Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EMBEDDED INTERNET OF THINGS (IOT) HUB SLOT FOR AN APPLIANCE AND ASSOCIATED SYSTEMS AND METHODS
Document Type and Number:
WIPO Patent Application WO/2017/007723
Kind Code:
A1
Abstract:
An apparatus and method are described for an loT interface slot for an loT hub. For example, one embodiment of an apparatus comprises: an Internet of Things (loT) hub interface slot to be fixedly coupled to an appliance, the loT hub interface slot having an internal chamber, a bottom portion and a top portion, the top portion having an aperture exposing the interface slot to be accessible from outside of the appliance; the internal chamber sized to accommodate an loT hub device to provide wireless communication functionality to the appliance; and the bottom portion having an embedded loT hub interface fixedly coupled thereto, the embedded loT hub interface having a first set of electrical contact portions facing the internal chamber to provide electrical connectivity to a corresponding set of electrical contact portions of an appliance interface on the loT hub device when the loT hub device is inserted into the internal chamber.

Inventors:
ZAKARIA OMAR (US)
BRITT JOE (US)
HOUMAN FOROOD (US)
Application Number:
PCT/US2016/040816
Publication Date:
January 12, 2017
Filing Date:
July 01, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AFERO INC (US)
International Classes:
G05B15/02; H04L12/24; H04L12/28; H04L29/06; H04L29/08; H04W4/00; H04W4/70
Foreign References:
US20010025349A12001-09-27
US20120207481A12012-08-16
US20140292533A12014-10-02
US20020093424A12002-07-18
Attorney, Agent or Firm:
WEBSTER, Thomas (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1 . An apparatus comprising:

an Internet of Things (loT) hub interface slot to be fixedly coupled to an appliance, the !oT hub interface slot having an internal chamber, a bottom portion and a top portion, the top portion having an aperture exposing the interface slot to be accessible from outside of the appliance;

the internal chamber sized to accommodate an loT hub device to provide wireless communication functionality to the appliance; and

the bottom portion having an embedded loT hub interface coupled thereto, the embedded loT hub interface having a first set of electrical contact portions facing the internal chamber to provide electrical connectivity to a corresponding set of electrical contact portions of an appliance interface on the loT hub device when the loT hub device is inserted into the internal chamber,

the embedded loT hub interface having a second set of electrical contact portions facing outwards from the bottom portion of the !oT hub interface slot, one or more of the second set of electrical contact portions to be electrically coupled to a power supply system within the appliance to provide power to the !oT hub device when inserted into the chamber and another one or more of the second set of electrical contact portions to be electrically coupled to a ground plane within the appliance to electrically ground the loT hub device when inserted into the chamber.

2. The apparatus as in claim 1 wherein the !oT hub interface slot is formed from a metal enclosure separated by the first and second sets of electrical contact portions by an insulator material.

3. The apparatus as in claim 2 wherein the first and second sets of electrical contact portions comprise electrically conductive pins or pads extending through the metal enclosure, wherein the first set of electrical contact portions comprise a first portion of each of the pins or pads facing towards the chamber from the bottom of the metal enclosure and the second set of electrical contact portions comprise a second portion of each of the pins or pads facing away from the chamber, and exposed outside of the metal enclosure.

4. The apparatus as in claim 1 wherein the first and second sets of electrical contact portions are formed on each of a set of 10 x 10 mm connection pads.

5. The apparatus as in claim 1 further comprising:

a set of latches affixed to the IoT hub interface slot and configured to lock down the IoT hub device in place when Inserted into the chamber.

8. The apparatus as in claim 5 wherein the set of latches are affixed to the top portion of the IoT hub.

7. The apparatus as in claim 4 wherein one or more pads are reserved for future electrical connections between the IoT hub Interface slot.

8. The apparatus as in claim 1 wherein the IoT hub interface slot is formed from a metal or plastic enclosure.

9. The apparatus as in claim 8 wherein the metal or plastic enclosure has a length of 130mm, a depth of 40 mm and a width of 70mm.

10. The apparatus as in claim 1 further comprising:

an embedded IoT hub inserted within the internal chamber of the IoT interface slot, the embedded IoT hub comprising a plurality of wireless communication devices to communicatively connect the appliance to the Internet using a corresponding plurality of wireless communication protocols.

1 1 . An apparatus comprising:

an embedded Internet of Things (IoT) hub comprising a wide area network (WAN) interface to couple the embedded IoT hub to an IoT service over a network, and a local wireless communication interface to communicatively couple the IoT hub to one or more IoT devices;

an IoT hub slot interface coupled to the embedded IoT hub and comprising a first plurality of pins or pads to interface with corresponding pins or pads within an IoT hub slot of an appliance when the embedded IoT hub is Inserted Into the IoT hub slot; and a modular antenna interface coupled to the embedded IoT hub and comprising a second plurality of pins or pads to interface with corresponding pins or pads on a modular antenna to be coupled to the embedded IoT hub.

12. The apparatus as in claim 1 1 wherein the first plurality of pins or pads comprise at least one power pin or pad to electrically couple the embedded ioT hub to a power system of the appliance.

13. The apparatus as in claim 12 wherein the first plurality of pins or pads comprise at least one ground pin or pad to electrically couple the embedded IoT hub to a ground plane of the appliance.

14. The apparatus as in claim 1 1 wherein the local wireless communication interface comprises a Bluetooth Low Energy (BTLE) Interface to communicatively couple the embedded ioT hub to one or more IoT devices within the appliance over one or more BTLE communication channels.

15. The apparatus as in claim 4 wherein the one or more IoT devices within the appliance include sensors to take readings and responsively communicate the readings to the embedded IoT hub over the BTLE communication channels,

16. The apparatus as in claim 5 wherein the embedded IoT hub is configured to transmit the readings over the WAN interface to the IoT service.

17. The apparatus as in claim 6 wherein the IoT service is configured to communicate the readings to a user device comprising an app or browser configured to connect to the ioT service.

18. The apparatus as in claim 1 1 further comprising:

a set of latches affixed to the embedded IoT hub and configured to lock down the modular antenna when the modular antenna is coupled to the embedded IoT hub,

19. The apparatus as in claim 18 wherein the embedded IoT device further comprises an antenna enclosure into which the embedded antenna is to be inserted to couple the embedded antenna to the IoT hub.

20. The apparatus as in claim 19 wherein the antenna enclosure comprises a cylindrical enclosure having a diameter between 15mm and 25mm and a length of between 15mm and 25mm.

2 . An apparatus comprising:

a modular antenna to be used with an embedded Internet of Things (!oT) hub having a plurality of wireless communication interfaces, the modular antenna comprising an interface component and an antenna component;

the Interface component comprising a first plurality of pins or pads to electrically couple the module antenna to the embedded loT hub; and

the antenna component comprising a plurality of antennas to be electrically coupled to the first plurality of pins or pads, thereby electrically coupling each of the plurality of antennas to one of the plurality of wireless communication interfaces of the embedded loT hub.

22. The apparatus as in claim 21 wherein the antennas comprise a first antenna and a second antenna, the first antenna to transmit and receive radio frequency (RF) signals for a first wireless communication protocol and the second antenna to transmit and receive RF signals for a second wireless communication protocol.

23. The apparatus as in claim 22 wherein the first and second wireless communication protocols are selected from a group comprising WiFi, Bluetooth Low Energy (BTLS), and cellular data protocols.

24. The apparatus as in claim 23 wherein the cellular data protocols comprise 3G, 4G, or 5G communication protocols.

25. The apparatus as in claim 21 wherein the antenna component comprises a first cylindrical enclosure having a first height and a first diameter,

26. The apparatus as in claim 25 wherein the interface component comprises a second cylindrical enclosure having a second height and a second diameter.

27. The apparatus as in claim 28 wherein the first diameter Is larger than the second diameter.

28. The apparatus as in claim 27 wherein the first diameter comprises approximately 100mm or 50mm and the second diameter compnses approximately 7mm.

29. The apparatus as in claim 27 wherein the first diameter comprises between 40mm and 1 10mm and the second diameter compnses between 10mm and 25mm.

30. The apparatus as in claim 21 wherein the first plurality of pins or pads comprise at least one ground pin or pad to ground each antenna of the antenna component and at least one radio frequency (RF) pin or pad to transmit and receive RF signals.

Description:
EMBEDDED INTERNET OF THINGS (IOT) HUB SLOT FOR

AN APPLIANCE AND ASSOCIATED SYSTEMS AND METHODS

[0001] This invention relates generally to the field of computer systems. More particularly, the invention relates to an embedded IoT hub slot for an appliance and associated systems and methods.

[0002] The internet of Things" refers to the interconnection of uniquely-identifiable embedded devices within the Internet infrastructure. Ultimately, IoT is expected to result in new, wide-ranging types of applications in which virtually any type of physical thing may provide information about itseli or its surroundings and/or may be controlled remotely via client devices over the internet.

[0003] Adoption of IoT functionality in home appliances such as "white goods" has been limited for a variety of reasons. For example, appliance manufacturers do not have in-depth wireless expertise to allow them to seamlessly integrate IoT connectivity. The antenna integration alone within the appliance requires an involved engineering effort per product. Moreover, certification costs are high especially when cellular is involved, if the appliance has cellular as part of its internal circuit board, a certification Is required per appliance. In addition, antenna size and requirements change based on the wireless system the antenna supports.

[0004] IoT ecosystems are evolving which means there Is a need for a flexible IoT implementation for appliances that can be upgraded when needed without changing the underlying appliance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] A better understanding of the present Invention can be obtained from the following detailed description in conjunction with the following drawings, in which:

[0006] FIGS. 1 A~B illustrates different embodiments of an ioT system architecture;

[0007] FIG. 2 illustrates an IoT device in accordance with one embodiment of the invention;

[0008] FIG. 3 illustrates an IoT hub in accordance with one embodiment of the invention;

[0009] FIG. 4A-B illustrate embodiments of the invention for controlling and collecting data from IoT devices, and generating notifications; [0010] FIG. 5 illustrates embodiments of the invention for collecting data from IoT devices and generating notifications from an ioT hub and/or IoT service;

[001 1 ] FIG. 6 illustrates one embodiment of a system in which an intermediary mobile device collects data from a stationary ioT device and provides the data to an IoT hub;

[QQ12] FIG. 7 illustrates intermediary connection logic Implemented in one embodiment of the invention;

[0013] HG. 8 illustrates a method in accordance with one embodiment of the invention;

[QQ14] FIG. 9A illustrates an embodiment in which program code and data updates are provided to the IoT device;

[0015] FIG. 9B illustrates an embodiment of a method in which program code and data updates are provided to the IoT device;

[0016] FIG. 10 illustrates a high level view of one embodiment of a security architecture;

[0017] FIG. 11 illustrates one embodiment of an architecture in which a subscriber identity module (SIM) is used to store keys on IoT devices;

[0018] FIG. 12A illustrates one embodiment in which IoT devices are registered using barcodes or QR codes;

[0019] FIG. 12B illustrates one embodiment in which pairing is performed using ba codes or QR codes;

[0020] HG. 13 illustrates one embodiment of a method for programming a SIM using an IoT hub;

[0021 ] FIG. 14 illustrates one embodiment of a method for registering an IoT device with an IoT hub and IoT service; and

[0022] HG. 15 illustrates one embodiment of a method for encrypting data to be transmitted to an IoT device;

[0023] FIGS. 16A-B ill ustrate different embodiments of the invention for encrypting data between an IoT service and an IoT device;

[0024] FIG. 17 illustrates embodiments of the invention for performing a secure key exchange, generating a common secret, and using the secret to generate a key stream ;

[0025] FIG. 18 illustrates a packet structure in accordance with one embodiment of the invention ;

[0026] FIG. 19 illustrates techniques employed in one embodiment for writing and reading data to/from an IoT device without formally pairing with the IoT device; [0027] FIG. 20 illustrates an exemplary set of command packets employed in one embodiment of the invention;

[0028] FIG. 21 illustrates an exemplary sequence of transactions using command packets;

[0029] FIG. 22 illustrates a method in accordance with one embodiment of the Invention; and

[0030] HGS. 23A-C illustrate a method for secure pairing in accordance with one embodiment of the invention

[0031] FIG. 24 illustrates an exemplary embedded hub and modular antenna system in accordance with one embodiment of the invention;

[0032] HG. 25 illustrates an embedded hub in accordance with one embodiment of the invention;

[0033] FIG. 26 illustrates an exemplary embedded hub within an exemplary appliance;

[0034] FIG. 27 illustrates an exemplary embedded hub device comprising a plurality of connection pads, an eiectricai board comprising one or more radio devices, and latches;

[0035] FIG. 28 illustrates an exemplary embedded hub communicating with an appliance using Bluetooth Low Energy (BTLE) ;

[0036] FIGS. 29A-B illustrate exemplary system architectures in which

embodiments of the invention may be employed;

[0037] FIGS. 30-32 illustrate exemplary modular antennas configured to be coupled to embedded hubs; and

[0038] FIG. 33 illustrates an exemplary embedded hub integrated within an exemplary appliance and with a modular antenna attached thereto.

DETAILED DESCRIPTION

[0039] In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the invention described below. It will be apparent, however, to one skilled in the art that the embodiments of the invention may be practiced without some of these specific details, in other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the embodiments of the invention. [0040] One embodiment of the Invention comprises an Internet of Things (loT) platform which may be utilized by developers to design and build new IoT devices and applications. In particular, one embodiment includes a base hardware/software platform for loT devices including a predefined networking protocol stack and an loT hub through which the ioT devices are coupled to the Internet. In addition, one embodiment Includes an !oT service through which the IoT hubs and connected IoT devices may be accessed and managed as described below. In addition, one embodiment of the IoT platform includes an IoT app or Web application (e.g., executed on a client device) to access and configured the IoT service, hub and connected devices. Existing online retailers and other Website operators may leverage the !oT platform described herein to readily provide unique IoT functionality to existing user bases.

