Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELEVATOR HOISTING MACHINE
Document Type and Number:
WIPO Patent Application WO/2001/019715
Kind Code:
A1
Abstract:
A hoisting machine (1) for an elevator (54), mounted on and fastened to one side of an elevator or counterweight guide rail (6). The machine comprises at least an elevator motor (2) and a traction sheave (4) driving the elevator ropes (5), and two operating brakes (103) of the elevator. The hoisting machine (1) is fastened to the guide rail (6) via the operating brakes (103) or by a point in the immediate vicinity of the operating brakes.

Inventors:
MUSTALAHTI JORMA (FI)
AULANKO ESKO (FI)
Application Number:
PCT/FI2000/000784
Publication Date:
March 22, 2001
Filing Date:
September 15, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KONE CORP (FI)
MUSTALAHTI JORMA (FI)
AULANKO ESKO (FI)
International Classes:
B66B11/00; B66B7/02; B66B11/04; (IPC1-7): B66B11/04
Foreign References:
EP0688735A21995-12-27
Attorney, Agent or Firm:
KONE CORPORATION Patent Department (Patent Department P.O. Box 677 Hyvinkää, FI)
Download PDF:
Claims:
CLAIMS
1. Hoisting machine (1) for an elevator (54), mounted on and fastened to one side of an elevator or counter weight guide rail (6), said machine comprising at least an elevator motor (2) and a traction sheave (4) driving elevator ropes (5), and two operating brakes (103) of the elevator, characterized in that the hoisting ma chine (1) is fastened to the guide rail (6) via the op erating brakes (103) or by a point in the immediate vi cinity of the operating brakes.
2. Hoisting machine as defined in claim 1, character ized in that the guide rail (6) is utilized as a struc tural part of the hoisting machine (1).
3. Hoisting machine (1) as defined in claim 1 or 2, characterized in that the shaft of the traction sheave (4) of the hoisting machine is fixed to the guide rail.
4. Hoisting machine (1) as defined in any one of claims 13, characterized in that the frame of the hoisting machine (1) is fastened to the guide rail through the boss of the traction sheave and by the upper and lower edges of the frame.
5. Hoisting machine (1) as defined in claim 1, charac terized in that the hoisting machine (1) is provided with a tension bar between the upper and lower edges of the frame.
Description:
ELEVATOR HOISTING MACHINE The present invention relates to an elevator hoisting machine as defined in the preamble of claim 1.

Prior-art technology in the field of the invention is described in patent specification EP 0688735 A2. This specification presents a flat overall solution for use in elevators, which is so mounted in the hoistway that no separate machine rooms are needed. The machine is mounted on a guide rail in the hoistway, either a car guide rail or a counterweight guide rail, either di- rectly or using a suitable auxiliary frame. Such a hoisting machine allows an arrangement of the various elevator structures that is very advantageous in re- spect of space utilization as regards the building as a whole as well as the elevator itself.

Such a hoisting machine is relatively noiseless and free of vibrations when operated at low speeds. How- ever, when the traveling speed is increased, sooner or later a speed range will be reached where, due to the cyclic nature of the field variations occurring in the electric motor, the excitation frequency generated by the motor is of the same order as the natural vibration frequency of the stator frame of the machine. There- fore, the forces acting between the rotor and the sta- tor may cause vibrations in the stator frame that are sufficient to produce noises of a disturbing intensity in the hoistway, elevator car as well as outside the hoistway. In flat hoisting machines placed in the hoistway, the brakes, which are mounted on the sides of the machine frame, act as mass concentrations which, together with the frame, constitute in the hoisting ma- chine a subsystem having relatively low natural vibra- tion frequencies. When it is required that the elevator provide a high level of traveling comfort and produce a

low level of airborne noise and a low oscillation level of structure-borne noise radiating from the elevator to the building, the question of controlling the lowest range of natural frequencies of the hoisting machine becomes very important because these are likely to de- termine the maximum disturbance-free velocity that can be used. Making the machine frame more rigid would eas- ily lead to an undesirable increase in the weight and size of the machine.

Traditionally, the vibrations and noise produced by the elevator hoisting machine have been relatively easily eliminated to a sufficient degree by improving sound insulation in separate machine rooms and by mounting the machine on a bed provided with vibration insula- tion. However, when the hoisting machine is placed in the hoistway, there is no space around it that would allow the provision of any significant sound insulation or arrangements for damping sound propagation in the structures. Consequently, instead of noise abatement, the hoisting machine itself has to be structurally so designed that it will work quietly enough not to dis- turb passengers in the car or people in the vicinity of the hoistway in the building.

