Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRONIC CONTROL DEVICE FOR CONTROLLING SENSORS
Document Type and Number:
WIPO Patent Application WO/2014/155316
Kind Code:
A1
Abstract:
An electronic control device (2) for controlling a sensor (3) comprising a box-shaped body provided on one side with an electronic connector (21), suitable for coupling with an analogous electrical connector (31) associated with such a sensor (3). Such a device, inside such a box-shaped body, comprises electrical power supply means (22) for supplying said sensor, at least one electronic control board (23) for controlling said sensor, with which radio transmission means of the data detected by the sensors are associated.

Inventors:
GIANNONE SERGIO (IT)
Application Number:
PCT/IB2014/060180
Publication Date:
October 02, 2014
Filing Date:
March 26, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ATLAS COPCO BLM SRL (IT)
International Classes:
G01D21/00; B25B23/14; G01D11/24
Foreign References:
US20090058663A12009-03-05
JPH07113864A1995-05-02
Other References:
See also references of EP 2979065A1
Attorney, Agent or Firm:
LOTTI, Giorgio (Via Borgonuovo 10, Milano, IT)
Download PDF:
Claims:
CLAIMS

1. Electronic control device (2) for controlling a sensor (3) comprising a box-shaped body provided on one side with an electronic connector (21), suitable for coupling with an analogous electrical connector (31) associated with said sensor (3),

characterized in that it comprises, inside said box- shaped body, electrical power supply means (22) for supplying said sensor, at least one electronic control board (23) for controlling said sensor, with which radio transmission means of the data detected by the sensors are associated.

2. Device according to claim 1, wherein said board further comprises at least one digital analogical converter of the data detected by the sensors.

3. Device according to claim 1, wherein said board further comprises at least one piloting circuit for providing the sensor with the power supply of the power supply means .

4. Device according to claim 1, wherein said transmitter is a transmitter of the Wi-Fi technology.

5. Device according to claim 1, wherein said transmitter is a transmitter of the Bluetooth technology .

6. Device according to claim 1, wherein said electronic board is a programmable electronic board or provided with a microprocessor and can be programmed in its functions by downloading the suitable firmware or software .

7. Device according to claim 6, wherein the download and/or the update of the programs can occur by means of a USB socket (24) arranged on the box-shaped body.

8. Device according to claim 6, wherein the download and/or the update of the programs can occur via radio by means of a radio receiver arranged on said electronic board.

9. Device according to claim 1, wherein on the box- shaped body there being provided a plurality of indicators of the functioning of the device itself and of the detection carried out by the sensor with which it is associated.

10. Electronic network (2) for connecting devices according to claim 1, comprising a central equipment (U) which communicates via radio with a plurality of such devices (2) and which is connected to the internet by means of a LAN local network, so that the data detected by the sensors be accessible through a portal.

Description:
ELECTRONIC CONTROL DEVICE FOR CONTROLLING SENSORS

The present invention refers to an electronic control device for sensors. In particular, the present invention refers to an electronic control device for controlling sensors of different nature present on the market, for example sensors that are suitable for measuring parameters like the torque, force, angle, length etc... and combinations of the aforementioned parameters .

One possible field of application of such sensors is that of verifying the behaviour of industrial screwers through the measurement of the rotating and/or braking torque of the rotating shaft.

At the state of the art it is known for there to be innumerable sensors that take such measurements (torque, force, angle, length etc..) also combined with one another and that transmit the measurement signal through a special wire to a unit for acquiring data, which is usually suitable for converting the analog or digital signal into a measurement that can be understood by the user who is carrying out the measuring itself.

Typically, on such sensors, an extensometer bridge is applied for measuring the torque, force, compression etc... rather than accelerometers , encoders or gyroscopes for reading the angle. The signals of the extensometers and of the measurement of the angle are not processed on board of the transducer, but through the aforementioned connection wire they are transmitted to a separate unit which conversions them and also through special calculation algorithms determines the relative measurement .