[0041] Figure 1 Illustrates an overview of an architectural platform on which embodiments of the invention may be implemented. In particular, the Illustrated embodiment Includes a plurality of IoT devices 101 -105 communicatively coupled over local communication channels 130 to a central IoT hub 1 10 which is Itself

communicatively coupled to an IoT service 120 over the Internet 220. Each of the IoT devices 101 -105 may initially be paired to the IoT hub 1 1 0 (e.g., using the pairing techniques described below) In order to enable each of the local communication channels 130. In one embodiment, the IoT service 120 Includes an end user database 122 for maintaining user account information and data collected from each user's IoT devices. For example, if the IoT devices include sensors (e.g., temperature sensors, accelerometers, heat sensors, motion detectore, etc), the database 122 may be continually updated to store the data collected by the IoT devices 01 -105. The data stored in the database 122 may then be made accessible to the end user via the IoT app or browser installed on the user's device 135 (or via a desktop or other client computer system) and to web clients (e.g., such as websites 130 subscribing to the IoT service 20).

[0042] The IoT devices 101 -105 may be equipped with various types of sensors to collect information about themselves and their surroundings and provide the collected information to the IoT service 120, user devices 135 and/or external Websites 130 via the IoT hub 1 10. Some of the IoT devices 01 -105 may perform a specified function in response to control commands sent through the IoT hub 1 10. Various specific examples of Information collected by the IoT devices 01 - 05 and control commands are provided below. In one embodiment described below, the IoT device 01 is a user Input device designed to record user selections and send the user selections to the loT service 120 and/or Website.

[0043] In one embodiment, the loT hub 1 10 includes a cellular radio to establish a connection to the Internet 220 via a cellular service 1 15 such as a 4G (e.g., Mobile WiMAX, LTE) or 5G cellular data service. Alternatively, or in addition, the loT hub 1 10 may include a WiFi radio to establish a WiFi connection through a WiFi access point or router 1 16 which couples the loT hub 1 1 0 to the Internet (e.g., via an Internet Service Provider providing Internet service to the end user). Of course, it should be noted that the underlying principles of the invention are not limited to any particular type of communication channel or protocol.

[0044] In one embodiment, the loT devices 1 01 -1 05 are ultra low-power devices capable of operating for extended periods of time on battery power (e.g., years). To conserve power, the local communication channels 130 may be implemented using a low-power wireless communication technology such as Bluetooth Low Energy (LE). in this embodiment, each of the loT devices 101 -105 and the loT hub 1 10 are equipped with Bluetooth LE radios and protocol stacks.

[0045] As mentioned, in one embodiment, the loT platform Includes an loT app or Web application executed on user devices 135 to allow users to access and configure the connected loT devices 1 01 -105, loT hub 1 1 0, and/or loT service 120. In one embodiment, the app or web application may be designed by the operator of a Website 130 to provide loT functionality to its user base. As illustrated, the Website may maintain a user database 131 containing account records related to each user.

[0046] Figure 1 B Illustrates additional connection options for a plurality of loT hubs 1 1 0-1 1 1 , 190 In this embodiment a single user may have multiple hubs 1 10-1 1 1 installed onsite at a single user premises 80 (e.g., the user's home or business). This may be done, for example, to extend the wireless range needed to connect all of the loT devices 101 -105. As indicated, if a user has multiple hubs 0, they may be connected via a local communication channel (e.g., Wifi, Ethernet, Power Line

Networking, etc). In one embodiment, each of the hubs 1 10-1 may establish a direct connection to the loT service 120 through a cellular 1 15 or WiFi 1 16 connection (not explicitly shown in Figure 1 B). Alternatively, or in addition, one of the loT hubs such as loT hub 1 10 may act as a "master" hub which provides connectivity and/or local services to all of the other loT hubs on the user premises 180, such as loT hub (as indicated by the dotted line connecting loT hub 1 10 and loT hub 1 1 1 ). For example, the master loT hub 1 10 may be the only loT hub to establish a direct connection to the loT service 120, In one embodiment, only the "master" loT hub 1 10 is equipped with a cellular communication interface to establish the connection to the loT service 120. As such, all communication between the loT service 20 and the other loT hubs 1 will flow through the master loT hub 1 1 0. In this role, the master loT hub 1 10 may be provided with additional program code to perform filtering operations on the data exchanged between the other loT hubs 1 1 1 and loT service 20 (e.g., servicing some data requests locally when possible).

[0047] Regardless of how the loT hubs 1 10-1 1 1 are connected, in one embodiment, the loT service 120 will logically associate the hubs with the user and combine ail of the attached loT devices 101 -105 under a single comprehensive user interface, accessible via a user device with the installed app 135 (and/or a browser-based interface).

[0048] In this embodiment, the master loT hub 1 10 and one or more slave loT hubs 1 1 1 may connect over a local network which may be a WiFi network 1 16, an Ethernet network, and/or a using power-line communications (PLC) networking (e.g., where all or portions of the network are run through the users power lines). In addition, to the loT hubs 1 10-1 1 1 , each of the loT devices 101 -105 may be interconnected with the loT hubs 1 10- 1 1 1 using any type of local network channel such as WiFi, Ethernet, PLC, or Bluetooth LE, to name a few.

[0049] Figure 1 B also shows an loT hub 190 installed at a second user premises 181 . A virtually unlimited number of such loT hubs 90 may be installed and configured to collect data from loT devices 191 - 92 at user premises around the world. In one embodiment, the two user premises 180- 181 may be configured for the same user. For example, one user premises 80 may be the user's primary home and the other user premises 181 may be the user's vacation home. In such a case, the loT service 20 will logically associate the loT hubs 1 10-1 1 1 , 1 90 with the user and combine all of the attached loT devices 01 -105, 191 -192 under a single comprehensive user Interface, accessible via a user device with the installed app 35 (and/or a browser-based Interface).

[0050] As illustrated In Figure 2, an exemplary embodiment of an loT device 01 includes a memory 210 for storing program code and data 201 -203 and a low power microcontroller 200 for executing the program code and processing the data. The memory 210 may be a volatile memory such as dynamic random access memory (DRAM) or may be a non-volatile memory such as Flash memory. In one embodiment, a non-volatile memory may be used for persistent storage and a volatile memory may be used for execution of the program code and data at runtime. Moreover, the memory 21 0 may be integrated within the low power microcontroller 200 or may be coupled to the low power microcontroller 200 via a bus or communication fabric. The underlying principles of the invention are not limited to any particular Implementation of the memory 21 0.

[0051] As illustrated, the program code may include application program code 203 defining an application-specific set of functions to be performed by the loT device 201 and library code 202 comprising a set of predefined building blocks which may be utilized by the application developer of the loT device 101 . In one embodiment, the library code 202 comprises a set of basic functions required to implement an loT device such as a communication protocol stack 201 for enabling communication between each loT device 01 and the loT hub 1 10. As mentioned, in one embodiment, the communication protocol stack 201 comprises a Bluetooth LE protocol stack. In this embodiment, Bluetooth LE radio and antenna 207 may be integrated within the low power microcontroller 200. However, the underlying principles of the invention are not limited to any particular communication protocol.

[0052] The particular embodiment shown in Rgure 2 also includes a plurality of Input devices or sensors 210 to receive user input and provide the user input to the low power microcontroller, which processes the user input In accordance with the application code 203 and library code 202. In one embodiment, each of the input devices include an LED 209 to provide feedback to the end user.

[0053] In addition, the illustrated embodiment includes a battery 208 for supplying power to the low power microcontroller. In one embodiment, a non-chargeable coin cell battery is used. However, in an alternate embodiment, an integrated rechargeable battery may be used (e.g., rechargeable by connecting the loT device to an AC power supply (not shown)).

[0054] A speaker 205 is also provided for generating audio. In one embodiment, the low power microcontroller 299 includes audio decoding logic for decoding a compressed audio stream (e.g., such as an MPEG -4/ Advanced Audio Coding (AAC) stream) to generate audio on the speaker 205. Alternatively, the low power microcontroller 200 and/or the application code/data 203 may include digitally sampled snippets of audio to provide verbal feedback to the end user as the user enters selections via the Input devices 210.

[0055] In one embodiment, one or more other/alternate I/O devices or sensors 250 may be included on the loT device 101 based on the particular application for which the loT device 101 is designed. For example, an environmental sensor may be included to measure temperature, pressure, humidity, etc, A security sensor and/or door lock opener may be included if the loT device is used as a security device. Of course, these examples are provided merely for the purposes of illustration. The underlying principles of the invention are not limited to any particular type of loT device. In fact, given the highly programmable nature of the low power microcontroller 200 equipped with the library code 202, an application developer may readily develop new application code 203 and new I/O devices 250 to interface with the low power microcontroller for virtually any type of loT application.

[0056] In one embodiment, the low power microcontroller 200 also includes a secure key store for storing encryption keys for encrypting communications and/or generating signatures. Alternatively, the keys may be secured in a subscriber Identify module (SIM).

[0057] A wakeup receiver 207 is included in one embodiment to wake the loT device from an ultra low power state in which it Is consuming virtually no power. In one embodiment, the wakeup receiver 207 Is configured to cause the loT device 101 to exit this low power state in response to a wakeup signal received from a wakeup transmitter 307 configured on the loT hub 1 10 as shown in Figure 3. In particular, in one embodiment, the transmitter 307 and receiver 207 together form an electrical resonant transformer circuit such as a Tesla coil. In operation, energy is transmitted via radio frequency signals from the transmitter 307 to the receiver 207 when the hub 1 10 needs to wake the loT device 101 from a very low power state. Because of the energy transfer, the loT device 101 may be configured to consume virtually no power when it is m its low power state because it does not need to continually "listen" for a signal from the hub (as is the case with network protocols which allow devices to be awakened via a network signal). Rather, the microcontroller 200 of the loT device 01 may be configured to wake up after being effectively powered down by using the energy electrically transmitted from the transmitter 307 to the receiver 207.

[0058] As illustrated in Figure 3, the loT hub 1 10 also includes a memory 317 for storing program code and data 305 and hardware logic 301 such as a microcontroller for executing the program code and processing the data. A wide area network (WAN) interface 302 and antenna 3 0 couple the loT hub 1 0 to the cellular service 5. Alternatively, as mentioned above, the loT hub 1 10 may also include a local network interface (not shown) such as a WiFi interface (and WIFi antenna) or Ethernet interface for establishing a local area network communication channel. In one embodiment, the hardware logic 301 also includes a secure key store for storing encryption keys for encrypting communications and generating/verifying signatures. Alternatively, the keys may be secured in a subscriber Identify module (SIM).

[0059] A local communication interface 303 and antenna 31 1 establishes local communication channels with each of the IoT devices 101 -105. As mentioned above, in one embodiment, the local communication interface 303/antenna 3 1 implements the Bluetooth LE standard. However, the underlying principles of the invention are not limited to any particular protocols for establishing the local communication channels with the !oT devices 01 -105. Although illustrated as separate units in Figure 3, the WAN interface 302 and/or local communication interface 303 may be embedded within the same chip as the hardware logic 301 .

[0060] In one embodiment, the program code and data includes a communication protocol stack 308 which may include separate stacks for communicating over the local communication interface 303 and the WAN interface 302. In addition, device pairing program code and data 306 may be stored in the memory to allow the IoT hub to pair with new loT devices. In one embodiment, each new IoT device 101 -105 is assigned a unique code which is communicated to the !oT hub 0 during the pairing process. For example, the unique code may be embedded In a barcode on the loT device and may be read by the barcode reader 106 or may be communicated over the local communication channel 130. In an alternate embodiment, the unique ID code is embedded magnetically on the IoT device and the loT hub has a magnetic sensor such as an radio frequency ID (RFID) or near field communication (NFC) sensor to detect the code when the loT device 101 is moved within a few inches of the ioT hub 1 0.

[0061] In one embodiment, once the unique ID has been communicated, the IoT hub 0 may verify the unique ID by querying a local database (not shown), performing a hash to verify that the code is acceptable, and/or communicating with the IoT service 120, user device 135 and/or Website 130 to validate the ID code. Once validated, in one embodiment, the IoT hub 1 10 pairs the IoT dev-ce 101 and stores the pairing data In memory 317 (which, as mentioned, may include non-volatile memory). Once pairing is complete, the IoT hub 1 10 may connect with the IoT device 101 to perform the various IoT functions described herein.

[0062] In one embodiment, the organization running the IoT service 120 may provide the IoT hub 1 10 and a basic hardware/software platform to allow developers to easily design new IoT services. In particular, in addition to the IoT hub 1 10, developers may be provided with a software development kit (SDK) to update the program code and data 305 executed within the hub 0. in addition, for IoT devices 01 , the SDK

Q may include an extensive set of library code 202 designed for the base loT hardware (e.g., the low power microcontroller 200 and other components shown in Figure 2) to facilitate the design of various different types of applications 101 . In one embodiment, the SDK Includes a graphical design interface in which the developer needs only to specify input and outputs for the loT device. Ail of the networking code, including the communication stack 201 that allows the loT device 101 to connect to the hub 1 10 and the service 120, is already in place for the developer. In addition, in one embodiment, the SDK also includes a library code base to facilitate the design of apps for mobile devices (e.g., iPhone and Android devices).

[0063] In one embodiment, the loT hub 1 10 manages a continuous bi-directional stream of data between the loT devices 101 - 105 and the loT service 20. In circumstances where updates to/from the loT devices 101 -105 are required in real time (e.g., where a user needs to view the current status of security devices or environmental readings), the loT hub may maintain an open TCP socket to provide regular updates to the user device 135 and/or external Websites 130. The specific networking protocol used to provide updates may be tweaked based on the needs of the underlying application. For example, in some cases, where may not make sense to have a continuous bi-directional stream, a simple request/response protocol may be used to gather information when needed.

