Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENERGY STORAGE MODULE COMPRISING A DC LINK
Document Type and Number:
WIPO Patent Application WO/2014/206889
Kind Code:
A1
Abstract:
The invention relates to an energy storage module (1) for the reversible storage of electrical energy, comprising a plurality of flywheel storage units (2) connected electrically in parallel via a common DC link (3), a first regulation system (31), which is connected to the DC link (3) and, in a normal operating mode (NO), connects the DC link (3) to one or more external voltage grids (ES1, ES2) for drawing (En)/outputting (Ep) energy at/into the external voltage grid(s) (ES1, ES2), and a second regulation system (32) comprising an input side (32E) and an output side (32A), wherein the input side (32E) is connected at least to the DC link (3), and the output side (32A) is connected to an internal supply grid (4) for supplying power to one or more electrically operated operating units (51, 52, 53, 54) required for operating the flywheel storage units (2), wherein the second regulation system (32) is configured to connect the DC link (3) to the internal supply grid (4) at least in an emergency operating mode (NF) when there is no external voltage grid (ES1, ES2) and to supply a required supply power (VL) to the supply grid (4) for continued operation of the flywheel storage units (2) from the DC link (3) alone, at least within a first time interval (T). The invention furthermore relates to a method for controlling such an energy storage module (1).

Inventors:
SCHÄFER CHRISTOPH (DE)
VOR DEM ESCHE RAINER (DE)
SPANGENBERG ARNE (DE)
Application Number:
PCT/EP2014/063044
Publication Date:
December 31, 2014
Filing Date:
June 20, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ENRICHMENT TECHNOLOGY COMPANY LTD ZWEIGNIEDERLASSUNG DEUTSCHLAND (DE)
International Classes:
H02J15/00; H02J9/06
Foreign References:
US20030020330A12003-01-30
DE4421914A11996-01-04
DE102006033562B32008-02-28
US7400052B12008-07-15
Attorney, Agent or Firm:
JOSTARNDT PATENTANWALTS-AG (DE)
Download PDF:
Claims:
Patentansprüche:

1. Ein Energiespeichermodul (1 ) zur reversiblen Speicherung von elektrischer Energie, umfassend mehrere elektrisch parallel über einen gemeinsamen Gleichspannungszwischenkreis (3) verbundene

Schwungradspeichereinheiten (2), ein erstes mit dem

Gleichspannungszwischenkreis (3) verbundenes Regelsystem (31), das in einem Normalbetrieb (NO) den Gleichspannungszwischenkreis (3) mit einem oder mehreren externen Spannungsnetzen (ES1 , ES2) zur Aufnahme (En) / Abgabe (Ep) von Energie an / in das oder die externen Spannungsnetze

(ES1, ES2) verbindet, und ein zweites Regelsystem (32) mit einer

Eingangsseite (32E) und einer Ausgangsseite (32A), wobei die

Eingangsseite (32E) zumindest mit dem Gleichspannungszwischenkreis (3) und die Ausgangsseite (32A) mit einem internen Versorgungsnetz (4) zur Versorgung ein oder mehrerer zum Betrieb der

Schwungradspeichereinheiten (2) benötigter strombetriebener

Betriebsaggregate (51 , 52, 53, 54) verbunden ist, wobei das zweite

Regelsystem (32) dazu ausgestaltet ist, zumindest in einem Notfallbetrieb (NF) bei fehlendem externen Spannungsnetz (ES1 , ES2) den

Gleichspannungszwischenkreis (3) mit dem internen Versorgungsnetz (4) zu verbinden und das Versorgungsnetz (4) zum fortgeführten Betrieb der Schwungradspeichereinheiten (2) mit einer erforderlichen

Versorgungsleistung (VL) alleine aus dem Gleichspannungszwischenkreis (3) zumindest in einem ersten Zeitintervall (T) zu versorgen.

2. Das Energiespeichermodul (1 ) nach Anspruch 1 ,

dadurch gekennzeichnet,

dass im Notfallbetrieb (NF) das zweite Regelsystem (32) die

Versorgungsnetzspannung (VS) im internen Versorgungsnetz (4) durch bedarfsgerechte Strom lieferung aus dem Gleichspannungszwischenkreis (3) im Wesentlichen konstant regelt.

3. Das Energiespeichermodul (1) nach Anspruch 2,

dadurch gekennzeichnet, dass die Eingangsseite (32E) des zweiten Regelsystems (32) zusätzlich mit einem externen Spannungsnetz (ES2) verbunden ist und das zweite

Regelsystem dazu vorgesehen ist, die Versorgungsleistung für das interne Versorgungsnetz im Normalbetrieb (NO) aus dem externen Spannungsnetz und im Notfallbetrieb aus dem Gleichspannungszwischenkreis (3) bereit zu stellen.

Das Energiespeichermodul (1) nach Anspruch 3,

dadurch gekennzeichnet,

dass das Energiespeichermodul (1) dazu ausgestattet ist, die

Gleichspannung (GS) im Gleichspannungszwischenkreis (3) kontinuierlich zu überwachen und die Schwungradspeichereinheiten (2) jeweils

Motorregelungen (51) umfassen, die dafür ausgestaltet sind, unabhängig von einer Modulsteuereinheit (6) zur Steuerung der

Schwungradspeichereinheiten (2) im Normalbetrieb im Notfallbetrieb (NF) zumindest auf Basis der überwachten Gleichspannung (GS) die

Gleichspannung (GS) im Gleichspannungszwischenkreis (3) über

Energieabgabe (EFp) aus den jeweiligen Schwungradspeichereinheiten (2) nicht unter einen unteren Schwellenwert (SW2) absinken zu lassen, zumindest solange die in den jeweiligen Schwungradspeichereinheiten (2) gespeichert Menge an Energie nicht unter eine Mindestenergie absinkt.

Das Energiespeichermodul (1) nach Anspruch 4,

dadurch gekennzeichnet,

dass im Gleichspannungszwischenkreis (3) mindestens eine

Messeinrichtung (33) zur Messung der Gleichspannung (GS) im

Gleichspannungszwischenkreis (3) angeordnet und zumindest mit den jeweiligen Motorregelungen der Schwungradspeichereinheiten (2) verbunden ist,

Das Energiespeichermodul (1) nach Anspruch 5,

dadurch gekennzeichnet,

dass die Motorregelungen (51) der einzelnen Schwungradspeichereinheiten (2) unabhängig von der Modulsteuereinheit (6) direkt miteinander verbunden sind und jeweils eine Schwungradsteuerung umfassen, die dafür vorgesehen ist, einen gemeinsam koordinierten Stützbetrieb (SB) der Gleichspannung (GS) im Gleichspannungszwischenkreis (3) durch alle

Schwungradspeichereinheiten (2) im Notfallbetrieb (NF) auszuführen.

7. Das Energiespeichermodul (1) nach Anspruch 6,

dadurch gekennzeichnet,

dass das Energiespeichermodul (1) ein oder mehrere Messeinheiten (7) zur kontinuierlichen Messung der Spannungsqualität der mit dem

Energiespeichermodul (1 ) verbundenen externen Spannungsnetze (ES1 ,

ES2) umfasst, wobei die Messeinheit (7) oder die Messeinheiten (7) dazu ausgestaltet sind, bei einer Über- oder Unterspannung zumindest in einem der angeschlossenen externen Spanungsnetze (ES2) ein

Notfallbetriebssignal (NFS) innerhalb des Energiespeichermodul (1) auszusenden, und das zweite Regelsystem dazu vorgesehen sind, als automatische Reaktion auf das Notfallbetriebssignal (NFS) vom

Normalbetrieb (NO) in den Notfallbetrieb (NF) zu wechseln.

8. Das Energiespeichermodul (1) nach Anspruch 7,

dadurch gekennzeichnet,

dass das erste Regelsystem (31) dafür vorgesehen ist, aufgrund des

Notfallbetriebssignals (NFS) den Gleichspannungszwischenkreis vom externen Spannungsnetz (ES1 , ES2) zu trennen und/oder das zweite Regelsystem (32) dafür vorgesehen ist, aufgrund des Notfallbetriebssignals (NFS) das interne Versorgungsnetz (4) vom externen Stromnetz (ES2) zu trennen.

9. Das Energiespeichermodul (1) nach Anspruch 8,

dadurch gekennzeichnet,

dass die Messeinheiten (7) dazu ausgestaltet sind, bei einer

Wiederverfügbarkeit des externen Spanungsnetzes (ES1 , ES2) ein

Normalbetriebssignal (NOS) innerhalb des Energiespeichermoduls (1) auszusenden, und das Energiespeichermodul (1) dazu vorgesehen ist, als automatische Reaktion auf das Normalbetriebssignal (NOS) vom Notfallbetneb (NF) in den Normalbetrieb (NO) zu wechseln und den

Gleichspannungszwischenkreis (3) und das interne Versorgungsnetz (4) wieder mit dem oder den externen Spannungsnetzen (ES1 , ES2) zu verbinden.

10. Ein Verfahren zum Steuern eines Energiespeichermoduls (1 ) nach Anspruch 1 umfassend die Schritte

Abgeben (Ep) oder Aufnehmen (En) von Energie aus einem

gemeinsamen Gleichspannungszwischenkreis (3), an den mehrere Schwungradspeichereinheiten (2) elektrisch parallel angeschlossen sind, an/von ein oder mehreren externen Spannungsnetze (ES1 , ES2), die über ein erstes Regelsystem (31 ) mit dem

Gleichspannungszwischenkreis (3) verbunden sind, und

Versorgen der ein oder mehreren zum Betrieb (BT) der

Schwungradspeichereinheiten (2) benötigten Betriebsaggregate (51 , 52, 53, 54) über ein internes Versorgungsnetz (4) mit der zum Betrieb (BT) der Betriebsaggregate (4) notwendigen Energie während eines Normalbetriebs (NO) des Energiespeichermoduls, wobei das Versorgungsnetz (4) mit einer Ausgangsseite (32A) eines zweiten Regelsystems (32) verbunden ist, dessen Eingangsseite (32E) zumindest mit dem Gleichspannungszwischenkreis (2) verbunden ist und

Umschalten des Energiespeichermoduls von Normalbetrieb (NO) auf einen Notfallbetrieb (NF) bei fehlendem externen Spannungsnetz (ES1 , ES2), und

Versorgen (V) des internen Versorgungsnetzes (4) mit der zum fortgeführten Betrieb (BT) der Schwungradspeichereinheiten (2) erforderlichen Versorgungsleistung (VL) bei fehlendem externem Stromnetz (ES1 , ES2) alleine aus dem Gleichspannungszwischenkreis (3) zumindest in einem ersten Zeitintervall (T).

1 1 . Ein Verfahren nach Anspruch 10, umfassend den weiteren Schritt des

Regeins (R) der Versorgungsnetzspannung (VS) des internen Versorgungsnetzes (4) auf einen konstanten Wert durch bedarfsgerechte Strom lieferung aus dem Gleichstromzwischenkreis (3) durch das zweite Regelsystem (32).

12. Ein Verfahren nach Anspruch 1 1 , umfassend den weiteren Schritt

kontinuierliches Überwachen der Gleichspannung (GS) des Gleichspannungszwischenkreis (3), vorzugsweise mittels mindestens einer Messeinrichtung (33) angeordnet im

Gleichspannungszwischenkreis (3), und

Steuern (ST) der Schwungradspeichereinheiten (2) unabhängig von einer Modulsteuereinheit (6) zur Steuerung der

Schwungradspeichereinheiten (2) für den Normalbetrieb (NO) im Notfallbetrieb (NF) mittels jeweiliger Motorregelungen (51 ) in den einzelnen Schwungradspeichereinheiten (2) auf Basis der überwachten Gleichspannung (GS), so dass über Energieabgabe (EFp) aus den jeweiligen Schwungradspeichereinheiten (2) in den

Gleichspannungszwischenkreis (3) dessen Gleichspannung (GS) nicht unter einen unteren Schwellenwert (SW2) absinkt, zumindest solange die in den Schwungradspeichereinheiten (2) gespeichert Menge an Energie nicht unter eine Mindestenergie absinkt, vorzugsweise mittel Vorgabe zeitbezogener Drehmomentvorgaben (DV) für die jeweiligen Schwungradspeichereinheiten (2).

13. Ein Verfahren nach Anspruch 12, umfassend den weiteren Schritt

Durchführen eines gemeinsam koordinierten Stützbetriebs (SB) aller Schwungradspeichereinheit (2) durch die Motorregelungen (51 ) zur Regelung der Gleichspannung (GS) im Gleichspannungszwischenkreis (3) auf einen konstanten Wert im Notfallbetrieb (NF), indem die Motorregelungen jeweils Schwungradsteuerungen umfassen und die einzelnen Motorregelungen der Schwungradspeichereinheiten (2) unabhängig von der Modulsteuerung (6) miteinander verbunden sind, und

ein gezieltes Ausschließen einzelner Schwungradspeichereinheiten (2) von dem gemeinsamen Stützbetrieb (SB) zur Bereitstellung einer Mindestmenge an Energie für einen kontrollierten Ablauf der Schwungradspeichereinheiten (2).

Ein Verfahren nach Anspruch 13, umfassend den weiteren Schritt

Trennen des internen Versorgungsnetzes (4) vom

Gleichspannungszwischenkreis (3) mittels des zweiten Regelsystems (32), sobald die in den Schwungradspeichereinheiten (2) gespeicherte Menge an Energie unter eine Mindestenergie absinkt.

Ein Verfahren nach einem der Ansprüche 10 bis 14, umfassend die weiteren Schritte

kontinuierliches Messen (KM) der Spannungsqualität in den mit dem Energiespeichermodul (1 ) verbundenen externen Spannungsnetze (ES1 , ES2) durch ein oder mehrere Messeinheiten (7) des

Energiespeichermoduls,

Aussenden eines Notfallbetriebssignals (NFS) innerhalb des

Energiespeichermoduls (1 ) durch eine Messeinheit (7) bei einer Überoder Unterspannung in zumindest einem der angeschlossenen externen Spanungsnetze (ES1 , ES2),

Trennen des oder der externen Spannungsnetzes (ES1 , ES2) zumindest vom Gleichspannungszwischenkreis (2) durch das erste Regelsystem (31 ),

Wechseln der Schwungradspeichereinheiten (2) vom Normalbetrieb (NO) in den Notfallbetrieb (NF) und Versorgen des internen

Versorgungsnetz (4) mit der erforderlichen Versorgungsleistung (VL) durch das zweite Regelsystem (32) aus dem

Gleichspannungszwischenkreis (3) als automatische Reaktion auf ein Abfallen der Gleichspannung (GS) im Gleichspannungszwischenkreis (3) oder als automatische Reaktion aufgrund des Notfallbetriebssignals (NFS),

Aussenden eines Normalbetriebssignals (NOS) durch die

Messeinheiten (7) bei einer Wiederverfügbarkeit des externen

Spanungsnetzes (ES1 , ES2),

Wechseln vom Notfallbetrieb (NF) in den Normalbetrieb (NO) des Energiespeichermoduls (1 ), und Verbinden des internen Versorgungsnetzes (4) mit dem oder den externen Spannungsnetzen (ES2), vorzugsweise durch das zweite Regelsystem (32), als automatische Reaktion aufgrund des Normalbetriebssignals (NOS).

Description:
Energiespeichermodul mit Gleichspannungszwischenkreis

Gebiet der Erfindung

Die Erfindung betrifft ein Energiespeichermodul mit

Gleichspannungszwischenkreis und ein Verfahren zum Steuern eines solchen Energiespeichermoduls.