Finally, on the market there are sensors that are capable of transmitting, via radio, signals relating to the measurements carried out, but these are integrated objects in which the electronic components that are suitable for conditioning the signal and its transmission via radio, lies inside the sensor itself. The wires that are normally used for connecting the sensor to the electronic device that controls and drives the sensor itself are normally very long (even 20-30 metres), so as to be able to manage the logistics of the space in which the devices themselves are arranged. Indeed, it is possible, in one same space, for there to be many sensors and all the signals thereof must be conveyed to a same apparatus, housing the various controlling devices. Therefore, in order to manage the logistics of the environment, the wires are usually selected rather long, but this interferes with the quality of the signal. Moreover, the aforementioned wires can become damaged, they can be unintentionally cut or become frayed thus interrupting the flow of the transported signals. Finally, the aforementioned wires are often connected to and disconnected from devices through the connectors thereof. These operation, which are repeated often can also damage the wire and negatively affect the quality of the signal. The fragility of the wire/connector coupling forces the user to change the wires very often, so that these sometimes have a guarantee limited to only 3 months by a manufacturer.

The present invention proposes to make an electronic control device for controlling sensors that are capable of solving the aforementioned drawbacks.

One aspect of the present invention concerns a device having the characteristics of the attached claim 1.

The characteristics and the advantages of the device according to the present invention shall become clearer from the following description, given as an example and not for limiting purposes, of an embodiment made with reference to the attached figures that respectively illustrate :

• in figure 1 a generic sensor that is coupled with an electronic control device according to the present invention;

• in figure 2 a generic sensor and an electronic control device according to the present invention, decoupled;

• in figure 3 an electronic control device in an exploded view, according to the present invention;

• in figure 4 a connection network via radio between devices according to the present invention to a central equipment.

With reference to the mentioned figure the control device 2 for controlling a sensor 3 according to the present invention comprises a box-shaped body that is provided, on one side, with an electronic connector 21, which is suitable for coupling with an analogous electrical connector 31 associated with such a sensor 3.

Such a connector 21 and 31 in the illustrated embodiment is a circular connector of the military type, which is a widely used standard in both the military field and in the industrial field in general, including the automotive industry. Bayonet circular military connectors like the one illustrated can follow different size standards concerning, their dimensions, orientation, number of pins and their position, but they are all in general made up of a receptacle 31 and a plug 21 which can be coupled with one another.

A series of grooves on the circular part of the receptacle and the plug ensures that the two halves of the connector are correctly oriented. These connectors are obtained by melted aluminium.

Such a connector ensures the electric connection between the device according to the present invention and the sensor.

The device inside the aforementioned box-shaped body comprises electrical power supply means 22 for said sensor, at least one electronic control board 23 for controlling said sensor with which radio transmission means (for example wi-fi or bluetooth) for transmitting to a central equipment of the data detected by the sensors are associated.

Moreover, such an electronic board also comprises at least one digital analog converter for the data detected by the sensors and a piloting circuit for providing the sensor with the power supply of the power supply means .

Such power supply means comprise at least one long-life battery like for example a lithium-ion battery. Advantageously, such an electronic board can be a programmable electronic board or it can be provided with a microprocessor, which can thus have its functions reprogrammed by downloading the suitable firmware or software. The programs can be downloaded and/or updated through a socket 24, for example a USB socket that is arranged on the box-shaped body or via radio if the device is provided with a suitable radio receiver in addition to the transmitter.

Advantageously, the device on the box-shaped body is provided with a plurality of indicators (luminous LEDs, size indicators, battery charge indicators etc..) of the functioning of the device itself and of the detection carried out by the sensor with which it is associated. Through the device of the present invention it is possible to implement the connection network illustrated in figure 4. In particular, such a network comprises a central equipment (Data-collector) which is connected to the internet by means of a local LAN network. The data detected by the sensors, are pre- processed (filtering, amplification, A/D conversion, etc..) , directly inside the device and is then transmitted via radio to the central equipment U, which in turn through the LAN network (via ethernet) can provide the data to a portal, which can be accessed via internet through a PC, tablet, smartphone etc.... Advantageously, with the present invention the algorithms for processing and detecting the correct measurement can be carried out directly on board of the device that transmits the results to a measurement visualisation unit at a later moment. The digital conversion of the analog signals of the sensor carried out by the device makes it possible to transmit the data via radio with any modality and frequency to a unit for collecting data U. In such a way, the device can be coupled on existing sensors and already present on the market, without modifying their primary function thus providing them with the possibility of being autonomous and wireless, but also maintaining the wired operation if necessary, by simply removing the aforementioned device.