[0064] In one embodiment, both the loT hub 1 10 and the loT devices 101 - 05 are automatically upgradeable over the network. In particular, when a new update is available for the !oT hub 1 0 it may automatically download and install the update from the !oT service 120. It may first copy the updated code into a local memory, run and verify the update before swapping out the older program code. Similarly, when updates are available for each of the loT devices 101 -105, they may initially be downloaded by the loT hub 1 10 and pushed out to each of the loT devices 101 -105. Each loT device 101 -105 may then apply the update in a similar manner as described above for the loT hub and report back the results of the update to the loT hub 1 10. If the update is successful, then the loT hub 1 10 may delete the update from Its memory and record the latest version of code installed on each loT device (e.g., so that it may continue to check for new updates for each !oT device).

[0065] In one embodiment, the loT hub 1 10 is powered via A/C power. In particular, the loT hub 1 10 may include a power unit 390 with a transformer for transforming A/C voltage supplied via an A/C power cord to a lower DC voltage. [0066] Fsgure 4A illustrates one embodiment of the invention for performing universal remote control operations using the loT system. In particular, in this embodiment, a set of ioT devices 101 -103 are equipped with infrared (!R) and/or radio frequency (RF) blasters 401 -403, respectively, for transmitting remote control codes to control various different types of electronics equipment including air

conditioners/heaters 430, lighting systems 431 , and audiovisual equipment 432 (to name just a few). In the embodiment shown in Figure 4A, the IoT devices 01 - 03 are also equipped with sensors 404-406, respectively, for detecting the operation of the devices which they control, as described below.

[0067] For example, sensor 404 in IoT device 101 may be a temperature and/or humidity sensor for sensing the current temperature/humidity and responsiveiy controlling the air conditioner/heater 430 based on a current desired temperature. In this embodiment, the air conditioner/heater 430 is one which is designed to be controlled via a remote control device (typically a remote control which itself has a temperature sensor embedded therein). In one embodiment, the user provides the desired temperature to the IoT hub 1 10 via an app or browser installed on a user device 135. Control logic 412 executed on the IoT hub 1 10 receives the current

temperature/humidity data from the sensor 404 and responsiveiy transmits commands to the IoT device 101 to control the IR/RF biaster 401 in accordance with the desired temperature/humidity. For example, if the temperature is below the desired temperature, then the control logic 4 2 may transmit a command to the air

conditioner/heater via the IR/RF blaster 401 to increase the temperature (e.g., either by turning off the air conditioner or turning on the heater). The command may include the necessary remote control code stored in a database 413 on the IoT hub 1 10.

Alternatively, or in addition, the IoT service 421 may implement control logic 421 to control the electronics equipment 430-432 based on specified user preferences and stored control codes 422.

[0068] IoT device 102 In the illustrated example is used to control lighting 431 . In particular, sensor 405 in IoT device 102 may photosensor or photodetector configured to detect the current brightness of the light being produced by a light fixture 431 (or other lighting apparatus). The user may specify a desired lighting level (including an Indication of ON or OFF) to the IoT hub 1 10 via the user device 135. In response, the control logic 412 will transmit commands to the IR/RF blaster 402 to control the current brightness level of the lights 431 (e.g., increasing the lighting if the current brightness is too low or decreasing the lighting If the current brightness is too high; or simp!y turning the lights ON or OFF).

[0069] !oT device 103 in the illustrated example is configured to control audiovisual equipment 432 (e.g., a television, A/V receiver, cable/satellite receiver, AppleTV™, etc). Sensor 406 in loT device 103 may be an audio sensor (e.g., a microphone and associated logic) for detecting a current ambient volume level and/or a photosensor to defect whether a television Is on or off based on the light generated by the television (e.g., by measuring the light within a specified spectrum). Alternatively, sensor 406 may include a temperature sensor connected to the audiovisual equipment to detect whether the audio equipment is on or off based on the detected temperature. Once again, in response to user input via the user device 135, the control logic 4 2 may transmit commands to the audiovisual equipment via the !R blaster 403 of the !oT device 03.

[0070] It should be noted that the foregoing are merely illustrative examples of one embodiment of the Invention. The underlying principles of the invention are not limited to any particular type of sensors or equipment to be controlled by loT devices.

[0071] In an embodiment in which the IoT devices 101 -103 are coupled to the loT hub 1 10 via a Bluetooth LE connection, the sensor data and commands are sent over the Bluetooth LE channel. However, the underlying principles of the Invention are not limited to Bluetooth LE or any other communication standard.

[0072] In one embodiment, the control codes required to control each of the pieces of electronics equipment are stored in a database 413 on the loT hub 1 10 and/or a database 422 on the !oT service 120. As illustrated in Figure 4B, the control codes may be provided to the ioT hub 0 from a master database of control codes 422 for different pieces of equipment maintained on the IoT service 120. The end user may specify the types of electronic (or other) equipment to be controlled via the app or browser executed on the user device 35 and, in response, a remote control code learning module 491 on the IoT hub may retrieve the required IR/RF codes from the remote control code database 492 on the IoT service 120 (e.g., identifying each piece of electronic equipment with a unique ID).

[0073] In addition, in one embodiment, the IoT hub 1 10 is equipped with an IR/RF Interface 490 to allow the remote control code learning module 491 to "learn" new remote control codes directly from the original remote control 495 provided with the electronic equipment. For example, if control codes for the original remote control provided with the air conditioner 430 is not included in the remote control database, the user may interact with the IoT hub 1 10 via the app/browser on the user device 135 to teach the loT hub 1 10 the various control codes generated by the original remote control (e.g., increase temperature, decrease temperature, etc). Once the remote control codes are learned they may be stored in the control code database 4 3 on the loT hub 1 10 and/or sent back to the loT service 120 to be included In the central remote control code database 492 (and subsequently used by other users with the same air conditioner unit 430).

[0074] In one embodiment, each of the !oT devices 101 - 03 have an extremely small form factor and may be affixed on or near their respective electronics equipment 430-432 using double-sided tape, a small nail, a magnetic attachment, etc. For control of a piece of equipment such as the air conditioner 430, it would be desirable to place the loT device 101 sufficiently far away so that the sensor 404 can accurately measure the ambient temperature in the home (e.g., placing the loT device directly on the air conditioner would result In a temperature measurement which would be too low when the air conditioner was running or too high when the heater was running). In contrast, the loT device 102 used for controlling lighting may be placed on or near the lighting fixture 431 for the sensor 405 to detect the current lighting level.

[0075] In addition to providing general control functions as described, one embodiment of the loT hub 1 10 and/or loT service 120 transmits notifications to the end user related to the current status of each piece of electronics equipment. The notifications, which may be text messages and/or app-specific notifications, may then be displayed on the display of the user's mobile device 35. For example, if the user's air conditioner has been on for an extended period of time but the temperature has not changed, the loT hub 1 10 and/or loT service 120 may send the user a notification that the air conditioner is not functioning properly. If the user is not home (which may be detected via motion sensors or based on the user's current detected location), and the sensors 406 indicate that audiovisual equipment 430 is on or sensors 405 indicate that the lights are on, then a notification may be sent to the user, asking if the user would like to turn off the audiovisual equipment 432 and/or lights 431 . The same type of notification may be sent for any equipment type.

[0076] Once the user receives a notification, he/she may remotely control the electronics equipment 430-432 via the app or browser on the user device 135. In one embodiment, the user device 135 is a touchscreen device and the app or browser displays an image of a remote control with user-selectable buttons for controlling the equipment 430-432. Upon receiving a notification, the user may open the graphical remote control and turn off or adjust the various different pieces of equipment. If connected via the loT service 120, the user's selections may be forwarded from the ioT service 120 to the IoT hub 1 10 which wiii then controi the equipment via the controi logic 412, Alternatively, the user Input may be sent directly to the IoT hub 1 10 from the user device 135.

[0077] In one embodiment, the user may program the control logic 4 2 on the IoT hub 0 to perform various automatic control functions with respect to the electronics equipment 430-432. In addition to maintaining a desired temperature, brightness level, and volume level as described above, the control logic 412 may automatically turn off the electronics equipment if certain conditions are defected. For example, if the controi logic 4 2 detects that the user is not home and that the air conditioner is not functioning, it may automatically turn off the air conditioner. Similarly, if the user is not home, and the sensors 406 indicate that audiovisual equipment 430 Is on or sensors 405 indicate that the lights are on, then the controi logic 412 may automatically transmit commands via the IR/RF blasters 403 and 402, to turn off the audiovisual equipment and lights, respectively.

[0078] Fsgure 5 illustrates additional embodiments of IoT devices 1 04- 05 equipped with sensors 503-504 for monitoring electronic equipment 530-531 . In particular, the IoT device 04 of this embodiment includes a temperature sensor 503 which may be placed on or near a stove 530 to detect when the stove has been left on. In one embodiment, the IoT device 04 transmits the current temperature measured by the temperature sensor 503 to the !oT hub 1 10 and/or the IoT service 120. If the stove is defected to be on for more than a threshold time period (e.g. , based on the measured temperature), then controi logic 5 2 may transmit a notification to the end user's device 135 informing the user that the stove 530 is on. In addition, in one embodiment, the IoT device 104 may Include a control module 501 to turn off the stove, either in response to receiving an instruction from the user or automatically (if the control logic 512 is programmed to do so by the user). In one embodiment, the control logic 501 comprises a switch to cut off electricity or gas to the stove 530. However, in other embodiments, the control logic 501 may be integrated within the stove Itself.

[0079] Figure 5 also illustrates an IoT device 105 with a motion sensor 504 for detecting the motion of certain types of electronics equipment such as a washer and/or dryer. Another sensor that may be used is an audio sensor (e.g., microphone and logic) for detecting an ambient volume level. As with the other embodiments described above, this embodiment may transmit notifications to the end user if certain specified conditions are met (e.g., if motion is detected for an extended period of time, indicating that the washer/dryer are not turning off). Although not shown in Figure 5, IoT device 105 may also be equipped with a control module to turn off the washer/dryer 531 (e.g., by switching off electric/gas), automatically, and/or in response to user input.

[0080] In one embodiment, a first IoT device with control logic and a switch may be configured to turn off all power in the user's home and a second IoT device with control logic and a switch may be configured to turn off all gas in the user's home. IoT devices with sensors may then be positioned on or near electronic or gas-powered equipment in the user's home. If the user is notified that a particular piece of equipment has been left on (e.g., the stove 530), the user may then send a command to turn off all electricity or gas In the home to prevent damage. Alternatively, the control logic 5 2 in the IoT hub 1 0 and/or the IoT service 120 may be configured to automatically turn off electricity or gas in such situations.

[0081] In one embodiment, the IoT hub 1 10 and IoT service 120 communicate at periodic intervals. If the IoT service 20 detects that the connection to the IoT hub 1 1 0 has been lost (e.g., by failing to receive a request or response from the IoT hub for a specified duration), it will communicate this information to the end user's device 135 (e.g., by sending a text message or app-specific notification).

APPARATUS AND METHOD FOR COMMUNICATING DATA THROUGH AN INTERMEDIARY DEVICE

[0082] As mentioned above, because the wireless technologies used to interconnect IoT devices such as Bluetooth LE are generally short range technologies, if the hub for an IoT implementation is outside the range of an IoT device, the IoT device will not be able to transmit data to the IoT hub (and vice versa).

[0083] To address this deficiency, one embodiment of the invention provides a mechanism for an IoT device which is outside of the wireless range of the IoT hub to periodically connect with one or more mobile devices when the mobile devices are within range. Once connected, the IoT device can transmit any data which needs to be provided to the IoT hub to the mobile device which then forwards the data to the IoT hub.

[0084] As illustrated In Figure 6 one embodiment includes an IoT hub 1 10, an IoT device 601 which is out of range of the IoT hub 0 and a mobile device 61 1 , The out of range IoT device 601 may include any form of IoT device capable of collecting and communicating data. For example, the IoT device 601 may comprise a data collection device configured within a refrigerator to monitor the food items available in the refrigerator, the users who consume the food items, and the current temperature. Of course, the underlying principles of the invention are not limited to any particular type of loT device. The techniques described herein may be implemented using any type of loT device including those used to collect and transmit data for smart meters, stoves, washers, dryers, lighting systems, HVAC systems, and audiovisual equipment, to name just a few.

[0085] Moreover, the mobile device In operation, the ioT device 61 1 illustrated in Figure 6 may be any form of mobile device capable of communicating and storing data. For example, in one embodiment, the mobile device 6 is a smartphone with an app installed thereon to facilitate the techniques described herein. In another embodiment, the mobile device 61 1 comprises a wearable device such as a communication token affixed to a neckiess or bracelet, a smartwatch or a fitness device. The wearable token may be particularly useful for elderly users or other users who do not own a smartphone device.

[0086] In operation, the out of range IoT device 601 may periodically or continually check for connectivity with a mobile device 61 1 . Upon establishing a connection (e.g., as the result of the user moving within the vicinity of the refrigerator) any collected data 605 on the IoT device 601 is automatically transmitted to a temporary data repository 6 5 on the mobile device 61 1 , In one embodiment, the IoT device 601 and mobile device 61 1 establish a local wireless communication channel using a low power wireless standard such as BTLE. In such a case, the mobile device 61 1 may initially be paired with the IoT device 601 using known pairing techniques.

[0087] One the data has been transferred to the temporary data repository, the mobile device 61 1 will transmit the data once communication is established with the IoT hub 0 (e.g., when the user walks within the range of the IoT hub 1 10). The IoT hub may then store the data in a central data repository 413 and/or send the data over the Internet to one or more services and/or other user devices. In one embodiment, the mobile device 6 may use a different type of communication channel to provide the data to the IoT hub 1 1 0 (potentially a higher power communication channel such as WiFi).

