Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELECTRONIC DEVICE FOR DETECTING A MAGNETIC FIELD INDICATING THE GAS LEVEL IN STATIONARY TANK AND WIRELESS DATA SENDING
Document Type and Number:
WIPO Patent Application WO/2017/029562
Kind Code:
A1
Abstract:
Present invention reveals a novel electronic device which detects the load level of gas in liquid state contained in tanks, through the magnetic field generated by the magnets used in floater mechanical systems which are incorporated into the containers, sending information by means of a remote interface, which communicates via the internet, or through a local network, to any computer or smart device. The versatility of the disclosed device, allows it to be adapted into any type of tank which uses the floating mechanical system with a magnet, being the ideal solution for monitoring gas consumption in places where access to the gas container is difficult or risky.

Inventors:
GABAY VILLAFAÑA PEDRO (MX)
ROJAS CALDERON JOSE LUIS (MX)
ROJAS CALDERON AGUSTIN GABRIEL (MX)
Application Number:
PCT/IB2016/053418
Publication Date:
February 23, 2017
Filing Date:
June 09, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GABAY VILLAFAÑA PEDRO (MX)
ROJAS CALDERON JOSE LUIS (MX)
ROJAS CALDERON AGUSTIN GABRIEL (MX)
International Classes:
B67D7/00; G01F25/00; G01R33/00; G01R33/02; G01R33/06
Foreign References:
US20080150750A12008-06-26
US6107793A2000-08-22
US20130146604A12013-06-13
US20130211623A12013-08-15
US20130285836A12013-10-31
US20080254356A12008-10-16
US20090198384A12009-08-06
US20080236275A12008-10-02
US20050120793A12005-06-09
US6336362B12002-01-08
US20130211976A12013-08-15
US20120150344A12012-06-14
US20070169549A12007-07-26
US20120206271A12012-08-16
US5023806A1991-06-11
US6490922B12002-12-10
Attorney, Agent or Firm:
PANAMERICANA DE PATENTES Y MARCAS, S.C. (MX)
Download PDF:
Claims:
CLAIMS

1. An electronic device for the detection of a fuel level in liquid state contained in a tank, the electronic device comprising :

A magnetic field electronic sensor capable of measuring the three dimensional direction of the magnetic field produced by a magnet found in the inner part of the tank for correcting errors caused by the position of the placement of the sensor;

an inner memory wherein the measurements taken by the sensor are stored;

a microprocessor which converts the measurements taken by the sensor into a numerical value;

a wireless transmission module which receives the numerical value and transmits a signal with the numerical value through electromagnetic waves;

a remote interface which receives the electromagnetic waves and which allows a user to monitor at long distance the gas level in the tank and control the electronic device remotely; and

at least one battery which allows for the autonomous functioning of the electronic device.

2. The electronic device according to claim 1, wherein the long distance monitoring of the level of gas in the tank is undertaken by means of a mobile device using said remote interface which displays the levels of gas in liquid state contained within the tank.

3. The electronic device according to claim 1, wherein the remote interface allows the visualization of the level of gas in liquid state contained in the tank, in a remote and wireless manner .

4. The electronic device according to claim 1, wherein the remote interface comprises a mobile application.

5. The electronic device according to claim 1, wherein the connection with the remote interface is automatic when it is found within the connection range of a communication protocol, storing in the inner memory, downloaded data received from the remote interface.

6. The electronic device according to claim 1, wherein the remote interface stores the information sent in a data base.

7. The electronic device according to claim 6, wherein the data base stores and classifies said data according to the place where they were generated, identifying different users and the consumer habits of these users.

8. The electronic device according to claim 7, wherein the consulting of data is undertaken in real time.

9. The electronic device according to claim 1, wherein the at least one battery is a bank of batteries comprising one from the at least two conventional batteries or at least two rechargeable batteries.

10. The electronic device according to claim 9, wherein said battery bank is at least two rechargeable batteries which are recharged by means of solar panels or by any other means of recharging batteries.

11. The electronic device according to claim 1, wherein the wireless transmission module comprises a low energy transmission antenna .

