Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EMULSION FOR FOODS CONTAINING PROTEINS AND POLYSACCHARIDES AND THE PRODUCTION AND USE THEREOF
Document Type and Number:
WIPO Patent Application WO/2008/148383
Kind Code:
A1
Abstract:
The aim of the invention is to create an emulsion for the production and mixture of foods, particularly opaque beverages, that allows a large increase in flavor with a small dose and, even when highly diluted with a low emulsion content, has a high degree of stability against cloudiness, creaming, and acidity. According to the invention, an oil-in-water emulsion is proposed for use with foods, comprising an oil phase and an aqueous phase, wherein the oil phase of the oil-in-water emulsion comprises at least one oil produced from processed, shelled oilseeds with plant parts from herb and/or spice plants or oil produced from fruits and has a density of 0.850 to 1.135 g/cm3, preferably from 0.995 to 1.010 g/cm3. The invention is particularly used for the production of highly-diluted and cloudiness-stable light beverages with an acid content.

Inventors:
MUSCHIOLIK GERALD (DE)
SCHILLING BETTINA (DE)
Application Number:
PCT/DE2008/000966
Publication Date:
December 11, 2008
Filing Date:
June 04, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV SCHILLER JENA (DE)
MUSCHIOLIK GERALD (DE)
SCHILLING BETTINA (DE)
International Classes:
A23D7/005; A23L2/385; A23L2/56; A23L2/62; A23L2/66; C09K23/30
Domestic Patent References:
WO1992022214A11992-12-23
Foreign References:
US20050233051A12005-10-20
EP1133930A12001-09-19
US4790998A1988-12-13
FR2218841A11974-09-20
US5882708A1999-03-16
FR2140215A11973-01-12
US3652291A1972-03-28
Other References:
JASENTULIYANA N ET AL: "BEVERAGE CLOUD STABILITY WITH ISOLATED SOY PROTEIN", JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, WILEY & SONS, CHICHESTER, GB, vol. 78, no. 3, 1 November 1998 (1998-11-01), pages 389 - 394, XP000782419, ISSN: 0022-5142
Attorney, Agent or Firm:
DONATH, Dirk (Hans-Knöll-Strasse 1, Jena, DE)
Download PDF:
Claims:

Patentansprüche

1. Proteine und Polysaccharide enthaltende öl-in- Wasser-Emulsion zur Verwendung für Lebensmittel, insbesondere für hochverdünnte und trübungsstabile Getränke, wie beispielsweise Light-Getränke, bestehend aus einer ölphase und einer wässrigen Phase, dadurch gekennzeichnet, dass die ölphase der öl-in-Wasser-Emulsion zumindest ein geschmacksgebendes öl enthält, das vorzugsweise aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürz- pflanzen und/oder Früchten hergestellt ist, und eine Dichte von 0,850 bis 1,135 g/cm 3 , vorzugsweise von 0,995 bis 1,020 g/cm 3 , aufweist.

2. Proteine und Polysaccharide enthaltende öl-in-Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass die ölphase ein aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Gewürzpflanzen, beispielsweise Thymian, Basilikum, Koriander, Oregano, hergestelltes öl enthält.

3. Proteine und Polysaccharide enthaltende öl-in-Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass die ölphase ein aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuterpflanzen, beispielsweise Fenchel, Dill, hergestelltes öl enthält.

4. Proteine und Polysaccharide enthaltende öl-in-Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass die ölphase ein öl aus

Früchten, beispielsweise ein aus Sanddorn oder Zitrusfrüchten gewonnenes öl, enthält.

5. Proteine und Polysaccharide enthaltende öl-in-Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass die ölphase aus einer

Mischung mehrerer, jeweils aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürzpflanzen und/oder Früchten hergestellten öle, beispielsweise aus einer Mischung aus Fenchel-ölkonzentrat und Sanddorn-Fruchtfleischöl, besteht.

6. Proteine und Polysaccharide enthaltende öl-in-Wasser-Emulsion gemäß Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die ölphase

zumindest ein weiteres pflanzliches öl zur Dichteerhöhung, vorzugsweise Bernsteinsäureester von Fettsäureglyceriden, enthält.

7. Proteine und Polysaccharide enthaltende öl-in- Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass der öl-in- Wasser- Emulsion Zusatzstoffe, wie beispielsweise Aromen, Aromaöle und Farbstoffe, zugesetzt sind.

8. Proteine und Polysaccharide enthaltende öl-in- Wasser-Emulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass die ölphase und/oder die wässrige Phase der öl-in- Wasser-Emulsion im Keimgehalt reduziert sind.

9. Verfahren zur Herstellung einer Proteine und Polysaccharide enthaltenden öl-in-Wasser-Emulsion aus einer ölphase und einer wässrigen Phase, wobei zunächst ohne Säurezugabe öl sowie ein Biopolymergemisch, bestehend aus einer wässrigen Phase mit Proteinen, z. B. Molkenproteinen oder Na-Caseinat, und einem Polysaccharid, z. B. Na-Carboxymethylcellulose oder amidiertes niedrigverestertes Pektin, zu einer Emulsion vermischt werden und anschließend die neutrale Emulsion durch Zugabe zu einer neutralen oder Säure enthaltenden Getränkelösung verdünnt wird, dadurch gekennzeichnet, dass für die Emulsionsbildung zumindest ein geschmacksgebendes öl beigemischt wird, das vorzugsweise aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürzpflanzen und/oder Früchten hergestellt wird und die Dichte der ölphase von 0,850 bis 1,135 g/cm 3 , vorzugsweise von 0,995 bis 1,020 g/cm 3 , eingestellt wird.

10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass für die Emulsionsbildung ein aus aufbereiteten, geschälten ölsaaten mit

Pflanzenteilen von Kräuterpflanzen, beispielsweise Fenchel, Dill, hergestelltes öl eingesetzt wird.

11. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass für die Emulsionsbildung ein aus aufbereiteten, geschälten ölsaaten mit

Pflanzenteilen von Gewürzpflanzen, beispielsweise Thymian, Basilikum, Koriander, Oregano, hergestelltes öl eingesetzt wird.

12. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass für die Emulsionsbildung ein öl aus Früchten, beispielsweise ein aus Sanddorn oder Zitrusfrüchten gewonnenes öl, eingesetzt wird.

13. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass für die Emulsionsbildung mehrere, jeweils aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürzpflanzen und/oder Früchten hergestellte öle, beispielsweise Rosmarinöl, Fenchelöl und Sanddornöl vermischt werden.

14. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass das aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürzpflanzen und/oder Früchten hergestellte öl für die Emulsionsbildung zur Dichteerhöhung mit einem Glycerinester der fraktionierten Pflanzenfettsäuren Cg und Cio, der mit Bernsteinsäure verknüpft ist und eine Dichte von 1,00 - 1,02 g/cm 3 aufweist, vermischt wird.

15. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass der öl- in- Wasser-Emulsion Zusatzstoffe, wie beispielsweise Aromen,

Aromaöle und Farbstoffe, zugesetzt werden.

16. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die Stabilität der öl-in-Wasser-Emulsion gegenüber Tropfenaggregation über die Auswahl des zur Emulsionsbildung eingesetzten Proteins und des Polysaccharides sowie über die pH- Wert-Einstellung reguliert wird.

17. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass zur Vermeidung der Tropfenaggregation des Emulsionsgrundproduktes und Erzielung eines hohen Trübungseffektes beim Verdünnen der Emulsion in säurehaltiger Lösung ein Molkenprotein nativ oder mit eingestelltem Denaturierungsgrad oder Na-Caseinat gemeinsam mit einem ionischen Polysaccharid zur Emulsionsbildung in einem definierten Mischungsverhältnis eingesetzt wird.

18. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass das Verhältnis Protein zu Polysaccharid in der wässrigen Phase 1 : 0,25 bis 1 : 2,0, vorzugsweise 1 : 1 bis 1,5 : 1 beträgt, dass die wässrige Phase zur

Emulsionsbildung 0,5 % bis 2 % Milchprotein, vorzugsweise Molkenprotein nativ oder mit eingestelltem Denaturierungsgrad oder Na- Caseinat, gemeinsam mit einem ionischen Polysaccharid, von 0,5 % bis 2,5 %, vorzugsweise 0,75 % bis 1,5 % Na-Carboxymethylcellulose bzw. vorzugsweise 1,0 % bis 2,0 % amidiertes niedrigverestertes Pektin, enthält und dass die Emulsion 3 % bis 60 %, vorzugsweise 30 % bis 50 %, dispergierte ölphase aufweist.

19. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Dichte der geschmacksgebenden öle durch Vermischen mit einem Bernsteinsäureester von Fettglyceriden, z. B. mit einem Neutralöl Miglyol ® 829 im Verhältnis 1 : 1 bis 1 : 50, vorzugsweise 1 : 5 bis 1 : 20, erhöht wird.

20. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass der pH- Wert der öl-in-Wasser-Emulsion nach der Verdünnung durch Säurezugabe auf einen Wert zwischen 3,0 und 5,0 eingestellt wird.

21. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die öl- in- Wasser-Emulsion mit einer säurehaltigen wässrigen Phase verdünnt wird, die z. B. Citronensäure, Milchsäure und/oder Fruchtsäuren oder Phosphorsäure enthält.

22. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die öl- in- Wasser-Emulsion mit einem Fruchtsaft oder Fruchtsaftgetränk im

Verhältnis 1 : 50 bis 1 : 1.000, vorzugsweise 1 : 100 bis 1 : 600 vermischt und als vorzugsweise gekühltes stilles oder mit CO 2 angereichertes Getränk, offen oder verpackt, bereitgestellt wird.

23. Verfahren gemäß einem oder mehreren der Ansprüche 21 und 22, dadurch gekennzeichnet, dass die öl-in-Wasser-Emulsion mit einem nichtalkoholischen oder alkoholischen säurehaltigen Getränk vermischt und gegebenenfalls unter weiterem Zusatz von Alkohol sowie Anreicherung mit Kohlendioxid in Glas-, Kunststoff- oder Blechverpackungen bereitgestellt wird.

24. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die öl- in- Wasser-Emulsion zur Vermischung mit Lebensmitteln, insbesondere Getränken, separat in Glas-, Kunststoff- oder Blechverpackungen keimreduziert bereitgestellt wird.

25. Verwendung der Proteine und Polysaccharide enthaltenden öl-inWasser-Emulsion zur Herstellung von hochverdünnten und trübungsstabilen Getränken, wie beispielsweise Light-Getränken.

26. Verwendung gemäß Anspruch 25, dadurch gekennzeichnet, dass der öl-in- Wasser-Emulsion Zusatzstoffe, wie beispielsweise Mineralstoffe, Vitamine, Tee-, Frucht- und Pflanzenextrakte oder -konzentrate, Mono-, Di- sowie Oligosaccharide, zugegeben werden.

Description:

Proteine und Polysaccharide enthaltende Emulsion für Lebensmittel sowie deren Herstellung und Verwendung

Die Erfindung betrifft eine geschmacksgebende, Proteine und Polysaccharide enthaltende, öl-in- Wasser-Emulsion (O/W) mit hoher Aggregations- und Koaleszenzstabilität sowie hoher Trübungsgebung und Trübungsstabilität bei Verdünnung. Die O/W-Emulsion mit natürlichen Emulgatoren, insbesondere Proteinen, und mit hochmolekularen Biopolymeren zur Grenzflächenstabilisierung sowie zur Viskositätsgebung wird zur Herstellung von Lebensmitteln und Vermischung mit denselben, insbesondere zur Herstellung von hochverdünnten und trübungsstabilen Getränken, wie beispielsweise Light-Getränken, vorgeschlagen.

Zur Geschmacksgebung von Getränken werden neben Frucht- und Gemüsekomponenten auch Schalenöle eingesetzt. Da letztere (z. B. Orangenöl) aufgrund ihres hydrophoben Charakters nicht in der wässrigen Phase löslich sind, erfolgt ihre Zugabe zum Getränk als öl-in- Wasser-Emulsion. Hierbei kann das Orangenöl (Dichte ~ 0,84 g/cm 3 , 25 0 C) beispielsweise im Gemisch mit einem MCT-öl (Miglyol ® 812, 50-65 % Caprylsäure, 30-45 % Caprinsäure, Dichte 0,94-0,95 g/cm 3 , Viskosität 27-33 mPa s, Sasol Germany GmbH) unter Zugabe eines Beschwerers (z. B. Saccharose-acetat-isobutyrat, SAIB, Dichte 1,14 g/cm 3 , E 444) in Anwesenheit eines emulgierenden Biopolymers (z. B. Gummi arabicum, hydrophobierte Stärke oder Protein- Polysaccharid-Konjugat) durch Hochdruckemulgieren fein dispergiert und in geringer Dosierung einer säurehaltigen Getränkelösung (mit Zucker und/oder Süßstoff) zugemischt werden. Die Emulsion verursacht aufgrund der unterschiedlichen Lichtbrechung der dispergierten feinen öltropfen eine Trübung, die insbesondere durch die Partikelgröße und den Partikelanteil der öltropfen bestimmt wird. Eine änderung der Tropfengrößenverteilung der öltropfen infolge Koaleszenz oder Aggregation bewirkt auch einen anderen Trübungsgrad. Insbesondere die Ladungszustände der an der öltropfengrenzfläche adsorbierten Biopolymere (abhängig vom pH- Wert der wässrigen Phase) bestimmen, inwieweit die öltropfen fein verteilt sind und ob infolge Verringerung der Ladung Tropfenassoziate gebildet werden. Es besteht daher ein

großes Interesse daran, negative Einflüsse auf den Trübungseffekt infolge Assoziation der dispergierten öltropfen auszuschalten. Eine Möglichkeit hierfür ist der Einsatz von Protein-Polysaccharid- Konjugaten zur Emulsionsbildung. Gegenüber Gummi arabicum weisen in Light-Getränken die mit Protein-Polysaccharid-Konjugaten hergestellten Orangenöl-Emulsionen eine geringere

Säureempfindlichkeit und höhere Aggregationsstabilität auf (Akhtar u. Dickinson: Whey protein-maltodextrin conjugates as emulsifying agents: An alternative to gum arabic, Food Hydrocolloids 21, 2007, S. 607). Eine bessere Stabilisierung von Getränkeemulsionen mit Citrusöl kann auch mit einem emulsionsbildenden proteinenthaltenden Hemicelluloseextrakt aus Maiskörnern erreicht werden (Yada u.a.: Com fiber gum: A potential gum arabic replacer for beverage flavor emulsification, Food Hydrocolloids 21, 2007, S. 1022). Wünschenswert wäre jedoch, den Einfluss der dispergierten öltropfen auf die Trübung in der Weise gering zu halten, dass von vornherein die Tropfenaggregation durch eine elektrostatische Stabilisierung verhindert wird. Dabei sollte zusätzlich zum Anteil an dispergierten öltropfen ein hoher Trübungseffekt erzielt werden. Weiterhin besteht ein Interesse daran, möglichst natürliche Stoffe zur Herstellung der geschmacksgebenden Emulsion einzusetzen und dabei auch auf synthetische „Beschwerer" zu verzichten. Die dispergierten Emulsionstropfen sollten dabei eine Dichte aufweisen, die von der umgebenden kontinuierlichen Phase nur sehr gering abweicht. Ein weiterer Vorteil wäre gegeben, wenn das Getränk aus einem kolloidal dispersen System besteht, das die Aufrahmung der leichteren dispergierten ölphase verhindert bzw. erheblich verringert.

