Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTROLYTIC TREATER AND METHOD FOR TREATING WATER
Document Type and Number:
WIPO Patent Application WO/2017/132229
Kind Code:
A1
Abstract:
One embodiment of the invention provides an electrolytic treatment unit 2 comprising a casing, a plate bundle, a cathode and an anode. The casing has a longitudinal axis. The plate bundle is positioned in the casing. The plate bundle comprises a plurality of spaced-apart parallel plates and each plate is positioned normal to the longitudinal axis. A pair of electrodes comprising the cathode and the anode at least partially support the plurality of parallel plates. The electrodes are connected to the plates so that each plate is connected to one of the cathode or the anode and is uncontacted by the other electrode. To achieve needed throughput at low head, the plates are spaced in the range of 1 cm to 10 cm apart.

Inventors:
LOPEZ NOE JOSHUA (US)
DECKER WADE (US)
Application Number:
PCT/US2017/014887
Publication Date:
August 03, 2017
Filing Date:
January 25, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LOPEZ NOE JOSHUA (US)
DECKER WADE (US)
International Classes:
C02F1/461; C02F1/467; C02F9/00
Domestic Patent References:
WO2004084807A22004-10-07
WO2000034184A12000-06-15
Foreign References:
US20020056688A12002-05-16
US20020020631A12002-02-21
US5425858A1995-06-20
US20150298998A12015-10-22
US6139714A2000-10-31
US20080149496A12008-06-26
US3975247A1976-08-17
US3698050A1972-10-17
Attorney, Agent or Firm:
CASPERSON, John, R. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is 1. An electrolytic treatment unit comprising

a casing having a longitudinal axis, and

a plate bundle positioned in the casing,

wherein the plate bundle comprises

a plurality of spaced-apart parallel plates, each plate positioned normal to the longitudinal axis, and

a pair of electrodes comprising a cathode and an anode at least partially supporting the plurality of parallel plates,

wherein the electrodes are connected to the plates so that each plate is connected to the cathode or the anode and is uncontacted by the other electrode,

wherein the plates are spaced in the range of 1 cm to 10 cm apart,

wherein the plate bundle comprises in the range of 3 to 15 plates, and wherein most of the plates in an upper half of the bundle are connected to the cathode.

2. An electrolytic treatment unit as in claim 1 wherein the casing has an upper end and a lower end, and the plate bundle is spaced apart from the upper and lower ends of the casing to form upper and lower chambers, said casing further defining an inlet nozzle opening into the lower chamber and an outlet nozzle exhausting from the upper chamber.

3. An electrolytic treatment unit as in claim 1 further comprising a power supply to supply a low-voltage DC current to the electrodes, and wherein an upper-most plate in the bundle is attached to the cathode. 4. An electrolytic treatment unit as in claim 2 wherein the plate bundle comprises first plates and second plates positioned in alternating fashion along the plate bundle,

so that fluid flowing from the lower chamber to the upper chamber sweeps back and forth between the first and second plates as it flows from the lower chamber to the upper chamber.

5. An electrolytic treatment unit as in claim 1 wherein the plurality of plates is formed from platinum or titanium coated on titanium alloy. 6. An electrolytic treatment unit as in claim 5 wherein at least two of the plurality of plates comprise platinum electrocoated on titanium alloy.

7. An electrolytic treatment unit as in claim 6 wherein each plate comprising platinum electrocoated on titanium alloy is connected to the cathode.

8. An electrolytic treatment unit as in claim 7 wherein a top-most plate in the bundle comprises platinum electrocoated on titanium alloy.

9. An electrolytic treatment unit as in claim 1 that forms a first electrolytic treatment unit in an electrolytic treatment system, said system including an inlet manifold connected to the inlet nozzle,

an exhaust manifold connected to the outlet nozzle, and a second electrolytic treatment unit as in claim 1 connected to the inlet manifold and exhaust manifold in parallel to the first electrolytic treatment unit. 10. An electrolytic treatment unit as in claim 9 further comprising a third electrolytic treatment unit connected to the inlet manifold and the exhaust manifold in parallel to the first electrolytic treatment unit and the second electrolytic treatment unit, wherein each electrolytic treatment unit comprises in the range of 5-9 plates, and wherein the plates are spaced at least 3 cm apart.