12. A housing for an electronic device for the detection of the load level of gas in liquid state contained in tanks, the housing comprising:

a body which presents a lower surface, an upper surface and a circumferential wall;

a first cavity set on said lower surface;

at least one battery housing for a bank of batteries set on a side of said first cavity;

a second cavity set on the upper surface, wherein a receptacle for the electronic device is located, over said receptacle a second housing is set which covers said device; said first and second cavities are found in alignment and in direct communication;

wherein said first cavity is coupled over a dial cover of a conventional gas tank.

13. The housing of the electronic device according to claim 12, which is fastened with an analog reader set on the tank.

14. The housing of the electronic device according to claim 12, wherein the first cavity presents a shape which coincides with an analog reader set on the tank.

15. The housing of the electronic device according to claim 12, wherein said first cavity presents a circumferential wall which extends upwardly.

16. The housing of the electronic device according to claim 15, wherein said circumferential wall presents an opening for positioning the receptacle of the electronic device.

17. The housing of the electronic device according to claim 12, wherein said at least one batteries housing comprises two diametrically opposed housings.

18. The housing of the electronic device according to claim 17, wherein between said two housings the first cavity is found.

19. The housing of the electronic device according to claim 17, wherein said housings are set with covers.

20. The housing of the electronic device according to claim 12, wherein the receptacle of the electronic device is found above the first cavity.

21. The housing of the electronic device according to claim 12, wherein the second housing is fastened to the upper surface of the body.

22. An electronic device for the detection of a fuel level in liquid state contained in a tank, the electronic device compris ing :

A magnetic field electronic sensor capable of measuring the three dimensional direction of the magnetic field produced by a magnet found in the inner part of the tank for correcting errors caused by the position of the placement of the sensor;

an inner memory wherein the measurements taken by the sensor are stored;

a microprocessor which converts the measurements taken by the sensor into a numerical value; a wireless transmission nodule which receives the numerical value and transmits a signal with the numerical value through electromagnetic waves;

a remote interface which receives the electromagnetic waves and which allows a user to monitor at long distance the gas level in the tank and control the electronic device remotely; and

at least one battery which allows for the autonomous functioning of the electronic device; and

housing comprising:

a body which presents a lower surface, an upper surface and a circumferential wall;

a first cavity set on said lower surface;

at least one battery housing for a bank of batteries set on a side of said first cavity;

a second cavity set on the upper surface, wherein a receptacle for the electronic device is located, over said receptacle a second housing is set which covers said device; said first and second cavities are found in alignment and in direct communication;

wherein said first cavity is coupled over a dial cover of a conventional gas tank.

Description:
ELECTRONIC DEVICE FOR DETECTING A MAGNETIC FIELD INDICATING THE GAS LEVEL IN STATIONARY TANK AND WIRELESS DATA SENDING

Present invention reveals a novel electronic device which detects the load level of the gas in liquid state which is contained in tanks, by means of the magnetic field generated by the magnets used in mechanical systems of the floater incorporated within the containers, sending the information by means of a remote interface, which communicates via the internet, or through a local network, with any computer or smart device.

Background of the Invention

To check on the load level of the gas in liquid state within the containers, they must be constantly monitored visually, in order to recognize changes in the load level within the container itself.

Currently, in order to determine the load level in gas containers, as is the case in stationary LP gas tanks, an analog reader is employed, which is placed on the outer surface of the tank, which, is based on a mechanical component, composed of a floater which is placed in the inner part of the tank. Both, the gas level reader, as well as the supply valve of the container, are usually placed on the upper part of the tank, which is completely sealed in order to avoid leaks.

The mechanical system for measuring the gas load level, consists of a floating part coupled to a rod with a gear, which itself, is coupled unto a second gear which causes a magnet to turn; the movement of the magnet, is proportional to the displacement of the floater caused by an increase or decrease in the level of the liquid within the inner part of the container. The position of the magnet therefore reflects a measurement, which is translated into the corresponding percentage to the actual gas level contained in a liquid form within the tank.

According to the safety requirements, the floater mechanical device, the gear and the magnet are found completely incorporated within the inner part of the tank, causing that any error in the functioning of the mechanical system be contained within the tank, which prevents creating a gas leak.

The position of the magnet of the mechanical device is used for obtaining a numerical value used in various interpretation systems . Such systems allow the user to know the load level of the container reported by the mechanical system and thus, the percentage of gas within the container itself.

Various known mechanisms exist for the interpretation of the position of the magnet, which itself reflects the position of the floater.