Es ist bekannt, dass eine stabile Trübung in Light-Getränken über die Bildung von Protein-Polysaccharid-Komplexen zu erzielen ist. So wird in US 53 42 643 A anstelle von Gummi arabicum zur Emulsionsbildung ein Lösungsgemisch aus Protein (Gelatine, Molkenprotein oder Sojaproteinisolat) und Propylenglykolalginat eingesetzt, mit der beschwertes Orangenöl unter Zusatz von Na-Benzoat voremulgiert, danach die Voremulsion mit einer Säure enthaltenden wässrigen Phase (Einstellung auf pH 3,9 mit Citronensäure) verdünnt und dann mittels Hochdruckhomogenisation eine feine Emulsion gebildet wird. Der hierbei unterhalb des isoelektrischen Punktes der eingesetzten Proteine entstehende Protein-Polysaccharid-Komplex aus einem positiv

geladenen Protein und einem negativ geladenen Polysaccharid an den öltropfen bewirkt eine sterische Stabilisierung gegenüber Tropfen- koaleszenz und stabilisiert zugleich die Tropfen infolge elektrostatischer Abstoßung. Bei diesem Verfahren wird dem Aromaöl zur Vermeidung der Aufrahmung eine hydrophobe Phase mit höherer Dichte (Art des „Beschwerers" nicht angegeben) zugesetzt. Der Protein-Polysaccharid- Komplex, der nicht zur Erhöhung der Viskosität beiträgt, ist hier als Austauscher für den Emulgator Gummi arabicum vorgesehen. Der Nachteil dieser Erfindung besteht darin, dass eine Voremulsion hergestellt wird, die nach der Zugabe zur säurehaltigen Getränkelösung unter Hochdruck emulgiert werden muss. Eine konzentrierte Emulsion aus Geschmack und Aroma gebenden ölen, die ohne Hochdruckemulgieren mit einer Getränkelösung zur Herstellung von trübungsstabilen Light-Getränken vermischt werden kann, wird auf diese Weise nicht erzeugt.

Die Herstellung emulsionshaltiger Getränke, die bei Anwesenheit von Milchprotein (Casein) bei einem pH- Wert unter 5,0 und bei Zugabe von Ca- und Mg-SaIz nicht ausflocken, wird in EP 0 914 779 A2 beschrieben. Unter Einsatz von Na-Caseinat, Dextrin, Pflanzenöl, löslichen Sojabohnenfasern und Polyglycerin-Fettsäureester wird bei pH 6,5 eine Emulsion hergestellt, die nach dem Hochdruckhomogenisieren auf 80 0 C erhitzt, bei dieser Temperatur auf pH 3,9 abgesenkt und nach Anreicherung mit Calciumchlorid und Magnesiumsulfat nochmals emulgiert wird. Erfolgt eine Abkühlung der Emulsion vor Absenkung des pH-Wertes und Anreicherung mit Mineralsalzen, ist diese höherviskos und nicht aggregationsstabil. Im Gegensatz dazu führt die pH-Senkung und Mineralstoffanreicherung bei höherer Temperatur nicht zum hohen Viskositätsanstieg und eine Koagulatbildung bzw. Phasentrennung wird verhindert. Die in der Hitze hergestellten säurehaltigen Getränke weisen bei der Lagerung eine gute Koagulationsstabilität und geringe Viskosität auf. Der Nachteil dieser Erfindung besteht darin, dass zur Herstellung emulsionshaltiger Getränke unter Einsatz von Proteinen als Emulgator eine Koagulationsstabilität (keine Phasentrennung) nur erreicht wird, wenn die Emulsion vor der Säurezugabe 30 min bei 80 0 C gehalten und nochmals bei hoher Temperatur emulgiert wird. Die Trübungsstabilität des Getränkes wird bei dieser Erfindung insbesondere durch die

Temperaturführung und den zusätzlichen Dispergierprozess erreicht. Die erzeugte Emulsion ist nicht zur Herstellung von trübungsstabilen Light- Getränken mit aromagebender Emulsion vorgesehen.

Weiterhin werden zur Erzeugung von trübungsstabilen Fruchtsaftgetränken modifizierte Protein-Polysaccharid-Gemische eingesetzt. In WO 2005/046361 Al wird ein Protein (in Form von Kuhmilch, Sojamilch, Molke oder deren Mischungen) mit einem Polysaccharid (niedrigverestertes Pektin und/oder Na- Carboxymethylcellulose) in wässriger Lösung nach der pH-Senkung unter 4,5 erhitzt, homogenisiert, getrocknet und dann dem säurehaltigen Fruchtsaft-Getränk zugesetzt. Das säurehaltige Fruchtsaft-Getränk mit dem vorher modifizierten Protein-Polysaccharid-Gemisch wird nochmals erhitzt und homogenisiert. Danach ist das Getränk für mehrere Wochen sedimentationsstabil.

Bei dieser Erfindung wird die stabilisierende Wirkung eines Protein- Polysaccharid-Komplexes ausgenutzt, der nach pH-Absenkung und Erhitzung entsteht. Eine derartige Vorbehandlung von wässrigen Protein-Polysaccharid-Gemischen ist allerdings sehr zeit- und energieaufwändig. Allerdings bezieht sich diese Lösung nicht auf Light- Getränke, sondern hat das Ziel, die Trübungsstabilität von Fruchtsaftgetränken mit höherem Fruchtgehalt zu verbessern.

Der Einsatz von Protein-Polysaccharid-Reaktionsprodukten für die Emulsionsbildung ist insbesondere dann von Interesse, wenn bei der Emulsionsbildung auf den Einsatz synthetischer Emulgatoren verzichtet werden soll, die Verwendung von Proteinen als Emulgatoren angestrebt wird und die öl/Wasser-Grenzflächen eine hohe Stabilität gegenüber Koaleszenz aufweisen sollen (siehe beispielsweise WO 2004078334 Al, EP 1402790 A2, JP 10101701 A2). Da die Proteine (z. B. Na-Caseinat, Sojaprotein) allgemein im Bereich ihres isoelektrischen Punktes zur Aggregation der proteinbeladenen öltropfen führen, werden verschiedene Möglichkeiten zur Modifizierung der Proteineigenschaften über die Wechselwirkungen mit Polysacchariden herangezogen. Hierzu gehört auch die Erzeugung von Protein-Polysaccharid- Reaktionsprodukten (Addukte, Konjugate), die als Emulgator eingesetzt der Emulsion eine höhere Säurestabilität verleihen und die Tropfenaggregation und somit schnellere Aufrahmung und Phasentren-

nung verhindern. Derartige Protein-Polysaccharid-Konjugate sind auch als Austauscher für Gummi arabicum bei der Herstellung von Aromaöl enthaltenden Light-Getränken bekannt (Akhtar and Dickinson: Whey protein-maltodextrin conjugates as emulsifying agents: An alternative to gum arabic, Food Hydrocolloids 21, 2007, S. 607).

Trübe Orangengetränke werden auch unter Nutzung der Komplexbildung zwischen Protein und Alginat (1:1) zur Stabilisierung von dispergiertem Orangenöl (Stabilisator zur Vermeidung der Tropfenkoaleszenz, US 5 342 643) hergestellt. Hier hat das Protein- Polysaccharid-Gemisch insbesondere eine grenzflächenstabilisierende Funktion. Die schnellere Aufrahmung derartiger Tropfenaggregate wird durch entsprechende Dichteerhöhung der ölphase bzw. den Zusatz eines Beschwerers (z. B. Saccharose-acetat-isobutyrat, SAIB) zur dispergierten Phase verhindert. Somit kann die agglomerierte Emulsion auch in hochverdünnter Form nicht aufrahmen. Diese Erfindung hat zum Ziel, die Tropfenkoaleszenz, jedoch nicht die Tropfenaggregation zu verhindern. Es entstehen durch die Komplexbildung Tropfenaggregate, bei denen die Tropfen und der umgebende Komplex die Trübung unterstützen. Ein Verdünnung der Emulsion zu Einzeltropfen ist nicht vorgesehen, die Komplexe sind an den Tropfen angelagert und tragen nicht unabhängig von der Tropfenverteilung bzw. dem ölanteil zur Trübung bei.

