was roughened with aluminium oxide particulates (WSK 70, 150-300 μιτι). The aluminium oxide particulates were directed on a surface of the electrode substrate at an angle of between 45 - 60° to the vertical line of the electrode substrate with a pressure of 3 bar. The roughening procedure provided a R a value 3μηη.

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide.

A Triplex Pro gun (Oerlikon Metco) was used during the plasma spraying process. A powder of TiO x (x value of 1 .7) by Oerlikon Metco (Metco 6231 A) was used. The powder was applied in a direction perpendicular to the roughened electrode substrate. The parameters used during the plasma spraying process to form layers of TiO x with various porosities on the electrode substrate are shown in table 2.

Table 2

A total thickness of the first and second layer of TiO x was approximately 10Όμιτι. A catalyst solution (RuCb dissolved in HCI acidified 1 -butanol) was applied onto the second layer of TiO x using an electrostatic spray. The applied catalyst solution was heated for 5 min at 80°C, then thermolysed for about 12 min at 470 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved. A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 2a. As seen in figure 2a a substantial amount of the electro-catalytic layer (white) percolates within the TiOx layer.

The electrode (as a cathode) was installed into a chlorate cell. As an anode a PSC120 electrode was used. The electrolyte had a composition of 580±20 gl_ "1 NaCIO 3 , 120±10 gl_ "1 NaCI and 5±2 gl_ "1 Na 2 Cr 2 O7 * 2H 2 O all of which were dissolved in deionized water. A temperature was maintained at 80±2 °C.

The chlorate cell was polarised to a current density of 3 kA m 2 .

The chlorate cell was run for a period of 5 months period with a few stops. After this period the electrode (as a cathode) was removed and inspected. A cross section of the electrode acquired with a scanning electron microscope (SEM) in backscattered detection mode is shown in figure 2b. As can be seen from figure 2b, a band with a darker shade of grey appears in the substrate adjacent to the TiOx layer, which is indicative of the formation of titanium hydride due to hydrogen diffusion to the electrode substrate. The presence of titanium hydrides in the substrate was confirmed by using SEM-EBSD (Electron Back Scatter Diffraction) in combination with SEM-EDX (energy dispersive X-ray spectroscopy). Furthermore the change in morphology of the electrode substrate as seen indicates that hydrogen has permeated through the TiO x layers to form a titanium hydride. Furthermore the electro-catalytic compound layer (white) percolates more substantially within the TiO x layer.

2. Example according to present invention

An electrode substrate was degreased, cleaned and roughened to provide a R a value of 3μηη as example 1 .

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide. A Triplex Pro gun (Oerlikon Metco) was used during the plasma spraying process. A powder of TiO x (x value of 1 .7) by Oerlikon Metco (Metco 6231 A) was used. The powder was applied in a direction perpendicular to the roughened electrode substrate. The parameters used during the plasma spraying process to form layers of TiO x with various porosities on the electrode substrate are shown in table 3.

Table 3

A total thickness of the first and second layer of TiO x was approximately 140μηη.

A catalyst solution (RuCb and CeCh - 75 molar % Ru and 25 molar % Ce - dissolved in HCI acidified water:1 -butanol, 3:7) was applied onto the second layer of TiO x using an electrostatic spray. The applied catalyst solution was heated for 8 min at 80°C, then thermolysed for about 12 min at 470 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved.

A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 3a. It is seen that the electro-catalytic layer (white) is more localised at a surface of the layer of TiO x .

The electrode (as a cathode) was installed into a chlorate cell and operated as example 1 . After this period the electrode (as a cathode) was removed and inspected. A cross section of the electrode acquired with a scanning electron microscope (SEM) in backscattered detection mode is shown in figure 3b. As can be seen from figure 3b, no titanium hydride formation was detected indicating that no penetration of hydrogen (H2 and/or atomic hydrogen) to the electrode substrate had occurred. No changes in morphology of the electrode substrate as seen in example 1 were noted. Furthermore there appeared to be less delocalization of the electro-catalytic layer (white) within the layer of TiO x as compared to examples 1 .

3. Example according to present invention

An electrode substrate was degreased, cleaned and roughened to provide a R a value of 3μηη as example 1 .

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide.

A Triplex Pro gun (Oerlikon Metco) was used during the plasma spraying process. A powder of TiO x (x value of 1 .7) by Oerlikon Metco (Metco 6231 A) was used to form a first layer of TiO x . The powder was applied in a direction perpendicular to the roughened electrode substrate. On top of this a second layer was formed made up of TiO x and 45 wt.% oxides of chromium by Metco (Metco 1 1 1 ). The powder was applied in a direction perpendicular to the roughened electrode substrate.

The parameters used during the plasma spraying process to form the layers with various porosities on the electrode substrate are shown in table 4. Parameters used Layers of TiO x

Ar N 2 He Amperage [A] Measured Thickness

[nlpm] [nlpm] [nlpm] porosity [%] [Mm]

First layer 25 - 50 0 0 - 25 500 ± 75 3 - 5 40 - 60 of TiO x

Second 35 - 55 0 - 6 0 425 ± 75 10 - 12 80 - 100 layer of

TiO x and

45 wt.%

oxide of

chromium

Table 4

A total thickness of the first and second layer of TiO x was approximately 140μηη.

A catalyst solution (RuCb and CeCh - 75 molar % Ru and 25 molar % Ce - dissolved in HCI acidified water: 1 -butanol, 3:7) was applied onto the second layer using an electrostatic spray. The applied catalyst solution was heated for 8 min at 80°C, then thermolysed for about 12 min at 470 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved.