Hintergrund der Erfindung

Die Energie zum Betrieb eines Stromnetzes wird von diversen unterschiedlichen Kraftwerktypen geliefert. Hierbei sind die meisten Kraftwerke, wie beispielsweise Atomkraftwerke, Kohlekraftwerke, Gaskraftwerke, Windenergie-, Biogasanlagen oder Solarkraftwerke, lediglich Energieerzeuger zur Einspeisung von Energie in das nicht-lokale (oder auch externe) Spannungsnetz, gewöhnlich auch als

Stromnetz bezeichnet. Nicht-lokale Spannungsnetze sind beispielsweise

Übertragungsnetze, wie beispielsweise in Deutschland durch Amprion, 50Hertz, Tennet und TransnetEnBW betrieben. Diese Übertragungsnetze sind Teil des europäischen Verbundnetzes. Die oben angeführten Kraftwerke können als reine Energieerzeuger keine überschüssige Energie im Bedarfsfall aus dem

Spannungsnetz aufnehmen und speichern. Energiespeicher können dagegen zur Aufnahme und Abgabe von Energie an ein Spannungsnetz verwendet werden. Energiespeicher sind beispielsweise zentrale Energiespeicher, wie

Pumpspeicherwerke, oder dezentrale Energiespeicher, wie beispielsweise

Batterien oder Schwungradspeicher. Die Pumpspeicherwerke stellen weitgehend witterungsunabhängige und damit in der Regel immer verfügbare Energiespeicher dar. Zentrale Energiespeicher sind im Allgemeinen auf eine große Kapazität ausgelegt. Zur Bereitstellung von Regelenergie für das nicht-lokale

Spannungsnetz sind sie aufgrund der verfügbaren Leistung geeignet, um im nichtlokalen Spannungsnetz entsprechend Wirkung entfalten zu können.

Pumpspeicherkraftwerke können je nach Baugröße eine Leistung von einigen 100 MW und mehr besitzen, wobei die Generatoren allerdings meist dazu ausgelegt sind, unter Volllast Strom zu produzieren und somit die volle Leistung des

Pumpspeicherwerks bei entsprechendem Wirkungsgrad zeitnah nutzen zu können. Diese Betriebsweise ist nicht dafür geeignet, die lokale Netzqualität in einem Spannungsnetz mit einem im Vergleich zur Kapazität des Pumpspeicherkraftwerks eher vernachlässigbarem Strombedarf zu stabilisieren oder zu verbessern.

Zentral genutzte Batteriespeicheranlagen sind im Aufbau mit dem Ziel, einen Pilotbetrieb für netzstabilisierende (ortsungebundene) Aufgaben (Regelenergie) zu realisieren. Die bisher geplanten erfüllen jedoch keine ortsgebundenen Aufgaben. Grundsätzlich sind Batteriespeicher jedoch aufgrund ihrer immanenten

Zusammenhänge zwischen Leistung, Kapazität und Alterung für derartige

Anwendungen mit mehreren Lastzyklen pro Tag nicht gut geeignet und

degradieren schnell aufgrund von Temperatureinflüssen, Systemausfällen und Fehlbedienung. Daher sind Batteriespeicher sehr wartungsintensiv. Außerdem stellen Batteriespeicher wegen ihres hohen Brand- und Chemierisiko eine Umwelt- und/oder Wassergefährdung dar, die einen enormen Absicherungsaufwand erfordern.

Dezentrale Energiespeicher sind im Allgemeinen optimiert für die Stabilisierung des lokalen Strombedarfs und für die Lieferung von Regelenergie zur Stützung des nicht-lokalen Spannungsnetzes nicht ausgelegt und nicht qualifiziert. Solche Anlagen können nicht zur Bedarfsdeckung für alle Spannungsnetze beitragen. Eine Verschaltung der dezentralen Speicher zu einer nicht-lokal und lokal wirkenden Anlage erfolgt bisher nicht.

US 7,400,052 B1 offenbart eine Notstromversorgung für eine Last, die unter normalen Bedingungen ausschließlich aus dem Netz als primäre Energiequelle über einen intermediären DC-Bus gespeist wird. Sollte die primäre

Energieversorgung ausfallen, so wird die Last vorübergehend über eine

Notstromversorgung, die ebenfalls an dem DC-Bus angeschlossen ist, mit Energie versorgt. Dabei umfasst die Notstromversorgung zwei separate

Notstromversorgungsquellen, wobei ein Schwungradspeicher für eine schnelle und kurzfristige Notstromversorgung für Netzausfallzeiten vom Bereich 1 Sekunde und eine Gasturbine mit Gasreservoir als die zweite Notstromversorgung für die Überbrückung längerer Netzausfälle vorgesehen ist. Hierbei versorgt während eines Netzausfalls in einem ersten kurzen Zeitintervall ausschließlich der

Schwungradspeicher den DC-Bus mit Energie, während in dem nachfolgenden zweiten Zeitintervall sowohl der Schwungradspeicher als auch das Gasturbinenkraftwerk in den DC-Bus einspeist und in dem nachfolgenden dritten Zeitintervall lediglich das Gasturbinenkraftwerk in den DC-Bus einspeist, während der Schwungradspeicher aus dem DC-Bus wieder geladen wird. Somit übernimmt das Gasturbinenkraftwerk auch die Stromversorgung des Schwungradspeichers, die unter Normalbedingungen durch das im Notfall betrieb nicht vorhandene Netz erfolgt. Damit solche Energiespeicheranlagen ihre Aufgaben zuverlässig erfüllen können, müssen sie mit Notstromaggregaten zum Überbrücken von Netzausfällen für das erste und zweite Zeitintervall ausgerüstet werden. Bei längeren

Netzausfällen kann das Gasturbinenkraftwerk die Notstromversorgung als

Energiequelle selber übernehmen und muss daher entsprechend groß

dimensioniert werden, was aufwendig ist und die Mobilität von dezentralen Energiespeichereinheiten einschränkt, wodurch ihr Betrieb erschwert wird. Die Versorger (a) Schwungradspeicher und (b) Gasturbinenkraftwerk speisen dabei lediglich bei Netzausfall in den DC-Bus ein und werden in US 7,400,052 B1 nicht zur Lieferung von Regelenergie zur Stützung des externen Spannungsnetzes während des Vorhandenseins des Netzes verwendet. Außerdem werden hier die Betriebsaggregate der Schwungradspeicher nicht aus dem DC-Bus gespeist und müssen daher eine separate Energieversorgung besitzen.

Es wäre daher wünschenswert, einen effektiven, umweltverträglichen,

ausfallsicheren und leicht zu betreibenden Energiespeicher mit großer Kapazität zur Verfügung zu haben, der es ermöglicht, bedarfsgerecht Energie in

angeschlossene externe Spannungsnetze einspeisen oder aus ihnen entnehmen zu können, und im Falle eines Netzausfalls weiterhin betriebsbereit zu bleiben.

Zusammenfassung der Erfindung

Es ist daher eine Aufgabe der Erfindung, einen effektiven, umweltverträglichen, ausfallsicheren und leicht zu betreibenden Energiespeicher mit großer Kapazität für externe Stromnetze zur Verfügung zu stellen, der es ermöglicht,

bedarfsgerecht Energie in angeschlossene externe Spannungsnetze einspeisen oder aus ihnen entnehmen zu können, und im Falle eines Netzausfalls weiterhin betriebsbereit zu bleiben. Diese Aufgabe wird gelöst durch ein Energiespeichermodul zur reversiblen

Speicherung von elektrischer Energie, umfassend mehrere elektrisch parallel über einen gemeinsamen Gleichspannungszwischenkreis verbundene

Schwungradspeichereinheiten, ein erstes mit dem Gleichspannungszwischenkreis verbundenes Regelsystem, das in einem Normalbetrieb den

Gleichspannungszwischenkreis mit einem oder mehreren externen

Spannungsnetzen zur Aufnahme / Abgabe von Energie an / in das oder die externen Spannungsnetze verbindet, und ein zweites Regelsystem mit einer Eingangsseite und einer Ausgangsseite, wobei die Eingangsseite zumindest mit dem Gleichspannungszwischenkreis und die Ausgangsseite mit einem internen Versorgungsnetz zur Versorgung ein oder mehrerer zum Betrieb der

Schwungradspeichereinheiten benötigter strombetriebener Betriebsaggregate verbunden ist, wobei das zweite Regelsystem dazu ausgestaltet ist, zumindest in einem Notfallbetrieb bei fehlendem externen Spannungsnetz den

Gleichspannungszwischenkreis mit dem internen Versorgungsnetz zu verbinden und das Versorgungsnetz zum fortgeführten Betrieb der

Schwungradspeichereinheiten mit einer erforderlichen Versorgungsleistung alleine aus dem Gleichspannungszwischenkreis zumindest in einem ersten Zeitintervall zu versorgen.

Durch die Verwendung von Schwungradspeichereinheiten wird die Energie in Form mechanischer Rotationsenergie gespeichert. Diese Form der

Energiespeicherung benötigt keine chemischen und/oder brandgefährlichen Stoffe, so dass von solchen Speichern keine Umwelt- und Wassergefährdung ausgeht. Der Anschluss der einzelnen Schwungradspeichereinheiten elektrisch parallel an einen Gleichspannungszwischenkreis erlaubt die Zusammenfügung der einzelnen Einheitenkapazitäten und Einheitenleistungen der jeweiligen

Schwungradspeichereinheiten zu einer gemeinsame Modulspeicherkapazität und Modulleistung für das Energiespeichermodul mit einem geringen technischen Aufwand. Außerdem sind im Prinzip beliebig viele Schwungradspeichereinheiten zu dem Gleichspannungszwischenkreis elektrisch parallel hinzu schaltbar, wodurch Modulkapazität und Modulleistung an den Bedarf anpassbar und im Prinzip für das Energiespeichermodul beliebig skalierbar sind. Dadurch wird ein Energiespeichermodul bereitgestellt, das eine große Kapazität besitzt, die es ermöglicht, neben einer Verbesserung der lokaler Netzqualität in lokalen

Spannungs- beziehungsweise Stromnetzen (beispielsweise

Wechselspannungsnetze) auch die Versorgungssicherheit für nicht-lokale

Spannungs- beziehungsweise Stromnetze (beispielsweise

Wechselspannungsnetze) erreichen zu können.

Bei der Verwendung von nur einem großen Netzwechselrichter als erstes

Regelsystem hat man geringere Verluste als bei einer Verwendung von mehreren kleinen Netzwechselrichtern, wenn beispielsweise alle

Schwungradspeichereinheiten separat voneinander mit eigenen

Netzwechselrichtern an ein Stromnetz angeschlossen wären. Die Verwendung von nur einem großen Netzwechselrichter ist zudem kostengünstiger im Vergleich zur Verwendung mehrerer kleinerer Netzwechselrichter. Das erfindungsgemäße Energiespeichermodul als Energiespeicher kann somit mit genügender Wirkung für beide Zwecke betrieben werden. Das Energiespeichermodul kann zudem sehr effektiv betrieben werden, da die bereitgestellte Modulspeicherkapazität und Modulleistung durch eine geeignete Wahl der Anzahl an

Schwungradspeichereinheiten, die an den Gleichstromzwischenkreis

angeschlossen werden, auf die jeweiligen Bedürfnisse angepasst und somit ungenutzte Überkapazitäten vermieden werden können. Die Regelung des Gleichspannungszwischenkreises auf eine Soll-Gleichspannung ist außerdem einfach zu realisieren, was die Gesamtregelung des Energiespeichermoduls vereinfacht. Außerdem wird durch die elektrisch parallele Anordnung der

Schwungradspeichereinheiten eine Fehlerredundanz erreicht, die es verhindert, dass durch den Ausfall einer Schwungradspeichereinheit die Verfügbarkeit des Energiespeichermoduls für seine Regel- und Systemaufgaben in den

angeschlossenen externen Stromnetzen (beispielsweise

Wechselspannungsnetzen) wesentlich beeinträchtigt. Damit wird die

Ausfallsicherheit des Energiespeichermoduls erhöht. Die Soll-Gleichspannung hängt dabei von den angeschlossenen externen Stromnetzen und den im

Energiespeichermodul verwendeten Bauteilen ab.

Ein technisch sinnvoller Bereich für die Spannung im

Gleichspannungszwischenkreis bei Anschluss der Anlage an ein Niederspannungsnetz liegt zum Beispiel zwischen 550V und 1000V. Die untere Grenze wird im wesentlichen durch die Spannungslage des

Niederspannungsnetzes definiert, wohingegen die obere Grenze im wesentlichen durch die technischen Eigenschaften der verwendeten Bauteile im

Energiespeichermodul bestimmt wird. Für Mittelspannungsnetze oder

Gleichspannungsnetze kann die Soll-Gleichspannung im Zwischenkreis aus technischen und wirtschaftlichen Gründen auch bei anderen Werten liegen, die sich an der Spannungslage dieser Netze orientiert. In einem Ausführungsbeispiel ist die Soll-Gleichspannung im Gleichspannungszwischenkreis 750 V ± 5 V. Die vorliegenden Werte der Gleichspannung im Gleichspannungszwischenkreis können beispielsweise über eine geeignete Ausgestaltung des ersten

Regelsystems, über eine entsprechende Messeinrichtung im

Gleichspannungszwischenkreis und/oder über die Motorregelungen der

Schwungradspeichereinheiten bestimmt und anschließend der Regelung zu Grunde gelegt werden. Dabei wird die Gleichspannung des

Gleichspannungszwischenkreises ausschließlich über

Schwungradspeichereinheiten und bei Vorhandensein des externen

Spannungsnetzes (Normalbetrieb des Energiespeichermoduls) auch über das erste Regelsystem durch das oder die angeschlossenen externen

Spannungsnetze gestützt. Weitere Energiequellen anderer Art sind an den

Gleichspannungszwischenkreis nicht angeschlossen. Im Normalbetrieb sind auch keine weiteren Energiesenken an den Gleichspannungszwischenkreis

angeschlossen. Bei einem Netzausfall, auch bei einem längeren Netzausfall von beispielsweise mehreren Stunden oder mehr, wird die Gleichspannung im

Gleichspannungszwischenkreis ausschließlich durch die

Schwungradspeichereinheiten gestützt. Dieser Betriebszustand wird als

Notfallbetrieb bezeichnet.

Als Schwungradspeichereinheit wird hierbei die funktionale Einheit mit einem Rotor als Schwungmasse, über dessen Rotation die Energie in Form von mechanischer Rotationsenergie gespeichert wird, und mit Betriebsaggregaten wie Lager- und Motorkomponenten zum Beschleunigen, Abbremsen und Drehen des Rotors bei einer bestimmten Drehzahl, einem elektromagnetischen Wandler zur Umwandlung elektrischer in mechanische Energie und umgekehrt und Anschlüsse an andere Betriebsaggregate wie beispielsweise das Vakuumsystem oder eine interne Stromversorgung über das interne Versorgungsnetz, bezeichnet. Rotoren von Schwungradspeichereinheiten können je nach Ladezustand mit Drehzahlen auch von 50000 Umdrehungen pro Minute rotieren. Ein typischer Drehzahlbereich liegt zwischen 15000 Umdrehungen pro Minute und der maximalen Drehzahl. Die einzelnen Schwungradspeichereinheiten besitzt eine Einheitenkapazität und Einheitenleistung, die von den Betriebsbedingungen, wie beispielsweise Drehzahl des Rotors und Auslegung des elektromagnetischen Wandlers, abhängen.