Eine Beschreibung der Emulgiereigenschaften oben aufgeführter Protein-Polysaccharid-Komplexe findet sich bei E. Dickinson: Hydrocolloids at interfaces and the influence on the properties of dispersed Systems, Food Hydrocolloids 17, 2003, S. 25. Auch der Einsatz von unterschiedlich geladenen Polysacchariden (hochverestertes Pektin im Gemisch mit Alginat) wird zur Stabilisierung von Emulsionen vorgeschlagen (EP 238 330 A2). Alle diese Vorschläge zum Einsatz von Protein-Polysaccharid-Komplexen als Emulgator zur Emulsionsbildung beinhalten eine zusätzliche Erhitzung der Gemische, um einen stabilen Polymerkomplex zu erzeugen. Dabei bilden sich unlösliche Komplexe, welche die Emulsionstropfen gegen Koaleszenz und/oder Aufrahmung stabilisieren. Der Nachteil derartiger unlöslicher Komplexe besteht insbesondere darin, dass häufig deren Wasserbindung vermindert und eine Phasentrennung infolge Wasserabsatz gegeben ist. Diese Komplexe

bestimmen nur durch Adsorption an die öltropfen den Trübungsgrad und die Stabilität der Emulsion. Mit der Verringerung des Anteiles an dispergierter ölphase nimmt auch der Trübungsgrad ab. Von Vorteil wäre, wenn diese bei sehr hoher Verdünnung in säurehaltiger wässriger Lösung nicht zu Tropfenaggregaten führen und eine zusätzliche langzeitstabile Trübung bei sehr geringem Emulsionsanteil ergeben.

Weitere Möglichkeiten zur Herstellung von Emulsionen für den Einsatz in Getränken, insbesondere zur Erzielung eine hohen Langzeitstabilität von milchhaltigen Kaffee- oder Teegetränken, bestehen darin, dass der Milch niedermolekulare Emulgatoren zur Erhöhung der Emulsionsstabilität zugesetzt werden (Zucker-, Polyglycerin-, und Sorbitanester der Speisefettsäuren: WO 2004054382 Al, Ester der Mono- und Diglyceride der Speisefettsäuren in Kombination mit Pflanzengummen: JP 2003038095, Milchsäureester von Diglyceriden: JP 2002262786 A2).

Neben diesen niedermolekularen Emulgatoren werden zur Erhöhung der Aufrahmstabilität auch die Polysaccharide Johannisbrotkernmehl und Furcellaran (JP 2003038095 A2) eingesetzt. Weiterhin wird beispielsweise in JP 2002142670 A2 das Biopolymer Na-Caseinat als Emulgator zur Emulsionsbildung verwendet, jedoch gemeinsam mit verschiedenen Estern der Speisefettsäuren und Monoglyceriden. Es gibt auch Emulsionen für Tee- und Kaffeegetränke, die zur Erhöhung der Stabilität aus Magermilchpulver unter Zusatz von Lysolecithin hergestellt werden und einen hohen Anteil an Diglyceriden in der dispergierten Fettphase enthalten (JP 2004357583 A2). Alle diese Emulsionen haben den Nachteil, dass sie neben den Proteinen auch synthetische oder chemisch modifizierte Emulgatoren enthalten. Diese Emulsionen sollen insbesondere eine Aufhellung der Kaffee- und Teegetränke (Imitation von Milchzusatz) bewirken und sind nicht zur Herstellung von trübungsstabilen Getränken mit geschmacksgebenden ölen vorgesehen. Das wesentliche Ziel ist hier eine hohe Stabilität gegenüber Ausflockung bei Säurezusatz. Dies wird insbesondere durch die Kombination von Proteinen mit niedermolekularen Emulgatoren erreicht.

Bei vorliegender Erfindung soll aber gerade auf den Zusatz niedermolekularer Emulgatoren verzichtet werden. Vielmehr ist der

Einsatz natürlicher Biopolymere wünschenswert, die zugleich grenzflächenaktiv und stabilisierend wirken.

Durch keines der vorgenannten Verfahren wird auf einfache Weise eine Emulsion erzeugt, die gleichzeitig bei Verdünnung in säurehaltiger wässriger Phase aggregations- und koaleszenzstabil ist, ohne Bildung von Tropfenaggregaten der dispergierten ölphase verdünnt werden kann, in neutralen oder säurehaltigen Lösungen eine starke Trübung aufweist und nicht zur Phasentrennung führt. Soll bei den oben beschriebenen Erfindungen die Aggregationsstabilität der proteinstabilisierten Emulsionen in säurehaltigen Lösungen verbessert werden, ist die Anwesenheit niedermolekularer Emulgatoren, ein komplizierter technologischer Ablauf zur Bildung von Protein-Polysaccharid- Komplexen oder der Einsatz spezieller Protein-Polysaccharid-Modifϊkate notwendig.

Allgemein zeigen proteinstabilisierte Emulsionen in der Nähe des isoelektrischen Punktes des eingesetzten Proteins infolge Ladungsausgleichs eine stärkere Aggregation bzw. Flockung der dispergierten ölphase. Dies führt zur Konsistenzveränderung der Emulsion und bei Senkung der Viskosität der kontinuierlichen Phase zur schnelleren Phasentrennung in Abhängigkeit von der öltropfengröße. Weiterhin erfolgt eine Tropfenaggregation beim Zusatz ionischer Polysaccharide, und in Abhängigkeit vom Ladungszustand treten unterschiedliche Wechselwirkungen mit den Proteinen (z. B. tierischen und pflanzlichen Proteinen) auf, die sich auch in einer veränderten Trübungsintensität, hervorgerufen durch die Bildung von größeren Protein-Polysaccharid- Assoziaten, äußern kann.

Werden andererseits Proteine gemeinsam mit Polysacchariden zur Erhöhung der Viskosität der kontinuierlichen Phase eingesetzt, kann sich aufgrund des unterschiedlichen Ladungszustandes bei bestimmtem pH- Wert durch Bildung unlöslicher Komplexe zwischen Proteinen und Polysacchariden deren Wasserbindung verringern. Dies führt zur Phasentrennung in dispersen Systemen. Weiterhin ist es möglich, dass sich infolge Netzwerkausbildung (Ausbildung eines schwachen oder starken Gels infolge Komplexbildung mit dem Protein) die Fließeigenschaften von Emulsionen in der Weise verändern, dass eine Fließgrenze ausgebildet wird. Dies ist nicht

erwünscht, wenn sich eine Emulsion bei Zugabe zu einem Getränk sofort gut verteilen soll.

Außerdem bestehen beim Einsatz von natürlichen Emulgatoren (z. B. amphiphilen Proteinen) zur Emulsionsbildung und von geladenen Polysacchariden zur Viskositätsgebung bzw. Stabilisierung von Emulsionen Probleme solcher Art, dass bei änderung des pH- Wertes infolge entgegengesetzter Ladung zwischen den Polysacchariden und dem emulgierenden bzw. an der Grenzfläche der öltropfen adsorbierten (oder auch im überschuss in der wässrigen Phase befindlichen) Protein eine Komplexbildung auftreten kann, die eine Aggregation der öltropfen bewirkt. Bei hoher Verdünnung der Emulsion entstehen dann sichtbare Flocken. Derartige Effekte bewirken auch eine Veränderung des Mundempfindens (spürbare kleine Partikel) beim Verzehr der verdünnten Emulsion bzw. der damit geschmacklich eingestellten Lebensmittel. Weiterhin können diese Partikel eine ungleichmäßige Trübung und auch eine Phasentrennung in den mit dieser Emulsionen angereicherten Lebensmitteln, insbesondere Getränken, hervorrufen.