[0088] The out of range IoT device 601 , the mobile device 61 1 , and the IoT hub may all be configured with program code and/or logic to implement the techniques described herein. As illustrated in Figure 7, for example, the IoT device 601 may be configured with Intermediary connection logic and/or application, the mobile device 61 1 may be configured with an intermediary connection logic/application, and the IoT hub 1 10 may be configured with an Intermediary connection logic/application 721 to perform the operations described herein. The intermediary connection logic/application on each device may be implemented in hardware, software, or any combination thereof. In one embodiment, the intermediary connection logic/application 701 of the loT device 601 searches and establishes a connection with the intermediary connection

logic/application 71 1 on the mobile device (which may be implemented as a device app) to transier the data to the temporary data repository 615. The intermediary connection logic/application 701 on the mobile device 6 1 then forwards the data to the

intermediary connection logic/application on the loT hub, which stores the data in the central data repository 4 3.

[0089] As illustrated in Figure 7, the intermediary connection logic/applications 701 , 71 1 , 721 , on each device may be configured based on the application at hand. For example, for a refrigerator, the connection logic/application 701 may only need to transmit a few packets on a periodic basis. For other applications (e.g., temperature sensors), the connection logic/application 701 may need to transmit more frequent updates.

[0090] Rather than a mobile device 61 1 , in one embodiment, the loT device 601 may be configured to establish a wireless connection with one or more intermediary ioT devices, which are located within range of the IoT hub 1 10. In this embodiment, any IoT devices 601 out of range of the IoT hub may be linked to the hub by forming a "chain" using other IoT devices,

[0091] In addition, while only a single mobile device 61 1 Is illustrated in Figures 6-7 for simplicity, in one embodiment, multiple such mobile devices of different users may be configured to communicate with the IoT device 601 . Moreover, the same techniques may be implemented for multiple other IoT devices, thereby forming an intermediary device data collection system across the entire home.

[0092] Moreover, in one embodiment, the techniques described herein may be used to collect various different types of pertinent data. For example, in one embodiment, each time the mobile device 61 1 connects with the IoT device 601 , the identity of the user may be Included with the collected data 605, in this manner, the IoT system may be used to track the behavior of different users within the home. For example, if used within a refrigerator, the collected data 605 may then Include the identify of each user who passes by fridge, each user who opens the fridge, and the specific food items consumed by each user. Different types of data may be collected from other types of IoT devices. Using this data the system is able to determine, for example, which user washes clothes, which user watches TV on a given day, the times at which each user goes to s!eep and wakes up, etc. A!l of this crowd-sourced data may then be compiled within the data repository 41 3 of the ioT hub and/or forwarded to an external service or user.

[0093] Another beneficial application of the techniques described herein is for monitoring elderly users who may need assistance. For this application, the mobile device 6 1 may be a very small token worn by the elderly user to collect the information in different rooms of the user's home. Each time the user opens the refrigerator, for example, this data will be included with the collected data 605 and transferred to the !oT hub 0 via the token. The IoT hub may then provide the data to one or more external users (e.g., the children or other individuals who care for the elderly user). If data has not been collected for a specified period of time (e.g., 12 hours), then this means that the elderly user has not been moving around the home and/or has not been opening the refrigerator. The IoT hub 1 10 or an external service connected to the ioT hub may then transmit an alert notification to these other individuals, Informing them that they should check on the elderly user, in addition, the collected data 605 may include other pertinent information such as the food being consumed by the user and whether a trip to the grocery store is needed, whether and how frequently the elderly user is watching TV, the frequency with which the elderiy user washes clothes, etc.

[0094] In another implementation, the if there is a problem with an electronic device such as a washer, refrigerator, HVAC system, etc, the collected data may include an indication of a part that needs to be replaced. In such a case, a notification may be sent to a technician with a request to fix the problem. The technician may then arrive at the home with the needed replacement part.

[0095] A method in accordance with one embodiment of the invention is illustrated in Figure 8. The method may be implemented within the context of the architectures described above, but is not limited to any particular architecture.

[0096] At 80 , an ioT device which is out of range of the IoT hub periodically collects data (e.g., opening of the refrigerator door, food items used, etc). At 802 the IoT device periodically or continually checks for connectivity with a mobile device (e.g., using standard local wireless techniques for establishing a connection such as those specified by the BTLE standard), if the connection to the mobile device is established, determined at 802, then at 803, the collected data is transferred to the mobile device at 803. At 804, the mobile device transfers the data to the IoT hub, an external service and/or a user. As mentioned, the mobile device may transmit the data immediately if it Is already connected (e.g., via a WiFi link). [0097] In addition to collecting data from IoT devices, in one embodiment, the techniques described herein may be used to update or otherwise provide data to IoT devices. One example is shown in Figure 9A, which shows an IoT hub 1 10 with program code updates 90 that need to be installed on an IoT device 601 (or a group of such IoT devices). The program code updates may include system updates, patches, configuration data and any other data needed for the IoT device to operate as desired by the user. In one embodiment, the user may specify configuration options for the IoT device 601 via a mobile device or computer which are then stored on the IoT hub 0 and provided to the IoT device using the techniques described herein. Specifically, in one embodiment, the Intermediary connection logic/application 721 on the IoT hub 1 10 communicates with the intermediary connection logic/application 71 on the mobile device 61 1 to store the program code updates within a temporary storage 615. When the mobile device 61 1 enters the range of the IoT device 601 , the intermediary connection logic/application 71 1 on the mobile device 61 1 connects with the

intermediary/connection logic/application 701 on the IoT device 601 to provide the program code updates to the device. In one embodiment, the IoT device 601 may then enter into an automated update process to install the new program code updates and/or data.

[0098] A method for updating an IoT device is shown in Figure 9B. The method may be Implemented within the context of the system architectures described above, but is not limited to any particular system architectures.

[0099] At 900 new program code or data updates are made available on the IoT hub and/or an externa! service (e.g., coupled to the mobile device over the Internet). At 901 , the mobile device receives and stores the program code or data updates on behalf of the IoT device. The IoT device and/or mobile device periodically check to determine whether a connection has been established at 902. If a connection is established, determined at 903, then at 904 the updates are transferred to the !oT device and Installed.

EMBODIMENTS FOR I MPROVED SECURITY

[00100] in one embodiment, the low power microcontroller 200 of each IoT device 101 and the low power logic/microcontroller 301 of the IoT hub 1 10 include a secure key store for storing encryption keys used by the embodiments described below (see, e.g., Figures 10-15 and associated text). Alternatively, the keys may be secured in a subscriber identify module (SIM) as discussed below. [00101 ] Fsgure 10 illustrates a high level architecture which uses public key

Infrastructure (PKI) techniques and/or symmetric key exchange/encryption techniques to encrypt communications between the IoT Service 120, the ioT hub 0 and the IoT devices 101 -102.

[00102] Embodiments which use public/private key pairs will first be described, followed by embodiments which use symmetric key exchange/encryption techniques. In particular, in an embodiment which uses PKI, a unique public/private key pair is associated with each IoT device 101 - 02, each IoT hub 1 10 and the IoT service 20. In one embodiment, when a new IoT hub 1 10 is set up, its public key is provided to the IoT service 20 and when a new IoT device 01 is set up, it's public key is provided to both the IoT hub 1 10 and the IoT service 120. Various techniques for securely exchanging the public keys between devices are described below. In one embodiment, all public keys are signed by a master key known to ail of the receiving devices (i.e., a form of certificate) so that any receiving device can verify the validity of the public keys by validating the signatures. Thus, these certificates would be exchanged rather than merely exchanging the raw public keys.

[00103] As illustrated, in one embodiment, each IoT device 101 , 102 includes a secure key storage 1 001 , 1003, respectively, for security storing each device's private key. Security logic 1002, 1304 then utilizes the securely stored private keys to perform the encryption/decryption operations described herein. Similarly, the IoT hub 1 1 0 Includes a secure storage 101 1 for storing the IoT hub private key and the public keys of the IoT devices 101 -102 and the IoT service 20; as well as security logic 1012 for using the keys to perform encryption/decryption operations. Finally, the IoT service 120 may include a secure storage 1021 for security storing Its own private key, the public keys of various IoT devices and IoT hubs, and a security logic 0 3 for using the keys to encrypt/decrypt communication with IoT hubs and devices. In one embodiment, when the IoT hub 0 receives a public key certificate from an IoT device it can verify it (e.g., by validating the signature using the master key as described above), and then extract the public key from within it and store that public key in it's secure key store 101 1 .

[00104] By way of example, in one embodiment, when the IoT service 20 needs to transmit a command or data to an IoT device 101 (e.g., a command to unlock a door, a request to read a sensor, data to be processed/displayed by the IoT device, etc) the security logic 013 encrypts the data/command using the public key of the IoT device 01 to generate an encrypted IoT device packet. In one embodiment, if then encrypts the !oT device packet using the public key of the loT hub 1 10 to generate an loT hub packet and transmits the loT hub packet to the loT hub 1 10. In one embodiment, the service 120 signs the encrypted message with it's private key or the master key mentioned above so that the device 101 can verify it is receiving an unaltered message from a trusted source. The device 1 01 may then validate the signature using the public key corresponding to the private key and/or the master key. As mentioned above, symmetric key exchange/encryption techniques may be used instead of public/private key encryption, in these embodiments, rather than privately storing one key and providing a corresponding public key to other devices, the devices may each be provided with a copy of the same symmetric key to be used for encryption and to validate signatures. One example of a symmetric key algorithm is the Advanced Encryption Standard (AES), although the underlying principles of the invention are not limited to any type of specific symmetric keys.

[00105] Using a symmetric key implementation, each device 101 enters into a secure key exchange protocol to exchange a symmetric key with the loT hub 1 10. A secure key provisioning protocol such as the Dynamic Symmetric Key Provisioning Protocol (DSKPP) may be used to exchange the keys over a secure communication channel (see, e.g. , Request for Comments (RFC) 6063). However, the underlying principles of the invention are not limited to any particular key provisioning protocol.

[00106] Once the symmetric keys have been exchanged, they may be used by each device 01 and the loT hub 1 10 to encrypt communications. Similarly, the ioT hub 1 10 and !oT service 120 may perform a secure symmetric key exchange and then use the exchanged symmetric keys to encrypt communications. In one embodiment a new symmetric key is exchanged periodically between the devices 101 and the hub 1 1 0 and between the hub 10 and the IoT service 120. In one embodiment, a new symmetric key is exchanged with each new communication session between the devices 101 , the hub 0, and the service 120 (e.g., a new key is generated and securely exchanged for each communication session). In one embodiment, if the security module 1012 in the IoT hub is trusted, the service 20 could negotiate a session key with the hub security module 1312 and then the security module 1012 would negotiate a session key with each device 120. Messages from the service 120 would then be decrypted and verified In the hub security module 1012 before being re-encrypted for transmission to the device 0 ,

[00107] In one embodiment, to prevent a compromise on the hub security module 1012 a one-time (permanent) Installation key may be negotiated between the device 101 and service 20 at installation time. When sending a message to a device 101 the service 120 could first encrypt/MAC with this device installation key, then encrypt/MAC that with the hub's session key. The hub 0 would then verify and extract the encrypted device blob and send that to the device.

[00108] In one embodiment of the invention, a counter mechanism is implemented to prevent replay attacks. For example, each successive communication from the device 01 to the hub 10 (or vice versa) may be assigned a continually increasing counter value. Both the hub 0 and device 101 will track this value and verify that the value is correct in each successive communication between the devices. The same techniques may be Implemented between the hub 1 10 and the service 20. Using a counter in this manner would make it more difficult to spoof the communication between each of the devices (because the counter value would be incorrect). However, even without this a shared installation key between the service and device would prevent network (hub) wide attacks to ail devices.

[00109] In one embodiment, when using public/private key encryption, the loT hub 1 1 0 uses its private key to decrypt the loT hub packet and generate the encrypted loT device packet, which It transmits to the associated loT device 101 . The loT device 101 then uses its private key to decrypt the loT device packet to generate the

command/data originated from the loT service 120. It may then process the data and/or execute the command. Using symmetric encryption, each device would encrypt and decrypt with the shared symmetric key. If either case, each transmitting device may also sign the message with it's private key so that the receiving device can verify it's authenticity.

[00110] A different set of keys may be used to encrypt communication from the loT device 01 to the loT hub 0 and to the loT service 120. For example, using a public/private key arrangement, in one embodiment, the security logic 1002 on the loT device 101 uses the public key of the loT hub 0 to encrypt data packets sent to the loT hub 1 10. The security logic 1012 on the loT hub 1 1 0 may then decrypt the data packets using the loT hub's private key. Similarly, the security logic 1002 on the loT device 101 and/or the security logic 1012 on the loT hub 1 10 may encrypt data packets sent to the loT service 20 using the public key of the loT service 120 (which may then be decrypted by the security logic 1013 on the loT service 120 using the service's private key). Using symmetric keys, the device 1 01 and hub 10 may share a symmetric key while the hub and service 20 may share a different symmetric key. [00111 ] While certain specific details are set forth above in the description above, it should be noted that the underlying principles of the invention may be implemented using various different encryption techniques. For example, while some embodiments discussed above use asymmetric public/private key pairs, an alternate embodiment may use symmetric keys securely exchanged between the various loT devices 101 -102, ioT hubs 1 10, and the IoT service 20. Moreover, in some embodiments, the

data/command itself is not encrypted, but a key is used to generate a signature over the data/command (or other data structure). The recipient may then use its key to validate the signature.

[00112] As illustrated in Figure 11 , in one embodiment, the secure key storage on each IoT device 101 is implemented using a programmable subscriber identity module (SIM) 1 1 01 . In this embodiment, the IoT device 101 may initially be provided to the end user with an un-programmed SIM card 1 101 seated within a SIM interface 1 100 on the IoT device 01 . In order to program the SI with a set of one or more encryption keys, the user takes the programmable SIM card 1 101 out of the SIM interface 500 and Inserts it into a SIM programming interface 1 102 on the IoT hub 1 0. Programming logic 1 125 on the IoT hub then securely programs the SIM card 1 101 to register/pair the IoT device 01 with the IoT hub 0 and IoT service 120, In one embodiment, a public/private key pair may be randomly generated by the programming logic 1 125 and the public key of the pair may then be stored in the IoT hub's secure storage device 41 1 while the private key may be stored within the programmable SIM 1 101 . In addition, the programming logic 525 may store the public keys of the IoT hub 1 10, the IoT service 20, and/or any other IoT devices 101 on the SIM card 1401 (to be used by the security logic 302 on the IoT device 101 to encrypt outgoing data). Once the SIM 1 101 is programmed, the new IoT device 101 may be provisioned with the IoT Service 20 using the SIM as a secure identifier (e.g., using existing techniques for registering a device using a SIM). Following provisioning, both the IoT hub 1 0 and the IoT service 120 will securely store a copy of the IoT device's public key to be used when encrypting communication with the IoT device 101 .