Beispielsweise kann die Einheitenkapazität circa 5 kWh und die maximale Einheitenleistung bis 200 kW betragen. Die Speicherung der Energie in Form von Rotationsenergie ist reversibel, da aus den Schwungradspeichereinheiten je nach Bedarf die als Rotationsenergie gespeicherte Energie wieder entnommen und als elektrische Energie über den Gleichspannungszwischenkreis und das

Regelsystem in ein externes Stromnetz eingespeist werden kann und umgekehrt. Schwungradenergiespeicher besitzen den Vorzug, dass sie die aufzunehmenden oder abzugebenden Mengen an Energie sehr variabel und präzise für die

Abnehmer bereitstellen können und diese Energie in Form von mechanischer Energie speichern. Damit stellen Schwungradenergiespeicher ein wesentlich kleineres Gefahrenpotential im Brandfall dar als beispielsweise eine größere Ansammlung an Batterien, zusammengeschaltet als Batterie- Energiespeicheranlage, Wasserstoffspeicheranlagen mit Wasserstofftanks mit dem brennbaren Wasserstoff oder Drucklufttanks als Gefahrenpotential. Somit stellen Schwungradspeichereinheiten eine umweltsicherere Technologie für die Energiebereitstellung im Vergleich zu anderen Speichertechnologien dar und sind für beliebig viele Lastzyklen pro Tag gut geeignet. Bei der Energiebereitstellung oder Leistungsbereitstellung wird von negativer Energiebereitstellung (-fluss) oder negativer Leistungsbereitstellung (-fluss)„En" gesprochen, wenn Energie oder Leistung aus dem externen Spannungsnetz und/oder dem

Gleichspannungszwischenkreis aufgenommen und in den

Schwungradspeichereinheiten in Form von mechanischer Rotationsenergie gespeichert wird. Entsprechend wird von positiver Energiebereitstellung (-fluss) oder Leistungsbereitstellung (-fluss)„Ep" gesprochen, wenn aus den

Schwungradspeichereinheiten die in Form von mechanischer Rotationsenergie gespeicherte Energie oder Leistung mittels Abbremsen der Schwungräder (oder Rotoren) in das externe Spannungsnetz und/oder den Gleichspannungszwischenkreis als elektrische Energie oder Leistung eingespeist wird. Hierbei ist die Fähigkeit von Schwungradspeichern, Energie innerhalb von wenigen Millisekunden zur Verfügung stellen zu können, ebenso vorteilhaft wie die Fähigkeit, die spezifizierte Leistung über einen Zeitraum von vielen Minuten und mehr zu liefern. Bei einer Drehzahl von zum Beispiel 50000 Umdrehungen pro Minute kann eine Schwungradspeichereinheit je nach Ausführung eine Leistung bis 200 kW aufnehmen oder abgeben. In einer Ausführungsform ist die Anzahl der Schwungradspeichereinheiten im Schwungradmodul darauf angepasst, eine Modulspeicherkapazität für das Energiespeichermodul bereitzustellen, die mindestens ausreicht, um über einen Zeitraum von mehr als 30s Nennstrom in ein nicht-lokales Spannungsnetz (Stromnetz) einspeisen zu können.

Zum Betrieb des Energiespeichermoduls, insbesondere zum Betrieb der

Schwungradspeichereinheiten umfasst dieses eine Mehrzahl an

Betriebsaggregaten wie beispielsweise Schwungradmotor, Umrichter, ein

Vakuumsystem mit Vakuumpumpen, ein Kühlsystem mit Kühlaggregaten, eine Modulsteuerung und diverse weitere elektrisch zu betreibende Komponenten und Sensoren. Alle diese Betriebsaggregate müssen für einen störungsfreien

Normalbetrieb mit elektrischer Energie versorgt werden. Beispielsweise würde ein ausgefallenes Kühlsystem zu einem Überhitzen der

Schwungradspeichereinheiten, insbesondere der Lager der Rotoren in den Schwungradspeichereinheiten führen. Da diese Rotoren in einem Vakuum, beispielsweise kleiner 10 "3 bar, betrieben werden müssen, um die

Reibungsverluste im Normalbetrieb möglichst gering zu halten, würde ein Ausfall des Vakuumsystems zu einem erhöhten Energieverlust führen, der automatisch auch einen Temperaturanstieg aufgrund der Reibungswärme im

Energiespeichermodul zur Folge hätte. Bei einem nicht mehr durch das externe Spannungsnetz versorgten internen Versorgungsnetz für die Betriebsaggregate würde dieses ebenfalls kurzfristig zusammenbrechen, woraufhin die

Betriebsaggregate ausfallen und die entsprechenden negativen Folgen für das Energiespeichermodul eintreten würden.

Da aber bei einem solchen Ausfall des externen Spannungsnetzes das

Energiespeichermodul in der Regel eine beträchtliche Menge an Energie bei einer typischen mittleren Aufladung von 50% weiterhin gespeichert hat und diese an den Gleichspannungszwischenkreis ja nach Bedarf über einen längeren Zeitraum abgeben kann, können die Schwungradenergiespeicher als interne

Notstromversorgung über den Gleichspannungszwischenkreis für die

Betriebsaggregate fungieren, ohne dass eine zusätzliche aufwendig und zu extra zu wartende Notstromversorgung im Energiespeichermodul installiert und überwacht, beziehungsweise gewartet werden muss. Durch den Anschluss des Gleichstromzwischenkreises über das zweite Regelsystem an das interne

Versorgungsnetz, an das wiederum die Betriebsaggregate (Betriebsaggregate der einzelnen Schwungradspeichereinheiten und Betriebsaggregate des

Energiespeichermoduls zum Betrieb der Schwungradspeichereinheiten) angeschlossen sind, kann die in den Schwungradenergiespeichereinheiten vorhandene Energie auf einfache und sichere Art und Weise dem internen

Versorgungsnetz solange zur Verfügung gestellt werden, bis das externe

Spannungsnetz zur Versorgung des internen Versorgungsnetzes wieder zur Verfügung steht. Somit können Netzausfälle von etlichen Minuten und mehr überbrückt werden, bei denen das Energiespeichermodul weiter betriebsbereit für das später wieder anzubindende externe Spannungsnetz bleibt. Damit kann auf eine Notstromversorgung durch beispielsweise eine Gasturbine,

Dieselgeneratoren oder Notfallbatterien verzichtet werden, was eine Reduzierung der für den ausfallsicheren Betrieb des Energiespeichers benötigten Komponenten erlaubt. Eine Reduzierung der Komponentenanzahl ermöglicht gleichzeitig einen effektiveren, umweltverträglicheren und einfacheren Betrieb, da somit auch keine Notstromaggregate bereitgestellt und gewartet werden müssen. Durch die

Vermeidbarkeit von solchen zusätzlichen Notstromaggregaten kann das

Energiespeichermodul leichter als kompakte mobile Einheit zum variablen und zeitlich begrenzten Einsatz an unterschiedlichen geographischen Orten verwendet werden. Die interne Stromversorgung aus dem Gleichspannungszwischenkreis ermöglicht eine Überbrückung eines zeitlich begrenzten Netzausfalls und erlaubt bei einem länger andauernden Netzausfall ein kontrolliertes Herunterfahren der Schwungradspeichereinheiten in einem Stopp-Modus unter Verwendung der Restenergie in den Schwungradspeichereinheiten. Würde keine

Energiezulieferung aus dem Gleichspannungszwischenkreis an die

Betriebsaggregate möglich sein, würde ein Netzausfall jeweils ein unkontrolliertes Not-Aus oder einen Absturz für die Schwungradspeichereinheiten mit den daraus möglicherweise resultierenden Schäden für die Energiespeicheranlage zur Folge haben. Durch das erfindungsgemäße Energiespeichermodul wird ein effektiver, umweltverträglicher, ausfallsicherer und leicht zu betreibender Energiespeicher mit großer Kapazität zur Durchführung von Regel- und Systemaufgaben in externen Spannungsnetzen zur Verfügung gestellt, der es ermöglicht, bedarfsgerecht Energie in angeschlossene externe Spannungsnetze einspeisen oder aus ihnen entnehmen zu können, und im Falle eines zeitlich begrenzten Netzausfalls für den nachfolgenden Normalbetrieb weiterhin betriebsbereit zu bleiben.

Das erste Regelsystem regelt dabei in Normalbetrieb mit vorhandenem externem Spannungsnetz den Energiefluss zwischen einem oder mehreren

angeschlossenen externen Spannungsnetzen (lokales Stromnetz und/oder nichtlokales Stromnetz) und den Schwungradspeichereinheiten des

Energiespeichermoduls. Das erste Regelsystem regelt dabei die Gleichspannung des Zwischenkreises im Wesentlichen konstant auf eine Soll-Gleichspannung, beispielsweise 750 V. Der Ausdruck„im Wesentlichen konstant" bedeutet, dass die Gleichspannung durchaus temporär innerhalb zulässiger Toleranzen, beispielsweise ±5 V, schwanken kann, wobei das erste Regelsystem stets derart regelt, dass die tatsächlich vorliegende Gleichspannung des Zwischenkreises der Soll-Gleichspannung nachgeführt wird, beziehungsweise im Idealfall entspricht. Der Toleranzbereich kann aber auch größer als die oben angegebenen Werte sein. Das erste Regelsystem schafft diese Regelung, indem es sich des externen Spannungsnetzes oder der externen Spannungsnetze je nach

Leistungsflussrichtung als unerschöpfliche Stromquelle (Laden der

Schwungradspeichereinheiten mit Energie) beziehungsweise als Senke für die überschüssige Energie im Gleichspannungszwischenkreis bedient. Geeignete erste Regelsysteme umfassen dazu einen oder mehrere Netzwechselrichter oder Hoch-/Tiefsetzsteller. Diese Art der Regelung über das erste Regelsystem betrifft nur den Normalbetrieb, da bei einem Fehlen der externen Spannungsnetze diese dem Energiespeichermodul nicht mehr als Energiequelle oder Senke zur

Verfügung stehen. Das zweite Regelsystenn kann im erfindungsgemäßen Energiespeichermodul sowohl (a) im Normal- als auch im Notfallbetrieb das Versorgungsnetz mit dem Gleichspannungszwischenkreis zur Versorgung des Versorgungsnetzes mit Energie aus dem Gleichspannungszwischenkreis verbinden und wird

entsprechend für den Normal- als auch für den Notfall betrieb gesteuert oder (b) das zweite Regelsystem stellt lediglich im Notfallbetrieb eine Verbindung des Versorgungsnetzes mit dem Gleichspannungszwischenkreis zur Versorgung des Versorgungsnetzes im Notfallbetrieb mit Energie aus dem

Gleichspannungszwischenkreis her. Im letzteren Fall wird das Versorgungsnetz direkt aus einem externen Spannungsnetz im Normalbetrieb mit Energie versorgt. Dagegen wäre im ersten Fall keine separater Anschluss des Versorgungsnetzes mit einem externen Spannungsnetz notwendig, da diese Verbindung indirekt über den Gleichspannungszwischenkreis und das erste und zweite Regelsystem bereits besteht.

In einer Ausführungsform regelt im Notfallbetrieb das zweite Regelsystem die Versorgungsnetzspannung im internen Versorgungsnetz durch bedarfsgerechte Strom lieferung aus dem Gleichspannungszwischenkreis im Wesentlichen konstant. Das zweite Regelsystem regelt dabei im Notfallbetrieb bei nichtvorhandenem externem Spannungsnetz den Energiefluss zwischen dem

Gleichspannungszwischenkreis und dem internen Versorgungsnetz, wobei das zweite Regelsystem dabei die Versorgungsspannung auf eine Sollspannung für das interne Versorgungsnetz regelt. Das Versorgungsnetz kann dabei je nach Ausführungsform unterschiedliche Versorgungsspannungen ausweisen, beispielsweise 240 V-AC oder 230 V-AC oder 1 10 V-DC oder 24 V-DC, oder ist in mehrere Sub-Versorgungsnetze, gegebenenfalls mit unterschiedlichen Sub- Versorgungsnetzspannungen aufgespalten. Der Ausdruck„im Wesentlichen konstant" bedeutet, dass die Spannung durchaus temporär innerhalb zulässiger Toleranzen, beispielsweise ±5 V, schwanken kann, wobei das zweite Regelsystem stets derart regelt, dass die tatsächlich vorliegende Spannung des internen Versorgungsnetzes der Soll-Spannung nachgeführt oder dieser im Idealfall entspricht. Das zweite Regelsystem schafft diese Regelung, indem es sich des Gleichspannungszwischenkreises als quasi-externe und quasi-unerschöpfliche Energiequelle bedient. Der Ausdruck„quasi-extern" bezeichnet die Anordnung der Energiequelle (Gleichspannungszwischenkreis) außerhalb des

Versorgungsnetzes, woher das interne Versorgungsnetz mit Energie versorgt wird. Der Ausdruck„quasi-unerschöpflich" bezeichnet hier die große Differenz zwischen in der Regel über die Schwungradenergiespeicher verfügbare große

Energiemenge und die relativ geringen Energiemenge, die pro Zeiteinheit durch die Betriebsaggregate verbraucht und daher an das interne Versorgungsnetz aus dem Gleichspannungszwischenkreis nachgeliefert werden muss. Geeignete zweite Regelsysteme umfassen dazu einen oder mehrere Netzwechselrichter oder Hoch-/Tiefsetzsteller.

In einer Ausführungsform ist die Eingangsseite des zweiten Regelsystems zusätzlich mit einem externen Spannungsnetz verbunden und das zweite

Regelsystem ist dazu vorgesehen, die Versorgungsleistung für das interne

Versorgungsnetz im Normalbetrieb aus dem externen Spannungsnetz und im Notfallbetrieb aus dem Gleichspannungszwischenkreis bereit zu stellen. Damit muss das zweite Regelsystem lediglich im Notfallbetrieb den Leistungsfluss vom Gleichspannungszwischenkreis zum Versorgungsnetz regeln und würde im

Normalbetrieb beispielsweise nicht zur Umwandlung der Gleichspannung in eine mögliche Wechselspannung im Versorgungsnetz (als Wechselspannungsnetz) beansprucht, sondern bekäme diese Wechselspannung bereits durch das externe Spannungsnetz angeboten und müsste diese nur auf die Sollspannung im

Versorgungsnetz regeln. Somit würde das zweite Regelsystem weniger stark regelungstechnisch beansprucht. Damit wird außerdem bei einem gewünschten Anschluss des Versorgungsnetzes an ein externes Spannungsnetz eine

zusätzliche separate Komponente zum Anschluss des internen

Versorgungsnetzes an das externe Stromnetz vermieden.

In einer anderen Ausführungsform ist das Energiespeichermodul dazu

ausgestattet, die Gleichspannung im Gleichspannungszwischenkreis kontinuierlich zu überwachen, wobei die Schwungradspeichereinheiten jeweils Motorregelungen umfassen, die dafür ausgestaltet sind, unabhängig von einer Modulsteuereinheit zur Steuerung der Schwungradspeichereinheiten im Normalbetrieb im

Notfallbetrieb zumindest auf Basis der überwachten Gleichspannung die Gleichspannung im Gleichspannungszwischenkreis über Energieabgabe aus den jeweiligen Schwungradspeichereinheiten nicht unter einen unteren Schwellenwert absinken zu lassen, zumindest solange die in den jeweiligen

Schwungradspeichereinheiten gespeichert Menge an Energie nicht unter eine Mindestenergie absinkt. Für einen Stützbetrieb des internen Versorgungsnetzes darf die Spannung im Gleichspannungszwischenkreis nicht unter die Spannung im Versorgungsnetz absinken. Vorzugsweise wird die Spannung im

Gleichspannungszwischenkreis zwischen der Sollspannung des Normalbetriebs und der Sollspannung des internen Versorgungsnetzes mittels

Energieeinspeisung aus den Schwungradenergiespeichereinheiten gehalten. In dieser Ausführungsform wäre der untere Schwellenwert der Sollwert der

Versorgungsnetz-Sollspannung. In einer bevorzugten Ausführungsform wird auch bei einem temporären Ausfall des externen Stromnetzes die Spannung des Gleichspannungszwischenkreises auf die Sollspannung des Normalbetriebs, beispielsweise 750 V, geregelt. In dieser Ausführungsform wäre der untere Schwellenwert beispielsweise 745 V. Hierbei könnte das Energiespeichermodul ohne Anpassungszeit sofort nach dem erneuten Vorhandensein des externen Spannungsnetzes wieder in den Normalbetrieb übergehen, da ein Hochfahren der Spannung im Gleichspannungszwischenkreis auf dem Sollwert nicht notwendig ist, da auf diesen bereits vorher geregelt wurde.