Zur Vermeidung solcher vorgenannten Nachteile ist die Verwendung von einer, eine hohe Wasserbindung aufweisenden, öl- bzw. Flüssigfett- in- Wasser-Emulsion (O/W-Emulsion) auf der Basis von Proteinen und Polysacchariden zur Herstellung bzw. Zubereitung von Lebensmitteln, insbesondere säurehaltigen Getränken, mit cremiger Konsistenz ohne öl- bzw. Fetttropfenaggregation und mit cremig-sahniger Geschmacks- empfindung vorgeschlagen worden (DE 10 2006 019 241.9). Es hat sich gezeigt, dass mit solchen O/W-Emulsionen, für welche zunächst im Wesentlichen im pH-neutralen Bereich ohne Säurezugabe aus pflanzlichem öl, beispielsweise MCT- oder Sonnenblumenöl, sowie einem Biopolymergemisch, bestehend aus einer wässrigen Phase mit Proteinen (z. B. Molkenproteinen) und einem Polysaccharid (beispielsweise Na-Carboxymethylzellulose oder amidiertes niederverestertes Pektin) eine Emulsion gebildet und anschließend der pH- Wert dieser Emulsion durch Zugabe einer vorzugsweise organischen Säure (z. B. Citronensäure oder Ascorbinsäure) gesenkt wird, auf sehr einfache und universell anwendbare Weise Lebensmittel, insbesondere säurehaltige Getränke, mit besagter cremiger Konsistenz ohne Tropfenaggregatbildung und cremig-sahnigem Geschmacksempfinden hergestellt bzw. zubereitet werden können. Diese Lebensmittel sind mit

der vorgeschlagenen O/W-Emulsion sehr schnell und gut vermischbar und weisen dabei eine unerwartete Aufrahmungsstabilität und keine Phasentrennung auf, wodurch eine sehr lange Beständigkeit und Haltbarkeitsdauer auch bei hoher Verdünnung der Emulsion erreicht wird.

Bei einem Austausch des Pflanzenöles gegen eine aroma- oder geschmacksgebende ölkomponente (z. B. Orangenöl oder Kräuter- ölkonzentrat) ist jedoch bei sehr hoher Verdünnung der Emulsion der Dichteunterschied zur umgebenden kontinuierlichen Phase zu hoch, und bei sehr geringer Viskosität der kontinuierlichen Phase (Zugabe der Emulsion zu einer Getränkelösung niedriger Viskosität) kann eine Aufrahmung der dispergierten öltropfen stattfinden. Soll eine nach diesem Verfahren hergestellte Emulsion nicht zur Viskositätsgebung, sondern zur Geschmacksgebung von Getränken mit sehr geringem Emulsionsanteil (z. B. trübe Light-Getränke) eingesetzt werden, muss diese allerdings auch ein geschmacksgebendes öl enthalten, das in der Geschmacksintensität auch bei hoher Verdünnung zu spürbaren Effekten führt. Da derartige geschmacksbeeinflussende öle allgemein eine geringere Dichte gegenüber der kontinuierlichen Phase aufweisen, wären nicht nur eine sehr geringe Tropfengröße der dispergierten öle, sondern auch eine Vermeidung der Tropfenaggregation und eine zusätzliche Erhöhung der Dichte der dispergierten Phase erforderlich, um einen ausreichenden Schwebezustand der dispergierten Tropfen zu erzielen. Es wäre wünschenswert, wenn der Trübungseffekt nicht nur durch die dispergierte ölphase, sondern auch unabhängig vom ölgehalt durch anwesende Biopolymere unterstützt wird.

In WO 2005/046361 Al werden Biopolymere eingesetzt, um „künstliche" Trubstoffe zu bilden, die durch Protein-Polysaccharid- Interaktionen entstehen und zur Stabilisierung der natürlichen Trubstoffe von Fruchtsäften geeignet sind.

Um eine hohe Trubstabilisierung in Fruchtsaftgetränken zu erzielen (Vermeidung der Sedimentation) wird in WO 2005/046361 Al das zusätzliche Trübungsmittel durch Erhitzen von wässrigen Protein- Polysaccharid-Gemischen bei pH unter 4,5 sowie anschließendem Homogenisieren und Trocknen erzeugt. Dieses Trübungsmittel stabilisiert fruchtsafthaltige Getränke nur dann, wenn die Protein- Polysaccharid-Lösung vor der Zugabe zum Fruchtsaft erhitzt,

homogenisiert und getrocknet wird. Der Einsatz dieses proteinhaltigen Pulvers ist insbesondere für den Sofortverzehr der damit angereicherten Getränke vorgesehen. Der direkte Einsatz von Protein und Polysaccharid enthaltenden Emulsionen zur Herstellung eines trubstabilen Getränkes ist nicht Gegenstand der besagten Erfindung.

Ferner ist eine Methode zur Herstellung angereicherter, pflanzlicher Speiseöle aus unterschiedlichen ölsaaten bekannt (DE 102 01 638 C2), denen Zusatzstoffe beigemischt sind, wobei die aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Gewürzpflanzen, deren Feuchtegehalt bei weniger als 10 % und deren Größenstrukturen bei 5 bis 10 mm liegen, im Verhältnis 95:5 Gewichtsprozent gemischt und kalt gepresst werden. Das Pflanzenöl wird nach Abtrennen vom sogenannten Presskuchen filtriert, wobei die wertbestimmenden Inhaltsstoffe der Pflanzenteile gelöst und in dem zeitgleich freigesetzten Pflanzenöl der ölsaaten gebunden werden. Insbesondere werden Pflanzenteile von Basilikum, Thymian, Majoran, Oregano, Estragon, Petersilie, Dill, getrockneten Speisezwiebeln oder Knoblauch in ihrer gewachsenen Struktur in den Herstellungsprozess eingebunden. Als ölsaat kommen geschälte Kerne von Sonnenblumen zum Einsatz.

über Verwendungen solcher öle in O/W-Emulsionen mit höherer Dichte der ölphase, insbesondere zur Herstellung von niedrigviskosen Getränken mit hoher Trübungs-, Aufrahm- und Säurestabilität, ist in der Fachwelt nichts bekannt geworden.

Der Erfindung liegt die Aufgabe zu Grunde, eine Emulsion zur Herstellung und Vermischung mit Lebensmitteln, insbesondere trüben Getränken, zu schaffen, die eine hohe Geschmacksgebung bei geringer Dosierung ermöglich und selbst bei starker Verdünnung, insbesondere zur Herstellung trüber Light-Getränke, eine sehr hohe Trübungs-, Aufrahm- und Säurestabilität besitzt.

Die mit einer solchen Emulsion versetzten Lebensmittel sollen in der Fertigung und Bereitstellung sowie zur Anwendung und Zubereitung universell und problemlos gehandhabt werden können.

Die Aufgabe wird durch eine Proteine und Polysaccharide enthaltende öl-in- Wasser-Emulsion zur Verwendung für Lebensmittel, insbesondere für hochverdünnte und trübungsstabile Getränke, wie beispielsweise

Light-Getränke, bestehend aus einer ölphase und einer wässrigen Phase, gelöst, indem die ölphase der öl-in- Wasser-Emulsion zumindest ein geschmacksgebendes öl enthält, das vorzugsweise aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürz- pflanzen und/ oder Früchten hergestellt ist, und eine Dichte von 0,850 bis 1,135 g/cm 3 , vorzugsweise von 0,995 bis 1,020 g/cm 3 , aufweist.

Hergestellt wird eine solche Emulsion wie bei DE 10 2006 019 241.9 aus einer ölphase und einer wässrigen Phase, wobei zunächst ohne Säurezugabe öl sowie ein Biopolymergemisch, bestehend aus einer wässrigen Phase mit Proteinen (z. B. Molkenproteinen) und einem Polysaccharid (z. B. Na-Carboxymethylcellulose oder amidiertes niederverestertes Pektin), zu einer neutralen Emulsion vermischt werden und anschließend der pH- Wert dieser Emulsion nach Zugabe zu einer säurehaltigen wässrigen Phase gesenkt wird.