A cross section of the electrode acquired with - scanning electron microscope (SEM) in backscattered detection mode is shown in figure 4a. It is seen that the electro-catalytic layer (white) is almost entirely localised at a surface of the layer of TiOx.

The electrode (as a cathode) was installed into a chlorate cell and operated as example 1 .

After this period the electrode (as a cathode) was removed and inspected. A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 4b. As can be seen from figure 4b, no titanium hydride formation was detected indicating that no penetration of hydrogen (H 2 and/or atomic hydrogen) to the electrode substrate had occurred. The electro-catalytic layer (white) remains almost entirely localised at a surface of the layer of TiO x .

During the 5 month period the electrode (as a cathode) maintained its cathodic efficiency, i.e. the production of hydrogen gas remained constant. Furthermore the electrode (as a cathode) maintained its potential in that no significant extra voltage was needed when a constant current was applied to maintain the electrolysis process.

4. Example according to present invention

An electrode substrate was degreased, cleaned and roughened to provide a R a value of 3μηη as example 1 .

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide.

The same plasma spraying conditions as example 2 were used.

A total thickness of the first and second layer of TiO x was approximately 140 m

A catalyst solution (RuCI 3 and CeCI 3 - 90 molar % Ru and 10 molar % Ce - dissolved in HCI acidified water) was applied onto the second layer of TiO x using a brush. The applied catalyst solution was heated for 15 min at 90°C, then thermolysed for about 10 min at 530 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved.

A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 5. As can be seen in figure 5 almost all the catalyst is localized on the surface of the layer of TiO x . This example demonstrates that it is possible to get the electro-catalytic layer on the layer of TiO x even when the Ru-concentration and the molar ratio between Ce/Ru is low. This is achieved by increasing calcination temp to 530 °C.

5. Example according to present invention

An electrode substrate was degreased, cleaned and roughened to provide a R a value of 3μηη as example 1 .

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide.

A Triplex Pro gun (Oerlikon Metco) was used during the plasma spraying process. A powder of TiO x (x value of 1 .7) by Oerlikon Metco (Metco 6231 A) was used. The powder was applied in a direction perpendicular to the roughened electrode substrate. The parameters used during the plasma spraying process to form layers of TiO x with various porosities on the electrode substrate are shown in table 5.

Table 5

A total thickness of the first and second layer of TiO x was approximately 1 10μιτι.

A catalyst solution (RuCb and CeCh - 75 molar % Ru and 25 molar % Ce - dissolved in HCI acidified water:1 -butanol, 3:7) was applied onto the second layer using an electrostatic spray. The applied catalyst solution was heated for 8 min at 80°C, then thermolysed for about 12 min at 470 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved.

The electrode (as a cathode) was installed into a chlorate cell and operated as example 1 , but the chlorate cell was polarised to a current density of 2.3 kA m 2 .

After this period the electrode (as a cathode) was removed and inspected. A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 6. As can be seen from figure 6, no titanium hydride formation was detected indicating that no penetration of hydrogen (H2 and/or atomic hydrogen) to the electrode substrate had occurred when the layers of TiO x have similar porosity, a first layer is slightly less porous than a second layer. No derealization of the electro- catalytic layer (white) within the layer of TiO x was observed.

During the 5 month period the electrode (as a cathode) maintained its cathodic efficiency, i.e. the production of hydrogen gas remained constant. Furthermore the electrode (as a cathode) maintained its potential in that no significant extra voltage was needed when a constant current was applied to maintain the electrolysis process.

6. Example according to present invention

An electrode substrate was degreased, cleaned and roughened to provide a R a value of 3μηη as example 1 .

The roughened electrode substrate was subjected to compressed air to remove loose particulates of aluminium oxide.

A Triplex Pro gun (Oerlikon Metco) was used during the plasma spraying process. A powder of TiO x (x value of 1 .7) by Oerlikon Metco (Metco 6231 A) was used. The powder was applied in a direction perpendicular to the roughened electrode substrate. The parameters used during the plasma spraying process to form layers of TiO x with various porosities on the electrode substrate are shown in table 6.

Table 6

A total thickness of the first and second layer of TiO x was approximately 90μηη.

A catalyst solution (RuCb and CeCh - 75 molar % Ru and 25 molar % Ce - dissolved in HCI acidified water:1 -butanol, 3:7) was applied onto the second layer using an electrostatic spray. The applied catalyst solution was heated for 8 min at 80°C, then thermolysed for about 12 min at 470 °C. The process was repeated until a ruthenium loading of about 14 gm "2 was achieved.

The electrode (as a cathode) was installed into a chlorate cell and operated as example 1 , but the chlorate cell was polarised to a current density of 2.3 kA m 2 .

After this period the electrode (as a cathode) was removed and inspected. A cross section of the electrode acquired with scanning electron microscope (SEM) in backscattered detection mode is shown in figure 7. As can be seen from figure 7, no titanium hydride formation was detected indicating that no penetration of hydrogen (H2 and/or atomic hydrogen) to the electrode substrate had occurred when the layers of TiOx have the same porosity, i.e. a single layer. No delocalization of the electro-catalytic layer (white) within the layer of TiOx was observed. During the 5 month period the electrode (as a cathode) maintained its cathodic efficiency, i.e. the production of hydrogen gas remained constant. Furthermore the electrode (as a cathode) maintained its potential in that no significant extra voltage was needed when a constant current was applied to maintain the electrolysis process.

Having thus described the present invention and the advantages thereof, it should be appreciated that the various aspects and embodiments of the present invention as disclosed herein are merely illustrative of specific ways to make and use the invention. The various aspects and embodiments of the present invention do not limit the scope of the invention when taken into consideration with the appended claims and the foregoing detailed description.

What is desired to be protected by letters patent is set forth in the following claims.