In einer anderen Ausführungsform ist im Gleichspannungszwischenkreis mindestens eine Messeinrichtung zur Messung der Gleichspannung im

Gleichspannungszwischenkreis angeordnet und zumindest mit den jeweiligen Motorregelungen der Schwungradspeichereinheiten verbunden. Diese

Messeinrichtung liefert den Motorregelungen die momentane Gleichspannung im Gleichspannungszwischenkreis und kann für die Steuerung der

Schwungradspeichereinheiten zur Regelung auf eine Sollspannung verwendet werden. Eine solche Messeinrichtung kann sehr präzise die vorhandene

Spannung messen und mit den Messdaten eine genaue Basis für die

Spannungssteuerung bereitstellen. Geeignete Messeinrichtungen zur Messung der Spannung sind dem Fachmann bekannt.

In einer Ausführungsform sind die Motorregelungen der einzelnen Schwungradspeichereinheiten unabhängig von der Modulsteuereinheit direkt miteinander verbunden und umfassen jeweils eine Schwungradsteuerung, die dafür vorgesehen ist, einen gemeinsam koordinierten Stützbetrieb der

Gleichspannung im Gleichspannungszwischenkreis durch alle

Schwungradspeichereinheiten im Notfallbetrieb auszuführen. Somit können die Schwungradspeichereinheiten schneller auf Spannungsänderungen reagieren und einen präziseren Stützbetrieb durchführen. Die Motorregelungen reagieren beispielsweise um eine Größenordnung schneller als die ersten oder zweiten Regelsysteme. Mit einer direkten Kommunikation der

Schwungradspeichereinheiten kann diese Schnelligkeit besser ausgenutzt werden.

In einer alternativen Ausführungsform ist die Modulsteuereinheit nicht nur im Normalbetrieb, sondern auch im Notfallbetrieb zur Übermittlung der für den Notfallbetrieb geeigneten Drehmomentvorgaben an die

Schwungradspeichereinheiten zur Abgabe von Energie an den

Gleichspannungszwischenkreis vorgesehen. Dabei kann die Modulsteuereinheit zu einer zeitbezogenen Generierung und Übermittlung der Drehmomentvorgaben für die Schwungradspeichereinheiten vorgesehen sein, woraufhin die

Schwungradspeichereinheiten im Notfallbetrieb aufgrund der zeitbezogenen

Drehmomentvorgaben Strom in den Gleichspannungszwischenkreis einspeisen, um das Spannungspotential im Gleichspannungszwischenkreis auf einen möglichst konstanten Wert oberhalb des Schwellenwertes zu regeln. Dazu erhält jede Schwungradspeichereinheit individuelle Drehmomentvorgaben von der Modulsteuereinheit. Durch diese individuelle Ansteuerung der einzelnen

Schwungradenergiespeichereinheiten können unterschiedliche Ladezustände der einzelnen Schwungradspeichereinheiten berücksichtigt werden, so dass nach Möglichkeit für keine der Schwungradspeichereinheiten die jeweilige Drehzahl unter eine minimale Drehzahl fällt, da sonst bei einer unvorteilhaft kleinen

Drehzahl der jeweilige Rotor der Schwungradspeichereinheit nicht mehr optimal belagert und betrieben werden kann.

In einer Ausführungsform umfasst zu einer optimalen Energieeinspeisung (oder Energieaufnahme) jede der Schwungradspeichereinheiten einen elektromagnetischen Wandler, der elektrisch über eine Motorregelung,

vorzugsweise einen Frequenzumrichter, an den Gleichspannungszwischenkreis angeschlossen ist. Der elektromagnetische Wandler wird im Folgenden auch als Motor bezeichnet. Die Motorregelung ist über Datenleitungen mit der

Modulsteuereinheit zum Erhalt von Sollwertvorgaben (beispielsweise

Drehmomentvorgaben) verbunden und kann dabei im Rahmen ihrer Strom- und Leistungsbegrenzungen beliebige Strombeiträge aus dem

Gleichspannungszwischenkreis beziehen (laden, Energie aufnehmen)

beziehungsweise an den Gleichspannungszwischenkreis abgeben (entladen, Energie abgeben). Alle Komponenten des Gleichspannungskreises sind dabei so ausgelegt, dass eine gegenseitige Beeinflussung, wie beispielsweise ein

Kurzschluss oder ein Aufschwingen des Gleichspannungszwischenkreises, ausgeschlossen ist. Damit die Steuerung der Schwungradspeichereinheiten individuell auf deren Ladezustand angepasst werden kann, ruft in einer Ausführungsform die

Modulsteuereinheit aktuelle Drehzahlen der einzelnen

Schwungradspeichereinheiten aus deren Motorregelungen ab und bestimmt den jeweiligen aktuellen Ladezustand der einzelnen Schwungradspeichereinheiten aus der abgerufenen Drehzahl aufgrund einer in der Modulsteuerung hinterlegten Beziehung zwischen Drehzahl und Ladezustand. Die möglichen Drehzahlen können zwischen einer maximalen und einer minimalen Drehzahl (im Extremfall keine Drehung) variieren, wobei der Ladezustand bei maximaler Drehzahl 100 % beträgt. Somit ergibt sich der aktuelle Ladezustand aus der jeweils aktuellen Drehzahl. Der Abruf der Drehzahlen kann dabei periodisch, beispielsweise mit einer Frequenz von 1 Hz, erfolgen. Die aktuelle Drehzahl kann dabei als Reaktion auf ein entsprechendes aktives Abrufsignal, ausgesendet durch die

Modulsteuereinheit, erfolgen oder durch die Motorregelungen selbständig erfolgen (passiver Abruf durch die Modulsteuereinheit). Die selbständige Übermittlung durch die Motorregelung kann kontinuierlich erfolgen oder lediglich nach einer Änderung der Drehzahl um einen vorher festgelegten Wert. Ein typischer

Drehzahlbereich im Normalbetrieb ist beispielsweise 300Hz - 800Hz mit ±5% als zulässiger Toleranzbereich. In einer Ausführungsform sind in der Motorregelung der

Schwungradspeichereinheiten eine obere Drehzahlbegrenzung und/oder eine untere Drehzahlbegrenzung implementiert. Diese vor Ort (in den

Schwungradspeichereinheiten) vorhandene Drehzahlbegrenzung dient dem Maschinenschutz vor einer Überladung der Schwungradspeichereinheit oder als Tiefentladungsschutz. In einer bevorzugten Ausführungsform ist die obere

Drehzahlbegrenzung und/oder untere Drehzahlbegrenzung durch ein Bauteil, beispielsweise ein separater Mikrokontroller, implementiert. Die

Drehzahlbegrenzung kann aber auch mit einem Softwareprogramm in der

Motorsteuerung implementiert sein. Eine so genannte hardwaremäßige Installation durch das zusätzliche Bauteil garantiert die Funktionstüchtigkeit der

Drehzahlbegrenzungen unabhängig vom Funktionszustand der Motorregelung. In gleicher weise sind in der Motorregelung hardwareseitig durch geeignete

Maßnahmen Begrenzungen für maximale Drehmomente bzw. Strombeiträge in oder aus dem Gleichspannungszwischenkreis vorgesehen.

In einer weiteren Ausführungsform sind in der Modulsteuereinheit obere

Drehzahlbegrenzungen und/oder untere Drehzahlbegrenzungen für die

Drehmomentvorgaben implementiert. In einer bevorzugten Ausführungsform sind die Drehzahlbegrenzungen als Anweisung in einem Computerprogramm

implementiert, damit gegebenenfalls veränderte Drehzahlbegrenzungen schnell ausgeführt werden können. Die Drehzahlbegrenzungen in der Modulsteuereinheit brauchen nicht dieselben Drehzahlbegrenzungen wie in den Motorregelungen zu sein. Letztere dienen dem Maschinenschutz. Die Drehzahlbegrenzungen in der Modulsteuereinheit können dagegen zu einer Steuerung des

Energiespeichermoduls in einem besonders effektiven Drehzahlbereich dienen. Die oberen/unteren Drehzahlbegrenzungen in der Modulsteuereinheit liegen dabei bei Werten nicht höher/niedriger als die obere/untere Drehzahlbegrenzung in den Motorregelungen. Die Drehzahlbegrenzungen bzw. maximalen Drehmomente und Ströme in den Motorregelungen werden in dieser Ausführungsform von der Modulsteuereinheit bei der Berechnung der zu übermittelnden

Drehmomentvorgaben berücksichtigt.

In einer Ausführungsform umfasst das Energiespeichermodul ein oder mehrere Messeinheiten zur kontinuierlichen Messung der Spannungsqualität der mit dem Energiespeichermodul verbundenen externen Spannungsnetze, wobei die

Messeinheit oder die Messeinheiten dazu ausgestaltet sind, bei einer Über- oder Unterspannung zumindest in einem der angeschlossenen externen

Spanungsnetze ein Notfallbetriebssignal innerhalb des Energiespeichermoduls auszusenden. Dabei ist das Energiespeichermodul, insbesondere das zweite Regelsystem dazu vorgesehen, als automatische Reaktion auf das

Notfallbetriebssignal vom Normalbetrieb in den Notfallbetrieb zu wechseln. Kommt es zu einer Störung oder Ausfall des oder der externen Spannungsnetze, so muss oder müssen dieses von dem Energiespeichermodul getrennt werden und es tritt der Notfallbetrieb ein. Die Messeinheiten ermöglichen mit der kontinuierlichen Messung ein frühzeitiges Detektieren einer eventuell gefährlichen Unter- oder Überspannung im externen Stromnetz, so dass über Netztrennung das

Energiespeichermodul vor Schäden geschützt wird, was die Ausfallsicherheit des Energiespeichermoduls erhöht. Die Messeinheiten können dabei in den externen Spannungsnetzen integriert oder an einer oder mehreren Stellen an den externen Spannungsnetzen angeordnet sein. Die Messeinheiten können auch am

Verbindungspunkt zwischen dem Energiespeichermodul und den externen

Spannungsnetzen angeordnet sein. Messeinheiten im Rahmen der vorliegenden Erfindung sind beispielsweise Messsonden zur Messung der Netzfrequenz und Netzspannung als Beispiel für relevante Daten für das angeschlossene lokale Stromnetz. Weitere Messgrößen sind beispielsweise der Spannungsverlauf als Funktion der Zeit, der Phasenwinkel, die Sternpunkte, die Netzfrequenz, der Netzstrom und andere Größen. Bei einer gewünschten Netzfrequenz eines externen Wechselspannungsnetzes von 50 Hz können die Messeinheiten über ein Absinken der Netzfrequenz feststellen, ob das externe Spannungsnetz gerade wegbricht oder nicht. Weitere Beispiele für Messgrößen sind die Messung des Phasenwinkels in einem lokalen Wechselspannungsnetz, oder die

Spannungsmessung im Falle von zu viel oder zu wenig Lastabnahme im externen Spannungsnetz zum Erhalt der Spannungsqualität. Dabei ist das zweite

Regelsystem dafür vorgesehen, aufgrund des Notfallbetriebssignals das interne Versorgungsnetz mit der erforderlichen Versorgung aus dem

Gleichspannungszwischenkreis zu versorgen. In einer anderen Ausführungsform wird nicht nur das Betreiben des Energiespeichermoduls in Normal- und Notfallbetrieb sondern auch das

Umschalten vom Normalbetrieb in den Notfallbetrieb durch die Modulsteuereinheit gesteuert. Bevorzugt wird ebenfalls der Gleichspannungszwischenkreis vom externen Spannungsnetz getrennt, wobei diese Trennung auch direkt von den Messeinheiten initiiert werden kann.

In einer weiteren Ausführungsform ist auch das erste Regelsystem dafür vorgesehen, aufgrund des Notfallbetriebssignals den

Gleichspannungszwischenkreis vom externen Spannungsnetz zu trennen. Das erste Regelsystem steuert den Energiefluss zu den angeschlossenen externen Spannungsnetzen in der von der Modulsteuereinheit vorgesehenen Weise. Das erste Regelsystem ist dabei in einer weiteren Ausführungsform dazu vorgesehen, bei mehreren angeschlossenen externen Spannungsnetzen nur das ausgefallene externe Spannungsnetz zu trennen. Eine Trennung durch das erste Regelsystem kann in jedem Fall sofort innerhalb weniger Millisekunden erfolgen. Damit werden Schäden am Energiespeichermodul vermieden, was die Ausfallsicherheit des Energiespeichermoduls für die Zukunft verbessert, damit dieses weiterhin auch für eventuell andere weiterhin angeschlossene externe Spannungsnetze und für den interne Stützbetrieb des internen Versorgungsnetzes betriebsbereit bleibt.

Ansonsten würde gegebenenfalls ein Kurzschluss oder eine Überlastsituation eintreten. In einer weiteren Ausführungsform umfasst das Regelsystem dazu eine Regelbox mit mindestens einem Regelglied und einen oder mehrere

Trennschalter, die durch das Regelglied gesteuert werden und deren Anzahl von der Anzahl der an die Regeleinheit angeschlossenen externen Spannungsnetze abhängt. Die Regelbox ist dabei direkt oder über das Regelsystem mit der

Modulsteuereinheit und/oder mit der Messeinheit über eine Datenleitung verbunden, über die die Modulsteuereinheit Konfigurationsdaten der Regelfunktion an das Regelglied übertragen kann. Dabei kann das zweite Regelsystem alternativ oder zusätzlich zum ersten Regelsystem zur Trennung des internen

Versorgungsnetzes vom externen Stromnetz aufgrund des Notfallbetriebssignals vorgesehen sein. Dadurch kann in einer gemeinsamen Komponente sowohl die Trennung vom externen Stromnetz als auch die Verbindung des

Gleichspannungszwischenkreises mit dem internen Versorgungsnetz durchgeführt werden. Dadurch kann eine weitere Steuerkommunikation über die Modulsteuereinheit vermieden werden und es können sofort aufgrund des

Notfallbetriebssignals in dem zweiten Regelsystem beide Vorgänge ausgeführt werden, wozu die entsprechenden Schalter des zweiten Regelsystems

vorzugsweise bereits hardwaremäßig dazu miteinander verbunden sind. Eine Trennung des externen Spannungsnetzes und die Zuschaltung des

Gleichspannungszwischenkreises für den Stützbetrieb des internen

Versorgungsnetzes kann dadurch innerhalb weniger Millisekunden erreicht werden, wodurch eine Spannungsschwankung im Versorgungsnetz und dadurch auch ein eventueller Ausfall der Betriebsaggregate vermieden wird. In einer weiteren Ausführungsform umfasst das zweite Regelsystem dazu eine Regelbox mit mindestens einem Regelglied und einen oder mehrere Trennschalter, die durch das Regelglied gesteuert werden und deren Anzahl von der Anzahl der an die Regeleinheit angeschlossenen Spannungsnetze abhängt. Die Regelbox kann dabei direkt oder über das zweite Regelsystem mit der Modulsteuereinheit und/oder mit den Messeinheiten über eine Datenleitung verbunden sein, über die die Messeinheiten und/oder die Modulsteuereinheit Konfigurationsdaten der Regelfunktion an das Regelglied übertragen kann. In einer weiteren Ausführungsform sind die Messeinheiten dazu ausgestaltet, bei einer Wiederverfügbarkeit des externen Spanungsnetzes ein Normalbetriebssignal innerhalb des Energiespeichermoduls auszusenden, bevorzugt direkt an die Modulsteuereinheit. Das Energiespeichermodul, bevorzugt die Modulsteuereinheit, ist dabei dazu vorgesehen, als automatische Reaktion auf das

Normalbetriebssignal vom Notfallbetrieb in den Normalbetrieb zu wechseln, wobei der Gleichspannungszwischenkreis und das interne Versorgungsnetz wieder mit dem oder den externen Spannungsnetzen verbunden werden. Somit wird automatisch die normale Stromversorgung hergestellt, so dass verhindert wird, dass das Energiespeichermodul trotz vorhanden externen Stromnetzes im

Notfallbetrieb verharrt und leer läuft.