Thus, the object of the invention is to disclose a flat elevator hoisting machine, in other words, an elevator hoisting machine having a relatively short dimension in the direction of the axis of the traction sheave, a ma- chine which has a low level of noise and vibration, i. e. a machine which, regardless of the car speed, pro- duces as little vibration and noise effects in the hoistway, in the car and outside the hoistway as possi- ble. A further object of the invention is to disclose a flat elevator hoisting machine which, in spite of vi- bration-free and noiseless operation, still requires but extremely little space in the hoistway and is

therefore easy to install in the hoistway. Another ob- ject of the invention is to improve the hoisting ma- chine concept known from specification EP 0688735 A2.

As for the features characteristic of the invention, reference is made to the claims.

An elevator hoisting machine mounted on the side of an elevator guide rail or a counterweight guide rail makes it possible to build an elevator without a machine room that provides significant advantages regarding struc- tural aspects and space utilization.

As the hoisting machine is fixed to the guide rail via the operating brakes or by a point in the immediate vi- cinity of the operating brakes, the guide rail func- tions as an additional reinforcement of the machine frame of the hoisting machine in a particularly favor- able manner. The lowest natural vibrations of the ma- chine are generated as the heavy brakes supported by the relatively wide machine frame are vibrating. The frequency of this vibration can be increased by stiff- ening the frame so as to provide more resistance to the vibration of the brakes. By making use of the elevator guide rail to obtain additional reinforcement, separate measures increasing the weight and/or thickness of the machine are avoided. Or if the level of vibration and noise is satisfactory, then the selective additional stiffness provided by the guide rail may even allow the use of a lighter hoisting machine frame.

Placing the brakes at the upper and lower edges of the machine provides the additional advantage that the hoisting machine is also narrow besides being flat, thus allowing the machine to be installed even in a very narrow hoistway, making it excellently applicable

for use in repair and modernization construction proj- ects.

Mounting the shaft of the traction sheave on the guide rail increases the stiffness of the structure or alter- natively allows lighter suspension of the shaft on the frame of the hoisting machine.

In the following, the invention will be described with reference to the drawings, wherein Fig. 1 presents a prior-art hoisting machine, Fig. 2 presents a hoisting machine according to the invention in front view, Fig. 3 presents a hoisting machine according to the invention in side view, Fig. 4 presents a diagram illustrating a possible ar- rangement regarding the placement of the hoisting ma- chine in the hoistway, and Fig. 5 presents a diagram illustrating another possi- ble arrangement regarding the placement of the hoisting machine.

Fig. 1 presents a hoisting machine 1 known from specifi- cation EP 0688735 A2, fixed to one guide rail 6. The guide rail may be either a car guide rail or a counter- weight guide rail, and the hoisting machine may be placed in the upper part or in the lower part of the hoistway. The hoisting machine 1 comprises an elevator motor 2 of the discoid motor type. The elevator ropes 5 start out from the traction sheave 4. The hoisting ma- chine is fixed to the guide rail 6 by means of claw-type clamps 46 gripping the edges of the hoisting machine. In addition, the hoisting machine is fastened to the guide rail by its central part by means of brackets 35 and a supporting element 34. Most of the vertical forces of

the hoisting machine are transmitted by the supporting element 34. The claw-type clamps prevent the hoisting machine from being loosened from contact with the guide rail while also preventing the machine from turning. At- tached to the guide rail 6 with holders 32 is a guard 33 to prevent the elevator ropes 5 from rising off the rope groove on the traction sheave 4.

Fig. 2 presents a front view of a hoisting machine ac- cording to the invention, and Fig. 3 presents a side view of the machine in Fig. 2. The hoisting machine 1 is fixed to one guide rail 6. The guide rail may be either a car guide rail or a counterweight guide rail and the mounting position of the hoisting machine may be e. g. in the upper part or in the lower part of the hoistway. The hoisting machine is of a flat construction, in other words, the thickness of the hoisting machine is clearly smaller than its diameter. The thickness of the traction sheave hoisting machine is less than one third of the diameter of the machine, so the hoisting machine can be regarded as being of a very flat construction. The hoisting machine 1 comprises a flat elevator motor, two brakes 103 and a traction sheave 4. The hoisting machine 1 is preferably of a gearless type and the elevator mo- tor is preferably a permanent magnet synchronous motor, e. g. an external rotor motor or a discoid motor. Other types of hoisting machine and elevator motor may also be used. For the supply of electricity to the motor of the hoisting machine, cable lead-through holes 144 are pro- vided in the side of the machine. The elevator ropes 5 start out from the traction sheave 4. The brakes pro- trude upward and downward from the hoisting machine.