Im Gegensatz zu DE 10 2006 019 241.9 werden für die Emulsionsbildung ein oder mehrere geschmacksgebende und aus aufbereiteten, geschälten ölsaaten mit Pflanzenteilen von Kräuter- und/oder Gewürzpflanzen und/oder Früchten hergestellte öle und/oder andere, vorzugsweise pflanzliche geschmacksgebende öle mit einer Dichte der ölphase von 0,850 bis 1,135 g/cm 3 vorzugsweise von 0,995 bis 1,020 g/cm 3 , eingesetzt. Vor der Emulsionsbildung werden die geschmacksgebenden öle mit einem Glycerinester der fraktionierten Pflanzenfettsäuren Cg und C 1O , der mit Bernsteinsäure verknüpft ist und eine Dichte von 1,00-1,02 g/cm 3 aufweist (z. B. Miglyol ® 829, Sasol Germany GmbH), vermischt und in der Dichte erhöht. Die Herstellung angereicherter pflanzlicher öle (Speiseöle) aus geschälten ölsaaten mit Pflanzenteilen an sich ist aus der DE 102 01 638 C2 bekannt. In den Unteransprüchen sind entsprechende Ausgestaltungen dieser Verwendung enthalten.

Durch die erfindungsgemäße Herstellung der geschmacksgebenden Emulsion ist es möglich, nur durch Verdünnen der Emulsion mit einer Lösung, die Zucker und/oder Süßstoffe enthält oder der Zucker und/oder Süßstoffe gesondert zugesetzt werden, ein trubstoffreiches Getränk mit unterschiedlichem Säuregehalt herzustellen. Die Trübung wird nicht allein durch den Anteil an dispergierter Emulsionsphase, sondern zusätzlich durch den erfindungsgemäßen Einsatz von Protein-

Polysaccharid-Anteilen bei der Emulsionsherstellung realisiert. Durch die Auswahl der Protein-Polysaccharid-Kombinationen können die Trübungseffekte eingestellt werden. Während die Kombination z. B. von Molkenprotein mit Na-Carboxymethylzellulose zur sehr hohen Trübung auch bei unterschiedlichem Anteil an Protein-Polysaccharid fuhrt, ist über den Austausch von Na-Carboxymethylzellulose gegen amidiertes niedrigverestertes Pektin eine sehr hohe Trübung im Light-Getränk nur bei einem bestimmten Biopolymeranteil erzielbar (siehe Tabelle 1, Zugabe einer Emulsion mit 15 % ölgehalt). Die Ergebnisse in Tabelle 1 belegen, dass durch die erfindungsgemäße Herstellung einer Emulsion mit geschmacksgebenden ölen der angegebenen Dichte unter Anwesenheit bestimmter Biopolymerkombinationen eine zusätzliche Trübung erzeugt wird, wenn die neutrale Emulsion in ein säurehaltiges Getränk dispergiert wird. Die Emulsion ohne Polysaccharid (nur Protein als Emulgator) bewirkt nur eine geringere Trübung, verursacht über den dispergierten ölanteil (Partikelgröße der öltropfen d 3 2 ~ 1,1 bis ~ 1,2 μm). Wird dem säurehaltigen Getränk keine Emulsion, sondern nur eine Protein-Polysaccharidlösung in vergleichbarem Anteil zugegeben, ist keine Trübung zu beobachten.

Der Anstieg der Partikelgröße in Emulsionen mit höherem ölphasenvolumen (wie in Tabelle 1 dargestellt) beruht darauf, dass in der wässrigen Phase die Protein-Polysaccharid-Konzentration konstant gehalten wurde und somit bei höherem ölanteil weniger Protein zur Grenzflächenbelegung zur Verfügung steht.

Tabelle 1: Trübung von Light-Getränken (Zusatz von 3 g dispergiertem Pflanzenöl als neutrale Emulsion pro Liter säurehaltiges Getränk, Trübungwerte für pH 4,3). Zugabe einer Emulsion mit unterschiedlichem ölphasenvolumen (die W-Phase der zugesetzten neutralen Emulsion enthält 1 % Molkenprotein und 1 % Polysaccharid als Na-CMC oder amidiertes niedrigverestertes Pektin)

* NTU: Nephelometrie Turbidity Unit, Trübungsmessung mittels WTW TURB 350 IR ** oberflächenbezogen, d 3 2

Der Geschmack des Light-Getränkes wird über den Anteil an zugesetzter Emulsionsphase zum Getränk bestimmt. Durch Variation oder Kombination der geschmacksgebenden öle (z. B. Kräuter- oder Gewürz- ölkonzentrat, Schalenöl, Fruchtöle) kann eine sehr breite Variabilität an Geschmacksnuancen ohne Einsatz künstlicher Aromen realisiert werden. Da ein bestimmtes Protein-Polysaccharid- Verhältnis und deren Anteile bei der Emulsionsherstellung zu einer Bildung von sehr kleinen Trubstoffpartikeln fuhrt, die aufgrund ihrer geringen Partikelgröße (kleiner 1 μm) bei hoher Verdünnung zu hoher Lichtstreuung führen und bei Absenken des pH- Wertes, vorzugsweise auf pH > 3,1 nicht assoziieren, können sehr stabile trübe Getränke mit unterschiedlichem ölanteil hergestellt werden. Die Trübung wird nicht allein durch den Anteil an dispergiertem öl bestimmt. Derartige feindisperse Biopolymerkolloide werden üblicherweise dadurch erzeugt, dass Polysaccharid-Polysaccharid- oder Protein-Polysaccharid-Komplexe durch Einstellen eines entgegengesetzten Ladungszustandes gebildet und durch Homogenisieren wieder fein dispergiert werden. Erfolgt wie beim erfindungsgemäßen Verfahren im neutralen Bereich z. B. der gemeinsame Einsatz von Milchprotein (Molkenprotein, Na- Caseinat) und Na-Carboxymethylzellulose oder Molkenprotein und amidiertem niedrigverestertem Pektin bei der Emulsionsbildung, dann fungiert das Protein als Emulgator und das Polysaccharid füllt den leeren Raum zwischen den Emulsionstropfen aus. Eine Aggregatbildung bzw.

Flockung der Emulsionstropfen wird dadurch sterisch verhindert. Wird eine derartige Emulsion hoch verdünnt, bestimmt die Tropfengröße der Emulsionstropfen die Aufrahmgeschwindigkeit der Emulsion bzw. die Phasentrennung im Getränk. Die Geschwindigkeit der Phasentrennung hängt von der Viskosität des Getränkes und vom Dichteunterschied zwischen den Phasen ab, der durch Vermischen der geschmacksgebenden öle mit einem Pflanzenöl höherer Dichte (z. B. Miglyol ® 829) reduziert werden kann. Befinden sich in der kontinuierlichen Phase zwischen den öltropfen schwebende Kolloidpartikel, behindern diese bei niedriger Viskosität zusätzlich die Aufrahmung bzw. Phasentrennung.

Es wurde überraschenderweise gefunden, dass beim Emulgieren von ölgemischen aus geschmacksgebendem öl und Glycerinester der fraktionierten Pflanzenfettsäuren Cg und Qo, der mit Bernsteinsäure verknüpft ist und eine Dichte von 1,00-1,02 g/cm 3 aufweist, bei gleichzeitigem Einsatz von Milchprotein (Molkenprotein, Na-Caseinat) und Na-Carboxymethylzellulose oder Molkenprotein und amidiertem niedrigverestertem Pektin eine Emulsion erhalten wird, die bei geringer Zugabe zur einer säurehaltigen wässrigen Phase eine hohe stabile Trübung bewirkt. Die erzeugte Trübung ist gegenüber der Zugabe einer Emulsion ohne Polysaccharid wesentlich höher und weist zugleich eine hohe Aufrahmstabilität der dispergierten ölphase auch bei etwas höherer Dichte der kontinuierlichen Phase auf. Die hierbei die Trübung unterstützenden sehr kleinen Kolloidpartikel stabilisieren zusätzlich die dispergierten öltropfen. Wird eine derartige Emulsion mit einem hohen ölanteil (z. B. 50 % ölgemisch in der Emulsion) erfindungsgemäß hergestellt, danach z. B. mit geringem Anteil neutraler wässriger Phase vorverdünnt und dann einer säurehaltigen wässrigen Lösung zugegeben, verbleiben ebenfalls kleine Kolloidpartikel (erzeugen Brown- Molekularbewegung), die eine hohe Trübung hervorrufen (siehe Tabelle 1) und zusätzlich die Einzeltropfen der ölphase stabilisieren. Durch Vermischen des geschmacksgebenden öles mit einem Pflanzenöl höherer Dichte (z. B. Miglyol ® 829, Dichte 1,00 bis 1,02 g/cm 3 ) im Verhältnis 1 : 9 bis 1 : 20 wird bei sehr hohem Verdünnungsgrad die Aufrahmung von öltropfen verhindert. Die dispergierten öltropfen weisen somit eine hohe Aufrahmstabilität in Getränken auf, wenn die Dichtedifferenz zwischen den Phasen nicht zu hoch ist (z. B. bei Süßstoffeinsatz). Soll jedoch das Getränk mit einem geringen