11. A method for adjusting the pH of water, said method comprising providing a feed water stream at a first pH comprising dissolved minerals, flowing said feed water stream between at least one pair of a first metal plate spaced parallel to a second metal plate,

flowing an electric current though the water stream from the first plate to the second plate;

and withdrawing a treated water stream at a second pH from between the plates,

wherein the treated water stream is withdrawn from between the plates at a flow rate in the range of from about 7.6 to 760 L/min,

wherein the method produces no waste water stream,

wherein the first pH is in the range of about 6 to about 7.7 and the second pH is in the range of about 7.8 to about 9.8,

and further wherein the treated water stream has an oxidation-reduction potential (ORP in mV) of -600 or more negative.

12. A method as in claim 11 wherein a potential in the range of 6-12 volts is maintained between the electrodes and an electric current in the range of 10 to 50 amps flows between the electrodes.

13. A method as in claim 12 wherein the treated water stream is withdrawn from between the plates at a flow rate in the range of from about 18.9 to 379 L/min. 14. A method as in claim 13 further comprising flowing the feed water back and forth between a plurality of at least 5 spaced apart horizontal metal plates arranged in a substantially vertical stack within a casing, said feed stream sweeping across the surfaces of the plates at a flow rate in the range of from about 37.9 to 189 L/min, there being more anodic plates than cathodic plates in a bottom half of the stack and more cathodic plates than anodic plates in a top half of the stack.

15. A method as in claim 14 wherein the second pH is at least 8 and the treated water is microclustered in units averaging in the range of 5 to 7 molecules.

16. A method as in claim 14 wherein the plurality of plates consists of cathodic plates and anodic plates and at least a portion of the cathodic plates have a platinum surface, the stack of plates being dividable into an upper half and a lower half with more cathodic plates than anodic plates in the upper half and more anodic plates than cathodic plates in the lower half.

17. A method as in claim 16 wherein the plates are primarily of titanium construction and the uppermost plate is a cathodic plate.

18. A method as in claim 17 further providing the withdrawn stream in at least one receptacle for consumption by a plurality N of dairy cattle, wherein, in aggregate, the at least one receptacle is sized in liters no greater than 189N.

19. A method as in claim 18 wherein, in aggregate, the at least one receptacle is sized in liters no greater than 95N.

20. A method as in claim 19 wherein, in aggregate, the at least one receptacle is sized in liters no greater than 38N.

Description:
DESCRIPTION

ELECTROLYTIC TREATER AND METHOD FOR TREATING WATER

Technical Field

One embodiment of this invention relates to an electrolytic water treater. Another embodiment of this invention relates to an electrolytic method to treat water.

Background Art

The capacity of water to hydrate cells is dependent on its pH, minerals content and molecular structure. Small-volume electrolytic processes to favorably influence these parameters are known. Most produce acidic wastewater streams. We have found an electrolytic process with high enough throughput to be economically viable for farming and dairy operations that does not produce a wastewater stream. DISCLOSURE OF THE INVENTION

In one embodiment of the invention, there is provided an electrolytic water treater comprising a casing, a plate bundle, and a pair of electrodes. The plate bundle is positioned in the casing. The plate bundle comprises a plurality of spaced-apart parallel plates. The pair of electrodes help support the plurality of plates, which are suspended in the casing. The electrodes are connected to the plates so that individual plates are connected to one of a first electrode of the pair or a second electrode of the pair and are uncontacted by the other electrode.

In a preferred embodiment, the plates are separated and arranged so that water can flow through the treater at from 5 to 50 gallons per minute 18.9 to 189 L/min) at low head. To achieve this, separation between the plates preferably ranges about 1 cm to about 10 cm. For operation, a rectifier provides DC electrical current to the plates. The DC current is typically provided at between 6 and 12 volts, at an amperage in the range of from about 5 to 50 amps, depending on water flow. The water has a residence time between the plates of from about 3 seconds to about 30 seconds.