In einer weiteren Ausführungsform ist die Modulsteuereinheit dazu ausgestaltet, eine Steuerung der Betriebsaggregate auf interne Betriebsdaten hin anzupassen. Vorzugsweise umfassen die internen Betriebsdaten dabei thermische Lasten innerhalb des Energiespeichermoduls wie von den Schwungradspeichereinheiten oder von weiteren Betriebsaggregaten wie beispielsweise Vakuumsystem, ein Heiz- oder Kühlsystem oder andere Versorgungssysteme. Damit wird der

Wirkungsgrad des Energiespeichermoduls erhöht. Die internen elektrischen Verluste können durch die gezielte Beeinflussung des Betriebsverhaltens oder des Betriebspunktes der Betriebsaggregate in Abhängigkeit anlageninterner oder externer aktueller Messgrößen minimiert werden. Beispielsweise kann die

Vorlauftemperatur einer Kältemaschine als ein Beispiel eines Betriebsaggregats erhöht oder gesenkt werden, je nach aktuellen internen/ externen Lasten. Dies ist gerade im Notfallbetrieb von Vorteil, wo mit der vorhandenen Energie im

Energiespeichermodul besonders effektiv verfahren werden sollte, um auch lange Ausfälle des externen Stromnetzes überbrücken zu können. Beispielsweise kann eine reduzierte Abwärme der Schwungradspeichereinheiten zu einer Reduzierung der Kälteleistung der Kältemaschine genutzt werden, was Betriebsenergie für die Kältemaschine einspart. In einem anderen Beispiel kann die Leistung einer Vakuumpumpe zur Erzeugung eines Betriebsvakuums in den

Schwungradenergiespeichern in Abhängigkeit des Innendrucks der

Energiespeicher getaktet betrieben oder gar ganz abgeschaltet werden. Derartige Maßnahmen sparen Betriebsenergie, erhöhen damit den Wirkungsgrad in

Normalbetrieb und die mögliche Dauer eines Stützbetriebs des internen

Versorgungsnetzes bei vorgegebenem Ladezustand der

Schwungradenergiespeicher und ermöglichen damit die Bereitstellung eines effektiveren und ausfallsicheren Energiespeichermoduls. In einer weiteren Ausführungsform umfasst das Energiespeichermodul zusätzlich ein oder mehrere mit den Betriebsaggregaten verbundene Leistungssenken.

Damit wird eine weitere Aufnahme von zusätzlicher Energie bei vollgeladenen Schwungradspeichereinheiten ermöglicht. Beispielsweise kann die Kapazität des Energiespeichermoduls zur Aufnahme externer elektrischer Leistung

(beispielsweise Primär- oder Sekundärregelleistung aus einem der

Wechselspannungsnetze) durch gezielte Nutzung einer Kühlanlage mit primärem und sekundärem Kühlkreislauf dadurch erhöht werden, dass der sekundäre Kühlkreislauf der Kühlanlage gleichzeitig durch den primären Kreislauf gekühlt und elektrisch geheizt wird, beispielsweise mit einem Tauchsieder im Vorratsbehälter als erste Leistungssenke, was eine erhöhte Kühlleistung des Primärkühlkreislaufs zur Folge hat (erhöhte Leistungsaufnahme der Kältemaschine als zweite

Leistungssenke). Die Erhöhung der Modulspeicherkapazität über die nominelle Summe der Einheitenspeicherkapazitäten der einzelnen

Schwungradspeichereinheiten hinaus kann je nach Umweltbedingungen oder Anlagenbetriebspunkt durch die (elektrische) Leistungsaufnahme von Kühlsystem und/oder Vakuumsystem bewusst über das für einen Normalbetrieb notwendige Maß erhöht werden, damit für den Notfallbetrieb eine vergrößerte Menge an Energie zur Verfügung steht, um noch längere Ausfälle des externen

Spannungsnetzes ohne Probleme mittels Stützbetriebs des Versorgungsnetzen überbrücken zu können. Eine derart vorgehaltene Kältemenge beziehungsweise das zusätzlich erreichte Vakuumlevel unterhalb eines Sollvakuums kann zu einem späteren Zeitpunkt mittels nicht betriebener Betriebsaggregate und der damit verbundenen Einsparung von Betriebsenergie abgerufen und somit eingespart werden, wenn erhöhter oder verlängerter Bedarf gefordert ist.

Das erfindungsgemäße Energiespeichermodul stellt damit einen an beliebigen Orten variabel und mit geringem Aufwand schnell einsetzbaren Energiespeicher dar. In einer Ausführungsform ist das Energiespeichermodul als mobile Einheit in einem transportablen Container ausgebildet. Das Energiespeichermodul ist dabei dazu ausgestaltet, über das erste Regelsystem an ein externes Spannungsnetz (lokales oder nicht-lokales Netz) oder bei einer geeigneten Ausgestaltung des ersten Regelsystems auch an mehrere externe Spannungsnetze, beispielsweise ein oder mehrere lokale Netze und/oder nicht-lokales Netze, angeschlossen zu werden. Die Abgabe von Energie in das oder die externen Spannungsnetze oder die Aufnahme von Energie aus dem oder den externen Spannungsnetzen erfolgt aufgrund der Drehmomentvorgaben durch die Modulsteuereinheit, die wiederum Steuervorgaben von extern erhalten kann. Solche Steueraufgaben können beispielsweise in den angeschlossenen externen Spannungsnetzen

auszuführende Regel- und Systemaufgaben sein, auf denen dann die

Drehmomentvorgaben basieren. Die Regel- und Systemaufgaben teilen sich dabei auf in ortsgebundene Regel und Systemaufgaben für lokale Spannungsnetze und in nicht-ortsgebundene Regel- und Systemaufgaben in nicht-lokalen

Spannungsnetzen. Hierbei kann das Energiespeichermodul zur Ausführung der nicht-ortsgebundenen und ortsgebundene Regel und Systemaufgaben entweder direkt mit einem nicht-lokalen Spannungsnetz und einem oder mehreren lokalen Spannungsnetzen verbunden sein oder über ein angeschlossenes lokales

Spannungsnetz indirekt mit einem nicht-lokalen Spannungsnetz verbunden sein, sofern das lokale Spannungsnetz selber mit dem nicht-lokalen Spannungsnetz verbunden ist.

Die Modulsteuereinheit ermöglicht es, dass das Energiespeichermodul

unterschiedliche Regel- und Systemaufgaben in gegebenenfalls separat angeschlossenen lokalen und nicht-lokalen Spannungsnetzen ausführen kann und damit eine gleichzeitige Verbesserung von lokaler Netzqualität in den lokalen Spannungsnetzen und Versorgungssicherheit in nicht-lokalen Spannungsnetzen bewirken kann. Ortsgebundene Regel- und Systemaufgaben beziehen sich dabei auf lokale Spannungsnetze (beispielsweise lokale Wechselspannungsnetze) und sind beispielsweise die Sicherstellung der benötigten Netzspannung, die

Blindleistungskompensation durch Regelung der Amplituden- und Phasenlage des Spannungssignals, das Bereitstellen einer lokalen Leistungsreserve für sich eventuell hinzuschaltende größere Stromabnehmer oder Einschaltstromspitzen und das Speichern von lokalen Energieüberschussmengen. Nicht-ortsgebundene Regel- und Systemaufgaben beziehen sich dabei auf nicht-lokale Spannungsnetze (nicht-lokale Wechselspannungsnetze) und sind beispielsweise die Bereitstellung von primärer oder sekundärer Regelleistung. Die Regelleistung (auch

Reserveleistung) gewährleistet die Netzstabilität bei unvorhergesehenen

Ereignissen im Spannungsnetz. Dazu können kurzfristig Leistungsanpassungen bei regelfähigen Kraftwerken durchgeführt und schnell anlaufende Kraftwerke oder Energiespeicher wie das erfindungsgemäße Energiespeichermodul eingesetzt werden. Weitere nicht-ortsgebundene Regel- und Systemaufgaben sind außerdem die Schwarzstartunterstützung im Falle eines Netzausfalls, die allgemeine

Speicherung von Leistungsspitzen und die Blindleistungskompensation im nicht- lokalen Spannungsnetz. Weitere ortsgebundene und nicht-ortsgebundene Regel- und Systemaufgaben für lokale und nicht-lokale Spannungsnetze sind die

Bereitstellung von Redundanzen (Ausfallsicherheit) bei der Stromversorgung in Kombination mit den bereits vorhandenen Energielieferanten und ein

Blindleistungsmanagement. Hierbei bezeichnet das nicht-lokale Spannungsnetz beispielsweise ein

Wechselspannungsnetz, das sich überregional über sehr große Gebiete erstreckt und in dem die nicht-ortsgebundenen Regel- und Systemaufgaben durchgeführt werden. Nicht-lokale Spannungsnetze sind beispielsweise Übertragungs- oder Verteilnetze (öffentliches Stromnetz). Das öffentliche Spannungsnetz (Stromnetz) in Deutschland setzt sich beispielsweise aus vier Übertragungsnetzen zusammen, die von den Netzbetreibern Amprion, 50Hertz, Tennet und TransnetzEnBW betrieben werden. Diese vier Übertragungsnetze bilden zusammen den

Netzregelverbund für Deutschland. Darunter befinden sich regionale Verteilnetze. In anderen Ländern werden entsprechende Übertragungsnetze durch andere Netzbetreiber betrieben. In den Übertragungsnetzen wird die Frequenz des Spanungsnetzes stabil gehalten (Frequenzregulierung). Das übergeordnete europäische Verbundnetz aus den jeweiligen Übertragungsnetzen in den einzelnen Staaten ist ebenfalls als nicht-lokales Spannungsnetz anzusehen, wofür allerdings derzeit nur die Standards für die Regelenergie festgelegt sind. Die nicht- ortsgebundenen Regel- und Systemaufgaben werden in den jeweiligen

Übertragungsnetzen durchgeführt. Als lokales Spannungsnetz im Sinne der Erfindung wird beispielsweise auch ein Wechselspannungsnetz bezeichnet, in dem die voranstehend beschriebenen ortsgebundenen Regel- und

Systemaufgaben durchgeführt werden. Lokale Spannungsnetze sind in der Regel räumlich begrenzt, beispielsweise ein betriebsinternes Spannungsnetz auf einer Betriebsanlage oder ein Spannungsnetz innerhalb eines Hauses oder

Gebäudekomplexes.

Die Modulsteuereinheit ist eine Komponente in dem Energiespeichermodul, die das Energiespeichermodul steuert, d.h., die die gewünschten Betriebszustände (beispielsweise Normalbetrieb oder Notfall betrieb) und Betriebsparameter einstellt und die das Energiespeichermodul entsprechend eines Betriebsplans, der die gewünschten Betriebszustände als Funktion der Zeit enthält, steuert. Dem

Betriebsplan liegen die ortsgebundenen und nicht-ortsgebundenen Regel- und Systemaufgaben (Steueranweisungen) zugrunde. Die Modulsteuereinheit ist für die Steuerung des Energiespeichermoduls mit den jeweiligen Komponenten im Energiespeichermodul, umfassend die ersten und zweiten Regelsysteme und die Schwungradspeichereinheiten, über geeignete Datenleitungen, beispielsweise ein Datenbussystem wie beispielsweise ein Canbus, ein Profibus oder als Ethernet, verbunden. In einer weiteren Ausführungsform sind die Motorregelungen aller

Schwungradspeichereinheiten dazu vorgesehen, die Gleichspannung im

Gleichspannungszwischenkreis kontinuierlich gegen den oberen Schwellenwert zu überwachen und spätestens bei einer Überschreitung des oberen

Schwellenwertes selbsttätig jeglichen Leistungsfluss aus den

Schwungradspeichereinheiten in den Gleichspannungszwischenkreis zu unterbinden. Trotz der Regelung auf eine möglichst konstante Gleichspannung im Gleichspannungszwischenkreis können aufgrund besonderer externer

Netzzustände (Störfall), beispielsweise eine kurzfristige hohe Menge an in ein Wechselstromnetz aus anderen Quellen außerhalb des Energiespeichermoduls eingespeiste Energie, eine zu hohe Gleichspannung im

Gleichspannungszwischenkreis auftreten. Bei gerade ausgeführten Regel- und Systemaufgaben, die zu einer Einspeisung von Energie aus dem

Energiespeichermodul in das externen Stromnetz führen würden, würde die Gleichspannung im Gleichspannungszwischenkreis möglicherweise über ein kritisches Spannungsniveau ansteigen, wenn das oder die angeschlossenen externen Netze diese Energie nicht wie unter Normalbedingungen als Senke abnehmen könnten, da sie selber gerade eine Energiequelle darstellen. Daher unterbrechen (unterbinden) zum Anlagenschutz die Motorregelungen der einzelnen Schwungradspeichereinheiten die Einspeisung von Energie

selbstständig unabhängig von anstehenden Regel- und Systemaufgaben. Die

Unterbindung jeglichen Leistungsflusses aus den Schwungradspeichereinheiten in den Gleichspannungszwischenkreis kann auch ohne Überschreitung des oberen Schwellenwertes bei einer zu starken Annäherung der Gleichspannung an den oberen Schwellenwert erfolgen, beispielsweise wenn die Differenz zwischen Gleichspannung in Gleichspannungszwischenkreis und oberem Schwellenwert unter einen in der Motorsteuerung definierten kritischen Wert fällt.

Die Erfindung bezieht sich des Weiteren auf ein Verfahren zum Steuern eines erfindungsgemäßen Energiespeichermoduls umfassend die Schritte Abgeben oder Aufnehmen von Energie aus einem gemeinsamen

Gleichspannungszwischenkreis, an den mehrere

Schwungradspeichereinheiten elektrisch parallel angeschlossen sind, an/von ein oder mehreren externen Spannungsnetze, die über ein erstes

Regelsystem mit dem Gleichspannungszwischenkreis verbunden sind,

Versorgen der ein oder mehreren zum Betrieb der

Schwungradspeichereinheiten benötigten Betriebsaggregate über ein internes Versorgungsnetz mit der zum Betrieb der Betriebsaggregate notwendigen Energie während eines Normalbetriebs des

Energiespeichermoduls, wobei das Versorgungsnetz mit einer

Ausgangsseite eines zweiten Regelsystems verbunden ist, dessen

Eingangsseite zumindest mit dem Gleichspannungszwischenkreis verbunden ist,

Umschalten des Energiespeichermoduls von Normalbetrieb auf einen Notfallbetrieb bei fehlendem externen Spannungsnetz, und

Versorgen des internen Versorgungsnetzes mit der zum fortgeführten Betrieb der Schwungradspeichereinheiten erforderlichen Versorgungsleistung bei fehlendem externem Stromnetz alleine aus dem

Gleichspannungszwischenkreis zumindest in einem ersten Zeitintervall.

In einer Ausführungsform umfasst das Verfahren den weiteren Schritt des

Regeins der Versorgungsnetzspannung des internen Versorgungsnetzes auf einen konstanten Wert durch bedarfsgerechte Stromlieferung aus dem Gleichstromzwischenkreis durch das zweite Regelsystem.

Dieser konstante Wert entspricht der Sollspannung im internen Versorgungsnetz abzüglich einer Regeldifferenz.