Zuckeranteil (Glucose, Fruktose, Saccharose usw.) angereichert werden, ist zur Gewährleistung einer stabilen Trübung entweder der Verdünnungsgrad der Emulsion zu verringern (dadurch zusätzliche Stabilisierung gegenüber Aufrahmung durch das anwesende PoIy- saccharid) oder es ist eine weitere Dichteerhöhung der dispergierten ölphase durch Erhöhung des Anteilen an Pflanzenöl mit höherer Dichte (z. B. Miglyol ® 829) erforderlich. Ansonsten würden üblicherweise als „ölbeschwerer" z. B. Saccharose-acetat-isobutyrat (JP 62022712) oder Glycerinester aus Wurzelharz/Kolophonester oder bromierte Fettsäure- ester (US 4,705,691) eingesetzt werden. Ein Zusatz derartiger „Beschwerer" ist bei der vorliegenden Erfindung nicht erforderlich. Außerdem werden die bestimmungsgemäßen Getränke überwiegend mit Süßstoff oder mit einem nur geringen Zuckerzusatz hergestellt. Die auf erfindungsgemäße Weise hergestellten säurehaltigen Getränke weisen eine aggregations- und aufrahmstabile, fein dispergierte, geschmacksgebende ölphase sowie trübungsverstärkende Kolloidpartikel auf, die zugleich auch ein angenehmes Mundgefuhl beim Verzehr bewirken. Die vorliegende Erfindung hat den Vorteil, dass insbesondere Getränke ohne und mit Süßstoff sehr variabel im Geschmack sowie konstant und stabil in der Trübung bei Zugabe der erfindungsgemäßen Emulsion hergestellt werden können. Der Herstellungsprozess der trüben Getränke ist sehr einfach und erfordert keine komplizierte Erzeugung „künstlicher" Trubstoffe durch Erhitzen von Protein-Polysaccharid- Gemischen mit nachfolgender Homogenisierung oder die Herstellung von Protein-Polysaccharid-Komplexen im sauren pH-Bereich mit nachfolgender Homogenisierung.

Der hier beschriebene Effekt ist realisierbar, wenn die Emulsionsbildung bei gleichzeitiger Anwesenheit von Protein und Polysaccharid im Neutralbereich erfolgt und die Emulsion mit hohem ölphasenanteil vor dem Verdünnen nicht im pH- Wert gesenkt wird.

Aus dem Ladungszustand (Zeta-Potential) der eingesetzten Biopolymere (Proteine, Polysaccharide) bei einem bestimmten pH- Wert kann der hier erzielte erfindungsgemäße Effekt nicht abgeleitet werden, da hierfür nicht nur die Reihenfolge der Komponentenzugabe während der Emulsionsherstellung, sondern z. B. auch die Proteinkonformation an der öltropfengrenzfläche und der Abstand zwischen den dispergierten Tropfen von Bedeutung sind. Die Kompliziertheit der Eigenschaften

derartiger Gemische aus geladenen Makromolekülen ist bei J. Forsman zusammenfassend dargestellt (Polyelectrolyte mediated forces between macromolecules, Current Opinion in Colloid & Interface Science 11, 2006, S. 290). In weiterer übersicht wird der Kenntnisstand über die Wechselwirkungen zwischen Proteinen und Polysacchariden zusammengefasst (Doublier u.a.: Protein-polysaccharide interactions, Current Opinion in Colloid & Interface Science 5, 2000, S. 202). Die hier beschriebenen Effekte sind überraschend und neu und die praktische Anwendung ist nur nach erfindungsgemäßem Vorgehen mit den hier aufgeführten Proteinen und Polysacchariden möglich.

Erfolgt eine Säurezugabe zur erfindungsgemäßen Emulsion mit höherem ölphasenvolumen (z. B. > 30 % öl), dann treten aufgrund der hohen Biopolymerdichte in der kontinuierlichen Phase und an der Grenzschicht schwache Interaktionen zwischen den Biopolymeren auf, die zu leichten Brückenbindungen zwischen den öltropfen führen. Deshalb ist beim Verdünnen höher konzentrierter Emulsionen, die gering im pH- Wert gesenkt wurden, die Verteilung in der wässrigen Phase langsamer und muss durch zusätzlichen Eintrag an Dispergierenergie unterstützt werden. Es wird deshalb die Herstellung einer neutralen geschmacksgebenden konzentrierten Emulsion bevorzugt, da diese sich in einer säurehaltigen wässrigen Phase (z. B. Light-Getränk) besser verteilen lässt.

Die Erfindung soll nachstehend anhand von Ausführungsbeispielen näher erläutert werden.

Beispiel 1:

Herstellung einer Emulsion vom Typ öl-in- Wasser (OAV, 50/50) mit Säurezusatz Es werden 500 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl- Gemisch (Dichte 1,000 g/cm 3 , 25 0 C), bestehend aus 51 g Thymian- ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 449 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT-

X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,97 μm. Diese Emulsion wird durch Zugabe von 10 %iger Citronensäurelösung auf pH 5,0 eingestellt. Die Emulsion wird dabei viskoser.

Die Emulsion (2 Teile, pH 5,0) wird mit 998 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 , 25 0 C) vermischt. Das Light-Getränk weist eine intensive Trübung, jedoch mit kleinen Flocken auf. Zum Verteilen der Flocken und zur Erzielung einer gleichmäßigen Trübung wird die Getränkelösung mittels Ultra-Turrax- Prinzip bei 20.500 U/min 30 s homogenisiert. Das Mundgefühl ist sehr angenehm, das Getränk schmeckt leicht nach Thymian und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 (cool drink System, Aqua-Land) ist die Trübungsstabilität gut. Nach 30 min Zentrifugation bei 3.000 g ist ein geringer Bodensatz zu sehen, die Trübung bleibt gleichmäßig intensiv. Der Trübungswert beträgt 1.930 NTU.

Beispiel 2:

Herstellung einer Emulsion vom Typ öl-in- Wasser (OAV, 50/50) ohne Säurezusatz

Es werden 500 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl- Gemisch (Dichte 1 ,000 g/cm 3 ), bestehend aus 51 g Thymian- ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 449 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT- X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (A VESTEST) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,97 μm. Die Emulsion (2 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 978 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,19 g Aspartam und 0,25 g

Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung auf. Das Mundgefühl ist sehr angenehm, das Getränk schmeckt leicht nach Thymian und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.950 NTU. Das Getränk ohne CO 2 ist nach 10 min Erhitzung bei 80 0 C unverändert im Trübungsgrad.