Water treated by the unit is basified and softened and the structure of the water is comminuted, or microclustered. The water preferably develops a negative oxidation-reduction potential (negative ORP), preferably -600 mV or more negative. It is made tastier for livestock such as dairy cattle, and they drink more and are hydrated better. They produce more milk, and it has a higher fat content. Another embodiment of the invention provides a method for electrotrotreating water that can be carried out in the above described treater. The method is carried out by providing a feed water stream comprising dissolved minerals, flowing the feed water stream between spaced metal plates, flowing an electric current though the water stream flowing between the plates; and withdrawing a treated water stream from between the plates. BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a cross-sectional view, partly in schematic, of an electrolytic water treater in accordance with an embodiment of the invention.

Figure 2 is a flow diagram of a water treatment unit in accordance with another embodiment of the invention.

Figure 3 is a perspective view of a trailer-mounted water treatment unit in accordance with another embodiment of the invention.

BEST MODE FOR CARRYING OUT THE INVENTION

One embodiment of the invention provides an electrolytic treatment unit 2 comprising a casing 4, a plate bundle 6, a cathode 8 and an anode 10. The casing has a longitudinal axis 12. The plate bundle is positioned in the casing. The plate bundle comprises a plurality of spaced-apart parallel plates, 14, 16, 18, 20, 22, 24 and 26 in the embodiment illustrated, and each plate is positioned normal to the longitudinal axis. A pair of electrodes comprising the cathode and the anode at least partially support the plurality of parallel plates. The electrodes are connected to the plates so that each plate is connected to one of the cathode or the anode and is uncontacted by the other electrode. To achieve needed throughput at low head, the plates are spaced in the range of 1 cm to 10 cm apart.

The casing has an upper end and a lower end and the plate bundle is spaced apart from the upper and lower ends of the casing to form upper and lower chambers 28 and 30. The casing further defining an inlet nozzle 32 opening into the lower chamber and an outlet nozzle 34 exhausting from the upper chamber. A power supply 36 supplies low- voltage DC current of at least 4V to the electrodes. The upper- most plate 14 in the bundle is attached to the cathode 8.

The plate bundle has a longitudinal axis positioned co-axially with the longitudinal axis of the casing and the plates extending normally across the longitudinal axis of the bundle, The plates have arcuate peripheries located closely adjacent to an inside wall of the casing and extending alongside the inside wall around the casing to direct water flow. The bundle can be described as having an upper half and a lower half with a greater number of cathode plates in the upper half and a greater number of anode plates in the lower half. Water flow upward through the unit, flowing an undulating path.

In one embodiment, the plate bundle comprises first plates and second plates positioned in 180 degree rotationally alternating fashion along the plate bundle. Each first plate has an arcuate outer periphery portion positioned closely adjacent to the inside wall of the casing and a straight outer periphery portion defining a first circular- segment- shaped flow passage between the each first plate and the casing, and each second plate has an arcuate outer periphery portion positioned closely adjacent to the inside wall of the casing and a straight outer periphery portion defining a second circular- segment- shaped portion between each second plate and the casing. The first circular- segment- shaped passages are diametrically opposite to the second circular- shaped passages with respect to the longitudinal axis of the tube bundle so that fluid flowing from the lower chamber to the upper chamber sweeps back and forth between the first and second plates as it flows from the lower chamber to the upper chamber. The plates can be of identical shape if desired. The casing is preferably formed of dielectric material to not short out the plates. Preferably, the casing is generally cylindrical and is formed from hi-temp C PVC. The tie rods are dielectric and preferably formed from neoprene. The electrodes are conductive and are preferably formed from stainless steel. The dielectric bushings are constructed of PVC.

A plurality of dielectric tie rods extending through the plates and a plurality of dielectric spacers 38 are mounted on the tie rods between the plates to position the plates in a stacked, spaced-apart relationship.

The pair of electrodes consists of a first electrode and a second electrode. The first electrode passes through a first circular- segment shaped flow passage and connects to second plates 14, 18. The second electrode passes through a second circular- segment- shaped flow passages and connects to first plates 16, 20, 24. Preferably, the plurality of plates is formed from platinum or titanium coated on titanium alloy. More preferably, at least two of the plurality of plates comprise platinum electrocoated on titanium alloy. Most preferably, each plate comprising platinum electrocoated on titanium alloy is connected to the cathode. Even more preferably, the top-most plate 14 in the bundle comprises platinum electrocoated on titanium alloy. In an embodiment of the invention that has been tested with good results, the casing has an inside volume of about 17 gallons and the bundle consists of 7 plates, the first and third plates from the top being the sole cathodic plates in the unit.