The simplest and most basic manner for interpreting the position of the inner magnet is by using a second outer magnet, coupled by a magnetic field to the inner magnet. The outer magnet is found within the inner part of a plastic dial cover, which typically is in a numbered disc shape; said outer magnet, is itself coupled to an indicating needle, which is placed at the center of the numbered disc for indicating the load level of the tank.

The magnetic field of the inner tank causes the lines of the magnetic field of the outer magnet, to become aligned with it, causing the positions of both magnets to coincide. The outer magnet, by means of a small hand, graphically indicates the percentage level of the gas in a liquid state contained within the stationary tank.

Other ways of obtaining the reading of the load level of the containers of gas in liquid state which are known in the field, send the reading obtained by the analog reader through a cable towards a remote screen, on which the percentage level of the gas in liquid state contained within the tank is shown numerically .

The device, object of present invention, employing the communication protocols incorporated within the so called smart devices which currently exist, such as is the case with mobile cell phones, PDAs and others, is capable of sending in a wireless manner, the reading information obtained from the analog meter to either fixed devices and/or mobile devices, using the Internet, or yet, creating a local network through Bluetooth, WiFi, etc. The current smart devices may connect themselves to networks or communicate amongst each other, through various known communication protocols known in the art, such as is the case with Bluetooth, iFi, etc, which allow the synchronizing of systems at long distance and the exchange of information in real time .

Current mobile devices allow the synchronization with personal computers, to update applications and exchange data through the Internet, which it itself, allows managing of files and the ability to control the devices remotely.

The electronic device for detecting the magnetic field which indicates the level of gas in stationary tanks and the sending of data in a wireless manner of present invention, is easily coupled over, or next to, the analog reader of the tank which uses the floater mechanical systems for measuring its load level .

The electronic sensor of the device of present invention, is capable of measuring the magnetic field produced by the inner magnet of the analog reader of any tank that uses floater mechanical systems, sending the obtained information, by means of a remote interface, which is capable of communicating with any computer or smart device, through the internet, or yet, through a local network created for such purposes.

BRIEF SUMMARY OF THE INVENTION A new method is described for the reading of the level of gas in liquid form contained in tanks, by means of an electronic device which interacts through a remote interface and which communicates through the internet with any computer or smart device.

A magnetic field electronic sensor which is capable of measuring the direction of the magnetic field produced by the inner magnet found in the inner part of a container; said sensor is found in an electronic card, which additionally comprises a microprocessor and a telecommunication antenna for implementing a wireless communication protocol.

The electronic card sends information gathered by the sensor to a mobile device, in said mobile device, through an application, are displayed the levels of gas in a liquid state which are contained within a stationary tank.

The electronic card is made up of the following features:

- An electronic magnetic field sensor, which is capable of reading the magnetic field and which is placed near the magnet which is found within the inner part of the tank. The sensor is capable of measuring the magnetic field in three dimensions and, thus, provides information useful for undertaking corrections to the readings;

- A microprocessor which is charged with interpreting the information gathered by the sensor. The microprocessor processes the information taking into account the readings in three dimensions for correcting errors caused by the position in which the sensor is placed. After having undertaken the corrections, the microprocessor converts the gathered information into an appropriate format, for later transmitting it wirelessly using an appropriate communication protocol;

- A wireless transmission module, which receives the information which has been formatted by the microprocessor and sends it to a mobile device to be displayed .

The electronic card, together with the interface allows the display of the numeric value which represents the gas level in liquid state contained in the stationary tank.

The interface incorporates a wireless receptor, which allows for visualization in a remote manner without physical connecting cables, of the level of gas in liquid state contained within the tank.

The electronic device object of present invention is capable of undertaking periodical measurements of the gas level, as well as storing information in an inner memory.

The connection with the remote interface is undertaken automatically when this is found within the range of connection of the communication protocol, storing in the inner memory the information downloaded and received from remote interface.

Using an adequate telecommunication protocol, the interface is capable of sending the information obtained to a daoa base designed for this purpose, to store them and identify them, according to the place where they were generated, thereby allowing the identifying of different users.

Using the information provided by rhe electronic card and the location thereof, statistical information regarding the gas consumption habits of a user can be generated. Said information may be consulted through remote interface.