In einer weiteren Ausführungsform umfasst das Verfahren die weiteren Schritte kontinuierliches Überwachen der Gleichspannung des

Gleichspannungszwischenkreis, vorzugsweise mittels mindestens einer Messeinrichtung angeordnet im Gleichspannungszwischenkreis, und

Steuern der Schwungradspeichereinheiten unabhängig von einer

Modulsteuereinheit zur Steuerung der Schwungradspeichereinheiten für den Normalbetrieb im Notfallbetrieb mittels jeweiliger Motorregelungen in den einzelnen Schwungradspeichereinheiten auf Basis der überwachten

Gleichspannung, so dass über Energieabgabe aus den jeweiligen

Schwungradspeichereinheiten in den Gleichspannungszwischenkreis dessen Gleichspannung nicht unter einen unteren Schwellenwert absinkt, zumindest solange die in den Schwungradspeichereinheiten gespeichert Menge an

Energie nicht unter eine Mindestenergie absinkt, vorzugsweise mittel Vorgabe zeitbezogener Drehmomentvorgaben für die jeweiligen

Schwungradspeichereinheiten. Bei Erreichen oder Unterschreiten der Mindestenergie des Energiespeichermoduls (beispielsweise bei einer über viele Tage nicht vorhandenem externen

Spannungsnetz) wird die Restenergie für ein geordnetes Herunterfahren und Abschalten des Energiespeichermoduls verwendet. In einer Ausführungsform umfasst das Verfahren den weiteren Schritt des

Durchführen eines gemeinsam koordinierten Stützbetriebs aller

Schwungradspeichereinheit durch die Motorregelungen zur Regelung der Gleichspannung im Gleichspannungszwischenkreis auf einen konstanten Wert im Notfallbetrieb, indem die Motorregelungen jeweils

Schwungradsteuerungen umfassen und die einzelnen Motorregelungen der

Schwungradspeichereinheiten unabhängig von der Modulsteuerung miteinander verbunden sind.

Hierbei kann in einer bevorzugten Ausführungsform zusätzlich ein gezieltes Ausschließen einzelner Schwungradspeichereinheiten des

Energiespeichermoduls von dem gemeinsamen Stützbetrieb zur Bereitstellung einer Mindestmenge an Energie für einen kontrollierten Ablauf der

Schwungradspeichereinheiten vorgenommen werden. Die in den vom Stützbetrieb ausgeschlossenen Schwungradspeichereinheiten gespeicherte Energiemenge wird dafür reserviert, gegebenenfalls für den kontrollierten Ablauf und Stopp der Gesamtheit aller Schwungradspeichereinheiten verwendet zu werden, um die Gesamtanlage bei längerem Netzausfall in einen sicheren Stopp-Modus zu überführen.

In einer Ausführungsform umfasst das Verfahren den weiteren Schritt des Trennens des internen Versorgungsnetzes vom

Gleichspannungszwischenkreis mittels des zweiten Regelsystems, sobald die in den Schwungradspeichereinheiten gespeicherte Menge an Energie unter eine Mindestenergie absinkt.

In einer weiteren Ausführungsform umfasst das Verfahren die weiteren Schritte kontinuierliches Messen der Spannungsqualität in den mit dem

Energiespeichermodul verbundenen externen Spannungsnetze durch ein oder mehrere Messeinheiten des Energiespeichermoduls,

- Aussenden eines Notfallbetriebssignals innerhalb des

Energiespeichermoduls durch mindestens eine Messeinheit bei einer Überoder Unterspannung in zumindest einem angeschlossenen externen

Spanungsnetze,

Trennen des oder der externen Spannungsnetze zumindest vom

Gleichspannungszwischenkreis durch das erste Regelsystem,

Wechseln der Schwungradspeichereinheiten vom Normalbetrieb in den Notfallbetrieb und Versorgen des internen Versorgungsnetz mit der erforderlichen Versorgungsnetzspannung durch das zweite Regelsystem aus dem Gleichspannungszwischenkreis als automatische Reaktion auf ein Abfallen (Absinken) der Gleichspannung im Gleichspannungszwischenkreis oder als automatische Reaktion aufgrund des Notfallbetriebssignals,

Aussenden eines Normalbetriebssignals durch die Messeinheiten bei einer Wiederverfügbarkeit des externen Spanungsnetzes, und

Wechseln vom Notfall betrieb in den Normalbetrieb des

Energiespeichermoduls, und

Verbinden des internen Versorgungsnetzes mit dem oder den externen Spannungsnetzen, vorzugsweise durch das zweite Regelsystem, als automatische Reaktion aufgrund des Normalbetriebssignals. Kurze Beschreibung der Abbildungen

Diese und andere Aspekte der Erfindung werden im Detail in den Abbildungen wie folgt gezeigt:

Fig.1 : eine Ausführungsform des erfindungsgemäßen Energiespeichermoduls; Fig.2: eine Ausführungsform des ersten Regelsystems mit Regelbox;

Fig.3: eine Ausführungsform des zweiten Regelsystems mit Regelbox

Fig.4: eine Ausführungsform des erfindungsgemäßen Verfahrens zum

Betreiben des Energiespeichermoduls im Normalbetrieb; Fig.5: eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zum

Betreiben des Energiespeichermoduls im Notfallbetrieb;

Detaillierte Beschreibung der Ausführungsbeispiele

Fig. 1 zeigt eine Ausführungsform des erfindungsgemäßen

Energiespeichermoduls 1 zur reversiblen Speicherung von elektrischer Energie in Form von mechanischer Rotationsenergie, das hier vier

Schwungradspeichereinheiten 2 mit jeweiligen Einheitenspeicherkapazitäten und Einheitenleistungen umfasst. Diese geringe Anzahl wurde aus Übersichtsgründen in der schematischen Darstellung gewählt. Für die reale Anwendung umfasst ein Energiespeichermodul beispielsweise dreißig Schwungradspeichereinheiten 2. In dieser Auslegungsform würden sich mit den oben aufgeführten Einzelkapazitäten pro Schwungradenergiespeicher eine maximale Speicherkapazität von 150 kWh und eine maximale Leistung von 0,6 MW pro Energiespeichermodul ergeben. Jede der Schwungradspeichereinheiten 2 umfasst einen elektromagnetischen Wandler 53, der elektrisch über eine Motorregelung 51 , vorzugsweise einen Frequenzumrichter 51 , an den Gleichspannungszwischenkreis 3 angeschlossen ist. Der Gleichspannungszwischenkreis 3 dient dazu, dass alle

Schwungradspeichereinheiten 2 elektrisch parallel zueinander angeschlossen werden können, damit sich die Einheitenspeicherkapazitäten EK und

Einheitenleistungen EL zu einer Gesamt-Modulspeicherkapazität und Gesamt- Modulleistung aufaddieren können und eine fehlerhafte

Schwungradspeichereinheit nicht die Funktionstüchtigkeit des gesamten

Energiespeichermoduls 1 in Frage stellt. Der Gleichspannungszwischenkreis ist über ein erstes Regelsystem 31 mit zwei externen Spannungsnetzen ES1 , ES2 verbunden. Die Modulsteuereinheit 6 steuert das Energiespeichermodul 1 durch Drehmomentvorgaben DV (vorzugsweise zeitbezogene Drehmomentvorgaben), die die Modulsteuereinheit 6 generiert und an die Schwungradspeichereinheiten 2 beim Betrieb des Energiespeichermoduls 1 übermittelt. Aufgrund der Drehmomentvorgaben DV speisen die Schwungradspeichereinheiten 2 Energie in Form von Strom in den Gleichspannungszwischenkreis 3 ein oder entnehmen Energie in Form von Strom aus dem Gleichspannungszwischenkreis 3. Hierbei regelt im Normalbetrieb NO das Regelsystem 31 die Gleichspannung DC im Gleichspannungszwischenkreis 3 durch Abgabe (Ep) von Energie in zumindest eines der beiden externen Spannungsnetze ES1 , ES2 oder durch Aufnahme En von Energie aus zumindest einem der beiden externen Spannungsnetze ES1 , ES2 zwischen einem oberen Schwellwert SW1 (beispielsweise Soll- Gleichspannung + 5 V) und einem unteren Schwellwert SW2 (beispielsweise Soll- Gleichspannung -5 V) so, dass die Gleichspannung GS im Wesentlichen konstant auf einem Wert von beispielsweise 750 V bleibt. Außerdem ist neben dem ersten Regelsystem 31 , das die Gleichspannung GS im Gleichspannungszwischenkreis 3 zwischen den oberen und unteren Schwellwerten SW1 , SW2 konstant hält, ein zweites Regelsystem 32 mit dem Gleichspannungszwischenkreis 3 auf dessen Eingangsseite 32E verbunden. In einer Ausführungsform kann die Eingangsseite 32E zusätzlich mit dem Spannungsnetz ES2 zur Versorgung des internen

Versorgungsnetzes 4 im Normalbetrieb NO verbunden sein. Ohne diese

Verbindung wird das Versorgungsnetz 4 indirekt über das erste Regelsystem 31 , den Gleichspannungszwischenkreis 3 und das zweite Regelsystem 32 mit Energie versorgt. In Notfallbetrieb NO ohne externe Spannungsnetze ES1 , ES2 führt das zweite Regelsystem 32 einen Inselbetrieb (alleinige Versorgung des internen Versorgungsnetzes 4 aus dem Schwungradspeichereinheiten 2 über den

Gleichspannungszwischenkreis 3) durch. Dies bietet den Vorteil, dass das

Energiespeichermodul 1 für den Zeitpunkt der Wiederverfügbarkeit des oder der externen Spannungsnetze ES1 , ES2 mit niedrigem modul-internem Aufwand betriebsbereit bleibt. Solange das interne Versorgungsnetz 4 aus dem

Gleichspannungszwischenkreis 3 gespeist wird, bleiben die Regel- und

Systemaufgaben mangels Verbindung zu den externen Spannungsnetzen ES1 , ES2 unbearbeitet. Sofern beim Fehlen des externen Spannungsnetzes ES2 das erste Regelsystem 31 mit einem weiteren weiterhin funktionierenden externen Spannungsnetz ES1 verbunden bleibt, kann das interne Versorgungsnetz 4 auch aus dem externen Spannungsnetz ES1 über den Gleichspannungszwischenkreis, der über das erste Regelsystem 31 aus dem externen Spannungsnetz ES1 gespeist wird, und über das zweite Regelsystem 32 versorgt werden. Das erste Regelsystem 31 und die Modulsteuereinheit 6 sind auch für die Ausführung dieses Betriebszustands ausgebildet. Für die Steuerung der

Schwungradspeichereinheiten 2 ruft die Modulsteuereinheit 6 die Drehzahlen der einzelnen Schwungradspeichereinheiten 2 aus deren Motorregelungen 51 ab und bestimmt einen jeweiligen aktuellen Ladezustand der einzelnen

Schwungradspeichereinheiten 2 aus der abgerufenen Drehzahl. Aus

Maschinenschutzgründen sind in den jeweiligen Motorregelungen 51 der

Schwungradspeichereinheiten 2 eine obere Drehzahlbegrenzung und/oder eine untere Drehzahlbegrenzung als spezielles Bauteil 52 hardwaremäßig (Sensor und Regelung) implementiert. Die Drehzahlbegrenzungen können alternativ oder zusätzlich auch in der Modulsteuereinheit 6, vorzugsweise in einem in der

Modulsteuereinheit 6 ausgeführten Computerprogramm, implementiert sein. Die untere Drehzahlgrenze ist minimal 0 Umdrehungen/s, wobei es technisch sinnvoll sein kann, eine höhere Minimaldrehzahl zu wählen, damit das Motorsystem eine aus betriebstechnischen Gründen notwendige Mindestleistung liefern kann. Nach oben hin ist die Drehzahl entweder durch die Motorumrichterfrequenz oder durch die Festigkeiten der Rotorbauteile begrenzt. Typisch sind Maximaldrehzahlen von zum Bespiel 800Hz. Die Modulsteuereinheit 6 steuert das Energiespeichermodul 1 im Normalbetrieb NO basierend auf externen Steueranweisungen SA (Regel- und

Systemaufgaben), die für die jeweiligen externen Wechselspannungsnetzen ES1 , ES2 ausgeführt werden. Die Regel- und Systemaufgaben SA empfängt die Modulsteuereinheit 6 in Form von externen Daten über eine geeignete

Datenschnittstelle (hier nicht explizit gezeigt) von einer Netzsteuereinrichtung außerhalb des Energiespeichermoduls. Die an die Schwungradspeichereinheiten 2 zu übermittelnden Drehmomentvorgaben DV werden auf Basis der

empfangenen externen Daten von der Modulsteuereinheit 6 generiert. Externe Daten sind beispielsweise physikalische Messgrößen, logische Größen, Echtzeit- Steuerkommandos oder Steuerkommandos zur Ablaufsteuerung. Die

Modulsteuereinheit 6 umfasst des Weiteren in einer Ausführungsform einen Speicher 61 zur Speicherung der externen Daten, insbesondere der Regel- und Systemaufgaben SA. Außerdem umfasst die Modulsteuereinheit 6 in einer weiteren Ausführungsform ein Prioritätsmanagement 62 für die Ausführung der Steueranweisungen. Zur Steuerung des Energiespeichermoduls 1 erstellt die Modulsteuereinheit 6 einen Betriebsplan zur Ausführung Regel- und

Systemaufgaben SA in den angeschlossenen externen Spannungsnetzen ES1 , ES2 und übermittelt entsprechende Drehmomentvorgaben DV an die jeweiligen Schwungradspeichereinheiten 2, bevorzugt sind die Drehmomentvorgaben DV individuell auf die jeweiligen Ladezustände der einzelnen

Schwungradspeichereinheiten 2 angepasst. Damit die Modulsteuereinheit 6 immer aktuelle externe Daten zur Steuerung des Energiespeichermoduls 1 erhält, prüft die Modulsteuereinheit 6 in einer Ausführungsform die bestehende

Kommunikationsverbindung nach extern auf ihre Funktionstüchtigkeit mittels Aussenden eines Testsignals, aufgrund dessen ein externes System ein

entsprechendes Rücksignal zurücksendet. Der Empfang des Rücksignais belegt die Funktionstüchtigkeit der Kommunikationsverbindung zu diesem externen System, von dem das Energiespeichermodul beispielsweise seine

auszuführenden Regel- und Systemaufgaben SA als externe Daten erhält. Damit diese externen Daten den aktuellen Zustand des Energiespeichermoduls 1 berücksichtigen, sendet die Modulsteuereinheit 6 in einer Ausführungsform die Betriebsdaten des Energiespeichermoduls 1 beispielsweise periodisch an das externe System. Die Betriebsdaten können dabei die Ladezustände der

Schwungradspeichereinheiten 2 und damit die momentane und die im Prinzip verfügbare Modulspeicherkapazität und Modulleistung, die Identität des

Energiespeichermoduls 1 oder auch den Zustand anderer Komponenten des Energiespeichermoduls 1 umfassen. Damit der Energie- und Leistungsfluss der in oder aus dem

Gleichspannungszwischenkreis 3 zu/von den Wechselstromnetzen ES1 , ES2 fließt, für die jeweiligen Wechselstromnetzen ES1 , ES2 geeignet zur Erfüllung der jeweiligen Regel- und Systemaufgaben SA aufgeteilt werden kann, umfasst das Energiespeichermodul 1 eine Regelbox 8 (siehe dazu auch Fig.2), die den aus dem Gleichstromzwischenkreis 3 eingehenden gesamten Energie- und

Leistungsfluss in einen Energie- und Leistungsfluss EF1 , LF1 für das

Wechselspannungsnetz ES1 und in einen Energie- und Leistungsfluss EF2, LF2 für das Wechselspannungsnetz ES2 aufteilt. Zur optimalen Ausführung der Regel- und Systemaufgaben SA in den angeschlossenen Wechselspannungsnetzen ES1 , ES2 umfasst das Energiespeichermodul 1 hier eine Messeinheit 7 zur

kontinuierlichen Messung der Spannungsqualität und/oder der Stromstärke für die beiden Wechselspannungsnetze ES1 , ES2, die die relevanten Daten RD zur Beurteilung der Spannungsqualität und der Stromstärke in den

Wechselspannungsnetzen ES1 , ES2 misst. In anderen Ausführungsformen können auch mehrere Messeinheiten 7 verwendet werden. Die Messeinheit(en) 7 ist/sind dazu ausgestaltet, zumindest bei einer Über- oder Unterspannung in dem an das interne Versorgungsnetz 4 angeschlossene externe Spanungsnetz ES2 ein Notfallbetriebssignal NFS innerhalb des Energiespeichermodul 1 , hier zur