Beispiel 3:

Herstellung einer Emulsion vom Typ öl-in- Wasser (OAV, 50/50) ohne Säurezusatz

Es werden 500 ml wässrige Phase mit 10 g Sojaproteinisolat SOLPRO 910 (Solbar Plant Extracts) und 10 g Na-Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl-Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 51 g Thymian-ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 449 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor- Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3.2 ) der dispergierten öltropfen beträgt etwa 1,1 μm. Die Tropfen sind nicht einzeln, sondern bilden Partikel- Aggregate (d 4.3 31 μm). Die Emulsion (2 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 978 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3.4, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine schwach flockige Trübung auf. Das Getränk schmeckt leicht nach Thymian und ist sehr erfrischend, jedoch bildet sich nach kurzer Standzeit ein Bodensatz. Das Getränk ist nicht zentrifugationsstabil (3000 g, 30 min) und nach Erhitzung (80 0 C, 10 min) ist nur noch eine geringe ungleichmäßige Trübung vorhanden. Nach dem Anreichern mit CO 2 sind ebenfalls Flocken zu sehen, die nach kurzer Zeit einen Bodensatz bilden.

Beispiel 4:

Herstellung einer Emulsion vom Typ öl-in- Wasser (OAV, 50/50) ohne Säurezusatz

Es werden 500 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl- Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 51 g Zimt-ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 449 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3.2 ) der dispergierten öltropfen beträgt etwa 0,97 μm. Die Emulsion (2 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 978 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung auf. Das Mundgefühl ist sehr angenehm, das Getränk hat einen leichten Geschmack nach Zimt und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.750 NTU.

Beispiel 5:

Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 50/50) ohne

Säurezusatz

Es werden 500 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl- Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 22 g Orangenöl (Dichte 0,851 g/cm 3 ) und 478 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor- Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex

C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3.2 ) der dispergierten öltropfen beträgt etwa 0,97 μm.

Die Emulsion (2 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 978 Teilen einer Basislösung für ein Light-Getränk (1,1 g Citronensäure, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,2, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung sowie schwach gelbliche Färbung auf. Das Mundgefühl ist sehr angenehm, das Getränk schmeckt angenehm nach Orange und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.800 NTU.

Beispiel 6: Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 30/70) ohne Säurezusatz

Es werden 700 ml wässrige Phase mit 15 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 300 g öl- Gemisch (Dichte 0,997 g/cm 3 ), bestehend aus 30 g Sanddorn- Fruchtfleischöl (Sanddorn GbR, KbA Deutschland) und 270 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor- Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,97 μm. Die Emulsion (4 Teile, pH 6,5) wird mit 40 Teilen Wasser durch Einrühren fein verteilt und dann mit 956 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung sowie gelbliche Färbung auf. Das Mundgefühl ist sehr angenehm, das Getränk hat einen leichten Geschmack nach Sanddorn und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min

Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.120 NTU.

Beispiel 7:

Herstellung einer Emulsion vom Typ öl-in- Wasser (OAV, 15/85) ohne Säurezusatz

Es werden 850 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g amidiertes niedrigverestertes Pektin (LA 415, DANISCO) hergestellt. In diese wässrige Phase werden 150 g öl-Gemisch (Dichte 0,996 g/cm 3 ), beste- hend aus 30 g Thymian-ölkonzentrat und 120 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,98 μm.

Die Emulsion (3 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 977 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 0,3 g Copper-Chlorophyllin flüssig [Sensient], 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung und leicht hellgrüne Farbe auf. Das Mundgefiihl ist sehr angenehm, das Getränk hat einen leichten Geschmack nach Thymian und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 950 NTU.

Beispiel 8:

Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 50/50) ohne Säurezusatz

Es werden 500 ml wässrige Phase mit 10 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 500 g öl- Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 22 g Orangenöl (Dichte 0,851 g/cm 3 ) und 478 g Miglyol ® 829 (Sasol Germany GmbH) mit

einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor- Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3.2 ) der dispergierten öltropfen beträgt etwa 0,97 μm.

Die Emulsion (2 Teile, pH 6,5) wird mit 20 Teilen Wasser durch Einrühren fein verteilt und dann mit 978 Teilen einer Basislösung für ein Light-Getränk (1,3 g Citronensäure, 3,0 g Inulin, 2,0 g MgSO 4 , 1,5 g CaCO 3 , 0,19 g Aspartam, 0,6 g ß-Carotin L-WS flüssig [Sensient], 0,26 g L-Ascorbinsäure, 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,4, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung sowie eine stärkere gelbliche Färbung auf. Das Mundgefühl ist sehr angenehm, das Getränk schmeckt angenehm nach Orange und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.831 NTU.

Beispiel 9:

Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 30/70) ohne Säurezusatz

Es werden 700 ml wässrige Phase mit 15 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na- Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 300 g öl- Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 30 g Zimt-ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 270 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,98 μm. Die Emulsion (4 Teile, pH 6,5) wird mit 40 Teilen Wasser durch Einrühren fein verteilt und dann mit 956 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 40 ml Aronia Direktsaft, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,2, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung sowie rötliche Färbung auf. Das Mundgefühl ist sehr

angenehm, das Getränk hat einen leichten fruchtigen Zimtgeschmack und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.186 NTU.

Beispiel 10:

Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 30/70) ohne Säurezusatz

Es werden 700 ml wässrige Phase mit 10 g Na-Caseinat (DSE 7894, Fonterra Europe GmbH) und 10 g Na-Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 300 g öl-Gemisch (Dichte 1,000 g/cm 3 ), bestehend aus 30 g Zimt-ölkonzentrat (E.G. ölmühle & Naturprodukte GmbH) und 270 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator- Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3.2 ) der dispergierten öltropfen beträgt etwa 1,15 μm. Die Emulsion (4 Teile, pH 6,5) wird mit 40 Teilen Wasser durch Einrühren fein verteilt und dann mit 956 Teilen einer Basislösung für ein Light-Getränk (1,0 g Citronensäure, 40 ml Schwarzteeaufguss, 0,19 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,2, Dichte 1,001 g/cm 3 ) vermischt. Das Light-Getränk weist eine intensive und stabile Trübung sowie eine etwas bräunliche Färbung auf. Das Mundgefühl ist sehr angenehm, das Getränk hat einen leichten Geschmack nach Zimt und ist sehr erfrischend. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungs wert beträgt 1.130 NTU.

Beispiel 11 :

Herstellung einer Emulsion vom Typ öl-in- Wasser (O/W, 30/70) ohne Säurezusatz Es werden 700 ml wässrige Phase mit 15 g Molkenprotein (Molkenproteinisolat, Fonterra Europe GmbH) und 10 g Na-

Carboxymethylcellulose Walocel ® CRT 1000 GA (Wolff Cellulosics GmbH Co. KG) hergestellt. In diese wässrige Phase werden 300 g öl- Gemisch (Dichte 0,997 g/cm 3 ), bestehend aus 30 g Sanddorn- Fruchtfleischöl (Sanddorn GbR, KbA Deutschland) und 270 g Miglyol ® 829 (Sasol Germany GmbH) mit einem Flügelrührer bei 1.500 U/min einemulgiert, mit einem Rotor-Stator-Emulgiergerät (CAT-X620) bei 20.500 U/min 1 min nachemulgiert und anschließend mittels Hochdruckemulgiergerät EmulsiFlex C5 (AVESTIN) bei 50 MPa feinemulgiert. Die Partikelgröße (d 3 2 ) der dispergierten öltropfen beträgt etwa 0,97 μm.

Die Emulsion (6 Teile, pH 6,5) wird mit 40 Teilen Wasser durch Einrühren fein verteilt und dann mit 956 Teilen einer Basislösung für ein alkoholhaltiges Getränk (11 % Wodka 40 %ig, 1,0 g Citronensäure, 0,22 g Aspartam und 0,25 g Kaliumsorbat pro 1.000 ml, pH 3,3, Dichte 1,001 g/cm 3 ) vermischt. Das alkoholische Getränk weist eine intensive und stabile Trübung sowie gelbliche Färbung auf. Das Mundgefühl ist sehr angenehm, das Getränk hat einen typischen Sanddorngeschmack. Auch nach dem Anreichern mit CO 2 ist die Trübungsstabilität sehr gut. Nach 30 min Zentrifugation bei 3.000 g ist kein Bodensatz vorhanden. Der Trübungswert beträgt 1.100 NTU.