Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENCAPSULATION STRUCTURE FOR AN OPTO-ELECTRONIC COMPONENT, AND METHOD FOR ENCAPSULATING AN OPTOELECTRONIC COMPONENT
Document Type and Number:
WIPO Patent Application WO/2013/000797
Kind Code:
A1
Abstract:
An encapsulation structure (300) for an opto-electronic component (400) has the following: a thin-layer encapsulation (301) for protecting the opto-electronic component against chemical pollutants, an adhesive layer (302) produced on the thin-layer encapsulation and a top layer (303), produced on the adhesive layer, for protecting the thin-layer encapsulation and/or the opto-electronic component against mechanical damage.

Inventors:
BAISL RICHARD (DE)
BECKER DIRK (DE)
DOBBERTIN THOMAS (DE)
FISCHER DOREEN (DE)
KRUMMACHER BENJAMIN (DE)
LANG ERWIN (DE)
SCHLENKER TILMANN (DE)
SCHMID CHRISTIAN (DE)
Application Number:
PCT/EP2012/061892
Publication Date:
January 03, 2013
Filing Date:
June 20, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM OPTO SEMICONDUCTORS GMBH (DE)
BAISL RICHARD (DE)
BECKER DIRK (DE)
DOBBERTIN THOMAS (DE)
FISCHER DOREEN (DE)
KRUMMACHER BENJAMIN (DE)
LANG ERWIN (DE)
SCHLENKER TILMANN (DE)
SCHMID CHRISTIAN (DE)
International Classes:
H01L51/52; H05B33/04
Foreign References:
US20080050585A12008-02-28
US20100019664A12010-01-28
US6592969B12003-07-15
US20080169758A12008-07-17
Other References:
See also references of EP 2727164A1
Attorney, Agent or Firm:
Paul, Benjamin (DE)
Download PDF:
Claims:
Patentansprüche

1. Verkapselungsstruktur für ein optoelektronisches

Bauelement, aufweisend:

· eine Dünnschichtverkapselung zum Schutz des

optoelektronischen Bauelements vor chemischen Verunreinigungen ;

• eine auf der Dünnschichtverkapselung ausgebildete KlebeSchicht ;

· eine auf der Klebeschicht ausgebildete Deckschicht zum Schutz der Dünnschichtverkapselung und/oder des optoelektronischen Bauelements vor mechanischer Beschädigung

wobei die Klebeschicht so ausgebildet ist, dass an der Oberfläche der Dünnschichtverkapselung befindliche

Partikelverunreinigungen von der Klebeschicht zumindest teilweise umschlossen sind.

2. Verkapselungsstruktur gemäß Anspruch 1,

wobei die Klebeschicht ein aushärtbares Klebematerial aufweist .

3. Verkapselungsstruktur gemäß Anspruch 2,

wobei das aushärtbare Klebematerial als UV-aushärtendes

Klebematerial ausgebildet ist.

4. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 3, wobei die Klebeschicht so ausgebildet ist, dass die Partikelverunreinigungen vollständig in der Klebeschicht eingebettet sind.

5. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 4, wobei die Klebeschicht eine Schichtdicke von ungefähr 1 ym bis ungefähr 500 ym aufweist.

6. Verkapselungsstruktur gemäß Anspruch 5,

wobei die Klebeschicht eine Schichtdicke von ungefähr 10 ym bis ungefähr 100 ym aufweist.

7. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 6, wobei die Deckschicht eine Glasschicht aufweist.

8. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 7, wobei die Deckschicht eine Folie aufweist.

9. Verkapselungsstruktur gemäß Anspruch 8,

wobei die Folie als Wärmeleitfolie eingerichtet ist.

10. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 8, wobei die Deckschicht eine Lackschicht aufweist.

11. Verkapselungsstruktur gemäß Anspruch 10,

wobei die Lackschicht einen polyakrylischen Schutzlack aufweist .

12. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 11,

wobei auf oder über der Deckschicht eine Wärmeleitfolie aufgebracht ist.

13. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 12,

wobei auf oder über der Deckschicht mindestens eine Lichtauskoppelschicht aufgebracht ist.

14. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 13,

wobei die Dünnschichtverkapselung einen Schichtstapel aufweist, welcher mindestens eine erste

Barrierendünnschicht und eine auf der ersten

Barrierendünnschicht ausgebildete zweite

Barrierendünnschicht aufweist.

15. Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 14,

wobei die Klebeschicht Streupartikel aufweist, welche in der Klebeschicht eingebettet sind.

16. Verkapselungsanordnung, aufweisend:

• ein optoelektronisches Bauelement mit mindestens

einer Funktionsschicht;

· eine auf oder über der mindestens einen

Funktionsschicht ausgebildete Verkapselungsstruktur gemäß einem der Ansprüche 1 bis 16.

17. Verkapselungsanordnung gemäß Anspruch 16,

wobei das optoelektronische Bauelement ein organisches optoelektronisches Bauelement ist.

Verfahren zum Verkapseln eines optoelektronischen

Bauelementes, das Verfahren aufweisend:

• Ausbilden einer Dünnschichtverkapselung auf oder

über einem optoelektronischen Bauelement zum Schutz des optoelektronischen Bauelements vor chemischen Verunreinigungen ;

• Ausbilden einer Klebeschicht auf der

Dünnschichtverkapselung;

• Ausbilden einer Deckschicht auf der Klebeschicht zu Schutz der Dünnschichtverkapselung und/oder des optoelektronischen Bauelements vor mechanischer Beschädigung .

Verfahren gemäß Anspruch 19,

wobei die Dünnschichtverkapselung auf oder über einer Funktionsschicht des optoelektronischen Bauelements ausgebildet wird.

20. Verfahren gemäß Anspruch 18 oder 19,

wobei das optoelektronische Bauelement ein organisches optoelektronisches Bauelement ist.

Verfahren gemäß einem der Ansprüche 18 bis 20,

wobei das Ausbilden der Klebeschicht und der Deckschicht aufweist :

• Aufbringen der Klebeschicht auf der

Dünnschichtverkapselung und Aufbringen der Deckschicht auf der Klebeschicht nach dem Aufbringen der Klebeschicht; oder

• Aufbringen der Klebeschicht auf der Deckschicht und Aufbringen der Deckschicht mit der darauf

aufgebrachten Klebeschicht auf der

Dünnschichtverkapselung, so dass die Klebeschicht zwischen der Dünnschichtverkapselung und der Deckschicht angeordnet ist.

Description:
Beschreibung

Verkapselungsstruktur für ein optoelektronisches Bauelement und Verfahren zum Verkapseln eines optoelektronischen

Bauelementes

Verschiedene Ausführungsbeispiele betreffen eine

Verkapselungsstruktur für ein optoelektronisches Bauelement und ein Verfahren zum Verkapseln eines optoelektronischen Bauelementes.

Bei der Fertigung von optoelektronischen Bauelementen bzw. Bauteilen, insbesondere organischen optoelektronischen

Bauteilen wie zum Beispiel organischen Leuchtdioden (Organic Light Emitting Diodes (OLEDs) ) , OLED-Anzeigen (OLED-Displays ) oder organischen Solarzellen bzw. Photovoltaikzellen (Organic Photovoltaic (OPV) Cells) ist es erwünscht, die Bauteile zum einen gegen Luft (insbesondere gegen in der Luft enthaltene Feuchtigkeit (Wasser) und Sauerstoff) hermetisch abzudichten und zum anderen vor mechanischen Beschädigungen (z.B.

Kratzern) zu schützen, um einen Ausfall des Bauteils zu vermeiden .

Das Abdichten des Bauteils bzw. der Schutz des Bauteils vor mechanischen Beschädigungen kann mittels einer Verkapselung des Bauteils erreicht werden.

Für die Verkapselung und mechanische Verpackung von

organischen optoelektronischen Bauelementen (z.B. OLEDs) auf Glas-Substraten ist die Verkapselung mittels Glaskavitäten bekannt. Bei dieser Technik wird mit einem speziellen Kleber ein Glasdeckel auf das Bauelement (Device) geklebt. Diese Technik kann das Eindringen von schädigenden Einflüssen weitgehend unterbinden. Allerdings können im Bereich der Klebstelle noch Wasser und Sauerstoff in das Bauelement eindiffundieren. Als Gegenmaßnahme dafür können wasser- und Sauerstoffbindende Materialien (sogenannte Getter) in die Kavität eingebracht (z.B. eingeklebt) werden. Beispielsweise können nichttransparente Getter aus Zeolith in die Kavität eingeklebt werden. Die Getter können das Wasser und den

Sauerstoff aufnehmen, bevor die organischen Materialien geschädigt werden. Der Glasdeckel kann gleichzeitig einen ausreichenden mechanischen Schutz bieten.

Fig. 1 zeigt eine Anordnung 100' mit einer organischen

Leuchtdiode (OLED) 100 und herkömmlicher Verkapselung mittels Glaskavität gemäß einem Beispiel.

Die OLED 100 weist ein Substratglas 101 auf. Auf dem

Substratglas 101 ist ein Funktionsschichtenstapel (OLED- Stack) 102 angeordnet. Der Funktionsschichtenstapel 102 kann eine oder mehrere organische Funktionsschichten (d.h.

Schichten, die der Erzeugung von Licht dienen) aufweisen. Ferner können Elektroden vorgesehen sein zur elektrischen Kontaktierung der organischen Funktionsschichten. Ein

Verkapselungsglas 103 (auch als Deckglas oder Capglas

bezeichnet) ist auf das Substrat 101 aufgeklebt und

umschließt den Funktionsschichtenstapel 102 derart, dass eine Kavität (ein Hohlraum) 104 gebildet ist. In die Kavität 104 ist ein Getter 105 eingebracht (durch Ankleben an die

Innenseite des Verkapselungsglases 103 oberhalb des

Funktionsschichtenstapels 102), welcher durch die Klebestelle zwischen Substrat 101 und Verkapselungsglas 103 eindringendes Wasser und/oder Sauerstoff aufnehmen soll und auf diese Weise verhindern soll, dass das Wasser und/oder Sauerstoff die Schicht (en) des Funktionsschichtenstapels 102

schädigen/schädigt. Die OLED 100 ist als Bottom-Emitter ausgeführt, d.h. die Lichtemission erfolgt durch das

transparente Substratglas 101. Der Getter 105 kann aus einem nichttransparenten Material (z.B. Zeolith) bestehen. Fig. 2 zeigt eine Anordnung 200' mit einer organischen

Leuchtdiode (OLED) 100 mit herkömmlicher Verkapselung mittels Glaskavität gemäß einem anderen Beispiel. Die Anordnung 200' unterscheidet sich von der in Fig. 1 gezeigten Anordnung 100' darin, dass statt eines einzelnen großen Getters 105 (wie in Fig. 1) zwei kleinere Getter 205 in die Kavität 104 eingebracht sind. Die beiden Getter 205 sind an der Innenseite des Verkapselungsglases 103 in

Randbereichen des Verkapselungsglases 103 angeklebt. Die OLED 100 kann als transparente OLED (Lichtemission sowohl nach unten durch das Substratglas 101 als auch nach oben durch das Verkapselungsglas 103) oder als Top-Emitter (Lichtemission nur nach oben durch das Verkapselungsglas 103) ausgeführt sein. Alternativ zu der in Fig. 2 gezeigten Anordnung mit zwei in Randbereichen angeordneten Gettern 205 können auch ein oder mehrere gelochte Getter in der Kavität 104

eingebracht bzw. vorgesehen sein.

Das Verfahren der Kavitätsverkapselung ist insgesamt sehr kostenintensiv. Außerdem ist die Verwendung von (starren) Glasdeckeln bzw. Glaskavitäten nicht geeignet für die

Fertigung flexibler (d.h. biegsamer) Bauelemente (z.B.

flexibler OLEDs) .

Gemäß verschiedenen Ausführungsbeispielen der Erfindung ist es vorgesehen, optoelektronische Bauelemente, zum Beispiel organische optoelektronische Bauelemente wie z.B. OLEDs, durch das Aufbringen von einem oder mehreren dünnen Filmen (dünnen Schichten bzw. Dünnschichten) gegen Wasser und

Sauerstoff abzudichten (sogenannte Dünnschichtverkapselung) . Eine solche Dünnschichtverkapselung kann mechanisch

empfindlich sein und sollte (wie auch das Bauelement selbst) gegen Berührung oder Verkratzen geschützt werden. Gemäß verschiedenen Ausführungsbeispielen wird dies mittels

Aufbringens einer Deckschicht als mechanische Schutzschicht erreicht, wobei zwischen der Dünnschichtverkapselung und der Deckschicht eine Klebeschicht (z.B. Laminierkleber-Schicht ) zur Haftvermittlung vorgesehen ist. Gemäß verschiedenen

Ausführungsbeispielen kann das Aufbringen der Deckschicht beispielsweise durch flächiges Auflaminieren eines flachen Deckglases realisiert werden. Durch das Glas kann ein

mechanischer Schutz des Bauelementes und der

Dünnschichtverkapselung erreicht werden. Mittels einer derart ausgebildeten Verkapselungsstruktur, welche - wie oben beschrieben - eine Dünnschichtverkapselung, eine Klebeschicht und eine Deckschicht aufweist, ist eine einfache,

zuverlässige und kostengünstige Verkapselung von

optoelektronischen Bauelementen (z.B. organischen

optoelektronischen Bauelement wie z.B. OLEDs) möglich.