The electronic card is powered by batteries, which provide the energy for the functioning of the sensor, microprocessor and telecommunication module. Said batteries ensure the uninterrupted functioning of the device object of the invention.

Other objectives, advantages and features of the invention as described herein, will become apparent for persons skilled in the art upon reading the disclosure outlaid further.

DESCRIPTION OF THE FIGURES Figure 1 shows a block diagram of the device object of the invention .

Figure 2 shows a schematic diagram of the electronic card used in the device object of the invention.

Figure 3 shows a perspective view from the upper part of the device object of the invention.

Figure 4 shows a perspective view from the lower part of the device object of the invention.

Figure 5 shows an upper plane view of the device object of the invention.

Figure 6 shows a perspective view from the upper part in explosion of the device object of the invention. Figure 7 shows a perspective view from the upper part in explosion with greater detail of the device object of the invention.

Figure 8 shows a perspective view from the lower part in explosion of the device object of the invention.

Figure 9 shows the upper perspective view of another embodiment of the device object of the invention.

Figure 10 shows the upper perspective view and in explosion of another embodiment of the device object of the invention.

Figure 11 shows a perspective view in explosion of the device object of the invention placed in a stationary gas tank.

Figure 12 shows a perspective view of the device object of the invention placed in a stationary gas tank.

DETAILED DESCRIPTION OF THE INVENTION

A specific preferred materialization of the invention will now be described together with the accompanying figures, in which :

In figure 1 which shows a block diagram of the device object of the invention, wherein the functioning of the electronic device with remote interface is shown which is used to monitor the load level in tanks designed to contain gas.

The device object of the invention is powered by batteries, which are recharged by a battery charger connected to a solar cell, or through suitable means.

The magnetic field sensor communicates with the microprocessor of the device object of the invention, by means of the communication BUS; the microprocessor, in turn communicates with the programming interface.

The microprocessor, by means of the internet connection module, exchanges data with the information, consulting and statistics storage device.

The microprocessor by means of the low energy transmission antennae, communicates with the interface at a distance, which itself, establishes communication via internet with the information, consulting and statistics storage device.

In Figure 2 which shows a schematic diagram of the electronic card used in the device object of the invention, wherein the microprocessor 1 is the element charged with processing the signals produced by the sensor 2 and converting them into a numerical value representing the percentage of gas in liquid state contained in the tank. The numerical values of the percentage of gas in liquid state contained in the tank are later sent to the telecommunication antennae 3.

The magnetic field sensor 2 is placed nearby the magnet (not shown in the Figure) which is found in the inner part of the tank and which generates signals which correspond to the intensity of the field in three dimensions. The signals are sent through a communication bus 7 to the microprocessor 1 for their processing.

The transmission antennae 3, transmits electromagnetic waves to send the information to the interface at a distance, which consists of a reception antennae of the mobile device, as could be the case of a PDA telephone or similar. The programming interface of the microprocessor 4, is used for writing the code for the microprocessor 1, which interprets the signals from the sensor of the magnetic field 2 as well as its sending to the telecommunication module.

The supply batteries 5 provide the energy for the functioning of the device object of the invention.

The system of conditioning and signal filtering circuit 6 is used for decreasing the noise in the signals produced by the magnetic field sensor 2.

The communication BUS 7 is the communication channel for the sending of signals from the magnetic field sensor 2, towards the microprocessor 1.

The supply batteries 5 are rechargeable for extending the time between battery changes. The rechargeable batteries 5 are recharged through a supply circuit which gathers energy from the sun using photovoltaic cells (not shown in the figures) .

The communication protocol implements a wireless transmission protocol capable of covering a radius with sufficient reach to be able to transmit the data to the remote interface when the latter is found in the same building where the device object of the invention has been placed.

Additionally, the communication protocol consists of a telecommunication technology capable of sending the data to the information, consultation, and statistics storage server using an internet connection, in such a way that it allows consulting the sensor readings from a distance, using the interface with an internet connection. The electronic card described in Figure 2, contains all the components which are necessary for the functioning of the device object of the invention, which, may be designed in the appropriate size and shape, to be inserted into a housing, which itself will have the ideal shape which will allow it to be easily incorporated into any type of gas storage tank.

The material for the housing which shall contain the electronic card of the device object of present invention may be made from plastic or made from any suitable non-magnetic material, which avoids interference and noise in the readings of the magnetic sensor.