[00113] The techniques described above with respect to Figure 11 provide enormous flexibility when providing new IoT devices to end users. Rather than requiring a user to directly register each SIM with a particular service provider upon sale/purchase (as is currently done), the SIM may be programmed directly by the end user via the IoT hub 0 and the results of the programming may be securely communicated to the IoT service 120, Consequently, new IoT devices 101 may be sold to end users from online or local retailers and later securely provisioned with the IoT service 120.

[00114] While the registration and encryption techniques are described above within the specific context of a SiM (Subscriber Identity Module), the underlying principles of the invention are not limited to a "S!M" device. Rather, the underlying principles of the Invention may be Implemented using any type of device having secure storage for storing a set of encryption keys. Moreover, while the embodiments above include a removable SiM device, in one embodiment, the SIM device is not removable but the IoT device itself may be inserted within the programming Interface 1 102 of the IoT hub 1 0. [QQ115] In one embodiment, rather than requiring the user to program the SIM (or other device), the SIM Is pre-programmed into the IoT device 0 , prior to distribution to the end user, in this embodiment, when the user sets up the IoT device 0 , various techniques described herein may be used to securely exchange encryption keys between the IoT hub 0/ioT service 120 and the new IoT device 101 ,

[00116] For example, as illustrated in Figure 12A each IoT device 101 or SIM 401 may be packaged with a barcode or QR code 1501 uniquely identifying the IoT device 101 and/or SIM 1 001 . In one embodiment, the barcode or QR code 1201 comprises an encoded representation of the public key for the IoT device 01 or SIM 00 .

Alternatively, the barcode or QR code 1201 may be used by the IoT hub 1 1 0 and/or IoT service 20 to identify or generate the public key (e.g., used as a pointer to the public key which Is already stored in secure storage). The barcode or QR code 601 may be printed on a separate card (as shown in Figure 12A) or may be printed directly on the IoT device itself. Regardless of where the barcode is printed, in one embodiment, the IoT hub 1 10 is equipped with a barcode reader 206 for reading the barcode and providing the resulting data to the security logic 0 2 on the IoT hub 0 and/or the security logic 1013 on the IoT service 120. The security logic 0 2 on the IoT hub 1 10 may then store the public key for the IoT device within Its secure key storage 0 and the security logic 1 013 on the IoT service 120 may store the public key within its secure storage 021 (to be used for subsequent encrypted communication).

[00117] in one embodiment, the data contained in the barcode or QR code 1201 may also be captured via a user device 35 (e.g., such as an iPhone or Android device) with an installed IoT app or browser-based applet designed by the IoT service provider. Once captured, the barcode data may be securely communicated to the IoT service 120 over a secure connection (e.g., such as a secure sockets layer (SSL) connection). The barcode data may also be provided from the client device 135 to the loT hub 0 over a secure local connection (e.g., over a local WiFi or Bluetooth LE connection).

[00118] The security logic 002 on the loT device 101 and the security logic 1012 on the loT hub 1 10 may be implemented using hardware, software, firmware or any combination thereof. For example, in one embodiment, the security logic 1002, 1012 is Implemented within the chips used for establishing the local communication channel 130 between the !oT device 101 and the !oT hub 1 10 (e.g., the Bluetooth LE chip if the local channel 30 is Bluetooth LE). Regardless of the specific location of the security logic 1002, 1 012, in one embodiment, the security logic 1002, 1012 is designed to establish a secure execution environment for executing certain types of program code. This may be implemented, for example, by using TrustZone technology (available on some ARM processors) and/or Trusted Execution Technology (designed by Intel). Of course, the underlying principles of the invention are not limited to any particular type of secure execution technology,

[00119] In one embodiment, the barcode or QR code 1501 may be used to pair each loT device 101 with the IoT hub 1 10. For example, rather than using the standard wireless pairing process currently used to pair Bluetooth LE devices, a pairing code embedded within the barcode or QR code 1501 may be provided to the !oT hub 1 10 to pair the loT hub with the corresponding loT device.

[00120] Fsgure 12B illustrates one embodiment in which the barcode reader 208 on the loT hub 1 10 captures the barcode/QR code 1201 associated with the loT device 101 . As mentioned, the barcode/QR code 1201 may be printed directly on the loT device 01 or may be printed on a separate card provided with the ioT device 101 . In either case, the barcode reader 206 reads the pairing code from the barcode/QR code 1201 and provides the pairing code to the local communication module 1280. In one embodiment, the local communication module 1280 is a Bluetooth LE chip and associated software, although the underlying principles of the invention are not limited to any particular protocol standard. Once the pairing code is received, it is stored in a secure storage containing pairing data 1285 and the IoT device 101 and ioT hub 1 10 are automatically paired. Each time the IoT hub Is paired with a new IoT device in this manner, the pairing data for that pairing Is stored within the secure storage 685, In one embodiment, once the local communication module 1280 of the IoT hub 1 1 0 receives the pairing code, it may use the code as a key to encrypt communications over the local wireless channel with the IoT device 101 . [00121 ] Similarly, on the loT device 101 side, the local communication module 1590 stores pairing data within a local secure storage device 1595 indicating the pairing with the loT hub. The pairing data 1295 may Include the pre-programmed pairing code identified in the barcode/QR code 1201 . The pairing data 1295 may also include pairing data received from the local communication module 1280 on the ioT hub 0 required for establishing a secure local communication channel (e.g., an additional key to encrypt communication with the IoT hub 1 10).

[00122] Thus, the barcode/QR code 201 may be used to perform local pairing in a far more secure manner than current wireless pairing protocols because the pairing code is not transmitted over the air. In addition, in one embodiment, the same barcode/QR code 1201 used for pairing may be used to identify encryption keys to build a secure connection from the IoT device 01 to the IoT hub 1 10 and from the IoT hub 1 1 0 to the IoT service 120.

[00123] A method for programming a SIM card in accordance with one embodiment of the invention is illustrated in Figure 13. The method may be implemented within the system architecture described above, but is not limited to any particular system architecture.

[001 4] At 301 , a user receives a new IoT device with a blank SIM card and, at 1602, the user inserts the blank SIM card into an IoT hub. At 303, the user programs the blank SIM card with a set of one or more encryption keys. For example, as mentioned above, in one embodiment, the IoT hub may randomly generate a pubiic/private key pair and store the private key on the SIM card and the public key in its local secure storage. In addition, at 304, at least the public key is transmitted to the IoT service so that it may be used to identify the IoT device and establish encrypted communication with the IoT device. As mentioned above, in one embodiment, a programmable device other than a "SI " card may be used to perform the same functions as the SIM card in the method shown in Figure 13.

[00125] A method for integrating a new IoT device into a network is illustrated In Figure 14. The method may be Implemented within the system architecture described above, but Is not limited to any particular system architecture.

[00126] At 1401 , a user receives a new IoT device to which an encryption key has been pre-assigned. At 1402, the key is securely provided to the IoT hub. As mentioned above, In one embodiment, this involves reading a barcode associated with the IoT device to identify the public key of a public/private key pair assigned to the device. The barcode may be read directly by the IoT hub or captured via a mobile device via an app or bowser. In an alternate embodiment, a secure communication channel such as a Bluetooth LE channel, a near field communication (NFC) channel or a secure WiFi channel may be established between the loT device and the loT hub to exchange the key. Regardless of how the key is transmitted, once received, it is stored in the secure keystore of the loT hub device. As mentioned above, various secure execution technologies may be used on the loT hub to store and protect the key such as Secure Enclaves, Trusted Execution Technology (TXT), and/or Trustzone. in addition, at 803, the key is securely transmitted to the loT service which stores the key in its own secure keystore. It may then use the key to encrypt communication with the ioT device. One again, the exchange may be Implemented using a certificate/signed key. Within the hub 1 1 0 it is particularly important to prevent modification/addition/ removal of the stored keys.

[00127] A method for securely communicating commands/data to an IoT device using public/private keys is illustrated in Figure 15, The method may be implemented within the system architecture described above, but is not limited to any particular system architecture.

[00128] At 1501 , the ioT service encrypts the data/commands using the IoT device public key to create an IoT device packet, it then encrypts the IoT device packet using IoT hub's public key to create the IoT hub packet (e.g., creating an IoT hub wrapper around the IoT device packet). At 502, the IoT service transmits the IoT hub packet to the IoT hub. At 503, the IoT hub decrypts the IoT hub packet using the IoT hub's private key to generate the IoT device packet. At 504 it then transmits the IoT device packet to the IoT device which, at 1505, decrypts the IoT device packet using the IoT device private key to generate the data/commands. At 506, the IoT device processes the data/commands.

[00129] in an embodiment which uses symmetric keys, a symmetric key exchange may be negotiated between each of the devices (e.g., each device and the hub and between the hub and the service). Once the key exchange is complete, each transmitting device encrypts and/or signs each transmission using the symmetric key before transmitting data to the receiving device.

APPARATUS AND METHOD FOR ESTABLISHING SECURE COMMUNICATION CHANNELS IN AN INTERNET OF THINGS (IoT) SYSTEM [00130] In one embodiment of the invention, encryption and decryption of data is performed between the IoT service 120 and each IoT device 101 , regardless of the Intermediate devices used to support the communication channel (e.g., such as the users mobile device 81 and/or the ioT hub 0). One embodiment which

communicates via an IoT hub 1 10 is illustrated In Figure 16A and another embodiment which does not require an IoT hub is illustrated In Figure 16B,

[00131 ] Turning first to Figure 16A, the IoT service 120 includes an encryption engine 1660 which manages a set of "service session keys" 650 and each IoT device 101 includes an encryption engine 1661 which manages a set of "device session keys" 651 for encrypting/decrypting communication between the IoT device 101 and IoT service 120. The encryption engines may rely on different hardware modules when performing the security/encryption techniques described herein including a hardware security module 1630-1631 for (among other things) generating a session public/private key pair and preventing access to the private session key of the pair and a key stream generation module 640- 641 for generating a key stream using a derived secret. In one embodiment, the service session keys 1650 and the device session keys 1651 comprise related public/private key pairs. For example, in one embodiment, the device session keys 1651 on the IoT device 101 include a public key of the IoT service 120 and a private key of the IoT device 101 . As discussed in detail below, in one embodiment, to establish a secure communication session, the public/private session key pairs, 1650 and 65 , are used by each encryption engine, 660 and 66 , respectively, to generate the same secret which Is then used by the SKGMs 1640-1641 to generate a key stream to encrypt and decrypt communication between the IoT service 120 and the IoT device 101 . Additional details associated with generation and use of the secret in accordance with one embodiment of the invention are provided below.

[00132] In Figure 16A, once the secret has been generated using the keys 1650- 1651 , the client will always send messages to the IoT device 101 through the IoT service 20, as indicated by Clear transaction 161 1 . "Clear" as used herein is meant to indicate that the underlying message is not encrypted using the encryption techniques described herein. However, as Illustrated, In one embodiment, a secure sockets layer (SSL) channel or other secure channel (e.g., an Internet Protocol Security (IPSEC) channel) is established between the client device 61 1 and IoT service 120 to protect the communication. The encryption engine 1660 on the IoT service 120 then encrypts the message using the generated secret and transmits the encrypted message to the IoT hub 1 10 at 1602. Rather than using the secret to encrypt the message directly, in one embodiment, the secret and a counter value are used to generate a key stream, which is used to encrypt each message packet. Details of this embodiment are described below with respect to Figure 17, [00133] As illustrated, an SSL connection or other secure channel may be established between the loT service 120 and the loT hub 1 10. The loT hub 1 1 0 (which does not have the ability to decrypt the message in one embodiment) transmits the encrypted message to the loT device at 1603 (e.g., over a Bluetooth Low Energy (BTLE) communication channel). The encryption engine 1661 on the !oT device 101 may then decrypt the message using the secret and process the message contents. In an embodiment which uses the secret to generate a key stream, the encryption engine 1661 may generate the key stream using the secret and a counter value and then use the key stream for decryption of the message packet.

[00134] The message itself may comprise any form of communication between the loT service 120 and ioT device 0 . For example, the message may comprise a command packet instructing the IoT device 1 01 to perform a particular function such as taking a measurement and reporting the result back to the client device 61 1 or may include configuration data to configure the operation of the IoT device 0 .

[00135] If a response is required, the encryption engine 1661 on the IoT device 1 01 uses the secret or a derived key stream to encrypt the response and transmits the encrypted response to the IoT hub 1 10 at 1604, which forwards the response to the IoT service 120 at 605. The encryption engine 660 on the IoT service 120 then decrypts the response using the secret or a derived key stream and transmits the decrypted response to the client device 6 at 1606 (e.g., over the SSL or other secure communication channel).

[00136] Figure 16B illustrates an embodiment which does not require an IoT hub. Rather, in this embodiment, communication between the IoT device 1 01 and IoT service 120 occurs through the client device 6 (e.g., as in the embodiments described above with respect to Figures 6-9B). In this embodiment, to transmit a message to the IoT device 01 the client device 61 1 transmits an unencrypted version of the message to the IoT service 120 at 161 1 . The encryption engine 1660 encrypts the message using the secret or the derived key stream and transmits the encrypted message back to the client device 6 at 1612. The client device 61 1 then forwards the encrypted message to the IoT device 101 at 1613, and the encryption engine 1661 decrypts the message using the secret or the derived key stream. The IoT device 01 may then process the message as described herein. If a response is required, the encryption engine 1661 encrypts the response using the secret and transmits the encrypted response to the client device 61 1 at 1614, which forwards the encrypted response to the IoT service 120 at 1615. The encryption engine 1660 then decrypts the response and transmits the decrypted response to the client device 61 1 at 1616.