In one embodiment of the invention, the power supply is programmable to switch polarity between the first electrode to the second electrode.

With reference to Figure 2, the treatment unit 2 can have its inlet nozzle connected to an inlet manifold 50 and its outlet nozzle connected to an exhaust manifold 52. A second electrolytic treatment unit 54 which can be the same as previously described can be connected to the inlet manifold and exhaust manifold in parallel to the first electrolytic treatment unit. In similar fashion, a third electrolytic treatment unit 56 can be connected to the inlet manifold and the exhaust manifold in parallel to the first electrolytic treatment unit and the second electrolytic treatment unit. These additional units can be brought on line as needed to satisfy increased demand. Preferably, each unit has a maximum capacity of about 50 gallons per minute (189 L/min).

Another embodiment of the invention provides a method for adjusting the pH of water. The method is carried out on a feed water stream comprising dissolved minerals and having a first pH. The feed water stream is flowed between at least one pair of a first metal plate spaced parallel to a second metal plate. An electric current is flowed though the water stream from the first plate to the second plate. A treated water stream having a second pH is withdrawn from between the plates at a flow rate in the range of from about 2 to about 200 gallons per minute (7.6 to 760 L/min). The method produces no waste water stream. In a preferred embodiment, the feed water stream flows between the plates for a period of time in the range of 1 to 60 seconds and an electric potential in the range of 4 to 14 volts is maintained between the electrodes. More preferably, a potential in the range of 6-12 volts is maintained between the electrodes and an electric current in the range of 10 to 50 amps flows between the electrodes. The treated water stream is generally withdrawn from between the plates at a flow rate in the range of from about 5 to about 100 gallons per minute (18.9 to 379 L/min), usually in the range of from about 10 to about 50 gallons per minute (37.9 to 189 L/min). Based on flow, roughly about 1 amp is used for each gallon per minute of throughput (0.265 amp/L/min).

The feed water is preferably flowed back and forth between a plurality of at least 6 spaced apart horizontal metal plates arranged in a substantially vertical stack within a casing. There are preferably more anodic plates than cathodic plates in a bottom half of the stack and more cathodic plates than anodic plates in a top half of the stack.

The water is preferably treated so that the second pH is at least one point higher than the first pH, preferably at least 1.5 points higher than the first pH. The treated water preferably has a second pH of at least 8 and the treated water is microclustered in units averaging in the range of 5 to 7 molecules. Generally speaking, the water to be treated will have a first pH in the range of about 6 to about 7.7 and the treated water at the second pH is in the range of about 7.8 to about 9.8, preferably in the range of about 7.8 to about 8.8 The treated water will preferably have a negative oxidation- reduction potential (mV) of -600 (-ORP) or more negative. In the treatment unit, the plurality of plates consists of a stack of cathodic plates and anodic plates and at least a portion of the cathodic plates preferably have a platinum surface. The stack of plates is dividable into roughly an upper half and a lower half with more cathodic plates than anodic plates in the upper half and more anodic plates than cathodic plates in the lower half. Plates constructed primarly of titanium or titanium alloy have been used with good results. The uppermost plate being a cathodic plate has been used with good results. In one embodiment of the invention, freshly treated water is provided to dairy cattle. This embodiment can be described in terms of the withdrawn stream being provided in at least one receptacle for consumption by a plurality N of dairy cattle. In aggregate, the at least one receptacle is sized in gallons no greater than 50N, (189N in L) preferably no greater than 25N, (95N in L) and more preferably no greater than ION (38N in L). Holstein dairy cattle typically drink from 20 to 40 gallons (76 to 151 L) of water per day, depending on temperature.

The invention solves the problem of not having high volumes of high pH, microclustered water available for farm and dairy operations. It can also be used to provide such water for human consumption. It can also be used to soften large volumes of water from fresh water wells.