The housing of the device may be designed in any suitable shape, in such a manner that it allows containing, both the electronic card, as well as the supply batteries, to be able to protect them from inclement weather, as could be the case with rain, wind, solar rays, as well as any other phenomena which could potentially damage the electronic circuit.

The housing comprises the appropriate fastening elements, in such a way that it is able to adhere, in a preferred materialization of the invention, over the plastic dial cover of the analog gas tank reader and in another preferred materialization of the invention, on a side of the plastic dial cover of the analog reader, in such a way, that the incorporation of the device object of the invention, in either of both of the preferred materializations, would net impede the reading of the analog gas tank reader and without its incorporation interfere, modify or distort, the values of the analog reader.

In another embodiment of the invention, the analog gas tank reader are eliminated.

Figure 3 shows a perspective view from the upper part of a preferred materialization of the device object of the invention 8, wherein the housing 13 is designed in a circular shape, to be placed over the plastic dial cover of the analog gas tank reader .

The housing 17 houses the electronic card described in

Figure 2, which is also in a circular shape with an opening which allows reading the dial cover of the analog 9.

The rod 10 is the mechanical axis over which the mechanical floating system 11 is attached to, in whose lower end, the floater 12 is found.

Figure 4 shows a perspective view from the lower end of the device object of the invention, wherein the orifice at the center of the housing 13 can be seen which has been molded with the same outline than that of the analog reader 9, in such a manner that it can become adapted to it.

On the base of the device object of the invention, the cover 15 of the batteries 5 can be seen along with the receptacle 21 of the card described in Figure 2.

The rod 10 is attached to the base 16 which contains the inner magnet (not shown) over which the analog reader 9 is placed . Figure 5 shows an upper plane view of the device object of the invention 8, wherein it can be seen that the housing 13 has a circular opening in which a second housing 17 which houses the electronic card described in Figure 2, which also has a circular shape with an opening which allows reading the dial cover of the analog reader 9.

Figure 6 shows a perspective view from the upper part in explosion of the device object of the invention, wherein the housing 13 can be seen over which the second housing 17 is placed which houses the electronic card described in Figure 2, which itself is placed in the receptacle 21 of the electronic card (not shown) .

The batteries housings 18 (not shown) are placed on the base 26 of the housing, which are closed when the batteries are placed in their position with the battery covers 15 in order to close the electronic circuit.

Figure 7 shows a perspective view from the upper part in explosion with greater detail of the device object of the invention .

Figure 8 shows a perspective view from the lower part in explosion of the device object of the invention, the design of the interior of the housing includes the receptacle 21 whose outline has been designed to house the card 14.

The base of the housing 26 has been molded to house the batteries 5 within the receptacles 18, which have been closed with the covers 15. Figures 9 and 10 show an upper view of another preferred embodiment of the device 8 object of the invention, wherein the design of the housing 27 has a rectangular shape, which itself is placed on a side of the plastic dial cover of the analog reader 9 which is placed over the inner magnet (not shown) contained within the base 16, which itself is connected to the rod 10; the lid 23 covers the analog reader 9.

Figures 11 and 12 show a perspective view in explosion of the device object 8 of the invention placed in a stationary gas tank, wherein the device 8 is placed over the plastic cover lid of the analog gas tank reader 9, which is found with a cover lid 25 which covers both the device of the invention 8 as well as the intake of the gas supply of the tank (not shown in the Figure) .

Such as can be seen in the previously described figures, the electronic device apparatus for the detection of magnetic field which indicates the gas level in stationary tanks and the sending of data in a wireless manner of the present invention, may be used in any tank designed for containing gas for household, commercial and industrial purposes.

The versatility of the device object of the invention, allows it to be placed in any type of tank which uses the mechanical system of a floater with a magnet, thereby converting itself into the ideal solution for monitoring gas consumption in places where physical access to the tank is difficult.

Given its wireless system for the sending of data, the device object of the invention, considerably lowers the accident risks existing for persons who need to consult the gas level in stationary tanks, when these are placed on the roofs of buildings .

Given that several modifications may be made to our invention as described herein, and that there are many apparent materializations of the same, which can be made within the spirit and scope of the claims without departing of said spirit and scope, we seek that all matter contained in the attached specifications should be interpreted merely in an illustrative manner and not in a limitative one.