Thus, the brakes form mass concentrations at the upper and lower ends of the wide machine frame. The brakes comprise brake pads 112 so fitted that they can be pressed against a braking surface 113 rotating with the traction sheave. When the brake pads are pressed against

the braking surface, a force is generated in the hoist- ing machine frame that tends to stretch the frame. The hoisting machine is fastened to the elevator guide rail 6 by means of fixing devices 146 holding it by the edges of the hoisting machine frame and by the center of the hoisting machine. The guide rail 6 functions as a ten- sion bar resisting vertical stretching of the hoisting machine as the brakes apply their force against the braking surface 113. Similarly, the guide rail 6 can act as a compression bar. Thus, the frame of the hoisting machine 1 is stiffened by the guide rail 6 in the direc- tion in which the large masses of the brakes 103 are lo- cated at the edges and the natural frequency of the cor- responding vibration rises. In addition to the guide rail, a tension bar fastened to two or more points on the machine frame may be used to increase the stiffness of the hoisting machine. The guide rail 6 being a so- called T-rail, the fixing devices may well consist of bolts fastening the machine to the back of the T-rail.

For the bolts, holes have been drilled in the back of the T-rail. At the edges of the hoisting machine, the fixing bolts are placed in a part 104 of the frame formed as a mounting base for the operating brakes 103.

The operating brakes 103 are electrically controlled brakes closed by a spring. The brakes are released and held in a released position by passing an electric cur- rent into an electromagnetic regulating unit provided in the brake. In the absence of electric control, the spring in the brake presses the brake shoe 112 against the braking surface 113. This part 104 of the frame also forms part of the brake housing. In the central part, the machine is fastened to the guide rail 6 via a sup- porting shaft going through the boss of the traction sheave 4. The supporting shaft 105 is fixed to the frame of the drive machine 1, and the traction sheave is sup- ported on this shaft by a bearing 106. Thus, the trac- tion sheave 4 is supported by the supporting shaft 105

whose one end is supported by the guide rail in the re- gion of the boss of the traction sheave while its other end is supported by the frame of the hoisting machine fastened by its edges to the guide rail. The hoisting machine is provided with a jump guard 133 for preventing the elevator ropes 5 from rising off the rope groove on the traction sheave 4. In its simplest form, the jump guard is a metal plate which has been pressed into posi- tion between the guide rail and the machine in the re- gion of the traction sheave boss and whose ends have been bent so that they cover the rope grooves on the sides of the traction sheave. A tachometer 111 is in- stalled to monitor the motion of the part rotating with the traction sheave of the hoisting machine to give a feedback signal to the control system of the elevator motor. For emergency release of the brake there is a wire cable 10 by means of which the brakes 103 of the elevator machine can be released mechanically. Emergency brake release is needed when passengers are to be res- cued from an elevator that has stopped between floors e. g. due to a power failure.

Figures 4 and 5 present diagrams illustrating two exam- ples of how the hoisting machine 1 of the invention is placed on a guide rail 6 in a hoistway 51.

In Fig. 4, the hoisting machine is mounted at the upper end of a guide rail 6. The guide rail 6 may be a guide rail of either the elevator car 54 or the counterweight 55. One end of the elevator rope 5 is anchored to the upper part 52 of the hoistway 51 at point 53, from where the elevator rope is passed below the elevator car 54 via diverting pulleys 56 to the traction sheave 4 and further down via a diverting pulley 57 on the counter- weight 55 and back up, where the other end of the eleva- tor rope is anchored to the upper part of the hoistway at point 58.

Fig. 5 presents another case where the hoisting machine 1 is mounted at the lower end of a guide rail 6 in the hoistway 51. One end of the elevator rope 5 is anchored to the upper part 52 of the hoistway 51 at point 53, from where the elevator rope is passed below the eleva- tor car 54 via diverting pulleys 56 and via a diverting pulley 59 in the upper part of the hoistway 51 to the traction sheave 4 of the hoisting machine 1 fixed to the lower end of the guide rail. From there, the rope is passed up to another diverting pulley 60 and then down- ward via a diverting pulley 57 on the counterweight 55 and back up, where the other end of the elevator rope is anchored to point 58 in the upper part of the hoistway.

The rope anchorage points 53,58 in the upper part of the hoistway may be located in the ceiling or wall of the hoistway or in some other supporting structure. The other supporting structure for rope anchorage may be e. g. a separate support or one or more mounting bases supported by the upper ends of the guide rails.

In the foregoing, the invention has been described by way of example with reference to the attached drawings.

It is obvious to the person skilled in the art that the embodiments of the invention are not restricted to the examples described above, but that they can be varied within the scope of the claims presented below.