With reference to Figure 3, untreated water enters the unit through a 2 to 4 inch (5.1 to 10.2 cm) stainless steel pipe 100. A filter pod or solids separator 102 is used to reduce the amount of solids contained in the water to be treated. Sensors 104, 106, 108, 110 measure flow, total dissolved solids, temperature and pH of the stream to be treated. The water is divided by header 50 and treated in treatment units 2, 54 and 56. A DC power converter (rectifier) 36 provides electrical power to the plates in the treatment units. Treated water is collected by outlet manifold 52 and analyzed by sensors 112, 114, 116 for pH, ORP and total dissolved solids. The treated water is passed through finishing filter 118 and is withdrawn from the unit at 120 ready for consumption by livestock or other use such as horticulture, household or industrial use. As applied to livestock and dairy operations, the invention provides a multi- benefits approach to animal health through water microclustering and increased pH. In an exemplary application the water has its ORP, as measured in mV, reduced from the +100 to +200 range to the -600 to -700 range and its pH is increased from near-neutral to in the range of 7.8 to 9.8

The water treatment can be performed on-site and with variable volumes, up to 150 gallons/minute (568 L/min) by a pump not shown.

EXAMPLE 1

This example shows the effects on water properties of treatment according to an embodiment of the invention. The samples were taken a few weeks apart. TABLE

Analyzed for no treatment treated method used pH 7.6 s.u. 9.7 s.u. SM 4500 H.B.

conductivity 0.49 mmhos/cm 0.24 mmhos/cm SM 2510 B

dissolved solids (calc) 324 mg/L 154 mg/L SM 1030F

carbonate <1 mg/L <1 mg/L SM 2320B

bicarbonate 248 mg/L <1 mg/L SM 2320B

alkalinity (as CaC03) 203 mg/L 17 mg/L SM 2320B

calcium 50 mg/L 9 mg/L SM 3120B

magnesium 17 mg/L 3 mg/L SM 3120B

potassium 11 mg/L 10 mg/L SM 3120B

sodium 18 mg/L 17 mg/L SM 3120B

sulfur (total) 8.80 mg/L 8.60 mg/L SM 3120B

chloride 7.00 mg/L 8.00 mg/L SM 4500 CE iron <0.01 mg/L <0.01 mg/L SM 3120B

manganese <0.01 mg/L <0.01 mg/L SM 3120B

Total hardness as CaC03 11.38 grains/gal 2.03 grains/gal SM 2340B The table shows that treatment increases pH, reduces conductivity, reduces dissolved solids, greatly reduces bicarbonate, reduces alkalinity as measured by CaC03, reduces calcium and magnesium, and greatly reduces total hardness as measured by combined Ca+Mg as CaC03 from a very hard state to a soft state.

EXAMPLE 2

This is an account and report from Indian Ridge Dairy in Comanche TX. Treatment with the inventive water treatment equipment was commenced on May 1, 2016 in dairy pens of #1 and #5 and continued until November 10, 2016 . Pen #4 was a control pen, water not treated from the May 1, 2016 until November 10, 2016. Milk production was tracked in the three pens, using a standardized measurement called 305 ME. This stands for 305 days in milk - mature equivalent. This standardizes a cow's performance throughout her lactation, meaning from day 1 milk to ending milk and everything in between. In other words it is one of the only measurement' s we can use to standardize cattle performance because there are so many variables.

1. Dairy Cows in Pen #4 started May 1 st at 27,500 lbs. (12474 kg) - 305ME. Ending test on September 6 th at 25,000 lbs. (11340 kg) respectfully. (Control group)

2. Dairy Cows in Pen #1 started May 1 st at 27,500 lbs. (12474 kg) - 305ME. Ending test on September 6 th at 26,850 lbs. (12179 kg) respectfully. (Treated Group)

3. Dairy Cows in Pen #5 started May 1 st at 27,600 lbs. (12519 kg)- 305ME. Ending test on September 6 th at 26,350 lbs.(l 1998kg) respectfully. (Treated Group)

In conclusion, it appears that Pens #1 and #5 which were treated with the inventive equipment gave an additional 1,350 to 1,850 lbs. (612 to 839 kg) of 305ME milk compared to the control Pen #4 in the same time period. While certain preferred embodiments of the invention have been described herein, the invention is not to be construed as being so limited, except to the extent that such limitations are found in the claims.