Modulsteuereinheit 6, auszusenden. Das Energiespeichermodul 1 , insbesondere das zweite Regelsystem, ist dabei dazu vorgesehen, als automatische Reaktion auf das Notfallbetriebssignal NFS vom Normalbetrieb NO in den Notfallbetrieb NF zu wechseln und das interne Versorgungsnetz 4 und den

Gleichspannungszwischenkreis 3 vom externen Spannungsnetz ES2 oder von allen externen Spannungsnetzen ES1 , ES2 zu trennen, wobei das zweite

Regelsystem 32 dafür vorgesehen ist, aufgrund des Notfallbetriebssignals NFS das interne Versorgungsnetz 4 mit der erforderlichen Versorgungsnetzspannung VS aus dem Gleichspannungszwischenkreis 3 zu versorgen. Damit im

Notfallbetrieb NF das zweite Regelsystem 32 die Versorgungsnetzspannung VS im internen Versorgungsnetz 4 durch bedarfsgerechte Strom lieferung aus dem Gleichspannungszwischenkreis 3 im Wesentlichen konstant regeln kann, kann die Versorgungsnetzspannung VS beispielsweise kontinuierlich im Versorgungsnetz 4 mit geeigneten Mitteln gemessen und die Werte der Versorgungsnetzspannung an die Modulsteuereinheit 6 übermittelt werden. Die Messeinheiten 7 sind ferner dazu ausgestaltet, bei einer Wiederverfügbarkeit des externen Spanungsnetzes ES1 , ES2 ein Normalbetriebssignal NOS innerhalb des Energiespeichermoduls 1 auszusenden, wobei das Energiespeichermodul 1 , hier beispielsweise mittels der Modulsteuereinheit 6, als automatische Reaktion auf das Normalbetriebssignal NOS vom Notfallbetrieb NF in den Normalbetrieb NO zu wechseln und den Gleichspannungszwischenkreis 3 und das interne Versorgungsnetz 4 wieder mit dem oder den externen Spannungsnetzen ES1 , ES2 zu verbinden und

gegebenenfalls mittels des zweiten Regelsystems 32 die elektrische Verbindung zwischen Gleichspannungskreis 3 und internem Versorgungsnetz 4 zu trennen. In einer Ausführungsform können die externen Spannungsnetze ES1 und ES2 auch ein gemeinsames miteinander verbundenes externes Spannungsnetz sein.

Geeignete Messgrößen zum Erhalt der relevanten Daten RD sind beispielsweise der Spannungsverlauf als Funktion der Zeit, der Phasenwinkel, der Sternpunkt, die Netzfrequenz, oder der Netzstrom. Der Fachmann kann im Rahmen der vorliegenden Erfindung geeignete Messeinheiten oder Messsonden auswählen und an der geeigneten Position anordnen. Das Energiespeichermodul 1 kann somit beim Überschreiten festgelegter Grenzwerte in dem oder den

Wechselspannungsnetzen ES1 , ES2 aktiv den Anschluss an ein

Wechselspannungsnetz ES1 , ES2 trennen.

Zum Betrieb der Schwungradspeichereinheiten 2 sind alle strombetriebene Betriebsaggregate 51 , 52, 53, 54 an ein internes Versorgungsnetz 4

angeschlossen, das im Normalbetrieb NO direkt oder indirekt (über den

Gleichspannungszwischenkreis) mit dem externen Spannungsnetze ES2 zur Energieversorgung der Betriebsaggregate 51 , 52, 53, 54 verbunden ist. In dieser Ausführungsform ist die optionale Verbindung 10 der Eingangsseite 32E des zweiten Regelsystems 32 mit dem externen Spannungsnetz ES2 gestrichelt dargestellt. Die Regelung der an das zweite Regelsystem 32 angeschlossenen elektrischen Verbindungen kann durch eine Regelbox 8 ausgeführt werden, siehe dazu auch Figur 3. Dabei ist das zweite Regelsystem 32 mit dem

Gleichspannungszwischenkreis 3 verbunden und dafür vorgesehen, im

Notfallbetrieb NF das interne Versorgungsnetz 4 zum fortgeführten Betrieb der Schwungradspeichereinheiten 2 mit einer erforderlichen

Versorgungsnetzspannung VS aus den Schwungradspeichereinheiten selbst über den Gleichspannungszwischenkreis 3 zumindest in einem ersten Zeitintervall T zu versorgen.

Die Gleichspannung GS wird im Gleichspannungszwischenkreis 3 kontinuierlich überwacht, wobei die Schwungradspeichereinheiten 2 jeweils Motorregelungen 51 umfassen, die dafür ausgestaltet sind, unabhängig von einer Modulsteuereinheit 6 zur Steuerung der Schwungradspeichereinheiten 2 im Normalbetrieb NO im Notfallbetrieb NF zumindest auf Basis der überwachten Gleichspannung GS die Gleichspannung GS im Gleichspannungszwischenkreis 3 über Energieabgabe Ep aus den jeweiligen Schwungradspeichereinheiten 2 nicht unter einen unteren Schwellenwert SW2 absinken zu lassen, zumindest solange die in den jeweiligen Schwungradspeichereinheiten 2 gespeichert Menge an Energie nicht unter eine Mindestenergie absinkt. Für einen Stützbetrieb des internen Versorgungsnetzes 4 sollte dabei die Gleichspannung GS im Gleichspannungszwischenkreis 3 nicht unter die Spannung im Versorgungsnetz absinken. Im

Gleichspannungszwischenkreis 3 kann zudem eine Messeinrichtung 33 zur Messung der Spannung GS im Gleichspannungszwischenkreis 3 angeordnet sein, welche an die Modulsteuereinheit 6 übermittelt wird. Anstatt der Motorregelungen 51 kann in einer Ausführungsform auch die Modulsteuereinheit 6 auf Basis der gemessenen Spannung GS die Schwungradspeichereinheiten 2 so ansteuern, dass über Energieabgabe EFp aus ein oder mehreren Schwungradspeichereinheit 2 in den Gleichspannungszwischenkreis 3 dessen Spannung GS nicht unter einen unteren Schwellenwert SW2 absinkt, zumindest solange die in den

Schwungradspeichereinheiten 2 gespeichert Menge an Energie nicht unter eine Mindestenergie ME absinkt.

Für den Normalbetrieb steuert die Modulsteuereinheit 6 auch die

Energieaufnahme EFn in ein oder mehreren Schwungradspeichereinheit 2 aus dem Gleichspannungszwischenkreis 3, sofern dessen Spannung GS über einen oberen Schwellenwert SW1 ansteigt. Diese Steuerung erfolgt beispielsweise auf Basis der mittels der Messeinrichtungen 33 gemessenen Spannung GS. Für den Notfallbetrieb NF können in einer Ausführungsform aber die Motorregelungen 51 der einzelnen Schwungradspeichereinheiten 2 unabhängig von der

Modulsteuereinheit 6 auch direkt miteinander verbunden sein und jeweils eine Schwungradsteuerung (nicht explizit gezeigt) umfassen, die dafür vorgesehen ist, einen gemeinsam koordinierten Stützbetrieb SB der Gleichspannung GS im Gleichspannungszwischenkreis 3 durch alle Schwungradspeichereinheiten 2 im Notfallbetrieb NF auszuführen. Die direkte Verbindung der Motorregelungen 51 ist durch eine gestrichelte Linie 51 d dargestellt.

Neben den Betriebsaggregaten in den Schwungradspeichereinheiten 2 wie beispielsweise die Motorregelung 51 können einige Betriebsaggregate,

beispielsweise die Betriebsaggregate 54, auch außerhalb der

Schwungradspeichereinheiten 2 angeordnet sein, wie beispielsweise ein Vakuum System, das mit den Rotorbehältern für die Rotoren (Schwungmassen) in den Schwungradspeichereinheiten 2 über ein Rohrsystem (hier aus

Übersichtsgründen nicht dargestellt) verbunden ist, um in den Rotorbehältern das für ein möglichst verlustarmes Rotieren der Rotoren bei hohen Drehzahlen benötigte Vakuum von zum Beispiel kleiner 10 "3 mbar bei Drehzahlen von größer 40000U/min zu erzeugen. Ein weiteres Betriebsaggregat 54 kann eine Kühleinheit zur Abfuhr von Betriebswärme aus dem Energiespeichermodul 1 sein. Die

Modulsteuereinheit 6 kann dazu ausgestaltet sein, die Steuerung der

Betriebsaggregate 54 auf empfangene interne Betriebsdaten oder externe Daten hin anzupassen, daher sind auch die Betriebsaggregate 54 mit der

Modulsteuerung 6 über Datenleitungen verbunden. Die internen elektrischen Verluste können durch die gezielte Beeinflussung des Betriebsverhaltens oder des Betriebspunktes der Betriebsaggregate 54 in Abhängigkeit anlageninterner oder externer aktueller Messgrößen minimiert werden. Beispielsweise kann die

Vorlauftemperatur einer Kältemaschine 54 als ein Beispiel eines

Betriebsaggregats 54 erhöht oder gesenkt werden, je nach aktuellen

internen/externen Lasten. Beispielsweise kann eine reduzierte Abwärme der Schwungradspeichereinheiten 2 zu einer Reduzierung der Kälteleistung der Kältemaschine 54 genutzt werden, was Betriebsenergie für die Kältemaschine 54 einspart. In einem anderen Beispiel kann die Leistung einer Vakuumpumpe im Vakuummodul 54 zur Erzeugung eines Betriebsvakuums in den Rotorbehältern für die Rotoren der Schwungradenergiespeicher 2 in Abhängigkeit des

Ausgasverhaltens der Schwungmassen (Rotoren) getaktet betrieben oder gar ganz abgeschaltet werden. Derartige Maßnahmen sparen Betriebsenergie und erhöhen damit den temporären Wirkungsgrad um bis zu 10% und ermöglichen damit die Bereitstellung eines effektiveren Energiespeichermoduls 1 .

In dieser Ausführungsform umfasst das Energiespeichermodul 1 zusätzlich eine mit einem oder mehreren der Betriebsaggregate 51 , 52, 53, 54 verbundene Leistungssenke 9, mit der eine weitere Aufnahme von zusätzlicher Energie bei voll geladenen Schwungradspeichereinheiten 2 ermöglicht wird. Beispielsweise kann die Modulspeicherkapazität des Energiespeichermoduls 1 zur Aufnahme externer elektrischer Leistung (beispielsweise Primär- oder Sekundärregelleistung aus einem der Wechselspannungsnetze ES1 , ES2) durch gezielte Nutzung einer Kühlanlage 54 mit primärem und sekundärem Kühlkreislauf dadurch erhöht werden, dass der sekundäre Kühlkreislauf der Kühlanlage 54 elektrisch geheizt wird, beispielsweise mit einem Tauchsieder im Kühlflüssigkeits-Vorratsbehälter mit zum Beispiel 4001 Volumen (beispielsweise ein Wasserbehälter) als erste

Leistungssenke 9, was eine erhöhte Kühlleistung des Primärkühlkreislaufs zur Folge hat (erhöhte Leistungsaufnahme der Kältemaschine 54 als zweite

Leistungssenke). Die Erhöhung der Modulspeicherkapazität über die nominelle Summe der Einheitenspeicherkapazitäten EK der einzelnen

Schwungradspeichereinheiten 2 hinaus kann je nach Umweltbedingungen oder Anlagenbetriebspunkt durch die (elektrische) Leistungsaufnahme von Kühlsystem 54 und/oder Vakuumsystem 54 bewusst über das für einen Normalbetrieb notwendige Maß erhöht werden. Die so gespeicherte Kältemenge

beziehungsweise das zusätzlich erreichte Vakuumlevel unterhalb eines

Sollvakuums von zum Beispiel 10 "3 mbar kann zu einem späteren Zeitpunkt mittels nicht betriebener Betriebsaggregate 54 und der damit verbundenen Einsparung von Betriebsenergie abgerufen und somit eingespart werden, wenn erhöhter Bedarf gefördert ist.

Zur Steuerung des Energiespeichermoduls 1 sind die Modulsteuereinheit 6 und die einzelnen Komponenten des Energiespeichermoduls 1 über Datenleitungen (in Fig.1 gestrichelt dargestellt), beispielsweise ein Datenbus (CAN-Bus oder

Profibus), miteinander verbunden. Über die Datenleitung 13 (siehe Fig. 2 und 3) zu den Regelsystemen 31 , 32 überträgt die Modulsteuereinheit 6 die

Konfigurationsdaten KD zur Reglerfunktion der Regelbox 8.

Fig. 2 zeigt eine Ausführungsform der Regelbox 8. Damit der Energie- und

Leistungsfluss EF, LF zwischen den angeschlossenen Spannungsnetzen

(Stromnetzen) ES1 , ES2 und der Energiespeicheranlage 1 gemäß den Regel- und Systemaufgaben SA aufteilen werden kann, umfasst das Energiespeichermodul 1 in dieser Ausführungsform eine Regelbox 8 mit einem Regelglied 81 und separate Trennschalter 82 für jedes der angeschlossenen Spannungsnetze (Stromnetze) ES1 , ES2. Die Modulsteuereinheit 6 ist über eine Datenverbindung 10 mit dem Regelglied 81 der Regelbox 8 verbunden und übermittelt der Regelbox 8, hier direkt dem Regelglied 81 , zur Steuerung der Energie- und Leistungsflüsse entsprechende Konfigurationsdaten der Reglerfunktion KD. Aufgrund der Konfigurationsdaten der Reglerfunktion KD steuert das Regelglied 81 die

Verteilung des vom Gleichspannungszwischenkreis 3 eingehenden Energie- und Leistungsflusses EF, LF auf die angeschlossenen Spannungsnetze (Stromnetze) ES1 , ES2 als Energie-/Leistungsfluss EF1 , LF1 für das Spannungsnetz (lokale Stromnetz) ES1 und als Energie-/Leistungsfluss EF2, LF2 für das nicht-lokale Spannungsnetz (nicht-lokale Stromnetz) ES2. In diesem Ausführungsbeispiel ist lediglich exemplarisch die Verteilung des Energieflusses EF bei Einspeisung von Energie in beide angeschlossene Spannungsnetze (Stromnetze) ES1 , ES2 gezeigt. Die Regelbox 8 ist gleichermaßen dafür ausgestaltet, einen Energiefluss aus einem der angeschlossenen Spannungsnetze (unabhängig ob Wechsel- oder Gleichspannungsnetze) ES1 , ES2 und einen Energiefluss in das andere

angeschlossene Spannungsnetz (Stromnetz) ES1 , ES2 zu steuern, wobei je nach Größe der beiden Energieflüsse entweder der negative Energieüberschuss vom Energiespeichermodul 1 gespeichert oder der positive Energieüberschuss vom Energiespeichermodul 1 bereitgestellt wird. Das Energiespeichermodul 1 ist hier nicht explizit gezeigt, sondern nur symbolisch über die entsprechenden

Komponenten dargestellt. Die Regelbox 8 empfängt simultan die relevanten Daten RD aus beiden angeschlossenen Spannungsnetzen (Stromnetzen) ES1 , ES2 über die jeweiligen Messeinheiten 7, woraus das Regelglied 81 das Vorhandensein der beiden angeschlossenen Spannungsnetze (Stromnetze) ES1 , ES2 mittels der in dem Regelglied 81 hinterlegten Kriterien oder Schwellwerte für die relevanten Daten RD ableitet. Das erste Regelsystem 31 ist dabei dafür vorgesehen, aufgrund eines Notfallbetriebssignals NFS den Gleichspannungszwischenkreis vom externen Spannungsnetz ES1 , ES2 zu trennen. Sollte eines oder beide der angeschlossenen Spannungsnetze (Stromnetze) ES1 , ES2 aufgrund eines