Zusätzlich kann mit der vorgeschlagenen Verkapselungsstruktur das Auftreten von Defekten, die auf eventuelle Partikel an bzw. auf der Dünnschichtverkapselung oder auf oder in der Klebeschicht (z.B. Laminierkleber-Schicht ) zurückzuführen sind, reduziert oder ganz verhindert werden, wie weiter unten beschrieben wird.

Die Verkapselung mittels dünner Schichten bzw. mittels

Dünnschichtverfahren ist auch für flexible Bauelemente (z.B. flexible OLEDs) auf Foliensubstraten (z.B. Stahlfolien- oder Polymerfolien-Substraten) geeignet. Für den Schutz gegen Berührung und Beschädigung können hier beispielsweise Folien auf die Substratfolie laminiert bzw. die Substratfolie zwischen zwei Verpackungsfolien laminiert werden.

In verschiedenen Ausführungsbeispielen wird eine

partikeltolerante Verkapselung und Schutzbeschichtung für optoelektronische Bauelemente, beispielsweise organische optoelektronische Bauelemente wie z.B. OLEDs, bereitgestellt.

In verschiedenen Ausführungsbeispielen wird eine

Verkapselungsstruktur für optoelektronische Bauelemente, beispielsweise organische optoelektronische Bauelemente wie z.B. OLEDs, bereitgestellt, bei der Schädigungen des bzw. der optoelektronischen Bauelemente durch Partikelverunreinigungen ganz oder teilweise vermieden werden. In verschiedenen Ausführungsbeispielen wird ein

partikeltolerantes Verfahren zum Aufbringen von Schutzfilmen auf einem optoelektronischen Bauelement, beispielsweise einem organischen optoelektronischen Bauelement wie z.B. einer OLED, bereitgestellt.

In verschiedenen Ausführungsbeispielen weist eine

Verkapselungsstruktur für ein optoelektronisches Bauelement auf: eine Dünnschichtverkapselung zum Schutz des

optoelektronischen Bauelements vor chemischen

Verunreinigungen, eine auf der Dünnschichtverkapselung ausgebildete Klebeschicht und eine auf der Klebeschicht ausgebildete Deckschicht zum Schutz der

Dünnschichtverkapselung und/oder des optoelektronischen Bauelements vor mechanischer Beschädigung.

In verschiedenen Ausführungsbeispielen weist ein Verfahren zum Verkapseln eines optoelektronischen Bauelements auf:

Ausbilden einer Dünnschichtverkapselung auf oder über einem optoelektronischen Bauelement zum Schutz des

optoelektronischen Bauelements vor chemischen

Verunreinigungen; Ausbilden einer Klebeschicht auf der

Dünnschichtverkapselung; Ausbilden einer Deckschicht auf der Klebeschicht zum Schutz der Dünnschichtverkapselung und/oder des optoelektronischen Bauelements vor mechanischer

Beschädigung .

In verschiedenen Ausführungsbeispielen weist eine

Verkapselungsanordnung ein optoelektronisches Bauelement und eine Verkapselungsstruktur auf. Das optoelektronische

Bauelement weist mindestens eine Funktionsschicht auf. Die Verkapselungsstruktur ist auf oder über der mindestens einen Funktionsschicht ausgebildet. Die Verkapselungsstruktur kann gemäß einer oder mehrerer der hierin beschriebenen

Ausgestaltungen ausgebildet sein. Die verschiedenen Ausgestaltungen der Ausführungsbeispiele gelten in gleicher Weise, soweit sinnvoll, sowohl für die Verkapselungsstruktur für ein optoelektronisches Bauelement als auch für die Verkapselungsanordnung und das Verfahren zum Verkapseln eines optoelektronischen Bauelementes.

Der Begriff „Schicht" oder „Schichtenstruktur", wie er hierin verwendet wird, kann eine einzelne Schicht oder eine

Schichtenfolge (Schichtenstapel bzw. Schichten-Stack) aus mehreren dünnen (Teil-) Schichten bezeichnen. Insbesondere können Funktionsschichten des optoelektronischen Bauelements, beispielsweise organische Funktionsschichten eines

organischen optoelektronischen Bauelements, aus mehreren (Teil-) Schichten gebildet sein. Aber auch andere hierin beschriebene Schichten können aus mehreren (Teil-) Schichten gebildet sein.

Die Begriffe „aufeinander angeordnet", „aufeinander

ausgebildet" und „auf einer Schicht aufgebracht", wie hierin verwendet, meinen beispielsweise, dass eine Schicht

unmittelbar in direktem mechanischem und/oder elektrischem Kontakt auf einer anderen Schicht angeordnet ist. Eine

Schicht kann auch mittelbar auf einer anderen Schicht

angeordnet sein, wobei dann weitere Schichten zwischen den angegebenen Schichten vorhanden sein können. Solche Schichten können beispielsweise dazu dienen, die Funktionalität und damit die Effizienz des optoelektronischen Bauelements weiter zu verbessern. Die Begriffe „übereinander angeordnet", „übereinander

ausgebildet" und „über einer Schicht aufgebracht", wie hierin verwendet, meinen beispielsweise, dass eine Schicht zumindest mittelbar auf einer anderen Schicht angeordnet ist. Das heißt, es können weitere Schichten zwischen den angegebenen Schichten vorhanden sein. Der Begriff „Klebeschicht", wie hierin verwendet, kann eine Schicht oder Schichtstruktur bezeichnen, welche eines oder mehrere Klebematerialien (z.B. Kleber) aufweist oder daraus besteht. Mittels der Klebeschicht bzw. des Klebematerials (z.B. Kleber) der Klebeschicht können zwei oder mehrere

Elemente (z.B. Schichten) mittels Haftens fest miteinander verbunden werden. Die Haftvermittlung kann durch die

Klebeschicht erfolgen, welche zumindest teilweise zwischen den zu verbindenden Elementen (z.B. Schichten) ausgebildet sein kann.

Unter einer „Funktionsschicht" eines optoelektronischen Bauelements kann im Rahmen dieser Anmeldung eine Schicht verstanden werden, die zum Ladungstransport und zur

Lichterzeugung in dem optoelektronischen Bauelement dient.

Gemäß einer Ausgestaltung ist die mindestens eine

Funktionsschicht des optoelektronischen Bauelements als organische Funktionsschicht ausgebildet.

Eine „organische Funktionsschicht" kann Emitterschichten, beispielsweise mit fluoreszierenden und/oder

phosphoreszierenden Emittern, enthalten. Beispiele für Emittermaterialien, die in dem

optoelektronischen Bauelement gemäß verschiedenen

Ausgestaltungen eingesetzt werden können, schließen

organische oder organometallische Verbindungen, wie Derivate von Polyfluoren, Polythiophen und Polyphenylen (z.B. 2- oder 2 , 5-substituiertes Poly-p-phenylenvinylen) sowie

Metallkomplexe, beispielsweise Iridium-Komplexe wie blau phosphoreszierendes FIrPic (Bis (3, 5-difluoro-2- (2- pyridyl) phenyl- (2-carboxypyridyl) -iridium III), grün

phosphoreszierendes Ir (ppy) 3 (Tris (2-phenylpyridin) iridium III), rot phosphoreszierendes Ru (dtb-bpy) 3*2 (PF6)

(Tris [4,4' -di-tert-butyl- (2,2')- bipyridin] ruthenium (III) komplex) sowie blau fluoreszierendes DPAVBi (4, 4-Bis [4- (di-p-tolylamino) styryl] biphenyl) , grün fluoreszierendes PA ( 9, 10-Bis [N, -di- (p-tolyl) - amino ] anthracen) und rot fluoreszierendes DCM2 (4- Dicyanomethylen) -2-methyl-6-j ulolidyl- 9-enyl-4H-pyran) als nichtpolymere Emitter ein. Solche nichtpolymeren Emitter sind beispielsweise mittels thermischen Verdampfens abscheidbar. Ferner können Polymeremitter eingesetzt werden, welche insbesondere mittels nasschemischer Verfahren, wie

beispielsweise Spin Coating, abscheidbar sind.

Die Emittermaterialien können in geeigneter Weise in einem Matrixmaterial eingebettet sein.

Die Emittermaterialien der Emitterschichten des

optoelektronischen Bauelements können beispielsweise so ausgewählt sein, dass das optoelektronische Bauelement

Weißlicht emittiert. Die Emitterschicht kann mehrere

verschiedenfarbig (zum Beispiel blau und gelb oder blau, grün und rot) emittierende Emittermaterialien aufweisen,

alternativ kann die Emitterschicht auch aus mehreren

Teilschichten aufgebaut sein, wie einer blau fluoreszierenden Emitterschicht, einer grün phosphoreszierenden Emitterschicht und einer rot phosphoreszierenden Emitterschicht. Durch die Mischung der verschiedenen Farben kann die Emission von Licht mit einem weißen Farbeindruck resultieren. Alternativ kann auch vorgesehen sein, im Strahlengang der durch diese

Schichten erzeugten Primäremission ein Konvertermaterial anzuordnen, das die Primärstrahlung zumindest teilweise absorbiert und eine Sekundärstrahlung anderer Wellenlänge emittiert, so dass sich aus einer (noch nicht weißen)

Primärstrahlung durch die Kombination von primärer und sekundärer Strahlung ein weißer Farbeindruck ergibt.

Das optoelektronische Bauelement kann allgemein weitere organische Funktionsschichten aufweisen, die dazu dienen, die Funktionalität und damit die Effizienz des optoelektronischen Bauelements weiter zu verbessern. Beispielsweise können organische Funktionsschichten

ausgewählt sein, die dazu dienen, die Funktionalität und die Effizienz einer ersten Elektrode und/oder einer zweiten

Elektrode sowie des Ladungsträger- und Exzitonentransports zu verbessern .

Es ist darauf hinzuweisen, dass in alternativen

Ausführungsbeispielen jede geeignete Form von

lichtemittierenden Funktionsschichten, beispielsweise

organische Funktionsschichten vorgesehen sein können und die Ausführungsbeispiele nicht beschränkt sind auf eine spezielle Art von Funktionsschicht (en) . Unter „Verunreinigungen" bzw. „Kontaminationen" können im

Rahmen dieser Anmeldung allgemein Stoffe, StoffVerbindungen, Teilchen, Substanzen, etc. verstanden werden, deren Auftreten während eines Fertigungsprozesses bzw. deren Vorhandensein in einem prozessierten Bauteil (Device) unerwünscht ist, da sie beispielsweise den Fertigungsprozess negativ beeinflussen und/oder das Bauteil in seiner Funktionalität beeinträchtigen können .

Unter „chemischen Verunreinigungen" bzw. „chemischen

Kontaminationen" können im Rahmen dieser Anmeldung chemische Bestandteile aus der Umgebung (anders ausgedrückt,

atmosphärische Stoffe) verstanden werden, die als

Verunreinigungen bei der Herstellung eines optoelektronischen Bauelements (z.B. eines organischen optoelektronischen

Bauelements) wirken. Beispielsweise können unter „chemischen Verunreinigungen" chemische Bestandteile der Umgebung

verstanden werden, die, wenn sie mit einer oder mehreren Schichten eines optoelektronischen Bauelements (insbesondere mit einer oder mehreren Funktionsschichten des

optoelektronischen Baulelements (z.B. organischen

Funktionsschichten bei einem organischen optoelektronischen Bauelement wie z.B. einer OLED) ) in Kontakt kommen, mit dieser bzw. diesen Schichten reagieren können und dadurch die Funktionalität der Schicht (en) und somit des

optoelektronischen Bauelements beeinträchtigen bzw. schädigen können. Beispiele für solche schädlichen Bestandteile sind insbesondere Wasser (Feuchtigkeit) oder Sauerstoff.