[00137] Figure 17 illustrates a key exchange and key stream generation which may initially be performed between the IoT service 120 and the IoT device 1 01 . in one embodiment, this key exchange may be performed each time the IoT service 120 and IoT device 01 establish a new communication session. Alternatively, the key exchange may be performed and the exchanged session keys may be used for a specified period of time (e.g., a day, a week, etc). While no intermediate devices are shown in Figure 17 for simplicity, communication may occur through the ioT hub 1 10 and/or the client device 61 1 .

[00138] in one embodiment, the encryption engine 1660 of the ioT service 20 sends a command to the HSM 630 (e.g., which may be such as a C!oudHSM offered by Amazon©) to generate a session public/private key pair. The HSM 1 630 may subsequently prevent access to the private session key of the pair. Similarly, the encryption engine on the ioT device 101 may transmit a command to the HSM 1631 (e.g., such as an Atecc508 HSM from Atmel Corporation®) which generates a session public/private key pair and prevents access to the session private key of the pair. Of course, the underlying principles of the invention are not limited to any specific type of encryption engine or manufacturer.

[00139] in one embodiment, the IoT service 120 transmits its session public key generated using the HSM 630 to the ioT device 101 at 170 . The IoT device uses its HSM 1631 to generate its own session public/private key pair and, at 702, transmits its public key of the pair to the IoT service 120. in one embodiment, the encryption engines 1660-1661 use an Elliptic curve Diffie-Hellman (ECDH) protocol, which is an anonymous key agreement that allows two parties with an elliptic curve public-private key pair, to establish a shared secret, in one embodiment, using these techniques, at 1703, the encryption engine 660 of the IoT service 20 generates the secret using the IoT device session public key and its own session private key. Similarly, at 1704, the encryption engine 1661 of the IoT device 101 independently generates the same secret using the IoT service 120 session public key and its own session private key. More specifically, in one embodiment, the encryption engine 660 on the IoT service 120 generates the secret according to the formula secret = IoT device session pub key * IoT service session private key, where ' * ' means that the IoT device session public key is point-multiplied by the IoT service session private key. The encryption engine 1661 on the IoT device 101 generates the secret according to the formula secret = IoT service session pub key * io ' T device session private key, where the loT service session public key is point multiplied by the ioT device session private key. In the end, the loT service 120 and IoT device 101 have both generated the same secret to be used to encrypt communication as described below. In one embodiment, the encryption engines 1660- 1661 rely on a hardware module such as the KSGMs 640-1641 respectively to perform the above operations for generating the secret.

[00140] Once the secret has been determined, it may be used by the encryption engines 660 and 1661 to encrypt and decrypt data directly. Alternatively, in one embodiment, the encryption engines 1660- 661 send commands to the KSGMs 1640- 641 to generate a new key stream using the secret to encrypt/decrypt each data packet (i.e., a new key stream data structure is generated for each packet), !n particular, one embodiment of the key stream generation module 640- 641

Implements a Galois/Counter Mode (GCM) in which a counter value is incremented for each data packet and is used in combination with the secret to generate the key stream. Thus, to transmit a data packet to the ioT service 120, the encryption engine 1661 of the IoT device 101 uses the secret and the current counter value to cause the KSGMs 1640-1641 to generate a new key stream and increment the counter value for generating the next key stream. The newly-generated key stream Is then used to encrypt the data packet prior to transmission to the ioT service 120. In one

embodiment, the key stream is XORed with the data to generate the encrypted data packet. In one embodiment, the IoT device 01 transmits the counter value with the encrypted data packet to the IoT service 20. The encryption engine 1660 on the IoT service then communicates with the KSGM 640 which uses the received counter value and the secret to generate the key stream (which should be the same key stream because the same secret and counter value are used) and uses the generated key stream to decrypt the data packet.

[00141 ] In one embodiment, data packets transmitted from the IoT service 20 to the IoT device 101 are encrypted In the same manner. Specifically, a counter is

Incremented for each data packet and used along with the secret to generate a new key stream. The key stream is then used to encrypt the data (e.g., performing an XOR of the data and the key stream) and the encrypted data packet is transmitted with the counter value to the IoT device 1 01 . The encryption engine 1661 on the IoT device 1 01 then communicates with the KSGM 1641 which uses the counter value and the secret to generate the same key stream which is used to decrypt the data packet. Thus, in this embodiment, the encryption engines 1660- 661 use their own counter values to generate a key stream to encrypt data and use the counter values received with the encrypted data packets to generate a key stream to decrypt the data.

[00142] In one embodiment, each encryption engine 1660-1661 keeps track of the last counter value It received from the other and includes sequencing logic to detect whether a counter value is received out of sequence or if the same counter value is received more than once, if a counter value is received out of sequence, or if the same counter value is received more than once, this may indicate that a replay attack is being attempted. In response, the encryption engines 660- 661 may disconnect from the communication channel and/or may generate a security alert.

[QQ143] Figure 18 illustrates an exemplary encrypted data packet employed in one embodiment of the Invention comprising a 4-byte counter value 1800, a variable-sized encrypted data field 80 , and a 6-byte tag 1802. In one embodiment, the tag 802 comprises a checksum value to validate the decrypted data (once it has been decrypted).

[00144] As mentioned, in one embodiment, the session public/private key pairs 1650- 651 exchanged between the loT service 120 and loT device 101 may be generated periodically and/or In response to the initiation of each new communication session.

[00145] One embodiment of the Invention Implements additional techniques for authenticating sessions between the loT service 120 and loT device 101 . In particular, In one embodiment, hierarchy of public/private key pairs is used including a master key pair, a set of factory key pairs, and a set of loT service key pairs, and a set of loT device key pairs. In one embodiment, the master key pair comprises a root of trust for ail of the other key pairs and is maintained in a single, highly secure location (e.g., under the control of the organization implementing the loT systems described herein). The master private key may be used to generate signatures over (and thereby authenticate) various other key pairs such as the factory key pairs. The signatures may then be verified using the master public key. In one embodiment, each factory which manufactures loT devices is assigned Its own factory key pair which may then be used to authenticate loT service keys and loT device keys. For example, in one embodiment, a factory private key is used to generate a signature over loT service public keys and loT device public keys. These signature may then be verified using the corresponding factory public key. Note that these loT service/device public keys are not the same as the "session" public/private keys described above with respect to Figures 16A-B, The session public/private keys described above are temporary (i.e., generated for a service/device session) while the ioT service/device key pairs are permanent (i.e., generated at the factory).

[00146] With the foregoing relationships between master keys, factory keys, service/device keys in mind, one embodiment of the invention performs the following operations to provide additional layers of authentication and security between the ioT service 120 and !oT device 101 :

A. !n one embodiment, the IoT service 120 initially generates a message containing the following:

1 . The IoT service's unique ID:

• The ioT service's serial number;

® a Timestamp;

• The ID of the factory key used to sign this unique ID;

• a Class of the unique ID (I.e., a service);

® !oT service's public key

• The signature over the unique ID.

2. The Factory Certificate including:

• A timestamp

• The !D of the master key used to sign the certificate

• The factory public key

• The signature of the Factory Certificate

3. IoT service session public key (as described above with respect to Figures 16A-B)

4. IoT service session public key signature (e.g., signed with the IoT service's private key)

B. In one embodiment, the message is sent to the IoT device on the negotiation channel (described below). The IoT device parses the message and:

1 . Verifies the signature of the factory certificate (only if present in the message payload)

2. Verifies the signature of the unique ID using the key identified by the unique ID

3. Verifies the IoT serv-ce session public key signature using the IoT service's public key from the unique ID

4. Saves the IoT service's public key as well as the IoT service's session public key 5. Generates the !oT device session key pair

C, The loT device then generates a message containing the following:

1 . loT device's unique ID

® loT device serial number

• Timestamp

• ID of factory key used to sign this unique ID

® Class of unique ID (i.e., loT device)

• loT device's public key

• Signature of unique ID

2. loT device's session public key

3. Signature of (loT device session public key + loT service session public key) signed with loT device's key

D. This message is sent back to the loT service. The !oT service parses the message and:

1 . Verifies the signature of the unique I D using the factory public key

2. Verifies the signature of the session public keys using the loT

device's public key

3. Saves the loT device's session public key

The loT service then generates a message containing a signature of (loT on public key + loT service session public key) signed with the loT service's

The loT device parses the message and:

1 . Verifies the signature of the session public keys using the loT

service's public key

2. Generates the key stream from the loT device session private key and the loT service's session public key

3. The loT device then sends a "messaging available" message.

G. The loT service then does the following:

1 . Generates the key stream from the loT service session private key and the loT device's session public key 2. Creates a new message on the messaging channel which contains the following:

• Generates and stores a random 2 byte value

• Set attribute message with the boomerang attribute id

(discussed below) and the random value

H. The !oT device receives the message and:

1 . Attempts to decrypt the message

2. Emits an Update with the same value on the indicated attribute Id i. The !oT service recognizes the message payload contains a boomerang attribute update and:

1 . Sets its paired state to true

2. Sends a pairing complete message on the negotiator channel

J. loT device receives the message and sets his paired state to true

[00147] While the above techniques are described with respect to an "loT service" and an "ioT device," the underlying principles of the invention may be implemented to establish a secure communication channel between any two devices including user client devices, servers, and Internet services.

[00148] The above techniques are highly secure because the private keys are never shared over the air (in contrast to current Bluetooth pairing techniques in which a secret is transmitted from one party to the other). An attacker listening to the entire conversation will only have the public keys, which are insufficient to generate the shared secret. These techniques also prevent a man-in-the-middle attack by exchanging signed public keys. In addition, because GCM and separate counters are used on each device, any kind of "replay attack" (where a man In the middle captures the data and sends it again) is prevented. Some embodiments also prevent replay attacks by using asymmetrical counters.

TECHNIQUES FOR EXCHANGING DATA AND COMMANDS WITHOUT FORMALLY PAIRING DEVICES

[00149] GATT is an acronym for the Generic Attribute Profile, and it defines the way that two Bluetooth Low Energy (BTLE) devices transfer data back and forth. It makes use of a generic data protocol called the Attribute Protocol (ATT), which is used to store Services, Characteristics and related data in a simple lookup table using 16-bit

Characteristic IDs for each entry in the table. Note that while the "characteristics" are sometimes referred to as "attributes."

[0015Q] On Bluetooth devices, the most commonly used characteristic is the devices "name" (having characteristic !D 10752 (Qx2A00)). For example, a Bluetooth device may identify other Bluetooth devices within Its vicinity by reading the "Name" characteristic published by those other Bluetooth devices using GATT. Thus, Bluetooth device have the inherent ability to exchange data without formally pairing/bonding the devices (note that "paring" and "bonding" are sometimes used interchangeably; the remainder of this discussion will use the term "pairing").

[00151 ] One embodiment of the Invention takes advantage of this capability to communicate with BTLE-enabied loT devices without formally pairing with these devices. Pairing with each Individual loT device would extremely inefficient because of the amount of time required to pair with each device and because only one paired connection may be established at a time.

[00152] Fsgure 19 illustrates one particular embodiment in which a Bluetooth (BT) device 1910 establishes a network socket abstraction with a BT communication module 901 of an loT device 101 without formally establishing a paired BT connection. The BT device 1910 may be included in an loT hub 1 10 and/or a client device 61 1 such as shown In Figure 16A. As illustrated, the BT communication module 901 maintains a data structure containing a list of characteristic IDs, names associated with those characteristic IDs and values for those characteristic IDs. The value for each characteristic may be stored within a 20-byte buffer identified by the characteristic ID in accordance with the current BT standard. However, the underlying principles of the Invention are not limited to any particular buffer size.

[00153] In the example in Figure 19, the "Name" characteristic is a BT-defined characteristic which is assigned a specific value of "loT Device 4." One embodiment of the invention specifies a first set of additional characteristics to be used for negotiating a secure communication channel with the BT device 9 0 and a second set of additional characteristics to be used for encrypted communication with the BT device 1910. In particular, a "negotiation write" characteristic, identified by characteristic ID <65532> in the illustrated example, may be used to transmit outgoing negotiation messages and the "negotiation read" characteristic, identified by characteristic ID <65533> may be used to receive incoming negotiation messages. The "negotiation messages" may include messages used by the BT device 1910 and the BT communication module 1 901 to establish a secure communication channel as described herein. By way of example, in Figure 17, the loT device 1 01 may receive the loT service session public key 1701 via the "negotiation read" characteristic <65533>. The key 701 may be transmitted from the loT service 120 to a BTLE -enabled loT hub 1 1 0 or client device 61 1 which may then use GATT to write the key 701 to the negotiation read value buffer Identified by characteristic ID <65533>. ioT device application logic 1902 may then read the key 1701 from the value buffer identified by characteristic ID <65533> and process it as described above (e.g., using it to generate a secret and using the secret to generate a key stream, etc).

[00154] If the key 1 701 Is greater than 20 bytes (the maximum buffer size in some current implementations), then It may be written in 20-byte portions. For example, the first 20 bytes may be written by the BT communication module 1903 to characteristic ID <65533> and read by the IoT device application logic 1902, which may then write an acknowledgement message to the negotiation write value buffer identified by characteristic ID <65532>. Using GATT, the BT communication module 1903 may read this acknowledgement from characteristic ID <65532> and responslvely write the next 20 bytes of the key 1701 to the negotiation read value buffer identified by characteristic ID <65533>, In this manner, a network socket abstraction defined by characteristic IDs <65532> and <65533> is established for exchanging negotiation messages used to establish a secure communication channel.