Netzausfalls nicht mehr zur Verfügung stehen, so manifestiert sich der Ausfall des jeweiligen Spannungsnetzes (Stromnetzes) ES1 , ES2 auch in den

entsprechenden, in dieser Ausführungsform auch an das Regelglied 81

übermittelten, relevanten Daten RD, woraufhin das Regelglied 81 in dieser

Ausführungsform auch ohne Übermittlung entsprechender Konfigurationsdaten basierend auf einem Notfallbetriebssignals NFS von der Modulsteuereinheit 6 selber automatisch entsprechende Trenn-Anweisungen TA (gestichelter Pfeil) an den oder die betreffenden Trennschalter 82 zur Trennung des

Energiespeichermoduls 1 von dem oder den angeschlossenen Spannungsnetzen (Stromnetzen) ES1 , ES2 aussendet, woraufhin der oder die Trennschalter 82 das oder die vormals angeschlossenen Spannungsnetze (Stromnetze) ES1 , ES2 von der Energiespeicheranlage 1 trennen. Die Trennung des angeschlossenen

Spannungsnetzes erfolgt dabei innerhalb weniger Millisekunden. Bei der Trennung von nur einem Spannungsnetz bleibt das Energiespeichermodul 1 weiterhin für die anderen noch weiterhin angeschlossenen Spannungsnetze betriebsbereit. Damit kann bei Ausfall eines Spannungsnetzes ein Kurzschluss oder eine

Überlastsituation im Energiespeichermodul 1 effektiv verhindert werden. Das hier gezeigte Ausführungsbeispiel mit einem angeschlossenen lokalen Spannungsnetz (lokales Stromnetz) ES1 und einem angeschlossenen nicht-lokalen

Spannungsnetz (nicht-lokales Stromnetz) ES2 ist nur ein Bespiel für zwei angeschlossene Spannungsnetze (Stromnetze). Die Regelbox 8 kann in anderen Ausführungsformen auch an mehr als zwei Spannungsnetze (Stromnetze) angeschlossen sein. Die zwei oder mehr angeschlossenen Spannungsnetze (Stromnetze) können auch jeweils lokale Spannungsnetze (lokale Stromnetze) sein, von denen zumindest eines der lokalen Spannungsnetze (lokale Stromnetze) mit dem nicht-lokalen Spannungsnetz (nicht-lokales Stromnetz) zur Ausführung der nicht-ortsgebundenen Regel- und Systemaufgaben SA (Steueranweisungen) verbunden ist. Die hier gezeigte Regelbox 8 ist beispielsweise in dem ersten Regelsystem 31 angeordnet.

Fig.3 zeigt in einem anderen Ausführungsbeispiel die im zweiten Regelsystem 32 angeordnete Regelbox 8 mit einem zusätzlich mit der Eingangsseite 32E verbundenen externen Spannungsnetz ES2 zur Versorgung des

Versorgungsnetzes 4 im Normalbetrieb NO. Hier ist einer der Trennschalter 82 mit einem externen Spannungsnetz ES2 und der andere der Trennschalter 82 mit dem Gleichspannungszwischenkreis 3 verbunden ist. Das Regelglied 81 steuert die Trennschalter 82 hier so, dass nach Trennung des Trennschalters 82 zum externen Spannungsnetzes ES2 im Notfallbetrieb NF der vorher geöffnete

Trennschalter 82 zum Gleichspannungszwischenkreis 3 geschlossen wird, damit das interne Versorgungsnetz 4 mit dem Gleichspannungszwischenkreis 3 zur Versorgung des internen Versorgungsnetz 4 mit Versorgungsnetzspannung VS verbunden wird (die gestrichelten Pfeile geben die Richtung des Leistungsflusses an). Das Energiespeichermodul 1 ist hier nicht explizit gezeigt, sondern nur symbolisch über die entsprechenden Komponenten dargestellt. Die Regelbox 8 empfängt simultan die relevanten Daten RD aus dem angeschlossenen

Spannungsnetz (Stromnetz) ES2 über die Messeinheit 7, woraus das Regelglied

81 das Vorhandensein des angeschlossenen Spannungsnetz (Stromnetz) ES2 mittels der in dem Regelglied 81 hinterlegten Kriterien oder Schwellwerte für die relevanten Daten RD ableitet. Sollte das angeschlossene Spannungsnetz

(Stromnetz) ES2 aufgrund eines Netzausfalls nicht mehr zur Verfügung stehen, so manifestiert sich der Ausfall des Spannungsnetzes (Stromnetzes) ES2 in den entsprechenden, an das Regelglied 81 übermittelten relevanten Daten RD, woraufhin das Regelglied 81 in einer Ausführungsform auch ohne entsprechende Konfigurationsdaten KD von der Modulsteuereinheit 6 selber automatisch entsprechende Trenn-Anweisungen TA (gestichelter Pfeil) an den Trennschalter

82 zur Trennung des internen Versorgungsnetzes 4 von dem Spannungsnetz (Stromnetz) ES2 aussendet, woraufhin der Trennschalter 82 das vormals angeschlossene Spannungsnetz (Stromnetze) ES2 von dem Versorgungsnetz trennt. Die Trennung des angeschlossenen Spannungsnetzes erfolgt dabei innerhalb weniger Millisekunden. Durch den danach als Reaktion darauf erfolgenden Anschluss des internen Versorgungsnetzes 4 an den

Gleichspannungszwischenkreis 3 zur Versorgung mit der Versorgungsspannung VS können die Betriebsaggregate weiterhin betrieben werden. Damit kann bei Ausfall eines Spannungsnetzes ES2 ein Kurzschluss oder eine Überlastsituation im Energiespeichermodul 1 bei fortgestehender Betriebsbereitschaft effektiv verhindert werden. Fig. 4 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben des Energiespeichermoduls 1 im Normalbetrieb NO. Die

Modulsteuereinheit 6 empfängt externe Steueranweisungen SA (Regel- und Systemaufgaben) und prüft, ob die Gleichspannung GS des

Gleichspannungszwischenkreises 3 dem Gleichspannungs-Sollwert GS-S entspricht. Ist dem so (GS-S =„J" entspricht SW2 < GS < SW1 ) und liegen keine anders lautenden Regel- und Systemaufgaben zur Einspeisung von Energie oder Entnahme von Energie in/aus den angeschlossenen Spannungsnetzen ES1 , ES2 vor, dann hält die Modulsteuereinheit 6 mittels entsprechender

Drehmomentvorgaben DV an die Schwungradspeichereinheiten die Gleichspannung im Gleichspannungszwischenkreis im Sollbereich. Übersteigt die Gleichspannung GS den Gleichspannungs-Sollwert (GS-S =„N"), so wird eine Drehmomentvorgabe DV zum Beschleunigen B der Schwungradspeichereinheiten 2 bei einem Energiefluss Ep aus dem Spannungsnetz ES1 , ES2 heraus in den Gleichspannungszwischenkreis 3 hinein übermittelt (von den Motorregelungen 51 oder der Modulsteuereinheit 6). Unterschreitet die Gleichspannung GS den Gleichspannungs-Sollwert (GS-S =„N"), so wird eine Drehmomentvorgabe DV zum Abbremsen A der Schwungradspeichereinheiten 2 bei einem Energiefluss En aus dem Gleichspannungszwischenkreis 3 heraus in das Spannungsnetz ES1 , ES2 hinein übermittelt (von den Motorregelungen 51 oder der Modulsteuereinheit 6). Die Regelbox 8 regelt gemäß der Konfigurationsdaten für die Regelfunktion KD, die sie von der Modulsteuereinheit 6 erhält, die Energie- und Leistungsflüsse EF, LF, die sie von dem Regelsystem 31 erhält, in die Energie- und

Leistungsflüsse EF1 , LF1 und EF2, LF2 für jeweiligen Spannungsnetze ES1 , ES2 gemäß den Anteilen nach den Regel- und Systemaufgaben SA für die

angeschlossenen externen Spannungsnetze ES1 , ES2.

Fig.5 zeigt eine weitere Ausführungsform des erfindungsgemäßen Verfahrens zum Betreiben des Energiespeichermoduls 1 im Notfallbetrieb NF, das sich anfangs noch im Normalbetrieb NO befindet. Dieses Energiespeichermodul umfasst ein zweites Regelsystem 32, das direkt mit einem externen Spannungsnetz ES2 zur Versorgung des Versorgungsnetzes 4 verbunden ist. Die Regelbox 8 entspricht dabei der Regelbox aus Fig.3. Während des Normalbetriebs NO wird die

Spannungsqualität der mit dem Energiespeichermodul 1 verbundenen externen Spannungsnetze ES1 , ES2 durch ein oder mehrere Messeinheiten 7 des

Energiespeichermoduls 1 kontinuierlich gemessen KM. Die Messeinheit 7 sendet dabei ein Notfallbetriebssignals NFS innerhalb des Energiespeichermoduls 1 bei einer Über- oder Unterspannung in zumindest dem an das interne

Versorgungsnetz 4 angeschlossenen externen Spanungsnetz ES2 aus. In Folge dessen schaltet die Modulsteuereinheit 6 vom Normalbetrieb NO auf den

Notfallbetrieb NF (dargestellt durch Pfeil) um und veranlasst das zweite

Regelsystem 32, das externe Spannungsnetzes ES2 zumindest vom internen Versorgungsnetz 4 zu trennen, indem entsprechende Konfigurationsdaten KD an die Regelbox 8 des zweiten Regelsystems 32 übermittelt werden, woraufhin die Regelbox 8 mittels des Trennsignals TA das externe Spannungsnetz ES2 vom Energiespeichermodul 1 abtrennt. Danach wird der

Gleichspannungszwischenkreises 3 über das zweite Regelsystem 32 mit dem internen Versorgungsnetz 4 verbunden VB und das interne Versorgungsnetzes 4 mit der zum fortgeführten Betrieb BT der Schwungradspeichereinheiten 2 erforderlichen Versorgungsnetzspannung VS aus dem

Gleichspannungszwischenkreis 3 versorgt V. Diese Versorgung kann bei ausreichend großer Speicherkapazität des Energiespeichermoduls über ein langes erstes Zeitintervall T ohne funktionale Einschränkungen aufrechterhalten werden. Dabei wird die Versorgungsnetzspannung VS des internen

Versorgungsnetzes 4 auf einen konstanten Wert durch bedarfsgerechte

Strom lieferung aus dem Gleichstromzwischenkreis 3 geregelt R, wozu die Spannung des Gleichspannungszwischenkreis 3 entweder durch die

Motorsteuerungen 51 oder mittels mindestens einer Messeinrichtung 33 gemessen M wird und die Schwungradspeichereinheiten 2 auf Basis der gemessenen Spannung GS so über zeitbezogene Drehmomentvorgaben DV durch die Motorsteuerung 51 gesteuert ST (alternativ auch durch die

Modulsteuereinheit 6), so dass über Energieabgabe Ep aus ein oder mehreren Schwungradspeichereinheit 2 in den Gleichspannungszwischenkreis 3 dessen Spannung GS nicht unter den unteren Schwellenwert SW2 absinkt, zumindest solange die in den Schwungradspeichereinheiten 2 gespeichert Menge an Energie nicht unter eine Mindestenergie absinkt. Sobald die externen

Spannungsnetze ES1 , ES2 (zumindest das externe Spannungsnetz ES2 für die Versorgung des internen Versorgungsnetz 4 wieder verfügbar ist, sendet die Messeinheit 7 ein Normalbetriebssignals NOS aus und die Modulsteuereinheit 6 wechselt vom Notfall betrieb NF wieder zurück in den Normalbetrieb NO, wobei das internen Versorgungsnetz 4 wieder mit dem oder den externen

Spannungsnetzen ES2 verbunden und die elektrische Verbindung zwischen dem Gleichspannungskreis 3 und dem internen Versorgungsnetz 4 durch das zweite Regelsystem 32 als automatische Reaktion aufgrund des Normalbetriebssignals NOS wieder getrennt T wird. Anschließend wird der Normalbetrieb NO wieder wie in Fig.4 gezeigt fortgeführt. Falls die im Energiespeichermodul 1 gespeicherte Energiemenge unter eine Mindestmenge absinken sollte, wird in einer weiteren Ausführungsform das Energiespeichermodul 1 heruntergefahren und das internen Versorgungsnetzes 4 vom Gleichspannungszwischenkreis 3 mittels des zweiten Regelsystems 32 getrennt.

Die hier gezeigten Ausführungsformen stellen nur Beispiele für die vorliegende Erfindung dar und dürfen daher nicht einschränkend verstanden werden.

Alternative, durch den Fachmann in Erwägung gezogene Ausführungsformen sind gleichermaßen vom Schutzbereich der vorliegenden Erfindung umfasst.

Liste der Bezugszeichen

1 erfindungsgemäßes Energiespeichermodul

13 Datenleitung, Datenbus

2 Schwungradspeichereinheit

3 Gleichspannungszwischenkreis

31 erstes Regelsystem

32 zweites Regelsystem

32A Ausgangsseite zweites Regelsystem

32E Eingangsseite zweites Regelsystem

33 Messeinrichtung zur Messung der Spannung in

Gleichspannungszwischenkreis

4 internes Versorgungsnetz

51 Betriebsaggregat: Motorregelung

51 d direkte Datenverbindung zwischen den Motorregelungen für NF

52 Betriebsaggregat: Bauteil zur Drehzahlbegrenzung

53 Betriebsaggregat: elektromagnetischer Wandler

54 Betriebsaggregat: Vakuumsystem, Kühlsystem, Magnetlagersystem andere Versorgungssysteme

6 Modulsteuereinheit

61 Speicher zur Speicherung externer Daten

62 Prioritätsmanagement zur Ausführung der Steueranweisungen

7 Messeinheit

8 Regelbox

81 Regelglied

82 Trennschalter

9 Leistungssenke

10 Verbindung externes Spannungsnetz mit Eingangsseite zweites

Regelsystem A Abbremsen der Schwungradspeichereinheiten

B Beschleunigen der Schwungradspeichereinheiten

DV Drehmomentvorgabe

EF Energiefluss

EF1 , EF2 Energiefluss in externes Spannungsnetz ES1 , ES2 En, LFn Energiefluss/Leistungsfluss in das Energiespeichernnodul oder die Schwungradspeichereinheiten hinein (negativer

Energiefluss/Leistungsfluss)

Ep, LFn Energiefluss/Leistungsfluss aus dem Energiespeichermodul oder den

Schwungradspeichereinheiten hinaus (positiver

Energiefluss/Leistungsfluss)

EK Einheitenspeicherkapazität der Schwungradspeichereinheiten

EL Einheitenspeicherleistung der Schwungradspeichereinheiten

En Aufnahme von Energie aus dem Spannungsnetz

Ep Abgabe von Energie in das Spannungsnetz

ES1 externes Spannungsnetz angeschlossen an erstes Regelsystem

ES2 externes Spannungsnetz angeschlossen an zweites Regelsystem

GS Gleichspannung im Gleichspannungszwischenkreis

GS-S Sollwert der Gleichspannung im Gleichspannungszwischenkreis KM kontinuierliches Messen der Spannungsqualität in ES1 , ES2

LF Leistungsfluss

LF1 , LF2 Leistungsfluss in externes Spannungsnetz ES1 , ES2

M Messen der Spannung im Gleichspannungszwischenkreis

NO Normalbetrieb

NOS Normalbetriebssignal

NF Notfallbetrieb

NFS Notfallbetriebssignal

KD Konfigurationsdaten

R Regeln der Versorgungsnetzspannung

RD relevante Daten

SA externe Steueranweisungen (Regel- und Systemaufgaben)

ST Steuern der Schwungradspeichereinheiten

SW1 oberer Schwellwert für die Gleichspannung

SW2 unterer Schwellwert für die Gleichspannung

TA Trennungsanweisung, Trennen vom externen Spannungsnetz

V Versorgen des Versorgungsnetzes mit Spannung

VB Verbinden des internen Versorgungsnetzes mit dem

Gleichspannungszwischenkreis

VS Versorgungsnetzspannung