Unter einer „Dünnschichtverkapselung" kann im Rahmen dieser Anmeldung beispielsweise eine Schicht oder eine

Schichtenstruktur verstanden werden, die dazu geeignet ist, eine Barriere gegenüber chemischen Verunreinigungen bzw.

atmosphärischen Stoffen, insbesondere gegenüber Wasser

(Feuchtigkeit) und/oder Sauerstoff, zu bilden. Mit anderen Worten ist die Dünnschichtverkapselung derart ausgebildet, dass sie von atmosphärischen Stoffen wie Wasser oder

Sauerstoff nicht oder höchstens zu sehr geringen Anteilen durchdrungen werden kann. Die Barrierewirkung wird bei der Dünnschichtverkapselung im Wesentlichen durch eine oder mehrere dünne Schichten, die Teil der Dünnschichtverkapselung sind, erreicht. Die Schicht oder die einzelnen Schichten der Dünnschichtverkapselung kann/können beispielsweise eine Dicke kleiner oder gleich einiger 100 nm aufweisen.

Gemäß einer Ausgestaltung besteht die Dünnschichtverkapselung aus der (den) Schicht (en) , die für die Barrierewirkung der Dünnschichtverkapselung verantwortlich ist (sind) . Diese

Schicht (en) kann (können) auch als Barrieredünnschicht (en) oder Barrieredünnfilm (e) bezeichnet werden.

Gemäß einer Ausgestaltung kann die Dünnschichtverkapselung als eine einzelne Schicht (anders ausgedrückt, als

Einzelschicht) ausgebildet sein.

Gemäß einer alternativen Ausgestaltung kann die

Dünnschichtverkapselung eine Mehrzahl von aufeinander ausgebildeten Teilschichten aufweisen. Mit anderen Worten kann gemäß einer Ausgestaltung die Dünnschichtverkapselung als Schichtstapel (Stack) ausgebildet sein, welcher eine Mehrzahl von Teilschichten (auch als Barrierendünnschichten bezeichnet) aufweist.

Die Dünnschichtverkapselung oder eine oder mehrere

Teilschichten (Barrierendünnschichten) der

Dünnschichtverkapselung können beispielsweise mittels eines geeigneten Abscheideverfahrens gebildet werden, z.B. mittels eines Atomlagenabscheideverfahrens (Atomic Layer Deposition (ALD) ) gemäß einer Ausgestaltung, z.B. eines

plasmaunterstützten Atomlagenabscheideverfahrens (Plasma Enhanced Atomic Layer Deposition (PEALD) ) oder eines

plasmalosen Atomlageabscheideverfahrens (Plasma-less Atomic Layer Deposition (PLALD) ) , oder mittels eines chemischen Gasphasenabscheideverfahrens (Chemical Vapor Deposition

(CVD) ) gemäß einer anderen Ausgestaltung, z.B. eines

plasmaunterstützten chemischen Gasphasenabscheideverfahrens (Plasma Enhanced Chemical Vapor Deposition (PECVD) ) oder eines plasmalosen chemischen Gasphasenabscheideverfahrens (Plasma-less Chemical Vapor Deposition (PLCVD) ) , oder

alternativ mittels anderer geeigneter Abscheideverfahren.

Durch Verwendung eines Atomlagenabscheideverfahrens (ALD) können sehr dünne Schichten abgeschieden werden. Insbesondere können Schichten abgeschieden werden, deren Schichtdicken im Atomlagenbereich liegen.

Gemäß einer Ausgestaltung können bei einer

Dünnschichtverkapselung, die mehrere Teilschichten aufweist, alle Teilschichten mittels eines Atomlagenabscheideverfahrens gebildet werden. Eine Schichtenfolge, die nur ALD-Schichten aufweist, kann auch als „Nanolaminat" bezeichnet werden.

Gemäß einer alternativen Ausgestaltung können bei einer

Dünnschichtverkapselung, die mehrere Teilschichten aufweist, eine oder mehrere Teilschichten der Dünnschichtverkapselung mittels eines anderen Abscheideverfahrens als einem

Atomlagenabscheideverfahren abgeschieden werden, beispielsweise mittels eines chemischen

Gasphasenabscheideverfahrens (CVD) .

Die Dünnschichtverkapselung kann gemäß einer Ausgestaltung eine Schichtdicke von ungefähr 1 nm bis ungefähr 10 ym aufweisen, beispielsweise eine Schichtdicke von ungefähr 30 nm bis ungefähr 1 ym gemäß einer Ausgestaltung,

beispielsweise eine Schichtdicke von ungefähr 300 nm bis ungefähr 600 nm gemäß einer Ausgestaltung, beispielsweise ungefähr 450 nm gemäß einer Ausgestaltung.

Gemäß einer Ausgestaltung, bei der die

Dünnschichtverkapselung mehrere Teilschichten aufweist, können alle Teilschichten dieselbe Schichtdicke aufweisen. Gemäß einer anderen Ausgestaltung können die einzelnen

Teilschichten der Dünnschichtverkapselung unterschiedliche Schichtdicken aufweisen. Mit anderen Worten kann mindestens eine der Teilschichten eine andere Schichtdicke aufweisen als eine oder mehrere andere der Teilschichten.

Eine mittels eines Atomlagenabscheideverfahrens (ALD- Verfahrens) abgeschiedene Schicht (oder Teilschicht) der Dünnschichtverkapselung kann beispielsweise eine Schichtdicke im Bereich von ungefähr 1 nm bis ungefähr 1000 nm aufweisen, beispielsweise eine Schichtdicke von ungefähr 10 nm bis ungefähr 100 nm gemäß einer Ausgestaltung, beispielsweise ungefähr 50 nm gemäß einer Ausgestaltung.

Eine mittels eines chemischen Gasphasenabscheideverfahrens (CVD-Verfahrens ) abgeschiedene Schicht (oder Teilschicht) der Dünnschichtverkapselung kann beispielsweise eine Schichtdicke im Bereich von ungefähr 10 nm bis ungefähr 10 ym aufweisen, beispielsweise eine Schichtdicke von ungefähr 30 nm bis ungefähr 1 ym gemäß einer Ausgestaltung, beispielsweise eine Schichtdicke von ungefähr 100 nm bis ungefähr 500 nm gemäß einer Ausgestaltung, beispielsweise ungefähr 400 nm gemäß einer Ausgestaltung. Die Dünnschichtverkapselung oder die einzelnen Teilschichten der Dünnschichtverkapselung können gemäß einer Ausgestaltung als transparente Schicht ausgebildet sein. Mit anderen Worten kann die Dünnschichtverkapselung (oder die einzelnen

Teilschichten der Dünnschichtverkapselung) aus einem

transparenten Material (oder einer Materialkombination, die transparent ist) bestehen. Unter einem transparenten bzw. durchsichtigen Material bzw. einer transparenten Schicht kann im Rahmen dieser Anmeldung beispielsweise ein Material bzw. eine Schicht verstanden werden, das bzw. die transparent bzw. durchlässig ist für Licht im sichtbaren Wellenlängenbereich. Unter einem nicht- transparenten Material bzw. einer nicht-transparenten Schicht kann im Rahmen dieser Anmeldung beispielsweise ein Material bzw. eine Schicht verstanden werden, das bzw. die nicht transparent bzw. nicht durchlässig ist für Licht im

sichtbaren Wellenlängenbereich.

Beispielsweise können in verschiedenen Ausgestaltungen, in denen das optoelektronische Bauelement als Top-Emitter (oder als Kombination aus Top-Emitter und Bottom-Emitter)

ausgeführt ist, die Dünnschichtverkapselung oder die

einzelnen Teilschichten der Dünnschichtverkapselung als transparente Schicht (en) ausgebildet sein.

Gemäß einer Ausgestaltung können die Schicht oder die

einzelnen Teilschichten der Dünnschichtverkapselung als nicht-transparente Schicht (en) ausgebildet sein.

Die Schicht oder die einzelnen Teilschichten der

Dünnschichtverkapselung können jeweils ein Material

aufweisen, das geeignet ist, die Funktionsschicht (en) des optoelektronischen Bauelements vor schädigenden Einflüssen der Umgebung zu schützen, also etwa vor Sauerstoff und/oder Feuchtigkeit . Beispielsweise kann die Dünnschichtverkapselung oder (im Falle eines Schichtenstapels mit einer Mehrzahl von

Teilschichten) eine oder mehrere der Teilschichten der

Dünnschichtverkapselung eines der nachfolgenden Materialien aufweisen oder daraus bestehen: ein Oxid, ein Nitrid oder ein Oxinitrid in kristalliner oder in glasartiger Form. Das Oxid, Nitrid oder Oxidnitrid kann beispielsweise weiterhin

Aluminium, Silizium, Zinn, Zink, Titan, Zirkonium, Tantal, Niob oder Hafnium umfassen. Die Schicht oder die einzelnen

Teilschichten können beispielsweise Siliziumoxid (SiO x ) , wie etwa S 1O 2 , Siliziumnitrid (Si x N y ) , wie etwa S 1 2 N 3 ,

Aluminiumoxid, etwa AI 2 O 3 , Aluminiumnitrid, Zinnoxid,

Indiumzinnoxid, Zinkoxid, Aluminiumzinkoxid, Titanoxid,

Zirkoniumoxid, Hafniumoxid oder Tantaloxid aufweisen.

Gemäß einer Ausgestaltung können bei einer

Dünnschichtverkapselung, die mehrere Teilschichten aufweist, alle Teilschichten dasselbe Material aufweisen oder daraus bestehen. Gemäß einer anderen Ausgestaltung können die einzelnen Teilschichten der Dünnschichtverkapselung

unterschiedliche Materialien aufweisen oder daraus bestehen. Mit anderen Worten kann mindestens eine der Teilschichten ein anderes Material aufweisen oder daraus bestehen als eine oder mehrere andere der Teilschichten.

Unter „Partikelverunreinigungen" bzw.

„Partikelkontaminationen" können im Rahmen dieser Anmeldung beispielsweise Verunreinigungen durch mikroskopische

Feststoffteilchen verstanden werden, mit anderen Worten

Verunreinigungen durch feste Teilchen (Partikel) , deren

Abmessungen (z.B. Durchmesser) im Mikrometerbereich liegen, z.B. Staubpartikel mit Abmessungen im Mikrometerbereich, z.B. Partikel mit einem Durchmesser im Bereich von ungefähr 0,1 ym bis ungefähr 100 ym, beispielsweise im Bereich von ungefähr 1 ym bis ungefähr 10 ym. Solche Partikelverunreinigungen können beispielsweise dadurch auftreten, dass es nicht immer möglich ist, während eines Bauelemente-Fertigungsprozesses eine hundertprozentige Reinheit in der Prozesskammer (z.B. Reaktor) zu gewährleisten. Zu ungewünschter

Partikelkontamination kann es beispielsweise kommen, wenn bei der Herstellung einer Schichtstruktur, die mehrere Schichten aufweist, zwischen dem Abscheideprozess einer ersten Schicht und dem Abscheideprozess für die Folgeschicht eine relative lange Zeitdauer liegt. In diesem Fall ist es möglich, dass sich in der Zeit zwischen den beiden Abscheideprozessen

Partikel an der Oberfläche der ersten abgeschiedenen Schicht anlagern und diese „kontaminieren". Ferner kann es

beispielsweise auch zu Partikelkontamination kommen, wenn während eines Bauelemente-Fertigungsprozesses das Bauelement von einer Prozesskammer in eine andere überführt wird

(Reaktorwechsel) .

Gemäß verschiedenen Ausführungsbeispielen gewährt die

Dünnschichtverkapselung oder mindestens eine Teilschicht der Dünnschichtverkapselung einen zumindest teilweisen Einschluss von Partikeln bzw. Partikelverunreinigungen, welche zum

Beispiel an bzw. auf der Oberfläche eines

Funktionsschichtenstapels eines optoelektronischen

Bauelements vorhanden sind. Weiterhin gewährt gemäß verschiedenen Ausführungsbeispielen die auf einer Dünnschichtverkapselung aufgebrachte

Klebeschicht einen Einschluss von an bzw. auf der Oberfläche der Dünnschichtverkapselung vorhandenen Partikeln bzw.

Partikelverunreinigungen und/oder eine planarisierende

Abdeckung der Oberfläche. Mit anderen Worten können mittels der Klebeschicht zum einen an der Oberfläche der

Dünnschichtverkapselung befindliche Partikelverunreinigungen eingeschlossen bzw. umschlossen werden und zum anderen

Unebenheiten der Oberfläche, welche durch die

Partikelverunreinigungen hervorgerufen sein können,

ausgeglichen bzw. eingeebnet werden. Gemäß einer Ausgestaltung weist die Klebeschicht ein

aushärtbares Klebematerial auf. Zum Beispiel kann die

Klebeschicht aus einem aushärtbaren Klebematerial (z.B. einem aushärtbaren Kleber) bestehen.

Unter einem „aushärtbaren Klebematerial" oder „aushärtenden Klebematerial" kann im Rahmen dieser Anmeldung beispielsweise ein Klebematerial verstanden werden, das von einem ersten Zustand mit geringerer mechanischer Härte bzw. Festigkeit (nicht ausgehärteter Zustand) in einen zweiten Zustand mit, verglichen zu dem ersten Zustand, höherer mechanischer Härte bzw. Festigkeit (ausgehärteter Zustand) übergehen oder überführt werden kann. Der Übergang von dem ersten (nicht ausgehärteten) Zustand in den zweiten (ausgehärteten) Zustand kann als „Aushärten" bezeichnet werden.

Eine Klebeschicht, die ein aushärtbares Klebematerial

aufweist oder daraus besteht, kann im nicht ausgehärteten Zustand aufgebracht werden und kann nachfolgend (zum Beispiel nach dem Aufbringen der Deckschicht) ausgehärtet werden bzw. aushärten .

Gemäß einer Ausgestaltung ist das aushärtbare Klebematerial der Klebeschicht als UV-aushärtendes Klebematerial

ausgebildet. Mit anderen Worten kann das aushärtbare

Klebematerial mittels Einwirkung von UV-Strahlung

(Ultraviolettstrahlung) aushärten bzw. ausgehärtet werden. Die für das Aushärten verwendete UV-Strahlung kann

beispielsweise eine Wellenlänge im Bereich von ungefähr

310 nm bis ungefähr 430 nm aufweisen gemäß einer

Ausgestaltung, beispielsweise im Bereich von ungefähr 360 nm bis ungefähr 390 nm gemäß einer Ausgestaltung. Ferner kann die verwendete UV-Strahlung eine Dosis aufweisen, die

geringer ist als ungefähr 10 000 mJ/cm 2 gemäß einer

Ausgestaltung, z.B. eine Dosis im Bereich von ungefähr

2000 mJ/cm 2 bis ungefähr 8000 mJ/cm 2 gemäß einer

Ausgestaltung, z.B. eine Dosis im Bereich von ungefähr 5000 mJ/cm 2 bis ungefähr 7000 mJ/cm 2 gemäß einer Ausgestaltung, z.B. eine Dosis von ungefähr 6000 mJ/cm 2 gemäß einer Ausgestaltung. Das UV-aushärtende Klebematerial kann beispielsweise so gewählt werden, dass die zum Aushärten verwendeten Parameter der UV-Strahlung (z.B. Wellenlänge, Dosis) so gewählt werden können, dass eine mögliche Schädigung des optoelektronischen Bauelements durch die UV-Strahlung vermieden werden kann.

Gemäß einer anderen Ausgestaltung kann das aushärtbare

Klebematerial der Klebeschicht als temperaturaushärtendes Klebematerial ausgebildet sein. Mit anderen Worten kann das aushärtbare Klebematerial mittels einer Temperaturbehandlung (mit anderen Worten, mittels einer Temperung bzw. eines Erhitzens) aushärten bzw. ausgehärtet werden.

Gemäß einer Ausgestaltung kann das aushärtbare Klebematerial ein temperaturaushärtbares Klebematerial (z.B.

temperaturaushärtender Kleber) sein, dass bei einer

Temperatur von weniger als ungefähr 150 °C aushärtet. Die für das Aushärten verwendete Temperatur kann beispielsweise ungefähr 10°C bis ungefähr 140°C betragen gemäß einer

Ausgestaltung, beispielsweise ungefähr 50°C bis ungefähr 100°C gemäß einer Ausgestaltung, beispielsweise ungefähr 80°C gemäß einer Ausgestaltung.

Die Dauer der Temperaturbehandlung kann beispielsweise ungefähr 1 min bis ungefähr 300 min betragen gemäß einer Ausgestaltung, beispielsweise ungefähr 30 min bis ungefähr 100 min gemäß einer Ausgestaltung, beispielsweise ungefähr 60 min gemäß einer Ausgestaltung.

Ein Vorteil eines temperaturaushärtbaren Klebematerials, das bei einer relativ niedrigen Temperatur und/oder bereits nach einer relativ kurzen Temperungsdauer aushärtet, kann darin gesehen werden, dass eine Schädigung des optoelektronischen Bauelements durch zu hohe Temperaturen und/oder zu lange Temperzeiten vermieden werden kann. Ferner kann ein niedriges thermisches Budget eine Kosteneinsparung mit sich bringen. Gemäß einer Ausgestaltung ist das aushärtbare Klebematerial der Klebeschicht als selbstaushärtendes Klebematerial

ausgebildet. Unter einem „selbstaushärtenden Klebematerial" kann in diesem Zusammenhang beispielsweise ein Klebematerial verstanden werden, das ohne äußere Einwirkung (z.B. Temperung oder UV-Bestrahlung) unter normalen Raumbedingungen

(Temperatur, Druck) aushärtet, z.B. nach Ablauf einer

bestimmten (beispielsweise vom Material abhängigen)

Zeitdauer. Ein Vorteil eines selbstaushärtenden

Klebematerials kann darin gesehen werden, dass zum Aushärten des Klebematerials beispielsweise keine Einrichtung zum

Tempern (Erhitzen) oder zur UV-Bestrahlung erforderlich ist. Somit können Kosten eingespart werden.

Die Klebeschicht kann gemäß einer Ausgestaltung

beispielsweise eines oder mehrere der folgenden Materialien aufweisen oder daraus bestehen: Epoxid-Kleber, Akrylkleber, Silikonkleber .

Gemäß verschiedenen Ausgestaltungen ist die Klebeschicht so ausgebildet, dass an der Oberfläche der

Dünnschichtverkapselung befindliche Partikelverunreinigungen von der Klebeschicht zumindest teilweise umschlossen sind bzw. zumindest teilweise in der Klebeschicht eingebettet sind. Die Klebeschicht kann so ausgebildet sein, dass die Partikelverunreinigungen vollständig in der Klebeschicht eingebettet sind.

Die Klebeschicht kann ferner so ausgebildet sein, dass sie eine im Wesentlichen ebene (planare) Oberfläche aufweist. Zum Beispiel kann die Klebeschicht über ihre gesamte laterale Ausdehnung hin eine ebene Oberfläche aufweisen. Gemäß einer Ausgestaltung weist die Klebeschicht eine

Schichtdicke auf, die größer oder ungefähr gleich dem

Durchmesser der Partikelverunreinigungen bzw. Partikel ist. Zum Beispiel kann die Klebeschicht eine Schichtdicke

aufweisen, die größer ist als der mittlere Durchmesser der Partikelverunreinigungen. Die Schichtdicke kann

beispielsweise größer sein als der maximale Durchmesser der Partikelverunreinigungen . Die Schichtdicke der Klebeschicht kann anschaulich so gewählt werden, dass eventuell an oder auf der Oberfläche der

Dünnschichtverkapselung vorhandene Partikelverunreinigungen (anders ausgedrückt, Partikelkontaminationen) bzw. Partikel von der Klebeschicht eingeschlossen (mit anderen Worten, umschlossen) werden. Mit anderen Worten kann die Schichtdicke der Klebeschicht so gewählt werden, dass an bzw. auf der Oberfläche der Dünnschichtverkapselung vorhandene

Partikelverunreinigungen vollständig vom Klebematerial der Klebeschicht umgeben bzw. umschlossen sind und insbesondere anschaulich nicht aus dieser „herausragen".

Die Klebeschicht kann beispielsweise eine Schichtdicke von ungefähr 1 ym bis ungefähr 500 ym aufweisen, zum Beispiel ungefähr 10 ym bis ungefähr 100 ym gemäß einer Ausgestaltung, zum Beispiel ungefähr 15 ym bis ungefähr 35 ym gemäß einer Ausgestaltung, beispielsweise 25 ym gemäß einer

Ausgestaltung .

Die Deckschicht kann auch als mechanische Schutzschicht oder mechanischer Schutzfilm bezeichnet werden, da sie als Schutz der Dünnschichtverkapselung und/oder des optoelektronischen Bauelements vor mechanischen Belastungen bzw. Beschädigungen (z.B. durch Verkratzen) dienen kann. Gemäß einer Ausgestaltung weist die Deckschicht eine starre

Schicht auf oder ist als starre Schicht ausgebildet, z.B. als Glasschicht. Eine als starre Schicht ausgebildete Deckschicht kann auch als Deckplatte bezeichnet werden. Eine als

Glasschicht ausgebildete Deckschicht kann auch als Deckglas oder Capglas bezeichnet werden. Gemäß einer alternativen Ausgestaltung weist die Deckschicht eine flexible Schicht auf oder ist als flexible Schicht ausgebildet, zum Beispiel als Folie, beispielsweise als transparente Folie, alternativ als nicht-transparente Folie. Die Deckschicht kann beispielsweise eine (transparente oder nicht-transparente) Wärmeleitfolie aufweisen oder als eine solche ausgebildet sein gemäß einer Ausgestaltung. Eine als Wärmleitfolie ausgebildete Deckschicht kann zur

Homogenisierung und/oder Abtransport von Wärme, welche beim Betrieb des optoelektronischen Bauelements (z.B. einer OLED) erzeugt wird, dienen.

Gemäß einer anderen Ausgestaltung weist die Deckschicht eine Lackschicht auf. Die Deckschicht kann beispielsweise als Lackschicht (z.B. als transparente Lackschicht oder als nicht-transparente Lackschicht) ausgebildet sein.

Die Lackschicht kann ein Lackmaterial, welches zum Bilden einer mechanischen Schutzschicht geeignet ist, aufweisen oder daraus bestehen, zum Beispiel ein Polyacryllack-Material , beispielsweise einen polyacrylischen Schutzlack (z.B. einen transparenten polyacrylischen Schutzlack) , alternativ andere geeignete Lack-Materialien bzw. Lacke.

Die Deckschicht kann als transparente Schicht ausgebildet sein, alternativ als nicht-transparente Schicht.

Beispielsweise kann in einer Ausgestaltung, bei der das optoelektronische Bauelement als Top-Emitter oder als

Kombination aus Top-Emitter und Bottom-Emitter ausgeführt ist, die Deckschicht als transparente Schicht ausgebildet sein . Gemäß einer Ausgestaltung ist bzw. wird die Deckschicht mittels der Klebeschicht auf der Dünnschichtverkapselung auflaminiert . Die Deckschicht kann in diesem Fall

beispielsweise Teil einer selbstklebenden Schutzfolie sein, z.B. einer Polycarbonatfolie (z.B. mit einer Schichtdicke von ungefähr 300 ym, alternativ mit einer anderen Schichtdicke) , mit der Klebeschicht (Adhesivfilm) (z.B. mit einer

Schichtdicke von ungefähr 25 ym, alternativ mit einer anderen Schichtdicke) . Mit anderen Worten kann die selbstklebende Schutzfolie die Klebeschicht und die Deckschicht umfassen.

Gemäß einer Ausgestaltung weist die Klebeschicht

Streupartikel auf. Die Streupartikel können beispielsweise in der Klebeschicht eingebettet sein.

Die Streupartikel können beispielsweise in dem als

Matrixmaterial dienenden Klebematerial der Klebeschicht als Volumenstreuer dispergiert sein. Die Streupartikel können beispielsweise ein Metalloxid wie zum Beispiel Titanoxid oder Aluminiumoxid wie etwa Korund, und/oder Glaspartikel und/oder Kunststoffpartikel , die einen vom Matrixmaterial

unterschiedlichen Brechungsindex aufweisen, umfassen.

Weiterhin können die Streupartikel Hohlräume aufweisen und beispielsweise in Form von Kunststoffhohlkugeln ausgeführt sein. Die Streupartikel können dabei beispielsweise

Durchmesser oder Korngrößen von weniger als einem 1 ym bis zu einer Größenordnung von 10 ym oder auch bis zu 100 ym

aufweisen . Die Streupartikel können beispielsweise eine Verbesserung der Lichtauskopplung bewirken.

Ferner kann die Klebeschicht so ausgebildet sein, dass durch Kavitätseffekte eine optische Verbesserung erzielt werden kann. Gemäß einer anderen Ausgestaltung ist auf oder über der

Deckschicht mindestens eine zusätzliche Schicht ausgebildet. Es können mehrere zusätzliche Schichten (zum Beispiel

übereinander) auf oder über der Deckschicht ausgebildet sein.

Gemäß einer Ausgestaltung weist die mindestens eine

zusätzliche Schicht mindestens eine Wärmeleitfolie auf. Die Wärmeleitfolie kann zur Homogenisierung und/oder Abtransport von Wärme dienen, welche beim Betrieb des optoelektronischen Bauelements (z.B. einer OLED) erzeugt wird.

Gemäß einer anderen Ausgestaltung weist die mindestens eine zusätzliche Schicht eine Lichtauskoppelschicht auf. Die

Lichtauskoppelschicht kann beispielsweise Streupartikel aufweisen, welche beispielsweise wie oben im Zusammenhang mit der Klebeschicht beschrieben ausgebildet sein können.

Gemäß verschiedenen Ausgestaltungen, in denen die

Klebeschicht ein aushärtbares Klebematerial aufweist oder daraus besteht, wird die Klebeschicht in einem nicht

ausgehärteten Zustand (z.B. in flüssiger Form) auf die

Dünnschichtverkapselung aufgebracht. Die (noch) nicht

ausgehärtete Klebeschicht kann dabei durch Eigenschaften wie beispielsweise Grenzflächenspannung bzw. Benetzungsvermögen, Schichtdicke und Viskosität einen Einschluss von

Partikelverunreinigungen an der Oberfläche der

Dünnschichtverkapselung und eine planarisierende Abdeckung der Oberfläche ermöglichen. Gemäß verschiedenen

Ausgestaltungen wird die Deckschicht auf der nicht (oder nicht vollständig) ausgehärteten Klebeschicht aufgebracht. Gemäß verschiedenen Ausgestaltungen erfolgt nach dem

Aufbringen der Deckschicht das Aushärten der Klebeschicht. Das Aushärten der Klebeschicht kann beispielsweise mittels Bestrahlung mit UV-Licht (bei Verwendung eines UV- aushärtenden Materials für die Klebeschicht) erfolgen.

Alternativ kann das Aushärten der Klebeschicht mittels

Temperung (Erhitzens) mit einer vorgebbaren Temperatur erfolgen (bei Verwendung eines temperaturaushärtenden

Materials für die Klebeschicht) . Bei Verwendung eines

selbstaushärtenden Klebematerials kann das Aushärten ohne äußeren Einfluss wie z.B. UV-Strahlung oder Temperung

erfolgen.

In der (ausgehärteten) Klebeschicht der Verkapselungsstruktur können Partikelverunreinigungen eingebettet werden bzw. sein. Dadurch kann ein „Eindrücken" der Partikel in ein mittels der Verkapselungsstruktur zu verkapselndes optoelektronisches Bauelement (z.B. OLED) verhindert werden, so dass eine

Schädigung des optoelektronischen Bauelements durch die

Partikel vermieden werden kann. Gemäß einer Ausgestaltung ist das optoelektronische

Bauelement als organisches optoelektronisches Bauelement ausgebildet bzw. eingerichtet. Das optoelektronische

Bauelement kann beispielsweise, ohne darauf beschränkt zu sein, als organische Leuchtdiode (OLED) , als organische

Solarzelle bzw. Photovoltaikzelle (OPV), als organischer Fototransistor oder dergleichen ausgebildet sein.

Das optoelektronische Bauelement kann ein Substrat aufweisen. Ein „Substrat", wie es hierin verwendet wird, kann zum

Beispiel ein für ein optoelektronisches Bauelement

üblicherweise verwendetes Substrat aufweisen. Das Substrat kann ein transparentes Substrat sein. Das Substrat kann jedoch auch ein nicht-transparentes Substrat sein.

Beispielsweise kann das Substrat Glas, Quarz, Saphir,

Kunststofffolie (n) , Metall, Metallfolie (n) , Siliziumwafer oder ein anderes geeignetes Substratmaterial aufweisen. Als Substrat wird in verschiedenen Ausgestaltungen die Schicht verstanden, auf der bei der Herstellung des

optoelektronischen Bauelements nachfolgend alle anderen

Schichten aufgebracht werden. Solche nachfolgenden Schichten können z.B. bei einem optoelektronischen Bauelement oder einer Strahlungsemittierenden Vorrichtung für die Strahlungsemission erforderliche Schichten sein.

Gemäß einer Ausgestaltung ist das Substrat als starres

Substrat ausgebildet. Beispielsweise kann das Substrat als Glassubstrat ausgebildet sein.

Gemäß einer Ausgestaltung ist das Substrat als flexibles (mit anderen Worten, biegsames) Substrat ausgebildet.

Beispielsweise kann das Substrat als Foliensubstrat

ausgebildet sein, z.B. als Stahlfoliensubstrat oder als Polymerfoliensubstrat gemäß einer Ausgestaltung.

Das Substrat kann als transparentes Substrat ausgebildet sein (z.B. als transparente Folie oder als Glassubstrat),

alternativ als nicht-transparentes Substrat (z.B. als

Silizium-Wafer gemäß einer Ausgestaltung) .

Gemäß einer Ausgestaltung ist zwischen dem Substrat und der mindestens einen Funktionsschicht eine erste Elektrode

(erster elektrischer Kontakt) ausgebildet. Die erste

Elektrode kann auf oder über dem Substrat aufgebracht sein, und die mindestens eine Funktionsschicht kann auf oder über der ersten Elektrode aufgebracht sein. Die erste Elektrode kann auch als Grundelektrode oder als Grundkontakt bezeichnet werden. Alternativ kann die erste Elektrode auch als

substratseitige Elektrode oder substratseitiger Kontakt bezeichnet werden. Die erste Elektrode kann eine Anode sein, alternativ eine Kathode .

Gemäß einer Ausgestaltung ist zwischen der mindestens einen Funktionsschicht und der Dünnschichtverkapselung eine zweite Elektrode ausgebildet. Die zweite Elektrode kann auf oder über der mindestens einen Funktionsschicht aufgebracht sein, und die Dünnschichtverkapselung kann auf oder über der zweiten Elektrode aufgebracht sein. Die zweite Elektrode kann auch als Deckelektrode oder als Deckkontakt bezeichnet werden. Alternativ kann die zweite Elektrode auch als deckseitige Elektrode oder deckseitiger Kontakt bezeichnet werden.

Die zweite Elektrode kann eine Kathode sein (z.B. falls die erste Elektrode eine Anode ist), alternativ eine Anode (z.B. falls die erste Elektrode eine Kathode ist) .

Die erste Elektrode und die zweite Elektrode können in geeigneter Weise elektrisch kontaktiert sein.

Die erste Elektrode und/oder die zweite Elektrode können/kann transparent ausgebildet sein. Alternativ können/kann die erste Elektrode und/oder die zweite Elektrode nicht ¬ transparent ausgebildet sein.

Beispielsweise kann gemäß einer Ausgestaltung, in der das optoelektronische Bauelement als Bottom-Emitter ausgeführt ist, die erste Elektrode (Grundelektrode) transparent ausgebildet sein und die zweite Elektrode (Deckelektrode) nicht-transparent. In diesem Fall kann die zweite Elektrode als reflektive Elektrode (reflektiver Kontakt) ausgebildet sein, mit anderen Worten als Elektrode, welche die von der mindestens einen Funktionsschicht emittierte Strahlung im Wesentlichen oder vollständig reflektiert.

Gemäß einer Ausgestaltung, in der das optoelektronische

Bauelement als Top-Emitter ausgeführt ist, kann die zweite Elektrode (Deckelektrode) transparent ausgebildet sein und die erste Elektrode (Grundelektrode) nicht-transparent. In diesem Fall kann die erste Elektrode als reflektive Elektrode (reflektiver Kontakt) ausgebildet sein, mit anderen Worten als Elektrode, welche die von der mindestens einen

Funktionsschicht emittierte Strahlung im Wesentlichen oder vollständig reflektiert. Gemäß einer Ausgestaltung, in der das optoelektronische

Bauelement als Kombination aus Top-Emitter und Bottom-Emitter ausgeführt ist, können die erste Elektrode und die zweite Elektrode jeweils als transparente Elektrode ausgebildet sein .

Die erste Elektrode und/oder die zweite Elektrode können/kann beispielsweise mittels eines Abscheideverfahrens aufgebracht sein bzw. werden. Gemäß einer Ausgestaltung können/kann die erste Elektrode und/oder die zweite Elektrode mittels

Sputterns oder mittels thermischen Verdampfens aufgebracht werden. Alternativ können andere geeignete Verfahren zum Aufbringen der ersten und/oder zweiten Elektrode verwendet werden.

Gemäß verschiedenen Ausgestaltungen können/kann die erste Elektrode und/oder die zweite Elektrode eine Schichtdicke aufweisen in einem Bereich von ungefähr 5 nm bis einige ym, beispielsweise eine Schichtdicke in einem Bereich von

ungefähr 100 nm bis ungefähr 200 nm. Gemäß alternativen

Ausgestaltungen können/kann die erste Elektrode und/oder die zweite Elektrode eine andere Schichtdicke aufweisen. In diesem Zusammenhang ist anzumerken, dass die Schichtdicke der Elektroden von der Wahl des Elektrodenmaterials abhängig sein kann. Typische Schichtdicken für Elektroden aus TCO- Materialien (TCO: transparent conductive oxide =

transparentes leitfähiges Oxid, z.B. ITO (Indium-Zinn-Oxid)) können beispielsweise im Bereich von ungefähr 50 nm bis ungefähr 200 nm liegen. Transparente Elektroden basierend auf dünnen Metallschichten können beispielsweise Schichtdicken im Bereich von ungefähr 10 nm bis ungefähr 30 nm aufweisen. Für reflektierende Metallelektroden kann die Schichtdicke

beispielsweise im Bereich von ungefähr 50 nm bis 200 nm liegen, alternativ jedoch auch bis zu mehreren ym betragen. Zusammenfassend kann gesagt werden, dass unterschiedliche Elektrodenansätze unterschiedliche Elektroden-Schichtdicken bedingen können.

Die erste Elektrode und/oder die zweite Elektrode können/kann aus einem Material gebildet sein oder ein Material aufweisen, das ausgewählt ist aus Metallen wie Aluminium, Barium,

Indium, Silber, Gold, Magnesium, Calcium und Lithium sowie Kombinationen derselben oder einer Verbindung derselben, insbesondere einer Legierung, sowie transparenten leitfähigen Oxiden, wie beispielsweise Metalloxiden, wie Zinkoxid,

Zinnoxid, Cadmiumoxid, Titanoxid, Indiumoxid oder Indium ¬ dotiertem Zinnoxid (ITO), Aluminium-dotiertem Zinkoxid (AZO) , Zn2Sn04, CdSnC>3, ZnSnC>3, MgIn2Ü4, Galn03, Zn2ln2Ü5 oder

In4Sn30]_2 oder Mischungen unterschiedlicher transparenter leitender Oxide. Gemäß anderen Ausgestaltungen können die erste Elektrode und/oder die zweite Elektrode ein anderes geeignetes Material aufweisen oder daraus bestehen.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement (z.B. organisches

optoelektronisches Bauelement wie z.B. OLED) als „Bottom- Emitter" ausgeführt sein.

Der Begriff „Bottom-Emitter" oder „bottom-emittierendes optoelektronisches Bauelement", wie er hierin verwendet wird, bezeichnet eine Ausführung, die zu der Substratseite des optoelektronischen Bauelements hin transparent ausgeführt ist. Beispielsweise können dazu wenigstens das Substrat und zwischen dem Substrat und der mindestens einen

Funktionsschicht ausgebildete Schichten (z.B. eine zwischen Substrat und Funktionsschicht (en) ausgebildete Elektrode (Grundelektrode)) transparent ausgeführt sein. Ein als

Bottom-Emitter ausgeführtes optoelektronisches Bauelement kann demnach beispielsweise in den Funktionsschichten (z.B. organischen Funktionsschichten bei einem organischen

optoelektronischen Bauelement wie z.B. einer OLED) erzeugte Strahlung auf der Substratseite des optoelektronischen

Bauelements emittieren.

Alternativ oder zusätzlich dazu kann das optoelektronische Bauelement gemäß verschiedenen Ausführungsbeispielen als „Top-Emitter" ausgeführt sein.

Der Begriff „Top-Emitter" oder „top-emittierendes

optoelektronisches Bauelement", wie er hierin verwendet wird, bezeichnet beispielsweise eine Ausführung, die zu der dem Substrat abgewandten Seite (anders ausgedrückt, zur

Deckseite) des optoelektronischen Bauelements hin transparent ausgeführt ist. Insbesondere können dazu die auf bzw. über der mindestens einen Funktionsschicht des optoelektronischen Bauelements ausgebildeten Schichten (z.B. zwischen

Funktionsschicht (en) und Dünnschichtverkapselung ausgebildete Elektrode (Deckelektrode) , Dünnschichtverkapselung,

Klebeschicht, Deckschicht) transparent ausgeführt sein. Ein als Top-Emitter ausgeführtes optoelektronisches Bauelement kann demnach beispielsweise in den Funktionsschichten (z.B. organischen Funktionsschichten bei einem organischen

optoelektronischen Bauelement wie z.B. einer OLED) erzeugte Strahlung auf der Deckseite des optoelektronischen

Bauelements emittieren.

Ein als Top-Emitter ausgestaltetes optoelektronisches

Bauelement gemäß verschiedenen Ausführungsbeispielen kann in vorteilhafter Weise eine hohe Lichtauskopplung und eine sehr geringe Winkelabhängigkeit der Strahlungsdichte aufweisen.

Ein optoelektronisches Bauelement gemäß verschiedenen

Ausführungsbeispielen kann in vorteilhafter Weise für

Beleuchtungen, wie beispielsweise Raumleuchten, eingesetzt werden .

Eine Kombination aus Bottom-Emitter und Top-Emitter ist ebenso in verschiedenen Ausführungsbeispielen vorgesehen. Bei einer solchen Ausführung ist das optoelektronische Bauelement allgemein in der Lage, das in den Funktionsschichten (z.B. den organischen Funktionsschichten bei einem organischen optoelektronischen Bauelement wie z.B. einer OLED) erzeugte Licht in beide Richtungen - also sowohl zu der Substratseite als auch zu der Deckseite hin - zu emittieren.

Gemäß einer anderen Ausführungsform ist eine dritte Elektrode in dem optoelektronischen Bauelement vorgesehen, welche zwischen der ersten Elektrode und der zweiten Elektrode angeordnet ist.

Die dritte Elektrode kann als Zwischenkontakt fungieren. Sie kann dazu dienen, einen Ladungstransport durch die Schichten des optoelektronischen Bauelements hindurch zu erhöhen und damit die Effizienz des optoelektronischen Bauelements zu verbessern. Die dritte Elektrode kann als ambipolare Schicht ausgestaltet sein. Sie kann als Kathode oder Anode

ausgestaltet sein.

Ebenso wie die erste Elektrode und die zweite Elektrode kann die dritte Elektrode gemäß verschiedenen

Ausführungsbeispielen geeignet elektrisch kontaktiert sein bzw. werden.

In einer Weiterbildung des optoelektronischen Bauelements sind als organische Funktionsschichten eine Emitterschicht und eine oder mehrere weitere organische Funktionsschichten enthalten. Die weiteren organischen Funktionsschichten können ausgewählt sein aus der Gruppe, bestehend aus

Lochinj ektionsschichten, Lochtransportschichten,

lochblockierenden Schichten, Elektroneninjektionsschichten, Elektronentransportschichten und elektronenblockierenden Schichten .

Geeignete Funktionsschichten und geeignete organische

Funktionsschichten sind dem Fachmann an sich bekannt. Die (organischen) Funktionsschichten können vorzugsweise mittels thermischen Verdampfens aufgebracht werden. Die weiteren (organischen) Funktionsschichten können die Funktionalität und/oder Effizienz des optoelektronischen Bauelements in vorteilhafter Weise verbessern.

Gemäß verschiedenen Ausgestaltungen wird ein Prozess zum Verkapseln eines optoelektronischen Bauelements

bereitgestellt, welcher aufweist: (1) Aufbringen einer

Dünnschichtverkapselung (welche eine oder mehrere

Barrierendünnschichten aufweisen kann) als Schutz gegen

Eindringen schädlicher chemischer Bestandteile aus der

Umgebung (z.B. Wasser oder Sauerstoff) in das

optoelektronische Bauelement, (2) Ausbilden einer

Klebeschicht auf der Dünnschichtverkapselung (z.B.

unmittelbar auf der Dünnschichtverkapselung) . Hierbei können Materialien und Prozesse verwendet werden, die die

Partikelbelastung auf der Oberfläche minimieren bzw. Partikel durch Umschließen unschädlich machen. Auf der Klebeschicht wird (3) eine Deckschicht (mechanische Schutzschicht) ausgebildet (z.B. wird gemäß einer Ausgestaltung die

Deckschicht unter Verwendung der zuvor auf der Deckschicht (z.B. auf der Unterseite der Deckschicht) aufgebrachten

Klebeschicht auf der Dünnschichtverkapselung auflaminiert , so dass die Klebeschicht zwischen der Dünnschichtverkapselung und der Deckschicht ausgebildet ist und die

Dünnschichtverkapselung und die Deckschicht anschaulich miteinander verbindet) . Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Folgenden näher erläutert.

Es zeigen Figur 1 eine Anordnung mit einer organischen Leuchtdiode

(OLED) und herkömmlicher Verkapselung mittels

Glaskavität gemäß einem Beispiel; Figur 2 eine Anordnung mit einer organischen Leuchtdiode (OLED) und herkömmlicher Verkapselung mittels Glaskavität gemäß einem anderen Beispiel;

Figur 3 eine Verkapselungsstruktur für ein

optoelektronisches Bauelement gemäß einem Ausführungsbeispiel ; Figur 4 eine Verkapselungsanordnung gemäß einem weiteren

Ausführungsbeispiel ;

Figur 5 ein Verfahren zum Verkapseln eines

optoelektronischen Bauelements gemäß einem weiteren Ausführungsbeispiel;

Figur 6 eine Verkapselungsanordnung gemäß einem weiteren

Ausführungsbeispiel ; Figur 7A einen Ausschnitt der in Figur 6 gezeigten

Verkapselungsanordnung;

Figur 7B einen anderen Ausschnitt der in Figur 6 gezeigten

Verkapselungsanordnung;

Figur 8 eine Verkapselungsanordnung gemäß einem weiteren

Ausführungsbeispiel ;

Figur 9 eine Verkapselungsanordnung gemäß einem weiteren

Ausführungsbeispiel;

Figur 10 eine Verkapselungsanordnung gemäß einem weiteren

Ausführungsbeispiel ;

In der folgenden ausführlichen Beschreibung wird auf die beigefügten Zeichnungen Bezug genommen, die einen Teil dieser Beschreibung bilden und in denen zur Veranschaulichung spezifische Ausführungsformen gezeigt sind, in denen die Erfindung ausgeübt werden kann. In dieser Hinsicht wird

Richtungsterminologie wie etwa „oben", „unten", „vorne", „hinten", „vorderes", „hinteres", usw. mit Bezug auf die Orientierung der beschriebenen Figur (en) verwendet. Da

Komponenten von Ausführungsformen in einer Anzahl

verschiedener Orientierungen positioniert werden können, dient die Richtungsterminologie zur Veranschaulichung und ist auf keinerlei Weise einschränkend. Es versteht sich, dass andere Ausführungsformen benutzt und strukturelle oder logische Änderungen vorgenommen werden können, ohne von dem Schutzumfang der vorliegenden Erfindung abzuweichen. Es versteht sich, dass die Merkmale der hierin beschriebenen verschiedenen beispielhaften Ausführungsformen miteinander kombiniert werden können, sofern nicht spezifisch anders angegeben. Die folgende ausführliche Beschreibung ist deshalb nicht in einschränkendem Sinne aufzufassen, und der

Schutzumfang der vorliegenden Erfindung wird durch die angefügten Ansprüche definiert.

Im Rahmen dieser Beschreibung werden die Begriffe

"verbunden", "angeschlossen" sowie "gekoppelt" verwendet zum Beschreiben sowohl einer direkten als auch einer indirekten Verbindung, eines direkten oder indirekten Anschlusses sowie einer direkten oder indirekten Kopplung.

In den Figuren werden identische oder ähnliche Elemente mit identischen Bezugszeichen versehen, soweit dies zweckmäßig ist .

Fig. 3 zeigt eine Verkapselungsstruktur 300 für ein

optoelektronisches Bauelement gemäß einem

Ausführungsbeispiel . Gemäß verschiedenen Ausgestaltungen kann die

Verkapselungsstruktur 300 eine Dünnschichtverkapselung 301 aufweisen zum Schutz eines optoelektronischen Bauelements vor chemischen Verunreinigungen. Die Dünnschichtverkapselung 301 kann eine oder mehrere dünne Schichten (auch als

Barrieredünnschichten bezeichnet) aufweisen und kann ferner gemäß einer oder mehrerer hierin beschriebener

Ausgestaltungen ausgebildet sein.

Gemäß verschiedenen Ausgestaltungen kann die

Verkapselungsstruktur 300 ferner eine auf der

Dünnschichtverkapselung 301 aufgebrachte Klebeschicht 302 aufweisen. Die Klebeschicht 302 kann ein Klebematerial aufweisen oder daraus bestehen und kann ferner gemäß einer oder mehrerer hierin beschriebener Ausgestaltungen

ausgebildet sein. Gemäß verschiedenen Ausgestaltungen kann die

Verkapselungsstruktur 300 ferner eine auf der Klebeschicht 302 aufgebrachte Deckschicht 303 aufweisen zum Schutz der Dünnschichtverkapselung 301 vor mechanischer Beschädigung. Die Deckschicht 303 kann gemäß einer oder mehrerer hierin beschriebener Ausgestaltungen ausgebildet sein,

beispielsweise als starre Deckschicht (z.B. Glasdeckschicht) oder als flexible Deckschicht (z.B. als Folie), und/oder als transparente Deckschicht (z.B. Deckglas oder transparente Folie) oder als nichttransparente Deckschicht (z.B.

nichttransparente Metallfolie), usw. Gemäß einer

Ausgestaltung kann die Deckschicht 303 beispielsweise Teil einer selbstklebenden Folie sein, welche mittels der

Klebeschicht 302 auf der Dünnschichtverkapselung 301

aufgebracht (z.B. auflaminiert ) ist.

Gemäß verschiedenen Ausgestaltungen kann die Klebeschicht 302 ein aushärtbares Klebematerial aufweisen, z.B. einen UV- aushärtenden Kleber. Die Klebeschicht 302 kann im nicht ausgehärteten (z.B. flüssigen) Zustand aufgebracht werden und kann nachfolgend (z.B. nach dem Aufbringen der Deckschicht 303) aushärten bzw. ausgehärtet werden. Die Klebeschicht 302 kann so eingerichtet bzw. ausgebildet sein, dass Partikelverunreinigungen an der Oberseite 301a der Dünnschichtverkapselung 301 von der Klebeschicht 302

eingeschlossen werden und die aufgebrachte Klebeschicht 302 eine im Wesentlichen planare (obere) Oberfläche 302a

aufweist. Durch Einschluss der Partikel in der Klebeschicht 302 kann beispielsweise vermieden werden, dass sich die

Partikel in darunter liegende Schichten, insbesondere die Dünnschichtverkapselung 301 und/oder darunter liegende

Schichten (z.B. Funktionsschichten eines zu verkapselnden optoelektronischen Bauelements (z.B. OLED) ) , eindrücken und diese beschädigen.

Fig. 4 zeigt eine Verkapselungsanordnung 400' gemäß einem weiteren Ausführungsbeispiel.

Gemäß verschiedenen Ausgestaltungen weist die

Verkapselungsanordnung 400' ein optoelektronisches Bauelement 400 und eine Verkapselungsstruktur 300 auf. Die

Verkapselungsstruktur 300 kann gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 400 mindestens eine

Funktionsschicht 402 aufweisen, wie in Fig. 4 gezeigt. Die mindestens eine Funktionsschicht 402 kann als einzelne

Schicht (wie in Fig. 4 gezeigt) oder als Schichtstapel (auch als Funktionsschichtenstapel bezeichnet) mit einer Mehrzahl von Teilschichten ausgebildet sein. Die mindestens eine

Funktionsschicht 402 kann ferner gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein.

Gemäß verschiedenen Ausgestaltungen kann die

Verkapselungsstruktur 300 auf oder über der mindestens einen Funktionsschicht 402 des optoelektronischen Bauelements 400 ausgebildet sein. Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 400 über und/oder unter der mindestens einen Funktionsschicht 402 eine oder mehrere zusätzliche Schichten aufweisen.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 400 ein Substrat 401 aufweisen. Das Substrat 401 kann gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 400 ferner eine erste Elektrode aufweisen 403. Die erste Elektrode 403 kann gemäß einer

Ausgestaltung zwischen dem Substrat 401 und der mindestens einen Funktionsschicht 402 ausgebildet sein (z.B. auf der

Unterseite der mindestens einen Funktionsschicht 402), wie in Fig. 4 gezeigt. Die erste Elektrode 403 kann ferner gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 400 ferner eine zweite Elektrode 404 aufweisen. Die zweite Elektrode 404 kann gemäß einer Ausgestaltung zwischen der mindestens einen Funktionsschicht 402 und der Dünnschichtverkapselung 301 ausgebildet sein

(z.B. auf der Oberseite der mindestens einen Funktionsschicht 402), wie in Fig. 4 gezeigt. Die Dünnschichtverkapselung 301 kann beispielsweise auf der zweiten Elektrode 404 ausgebildet sein, wie in Fig. 4 gezeigt. Die zweite Elektrode 404 kann ferner gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein.

Das optoelektronische Bauelement 400 kann gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen ausgebildet sein, beispielsweise als organisches optoelektronisches

Bauelement wie z.B. als OLED, beispielsweise als Top-Emitter oder als Bottom-Emitter oder als Kombination aus Top-Emitter und Bottom-Emitter, gemäß einer oder mehrerer der hierin beschriebenen Ausgestaltungen.

Fig. 5 zeigt ein Ablaufdiagramm 500, in dem ein Verfahren zum Verkapseln eines optoelektronischen Bauelements gemäß einem weiteren Ausführungsbeispiel dargestellt ist.

In 502 wird eine Dünnschichtverkapselung auf oder über einem optoelektronischen Bauelement (z.B. auf oder über mindestens einer Funktionsschicht des optoelektronischen Bauelements) ausgebildet zum Schutz des optoelektronischen Bauelements vor chemischen Verunreinigungen. Die Dünnschichtverkapselung kann gemäß einer oder mehrerer hierin beschriebener

Ausgestaltungen eingerichtet bzw. ausgebildet sein bzw.

werden .

In 504 wird eine Klebeschicht auf der Dünnschichtverkapselung ausgebildet. Die Klebeschicht kann gemäß einer oder mehrerer hierin beschriebener Ausgestaltungen eingerichtet bzw.

ausgebildet sein bzw. werden.

In 506 wird eine Deckschicht auf der Klebeschicht ausgebildet zum Schutz der Dünnschichtverkapselung und/oder des

optoelektronischen Bauelements vor mechanischer Beschädigung. Die Deckschicht kann gemäß einer oder mehrerer hierin

beschriebener Ausgestaltungen eingerichtet bzw. ausgebildet sein bzw. werden.

Beispielsweise kann gemäß einer Ausgestaltung die

Klebeschicht auf eine aufzubringende Deckschicht (z.B.

aufzubringendes Glas) aufgebracht werden (z.B. auf der

Unterseite der Deckschicht) , und anschließend kann die

Deckschicht mit der darauf aufgebrachten Klebeschicht auf der Dünnschichtverkapselung aufgebracht werden, so dass die

Klebeschicht zwischen der Dünnschichtverkapselung und der Deckschicht ausgebildet ist. Anschaulich kann gemäß einer Ausgestaltung die Deckschicht mithilfe der auf der Deckschicht aufgebrachten Klebeschicht auf die

Dünnschichtverkapselung auflaminiert werden.

Gemäß einer anderen Ausgestaltung kann die Klebeschicht

(direkt) auf der Dünnschichtverkapslung aufgebracht werden, und nachfolgend kann die Deckschicht auf der Klebeschicht aufgebracht werden.

Gemäß noch einer anderen Ausgestaltung kann vor dem Verbinden der Deckschicht mit der Dünnschichtverkapselung die

Klebeschicht teilweise auf der Dünnschichtverkapselung und teilweise auf der Deckschicht aufgebracht werden.

Fig. 6 zeigt eine Verkapselungsanordnung 600' gemäß einem weiteren Ausführungsbeispiel.

Die Verkapselungsanordnung 600' weist ein optoelektronisches Bauelement 600 sowie eine auf dem optoelektronischen

Bauelement 600 ausgebildete Verkapselungsstruktur 300 auf.

Das optoelektronische Bauelement 600 ist als organische

Leuchtdiode (OLED) ausgebildet und weist ein Substrat 601 sowie einen auf dem Substrat 601 ausgebildeten Schichtstapel 610 auf. Der Schichtstapel 610 kann auch als OLED-Stapel bzw. OLED-Stack bezeichnet werden. Gemäß alternativen

Ausgestaltungen kann das optoelektronische Bauelement 600 als ein anderes optoelektronisches Bauelement (z.B. ein anderes organisches optoelektronisches Bauelement) als eine OLED ausgebildet sein, wobei die nachfolgende Beschreibung des Aufbaus der Verkapselungsanordnung 600' in analoger Weise auch in diesem Fall gilt.

Das Substrat 601 ist gemäß dem gezeigten Ausführungsbeispiel als Glassubstrat (auch als Substratglas bezeichnet)

ausgebildet. Gemäß alternativen Ausgestaltungen können andere Substrate verwendet werden, z.B. Foliensubstrate. Der OLED-Stack 610 kann eine oder mehrere organische

Funktionsschichten aufweisen (z.B. einen

Funktionsschichtenstapel), welche auf- bzw. übereinander ausgebildet sein können. Ferner kann gemäß verschiedenen Ausgestaltungen der OLED-Stack 610 eine erste Elektrode und eine zweite Elektrode aufweisen, wobei die erste Elektrode zwischen dem Substrat 601 und der (den) organischen

Funktionsschicht (en) ausgebildet sein kann und die zweite Elektrode zwischen der (den) organischen Funktionsschicht (en) und der Verkapselungsstruktur 300 ausgebildet sein kann.

Gemäß verschiedenen Ausgestaltungen kann das

optoelektronische Bauelement 600 zusätzlich einen oder mehrere elektrische Kontakte (nicht gezeigt in Fig. 6) aufweisen zum elektrischen Kontaktieren des OLED-Stacks 610, z.B. zum elektrischen Kontaktieren der ersten Elektrode und der zweiten Elektrode des OLED-Stacks 610.

Die Verkapselungsstruktur 300 weist eine

Dünnschichtverkapselung 301 auf, welche auf dem OLED-Stack 610 und auf dem Substrat 601 ausgebildet ist. Gemäß dem gezeigten Ausführungsbeispiel ist die Dünnschichtverkapselung 301 auf der Oberseite 610a und Seitenflächen 610b des OLED- Stacks 610 ausgebildet, derart, dass der OLED-Stack 610 von der Dünnschichtverkapselung 301 eingekapselt wird.

Gemäß dem gezeigten Ausführungsbeispiel weist die

Dünnschichtverkapselung 301 eine erste Barrierendünnschicht 311 und eine auf der ersten Barrierendünnschicht 311

ausgebildete zweite Barrierendünnschicht 312 auf, wie in

Fig. 7A und Fig. 7B gezeigt ist, welche einen ersten

Ausschnitt 650 bzw. einen zweiten Ausschnitt 655 der in

Fig. 6 gezeigten Verkapselungsanordnung 600' zeigen. Gemäß dem gezeigten Ausführungsbeispiel ist die erste

Barrierendünnschicht 311 als eine mittels eines chemischen Gasphasenabscheideverfahrens (CVD) , z.B. mittels eines plasmaunterstützten chemischen Gasphasenabscheideverfahrens (PECVD) , ausgebildete Siliziumnitrid-Schicht ausgebildet und kann beispielsweise eine Schichtdicke von einigen hundert Nanometern, z.B. ungefähr 400 nm gemäß einer Ausgestaltung, aufweisen. Die zweite Barrierendünnschicht 312 ist als eine mittels eines Atomlagenabscheideverfahrens (ALD) ausgebildete Aluminiumoxid-Schicht ausgebildet und kann beispielsweise eine Schichtdicke von einigen zehn Nanometern, z.B. ungefähr 50 nm gemäß einer Ausgestaltung, aufweisen.

Anschaulich weist die Dünnschichtverkapselung 301 gemäß dem gezeigten Ausführungsbeispiel eine dicke CVD-Schicht (erste Barrierendünnschicht 311) und eine darauf ausgebildete, verglichen mit der CVD-Schicht 311 dünnere ALD-Schicht

(zweite Barriendünnschicht 312) auf.

Gemäß alternativen Ausgestaltungen können die erste

Barrierendünnschicht 311 und/oder die zweite

Barrierendünnschicht 312 mittels anderer Abscheideverfahren ausgebildet werden und/oder können andere Materialien

und/oder Schichtdicken aufweisen. Zum Beispiel kann die erste Barrierendünnschicht 311 mittels ALD ausgebildet sein

und/oder oder die zweite Barrierendünnschicht 312 kann mittels CVD ausgebildet sein. Ferner können zusätzlich zu der ersten Barrierendünnschicht 311 und der zweiten

Barrierendünnschicht 312 zusätzliche Barrierendünnschichten vorgesehen sein, welche beispielsweise mittels CVD und/oder ALD ausgebildet sein können. Allgemein kann die

Dünnschichtverkapselung 301 einen Schichtstapel mit einer beliebigen Anzahl an Teilschichten (Barrierendünnschichten) aufweisen, wobei jede der Teilschichten des Schichtstapels (unabhängig von den anderen Teilschichten) wahlweise als CVD- Schicht oder als ALD-Schicht ausgebildet sein kann. Mit anderen Worten kann der Schichtstapel eine beliebige Abfolge von CVD-Schichten und/oder ALD-Schichten aufweisen. Die Verkapselungsstruktur 300 weist ferner eine Klebeschicht

302 auf, welche auf der Dünnschichtverkapselung 301

ausgebildet ist. Die Klebeschicht 302 kann beispielsweise eine Dicke im

Mikrometerbereich, zum Beispiel eine Schichtdicke von einigen zehn Mikrometern, beispielsweise ungefähr 25 ym, aufweisen. Alternativ kann die Klebeschicht 302 einen anderen Wert der Schichtdicke aufweisen.

Die Klebeschicht 302 kann beispielsweise ein aushärtbares Material aufweisen (z.B. einen UV-aushärtenden Kleber) und kann im nicht ausgehärteten (z.B. flüssigen) Zustand auf der Dünnschichtverkapselung 301 aufgebracht worden sein und nachfolgend (z.B. nach dem Aufbringen einer Deckschicht 303 der Verkapselungsstruktur 300) ausgehärtet worden sein (z.B. mittels UV-Strahlung im Falle eines UV-aushärtenden Klebers) .

Die Verkapselungsstruktur 300 weist ferner eine Deckschicht 303 auf, welche auf der Klebeschicht 302 ausgebildet ist.

Gemäß dem gezeigten Ausführungsbeispiel ist die Deckschicht

303 als Glasschicht, mit anderen Worten als

Verkapselungsglas , ausgebildet. Die Deckschicht 303 bzw. das Verkapselungsglas 303 kann mittels der Klebeschicht 302 auf die Dünnschichtverkapselung 301 aufgeklebt worden sein. Zum Beispiel kann gemäß einer Ausgestaltung die Klebeschicht 302 auf der Unterseite 303b der Deckschicht 303 aufgebracht worden sein, und die

Deckschicht 303 kann mit Hilfe der darauf aufgebrachten

Klebeschicht 302 auf die Dünnschichtverkapselung 301

auflaminiert worden sein. Gemäß einer anderen Ausgestaltung kann die Klebeschicht auf der Oberseite 301a der

Dünnschichtverkapselung 301 aufgebracht worden sein, und die Deckschicht 303 kann nachfolgend auf der Klebeschicht 302 aufgebracht worden sein. Gemäß noch einer anderen

Ausgestaltung ist es auch möglich, die Klebeschicht 302 teilweise auf der Oberseite 301a der Dünnschichtverkapselung 301 und teilweise auf der Unterseite 303b der Deckschicht 303 aufzubringen . Im Vergleich zu einer herkömmlichen Verkapselung mit

Glaskavität (vgl. zum Beispiel Fig. 1 und Fig. 2) ist bei der in Fig. 6 gezeigten Verkapselungsstruktur 300 keine Kavität zwischen dem OLED-Stack 610 und dem Verkapselungsglas 303 ausgebildet. Dadurch kann beispielsweise ein Aufdrücken des Deckglases auf den OLED-Stack 610, wie es bei einer

herkömmlichen Kavitätsverkapselung (insbesondere bei großen Kavitäten) vorkommen kann, vermieden werden, so dass eine dadurch bedingte Beschädigung der OLED 600 vermieden werden kann .

Wie in den in Fig. 7A und Fig. 7B gezeigten Ausschnitten 650, 655 der Verkapselungsanordnung 600' dargestellt, können die dicke CVD-Schicht (erste Barrierendünnschicht 311) und die Klebeschicht 302 jeweils zur Einbettung von Partikeln bzw. Partikelverunreinigungen 710a, 710b, 710c, 710d genutzt werden .

In dem in Fig. 7A gezeigten ersten Ausschnitt 650 der

Verkapselungsanordnung 600' ist gezeigt, dass ein erstes Partikel 710a, welches sich an der Oberseite 610a des OLED- Stacks 610 befindet bzw. angelagert hat, von der ersten

Barrierendünnschicht 311 eingebettet wird, und dass ein zweites Partikel 710b, welches sich an der Oberseite 301a der Dünnschichtverkapselung 301 befindet bzw. angelagert hat, von der Klebeschicht 302 eingebettet wird.

Die erste Barrierendünnschicht 311 kann eine Dicke aufweisen, die größer ist als der Durchmesser des ersten Partikels 710a, und die Klebeschicht 302 kann eine Dicke aufweisen, die größer ist als der Durchmesser des zweiten Partikels 710b, wie in Fig. 7A gezeigt. Allgemein können die Schichtdicken der ersten Barrierendünnschicht 311 und/oder der Klebeschicht 302 so gewählt werden, dass mögliche Partikelverunreinigungen an der Oberfläche der OLED 600 und/oder an der Oberfläche der Dünnschichtverkapselung 301 mittels der ersten

Barrierendünnschicht 311 bzw. der Klebeschicht 302

umschlossen (z.B. vollständig umschlossen) bzw. darin

eingebettet werden. Zum Beispiel können die Schichtdicken der ersten Barrierendünnschicht 311 und/oder der Klebeschicht 302 so gewählt werden, dass sie größer oder ungefähr gleich dem mittleren Durchmesser der auftretenden

Partikelverunreinigungen sind. Gemäß einer Ausgestaltung können die Schichtdicken der ersten Barrierendünnschicht 311 und/oder der Klebeschicht 302 beispielsweise so gewählt werden, dass sie größer sind als das Maximum der Durchmesser aller auftretenden Partikelverunreinigungen.

In diesem Zusammenhang ist anzumerken, dass anstelle oder zusätzlich zu der ersten Barrierendünnschicht 311 auch andere Barrierendünnschichten (z.B. die zweite Barrierendünnschicht 312 und/oder zusätzliche Barrierendünnschichten (sofern vorgesehen) ) der Dünnschichtverkapselung 301 so ausgebildet werden können, dass sie eine Schichtdicke aufweisen, die ausreicht, um Partikelverunreinigungen zumindest teilweise (z.B. vollständig gemäß verschiedenen Ausgestaltungen) in der jeweiligen Barrierendünnschicht einbetten zu können.

Mittels des Einbettens von Partikelverunreinigungen bzw.

Partikeln (z.B. der Partikel 710a, 710b) in der

Dünnschichtverkapselung 301 (z.B. in der ersten

Barrierendünnschicht 311 und der Klebeschicht 302 (wie gezeigt) , alternativ oder zusätzlich in anderen Teilschichten der Dünnschichtverkapselung 301 (sofern vorgesehen) ) ist es möglich, ein Eindrücken der Partikel in den OLED-Stack 610 bzw. die OLED 600 zu verhindern und somit eine mechanische Belastung der OLED 600 durch die Partikel zu verringern oder ganz zu vermeiden und damit eine Schädigung der OLED zu verhindern . In diesem Zusammenhang ist anzumerken, dass die in Fig. 7A gezeigte Darstellung mit nur zwei Partikelverunreinigungen 710a und 710b rein exemplarischen Charakter hat und dass mehr als zwei Partikel auftreten können und in der

Dünnschichtverkapselung 301 (z.B. der ersten

Barrierendünnschicht 311) und/oder der Klebeschicht 302 eingebettet werden können.

Ferner können, wie aus dem in Fig. 7B gezeigten zweiten

Ausschnitt 655 der Verkapselungsanordnung 600' ersichtlich, auch Partikelverunreinigungen, die in einem Bereich der

Dünnschichtverkapselung 301 und/oder der Klebeschicht 302, welcher sich seitlich neben dem OLED-Stack 610 befindet, auftreten, in gleicher Weise mittels der

Dünnschichtverkapselung 301 (z.B. der ersten

Barrierendünnschicht 311) und/oder der Klebeschicht 302 eingebettet werden.

In dem in Fig. 7B gezeigten zweiten Ausschnitt 655 der

Verkapselungsanordnung 655 sind beispielhaft ein drittes Partikel 710c, welches sich an der Oberseite 601a des

Substrats 601 seitlich neben dem OLED-Stack 610 befindet bzw. angelagert hat und in der ersten Barrierendünnschicht 311 eingebettet ist, und ein viertes Partikel 710d, welches sich an der Oberseite 301a der Dünnschichtverkapselung 301

seitlich neben dem OLED-Stack 610 befindet bzw. angelagert hat und in der Klebeschicht 302 eingebettet ist, gezeigt. Auch hier versteht sich, dass neben den beiden gezeigten Partikeln 710c, 710d zusätzliche Partikel auftreten können und in der Dünnschichtverkapselung 301 bzw. der Klebeschicht 302 eingebettet werden können.

Fig. 8 zeigt eine Verkapselungsanordnung 800' gemäß einem weiteren Ausführungsbeispiel.

Die Verkapselungsanordnung 800' unterscheidet sich von der in Fig. 6 gezeigten Verkapselungsanordnung 600' im Wesentlichen darin, dass Auskoppelstrukturen 820a, 820b vorgesehen sind, welche zur Verbesserung der Lichtauskopplung des von der OLED 600 (bzw. der oder den Funktionsschichten des OLED-Stacks 610) emittierten Lichtes dienen. Gemäß dem gezeigten

Ausführungsbeispiel ist eine erste Auskoppelstruktur 820a auf der Oberseite 303a der Deckschicht 303 ausgebildet, und eine zweite Auskoppelstruktur 820b ist auf der Unterseite 601b des Substrats 601a ausgebildet. Es können diverse Auskoppelstrukturen in beide Richtungen genutzt werden. Gemäß verschiedenen Ausgestaltungen können beispielsweise die erste Auskoppelstruktur 820a und/oder die zweite Auskoppelstruktur 820b jeweils eine oder mehrere

Auskoppelschichten aufweisen. Ferner können gemäß einer

Ausgestaltung eine oder mehrere der Auskoppelschichten

Streupartikel (z.B. Metalloxidpartikel) aufweisen.

Gemäß alternativen Ausgestaltungen kann auch nur eine

Auskoppelstruktur vorgesehen sein, zum Beispiel die erste Auskoppelstruktur 820a an der Oberseite 303a der Deckschicht 303 (zum Beispiel im Falle einer als (reiner) Topemitter ausgebildeten OLED 600) oder die zweite Auskoppelstruktur 820b an der Unterseite 601b des Substrats 601 (zum Beispiel im Falle einer als (reiner) Bottom-Emitter ausgebildeten OLED 600) .

Fig. 9 zeigt eine Verkapselungsanordnung 900' gemäß einem weiteren Ausführungsbeispiel. Die Verkapselungsanordnung 900' unterscheidet sich von der in Fig. 6 gezeigten Verkapselungsanordnung 600' im Wesentlichen darin, dass eine Wärmeleitfolie 920 vorgesehen ist zur

Homogenisierung der Wärme bzw. Abtransport der Wärme, die beim Betrieb der OLED 600 erzeugt wird. Gemäß dem gezeigten Ausführungsbeispiel ist die Wärmeleitfolie 920 auf der

Deckschicht 303 der Verkapselungsstruktur 300 aufgebracht (z.B. aufgeklebt). Gemäß einer alternativen Ausgestaltung können mehrere Wärmeleitfolien vorgesehen sein.

Die Wärmeleitfolie 920 (oder die Wärmeleitfolien) kann beispielsweise ein nichttransparentes Material aufweisen oder daraus bestehen (z.B. im Falle einer als (reiner) Bottom- Emitter ausgebildeten OLED 600. Alternativ kann die

Wärmleitfolie 920 (oder die Wärmleitfolien) ein transparentes Material aufweisen oder daraus bestehen (z.B. im Falle einer als (reiner) Top-Emitter oder als kombinierter Top/Bottom- Emitter ausgebildeten OLED 600) .

Fig. 10 zeigt eine Verkapselungsanordnung 1000' gemäß einem weiteren Ausführungsbeispiel.

Die Verkapselungsanordnung 1000' unterscheidet sich von der in Fig. 6 gezeigten Verkapselungsanordnung 600' im

Wesentlichen darin, dass die Deckschicht 303 der

Verkapselungsstruktur 300 als Folie (z.B. als Wärmeleitfolie gemäß einer Ausgestaltung) ausgebildet ist. Gemäß

alternativen Ausgestaltungen kann die Deckschicht 303 auch als Lackschicht (zum Beispiel als polyakrylischer Schutzlack) ausgebildet sein. Gemäß anderen Ausgestaltungen können einzelne Merkmale (z.B. Schichten) der in den Figuren 6 bis 10 gezeigten

Ausführungsbeispiele miteinander kombiniert bzw. der Aufbau durch Weglassen einzelner Schichten oder Ergänzen

zusätzlicher Schichten beliebig variiert werden.

Gemäß verschiedenen Ausführungsbeispielen wird ein

Verkapselungsaufbau bzw. Verfahren zum Verkapseln für ein optoelektronisches Bauelement, beispielsweise ein organisches optoelektronisches Bauelement wie z.B. eine OLED,

bereitgestellt, die zum einen gewährleisten, dass das

optoelektronische Bauelement gegen Luft hermetisch

abgedichtet und vor mechanischen Beschädigungen (wie z.B. Kratzern) geschützt ist, und zum anderen billiger und

variabler sind als herkömmliche Verkapselungen mittels zweitem Glassubstrat mit Kavität (Kavitätsverkapselung) . Der hierin beschriebene Aufbau einer Verkapselungsstruktur und Prozess zum Verkapseln eines optoelektronischen

Bauelementes gemäß verschiedenen Ausgestaltungen eignet sich beispielsweise besonders zum Verkapseln und Schützen von flexiblen optoelektronischen Bauelementen, beispielsweise flexiblen organischen optoelektronischen Bauelementen wie z.B. flexiblen OLEDs, da er zum Beispiel die Verwendung von kommerziellen selbstklebenden Folien als oberste

Schutzschicht (Deckschicht) ermöglicht. Mittels der hierin beschriebenen Verkapselungsstruktur und des Verfahrens zum Verkapseln gemäß verschiedener

Ausführungsbeispiele kann das Auftreten von

laminationsbedingten Defekten bei der Verkapselung und

Verpackung eines optoelektronischen Bauelements (zum Beispiel eines organischen optoelektronischen Bauelements wie z.B. einer OLED) verringert oder verhindert werden. Dadurch kann beispielsweise die Ausbeute bei der Verpackung eines

optoelektronischen Bauelements erhöht werden. Effekte der hierin beschriebenen Verkapselungsstruktur umfassen unter anderem:

Neben der Funktion der Lichtauskopplung und Schutz des optoelektronischen Bauelements (z.B. OLED) vor Feuchte, können/kann die Klebeschicht bzw. der Kleber und/oder die Dünnschichtverkapselung auch zur Abdeckung

vorhandener Partikel bzw. Partikelverunreinigungen dienen (siehe z.B. Fig. 7A und Fig. 7B) ;

Die Verkapselungsstruktur kann auch für transparente OLEDs eingesetzt werden (mit der Möglichkeit,

beispielsweise die Lichtauskopplung gezielt über die Dünnschichtverkapslung oder über zusätzliche Folien/Auskoppelstrukturen beidseitig zu beeinflussen) (siehe z.B. Fig. 8);

Die Verkapselungsstruktur bietet diverse Möglichkeiten, die Wärmeauskopplung gezielt zu verbessern, z.B. mittels Wärmeleitfolien (siehe z.B. Fig. 9) ;

Gemäß verschiedenen Ausgestaltungen kann anstelle eines Verkapselungsglas eine andere Deckschicht (z.B. Folie oder Lackschicht) verwendet werden (siehe z.B. Fig. 10);

Bei einer herkömmlichen Verkapslung mittels Glaskavität (siehe z.B. Fig. 1 und Fig. 2) kann das Capglas bei großen Kavitäten/OLEDs auf den OLED-Schichtstapel drücken (keine Stabilität der Kavität) ; bei der hierin beschriebenen Verkapselungsstruktur ohne Kavität gemäß verschiedenen Ausführungsbeispielen wird ein Aufdrücken des Capglases auf den OLED-Schichtstapel verhindert, und damit eine mögliche Beschädigung der OLED durch das Capglas .

Die hierin beschriebenen Ausführungsbeispiele können beliebig weiter variiert werden. Es ist weiterhin zu berücksichtigen, dass sich die Erfindung nicht auf diese Beispiele beschränkt, sondern weitere, hier nicht aufgeführte Ausgestaltungen und Ausführungen zulässt.