[00155] In one embodiment, once the secure communication channel Is established, a second network socket abstraction is established using characteristic ID <65534> (for transmitting encrypted data packets from IoT device 01 ) and characteristic ID <65533> (for receiving encrypted data packets by IoT device). That is, when BT communication module 1903 has an encrypted data packet to transmit (e.g., such as encrypted message 603 in Figure 16A), it starts writing the encrypted data packet, 20 bytes at a time, using the message read value buffer Identified by characteristic !D <65533>. The IoT device application logic 1902 will then read the encrypted data packet, 20 bytes at a time, from the read value buffer, sending acknowledgement messages to the BT communication module 1 903 as needed via the write value buffer Identified by characteristic ID <65532>.

[00156] In one embodiment, the commands of GET, SET, and UPDATE described below are used to exchange data and commands between the two BT communication modules 901 and 1903. For example, the BT communication module 903 may send a packet identifying characteristic ID <65533> and containing the SET command to write into the value field/buffer identified by characteristic ID <65533> which may then be read by the loT device application logic 1902. To retrieve data from the loT device 101 , the BT communication module 903 may transmit a GET command directed to the value fieid/buffer identified by characteristic I D <65534>. In response to the GET command, the BT communication module 1901 may transmit an UPDATE packet to the BT communication module 903 containing the data from the value field/buffer identified by characteristic ID <65534>. In addition, UPDATE packets may be transmitted automatically, in response to changes in a particular attribute on the loT device 01 . For example, if the loT device is associated with a lighting system and the user turns on the lights, then an UPDATE packet may be sent to reflect the change to the on/off attribute associated with the lighting application.

[00157] Figure 20 illustrates exemplary packet formats used for GET, SET, and UPDATE in accordance with one embodiment of the invention. In one embodiment, these packets are transmitted over the message write <65534> and message read <65533> channels following negotiation. In the GET packet 2001 , a first 1 -byte field Includes a value (0X 0) which identifies the packet as a GET packet. A second 1 -byte field includes a request ID, which uniquely identifies the current GET command (i.e., Identifies the current transaction with which the GET command is associated). For example, each instance of a GET command transmitted from a service or device may be assigned a different request ID. This may be done, for example, by Incrementing a counter and using the counter value as the request ID. However, the underlying principles of the invention are not limited to any particular manner for setting the request ID.

[00158] A 2-byte attribute ID identifies the application-specific attribute to which the packet is directed. For example, if the GET command is being sent to loT device 01 illustrated in Figure 19, the attribute ID may be used to identify the particular application-specific value being requested. Returning to the above example, the GET command may be directed to an application-specific attribute ID such as power status of a lighting system, which comprises a value identifying whether the lights are powered on or off (e.g., 1 = on, 0 = off), if the loT device 101 is a security apparatus associated with a door, then the value field may identify the current status of the door (e.g., 1 = opened, 0 = closed), in response to the GET command, a response may be transmitting containing the current value identified by the attribute ID.

[00159] The SET packet 2002 and UPDATE packet 2003 illustrated in Figure 20 also Include a first 1 -byte field identifying the type of packet (i.e. , SET and UPDATE), a second 1 -byte field containing a request ID, and a 2-byte attribute ID field identifying an application-defined attribute. In addition, the SET packet includes a 2-byte length value Identifying the length of data contained in an n-byte value data field. The value data field may include a command to be executed on the loT device and/or configuration data to configure the operation of the loT device in some manner (e.g., to set a desired parameter, to power down the loT device, etc). For example, if the loT device 101 controls the speed of a fan, the value field may reflect the current fan speed.

[00160] The UPDATE packet 2003 may be transmitted to provide an update of the results of the SET command. The UPDATE packet 2003 includes a 2-byte length value field to identify the length of the n-byte value data field which may include data related to the results of the SET command. In addition, a 1 -byte update state field may identify the current state of the variable being updated. For example, if the SET command attempted to turn off a light controlled by the loT device, the update state field may indicate whether the light was successfully turned off.

[00161 ] Figure 21 illustrates an exemplary sequence of transactions between the loT service 20 and an loT device 01 Involving the SET and UPDATE commands.

Intermediary devices such as the loT hub and the user's mobile device are not shown to avoid obscuring the underlying principles of the invention. At 210 , the SET command 21 01 is transmitted form the loT service to the loT device 101 and received by the BT communication module 1 901 which responsively updates the GATT value buffer Identified by the characteristic ID at 2102. The SET command is read from the value buffer by the low power microcontroller (MCU) 200 at 2103 (or by program code being executed on the low power MCU such as loT device application logic 1902 shown In Figure 19). At 2104, the MCU 200 or program code performs an operation in response to the SET command. For example, the SET command may include an attribute ID specifying a new configuration parameter such as a new temperature or may include a state value such as on/off (to cause the loT device to enter into an "on" or a low power state). Thus, at 2104, the new value is set in the loT device and an UPDATE command Is returned at 2105 and the actual value is updated in a GATT value field at 2106. In some cases, the actual value will be equal to the desired value. In other cases, the updated value may be different (I.e., because It may take time for the loT device 101 to update certain types of values). Finally, at 2107, the UPDATE command is transmitted back to the loT service 120 containing the actual value from the GATT value field.

[00162] Figure 22 illustrates a method for implementing a secure communication channel between an loT service and an ioT device in accordance with one embodiment of the invention. The method may be implemented within the context of the network architectures described above but is not limited to any specific architecture.

[00163] At 2201 , the IoT service creates an encrypted channel to communicate with the IoT hub using elliptic curve digital signature algorithm (ECDSA) certificates. At 2202, the IoT service encrypts data/commands in IoT device packets using the a session secret to create an encrypted device packet. As mentioned above, the session secret may be independently generated by the IoT device and the ioT service. At 2203, the IoT service transmits the encrypted device packet to the IoT hub over the encrypted channel. At 2204, without decrypting, the IoT hub passes the encrypted devic packet to the IoT device. At 22-5, the IoT device uses the session secret to decrypt the encrypted device packet. As mentioned, in one embodiment this may be accomplished by using the secret and a counter value (provided with the encrypted device packet) to generate a key stream and then using the key stream to decrypt the packet. At 2206, the IoT device then extracts and processes the data and/or commands contained within the device packet.

[00164] Thus, using the above techniques, bi-directional, secure network socket abstractions may be established between two BT-enabled devices without formally pairing the BT devices using standard pairing techniques. While these techniques are described above with respect to an IoT device 101 communicating with an IoT service 20, the underlying principles of the invention may be implemented to negotiate and establish a secure communication channel between any two BT-enabied devices.

[00165] Figures 23A-C illustrate a detailed method for pairing devices in accordance with one embodiment of the invention. The method may be implemented within the context of the system architectures described above, but is not limited to any specific system architectures.

[00166] At 2301 , the IoT Service creates a packet containing serial number and public key of the IoT Service. At 2302, the IoT Service signs the packet using the factory private key. At 2303, the IoT Service sends the packet over an encrypted channel to the IoT hub and at 2304 the IoT hub forwards the packet to IoT device over an unencrypted channel. At 2305, the IoT device verifies the signature of packet and, at 2306, the IoT device generates a packet containing the serial number and public key of the IoT Device. At 2307, the IoT device signs the packet using the factory private key and at 2308, the IoT device sends the packet over the unencrypted channel to the IoT hub. [00167] At 2309, the IoT hub forwards the packet to the IoT service over an encrypted channel and at 2310, the ioT Service verifies the signature of the packet. At 231 1 , the IoT Service generates a session key pair, and at 23 2 the IoT Service generates a packet containing the session public key. The IoT Service then signs the packet with IoT Service private key at 23 3 and, at 23 4, the IoT Service sends the packet to the IoT hub over the encrypted channel.

[00168] Turning to Figure 23B, the IoT hub forwards the packet to the IoT device over the unencrypted channel at 2315 and, at 2316, the IoT device verifies the signature of packet. At 2317 the IoT device generates session key pair (e.g., using the techniques described above), and, at 23 8, an IoT device packet is generated containing the IoT device session public key. At 231 9, the IoT device signs the IoT device packet with IoT device private key. At 2320, the IoT device sends the packet to the IoT hub over the unencrypted channel and, at 2321 , the IoT hub forwards the packet to the IoT service over an encrypted channel.

[00169] At 2322, the IoT service verifies the signature of the packet (e.g., using the IoT device public key) and, at 2323, the IoT service uses the IoT service private key and the IoT device public key to generate the session secret (as described in detail above). At 2324, the IoT device uses the IoT device private key and IoT service public key to generate the session secret (again, as described above) and, at 2325, the IoT device generates a random number and encrypts it using the session secret. At 2326, the IoT service sends the encrypted packet to IoT hub over the encrypted channel. At 2327, the IoT hub forwards the encrypted packet to the IoT device over the unencrypted channel. At 2328, the IoT device decrypts the packet using the session secret.

[00170] Turning to Figure 23C, the IoT device re-encrypts the packet using the session secret at 2329 and, at 2330, the IoT device sends the encrypted packet to the IoT hub over the unencrypted channel. At 2331 , the IoT hub forwards the encrypted packet to the IoT service over the encrypted channel. The IoT service decrypts the packet using the session secret at 2332. At 2333 the IoT service verifies that the random number matches the random number It sent. The IoT service then sends a packet indicating that pairing Is complete at 2334 and ail subsequent messages are encrypted using the session secret at 2335.

EMBEDDED INTERNET OF THINGS (IOT) HUB, SYSTEM, AND METHOD

[00171 ] As mentioned above, adoption of IoT functionality In home appliances has been limited for a variety of reasons including, for example, a lack of wireless expertise, high certification costs (particularly when cellular is involved), and antenna size and requirements (which change based on the wireless system each antenna supports). loT ecosystems are evolving which means there is a need for a flexible loT

implementation for appliances that can be upgraded when needed without changing the underlying appliance.

[00172] One embodiment of the Invention addresses these issues by providing a modular mechanical and electrical design for the ioT hub, allowing it to be interfaced with various different types of appliances. In particular, in one embodiment, each appliance is equipped with a consistent interface slot having predetermined mechanical and electrical specifications which allows for the attachment of an embedded IoT unit (referred to herein as an "embedded IoT hub"). In addition, in one embodiment, each embedded !oT hub includes a standardized mechanical and electrical antenna interface to provide for the attachment of one or more antenna module that also have a predefined mechanical/electrical interface for attachment to the embedded IoT hub via the antenna interface.

[00173] in addition, in one embodiment, the embedded IoT hub is equipped with a local wireless communication interface such as a Bluetooth Low Energy (BTLE) controller to automatically establish a local wireless communication channel with a wireless communication device within the appliance. For example, when seated within the interface slot of the appliance, the BTLE controller within the embedded IoT hub automatically connects to a BTLE controller within the appliance. The BTLE controller within the appliance may itself be communicatively coupled to sensors or other IoT devices within the appliance. Thus, once the local wireless communication channel is established within the appliance, the appliance may provide data collected via its sensors and receive data and commands from the embedded IoT hub.

[00174] Significantly, communication with the appliance may be established as described above without re-certifying the appliance. Rather, once the appliance has been certified to establish a local wireless communication channel using BTLE (or other local wireless protocol), it does not need to be re-certified for use with the embedded IoT hub (which is certified separately from the appliance). This is a significant

Improvement over existing systems which require a separate, costly re-certification of each appliance (particularly when cellular is involved).

[00175] Figure 24 illustrates a system architecture in accordance with one embodiment of the invention in which an end user appliance 2420 is configured with a standardized IoT hub slot 2401 comprising standardized electrical and mechanica! specifications (some examples of which are set forth below). Specifically, the hub slot 2403 is formed using spatial dimensions corresponding to the dimensions of the enclosure of the ioT hub 2404 and also includes an embedded loT hub interface 2413 for electrically coupling to an appliance interface 2414 on the embedded IoT hub 2404. In addition, one embodiment of the embedded ioT hub 2404 includes an antenna Interface 2415 to communicatively couple with an IoT hub interface 24 6 on a modular antenna 2405. As described in detail below, various different forms of modular antennas may be coupled to the antenna interface 2415 depending on the types of wireless technologies to be used to connect the appliance to the Internet. In one embodiment, modular antennas 2405 may Include antennas designed for any combination of BTLE, VVIFi, and Cellular communication (e.g. , 4G/LTE, 5G, etc), !n addition, the modular antennas 2405 may be equipped with other accessories such as subscriber identity module (SIM) cards required to connect over various different wireless networks, security chips for performing encryption and digital signatures, and barcode or QR code readers for reading barcodes/QR codes as described herein.

[00176] As illustrated in Figure 25, one exemplary embodiment of the IoT hub slot 2403 is formed from a metal enclosure 2501 with the dimensions of 130mm x 40mm x 70mm. Of course, the underlying principles of the Invention are not limited to any particular set of dimensions. An exemplary IoT hub interface 2413 is provided at the bottom of the slot and comprises a plurality of 10mm x 10mm connection pads 2505, which interconnect with corresponding connection pads on the IoT hub (see, e.g., 7x7mm connection pads 1501 described below with respect to Figure 27). In addition, a set of latches 2502 are formed on top of the slot 2403 to lock down the IoT hub 2404 when inserted into the slot.

[00177] In the illustrated embodiment, 8 electrical connection pads 2505 are included including ground (GND) and power (PWR) pads which are electrically coupled to the ground plane and the power supply, respectively, of the appliance. Some number of pads (four in the example) are reserved for future electrical purposes. In an alternate embodiment, the pads may include a set of communication pads to communicatively couple the IoT hub to a wired communication channel within the appliance (e.g. , Ethernet, USB, etc).

[00178] Figure 26 illustrates additional details associated with integration of the hub slot 2403 within the appliance 2420. As mentioned, in one embodiment, the ground plane(s) 2602 of the appliance 2420 are coupled to the GND pads and the power supply system 2601 is configured to supply a voltage to the PWR pads on the hub slot 2403. In addition, in an embodiment which includes a wired internal connection, an interna! communication channel (not shown) may be coupled to communication pads within the slot.

[00179] It should be noted that the slot 2403 illustrated in Figure 26 and the other figures is not drawn to scale. In many implementations, the size of the slot will be significantly smaller relative to the appliance than what is shown in these figures (particularly with respect to larger appliances such as refrigerators, washers, dryers, etc). In addition, while illustrated at the top of the appliance 2420, in the figures, the hub slot 2403 may be placed in various alternate positions in the appliance (e.g., on the back, on the side, etc).

[00180] As illustrated in Figure 27, one embodiment of the embedded IoT hub 2404 includes an enclosure designed to fit within the IoT slot 2403. in the particular example shown in Figure 27, the enclosure is formed from dimensions of 120mm x 30mm x 60mm, although the underlying principles of the invention are not limited to any particular set of dimensions. An electrical board 2710 such as a printed circuit board (PCB) may be coupled to the enclosure and may include a variety of different communication chips electrically coupled thereon including a BTLE chip and one or more other radio chips (R1 , R2, R3), Of course, in an alternate embodiment, a single integrated circuit chip may be used which supports all of the communication protocols described herein. As mentioned, the internal electrical design of the embedded hub can vary based on the target radios that need to be supported. In the illustrated

embodiment, 7 x 7mm electrical connection pads on the bottom of the IoT hub 2404 match the defined locations of connection pads 2505 in the IoT hub slot 2403.

[00181 ] Electrical wiring (or other conductive material) connects at least one of the ground pads and one of the power pads of the hub connection pads 2701 to supply power to the eiecfricai board 2710. In addition, a ground wire and RF wire from the electrical board 2710 are coupled to the ground and RF pads, respectively, of the antenna interface 2415.

[00182] In one embodiment, a circular antenna module enclosure 2701 formed at the top of the embedded IoT hub 2404 has a 20mm diameter and 20mm depth. A set of latches 2705 are provided to latch the antenna module In place when inserted Into the enclosure 2701 . In addition, the antenna module enclosure 2701 includes two electrical connection pads 24 5 (e.g., RF and GND) that are 4 x 4mm (in one embodiment). As mentioned, in one embodiment, the IoT hub 204 will be certified as a stand-alone wireless device and go through the required Federal Communications Commission (FCC) and carrier-related certifications prior to Insertion into the appliance. For certification, the loT hub 1204 may be paired with various different antenna modules (as described below).

[00183] The embedded loT hub 1204 described herein may support a variety of target designs including (but not limited to), the following:

1 . WiFi ÷ BTLE hub for low cost connectivity design. Though the electrical board inside the HUB will be smaller, the mechanical enclosure and design of the embedded hub should stay the same.

2. WiFi + Cellular + BTLE hub for high-end connectivity design that supports WiFi and/or Cellular. Though the electrical board inside the loT hub will be smaller, the mechanical enclosure and design of the embedded hub should stay the same.

3. Cellular + BTLE hub for mid-level connectivity design. Though the electrical board inside the loT hub will be smaller, the mechanical enclosure and design of the embedded hub should stay the same,

4. Cellular + BTLE ÷ Zigbee hub for home automation high end connectivity design.

5. WiFi ÷ BTLE ÷ Z-Wave hub for home automation high end connectivity design.

Different antenna modules may be integrated to the embedded loT hub 1204 to enable the above functionalities. Examples are described below with respect to Figures 29-31 .

[00184] As illustrated in Figure 28, in one embodiment, a secure BTLE channel 2802 is established between the BTLE radio/controller on the electrical board 2710 and a BTLE radio/controller 2800 integrated within the appliance 220. The BTLE

radio/controller 2800 may be configured to automatically pair with the BTLE controller on the electrical board 2710 when the appliance is purchased by an end user along with an embedded loT hub 1204. Standard BTLE pairing techniques may also be employed. Once the connection is established integrated loT sensors and/or loT devices 2810 within the appliance may communicate through the embedded loT hub over the Internet.

[00185] Figure 29A illustrates a high level system architecture which shows three loT enabled appliances 2901 -2903 equipped with embedded loT hubs 2905-2907, respectively, which connect the appliances over the Internet 2922 via one or more network access devices 2915 (e.g. , cell towers, WiFi access points, etc). In an alternate embodiment shown In Figure 29B, only one ioT-enab!ed appliance 2902 is equipped with an embedded loT hub 2956 which acts as a centra! point of connectivity for the other IoT-enabled appliances, 2901 and 2903. For example, these other appliances 2901 , 2903 may include loT devices 2955, 2957 with wireless network interfaces for establishing local wireless connections (e.g., BTLE connections) with the loT hub 2956. As in various embodiments discussed above, the !oT hub 2956 provides these devices and various other loT devices (not shown) with connectivity over the Internet 2922.

[00186] The interaction between the various system components shown in Figures 29A-B may occur as described above. For example, the ioT hubs 2905-2907 (or a single IoT hub 2956 in Figure 29B) establish a communication channel with the IoT cloud service 2920 over the Internet 2922 to transmit and receive data and receive commands directed to the various appliances 2901 -2903. In the illustrated

embodiment, the IoT cloud service 2920 includes an IoT device/hub database 2930 comprising database records for each of the IoT hubs and IoT devices configured in the system, IoT device/hub management logic 2 5 creates the database records for new IoT hubs/devices and updates the IoT hub/device records in response to data transmitted by each of the IoT hubs/devices.

[00187] The IoT device management logic 1215 may also implement the various security/encryption functions described above to add new devices to the system (e.g., using QR codes/barcodes) and use keys to encrypt communications and/or generate digital signatures when communicating with the IoT-enabled appliances 2901 -2903. in one embodiment, a user may access information related to each of the ioT-enabled appliances 2901 -2903 and/or control the appliances via an app installed on a user device 29 0 which may be a smartphone device such as an Android® device or IPhone®. In addition, the user may access and control the IoT-enabled appliances 2901 -2903 via a browser or application installed on a desktop or laptop computer.

[00188] in one embodiment, control signals such as commands transmitted from the app or application on the user device 2910 are passed to the IoT cloud service 2920 over the internet 2922, then forwarded from the IoT cloud service to the IoT hubs 2905- 2907 (or a single central hub 2956). The IoT hubs may process the control signals and/of forward the control signals to one or more of the IoT devices and/or sensors within the IoT-enabled appliances 2901 -2903. Of course, the underlying principles of the invention are not limited to any particular manner in which the user

accesses/controls the various IoT hubs and devices. For example, the user may transmit a control signal to turn on/off a particular IoT-enabled appliance or to take current readings from a sensor within the IoT-enabled appliance. [00189] The embedded !oT hub 1204 described herein may be used for a variety of different applications. As described above, the embedded loT hubs 2905-2907 may be used as the primary communication channel between the appliance and the loT cloud service 2920, by connecting via cellular networks and/or the user's home WIFi network. In one embodiment, the embedded !oT hub may be configured to act as a VViFi extender, effectively extending the reach of the user's WIFi network. In the example shown In Figure 29A, for example, each embedded loT hub 2905-2907 may connect to a WiFi network access device 2915 and extend the WiFi signal to other WIFi devices in the user's home. In addition, in one embodiment, each embedded ioT hub 2905-2907 may be used to establish a direct wireless connection channel between the loT-enabied appliances 2901 -2903 and the user device 2910 with an ioT app installed thereon (I.e., to allow the user direct access via a BTLE channel, rather than communicating through the IoT cloud service 2920).

[00190] In one embodiment, each embedded IoT hub is considered an accessory which may be purchased as an add-on by the customer when the appliance is purchased. Alternatively, the embedded IoT hub may be added to the appliance by the original device manufacturer (ODM), the consumer electronics company (CE), and/or the retailer.

[00191 ] Figures 30-32 illustrate exemplary modular antennas which may be coupled to different embedded IoT hubs in accordance with different embodiments of the Invention. These embodiments are all formed with a circular or "mushroom" shape to conserve space. In one embodiment, the antenna size may vary depending on variables such as antenna design topology, frequency bands supported, desired target performance, antenna material, the number of antennas, and the isolation requirements between the antennas. Of course, some of these variables will depend on the set of wireless communication protocols to be supported by the antenna (e.g., frequency bands and number of antennas). The mushroom design described herein solves the size problem while maintaining a standard modular design.

[00192] Figure 30 illustrates an exemplary embodiment of an antenna module with a lower cylindrical section 301 1 comprising the ground pad 3001 and RF pad 3002 and an upper cylindrical section 30 0 containing the antennas 3020-302 , As illustrated, connectors running through the lower cylindrical section 301 1 electrically couple the pads 3001 -3002 to the antenna material 3020-3021 in the upper section 30 0. While two antennas are shown in Figure 30, various different antennas may be used

(depending on the implementation). [00193] In one exemplary embodiment, the lower cylindrical section 301 1 of the module has a 17mm diameter with a depth of 25mm (i.e., designed to fit within the antenna enclosure 2701 shown in Figure 27). One embodiment of this section Includes 4 x 4 electrical pads that are defined as ground (GND) 3001 and RF feed 3002. The upper section 3010 of the antenna module is flexible and can be sized according to the antenna requirements (as indicated by X x Y mm).

[00194] Figure 31 illustrates on particular embodiment In which the upper section

3 0 includes a WiFi antenna 3101 , a cellular antenna 3102, and a Bluetooth LE antenna 3103, each coupled to a GND pad 3001 and an RF pad 3002. Note that while only two pads 3001 -3002 are illustrated in Figure 31 , more pads than illustrated may be used to provide connectivity for the various different antennas 3101 -3103. In this example, the cellular antenna 3102 may support LTE cellular frequency bands (13/4), the WiFi antenna 3101 may support WiFi 2.4Ghz ÷ 5Ghz frequency bands, and the BTLE antenna 3103 may support BT 2.4Ghz frequency bands, in one embodiment, isolation between the WiFi and Cellular antennas is at least -20dB.

[00195] In addition, in one embodiment, the cellular antenna 3102 comprises a planar inverted-F antenna structure or an inverted-F PCB (FPCB) antenna structure and the WiFi antenna 3 01 and/or BTLE antenna 3 01 comprise PCB Dipole antennas, in one embodiment, the WiFi and BTLE antennas may be implemented as a single, integrated antenna. In one embodiment, the WiFi and BTLE antenna section may be Implemented with an approximate size of 33 x 1 2mm and the cellular antenna section may be implemented with an approximate size of 30 x 20mm.

[00196] In one embodiment, isolation between the WIFi/BT and the cellular antennas is accomplished with a distance of 15mm. The upper section 3 0 of the mushroom shape In the embodiment shown in Figure 31 is 100 x 60mm while the lower section

3 1 is 25 mm (length) x 17 mm (diameter).

[00197] Figure 32 illustrates another embodiment of the modular antenna which Includes one WiFi antenna 3102 and one BTLE antenna 3105. In this embodiment, the antenna module supports the WiFi 2.4Ghz and 5Ghz bands and BTLE 2.4 Ghz bands. In one embodiment, the a PCB dipole antenna is used, isolation between WiFi and BT antennas in this embodiment Is OOdB. In one embodiment, the WiFi + BT dual band antenna section is 33 x 12mm. The upper section 3210 of the mushroom shape in the embodiment shown In Figure 32 is 50 x 30mm while the lower section 321 1 Is 25 mm (length) x 17 mm (diameter). [00198] Fsgure 33 illustrates an exemplary embodiment showing an embedded hub with an antenna module 3301 inserted into the slot in an end user's appliance 1220. In one embodiment, the antenna module is inserted inside the embedded loT hub's designated opening. In one embodiment, the design of the embedded loT hub's opening and the antenna module will guarantee the mushroom side of the antenna module (i.e., the upper section 31 10) is always positioned on top or on the side of the appliance, not enclosed and surrounded by metal (which would inhibit RF reception). In one embodiment, the thickness of the mushroom section of the antenna module will guarantee a clearance between the antenna itself and the white good metal. The antenna module may be used when certifying the embedded !oT hub (i.e., multiple different combinations of loT hubs and antenna modules may be individually certified).

[00199] In one embodiment, appliance (e.g., "white good") vendors may integrated the loT hub slot 1203 In appliances for a small additional cost (e.g., $2.00). In one embodiment, the embedded loT hub is designed as a stand-alone loT hub that follows the mechanical design roles of the loT hub slot 1203 and may include any wireless technologies chosen by the ODM. As mentioned, the embedded loT hub may be certified one time only, to reduce time and cost, and can be licensed to consumer electronics (CE) manufacturers as long as it follows slot mechanical design.

[0020Q] Embodiments of the invention may include various steps, which have been described above. The steps may be embodied in machine-executable instructions which may be used to cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components. [QQ2Q1 ] As described herein, instructions may refer to specific configurations of hardware such as application specific integrated circuits (ASICs) configured to perform certain operations or having a predetermined functionality or software instructions stored in memory embodied In a non-transitory computer readable medium. Thus, the techniques shown In the figures can be implemented using code and data stored and executed on one or more electronic devices (e.g., an end station, a network element, etc.). Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer machine-readable media, such as non-transitory computer machine-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer machine-readable communication media (e.g. , electrical, optical, acoustical or other form of propagated signals - such as carrier waves, infrared signals, digital signals, etc.). In addition, such electronic devices typically include a set of one or more processors coupled to one or more other components, such as one or more storage devices (non-transitory machine- readable storage media), user input/output devices (e.g., a keyboard, a touchscreen, and/or a display), and network connections. The coupling of the set of processors and other components is typically through one or more busses and bridges (also termed as bus controllers). The storage device and signals carrying the network traffic respectively represent one or more machine-readable storage media and machine- readable communication media. Thus, the storage device of a given electronic device typically stores code and/or data for execution on the set of one or more processors of that electronic device. Of course, one or more parts of an embodiment of the Invention may be Implemented using different combinations of software, firmware, and/or hardware.

[00202] Throughout this detailed description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the Invention may be practiced without some of these specific details. In certain instances, well known structures and functions were not described in elaborate detail in order to avoid obscuring the subject matter of the present invention. Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow.