Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENERGY STORAGE SYSTEM
Document Type and Number:
WIPO Patent Application WO/1998/024140
Kind Code:
A1
Abstract:
A hybrid energy storage system (10) includes a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy burst to satisfy the power requirements of, for example, pulsed power communication devices. The first and second energy storage devices are coupled to a current controller (16) to assure that the pulse transients are not applied to the battery cell as a result of charging the capacitor.

Inventors:
THOMAS GEORGE
FERNANDEZ JOSE MARIA
GARRETT SCOTT M
MORE GEORGINA
Application Number:
PCT/US1997/021394
Publication Date:
June 04, 1998
Filing Date:
November 19, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MOTOROLA INC (US)
International Classes:
H01M16/00; (IPC1-7): H01M16/00
Foreign References:
US4296461A1981-10-20
US5587250A1996-12-24
US4992340A1991-02-12
Attorney, Agent or Firm:
Scutch III, Frank M. (Intellectual Property Dept. 8000 West Sunrise Boulevar, Fort Lauderdale FL, US)
Download PDF:
Claims:
CLAIMS
1. An energy storage device having an output, for providing electrical charge, including regularly spaced current pulses to an electronic device, said device comprising: at least one battery cell for providing a substantially constant current output; at least one capacitor connected across the output of said device for providing said current pulses; and a current controller means disposed between said battery cell and said capacitor for limiting current from said battery cell during said current pulses, and wherein said battery charges said capacitor at said constant current between each of said current pulses.
2. An energy storage device as in claim 1, wherein said current controller comprises an inductor having an inductance.
3. An energy storage device as in claim 2, wherein said inductance is selected according to the frequency of said current pulses.
4. An energy storage device as in claim 1, wherein said current controller comprises a circuit disposed between said battery and said capacitor.
5. An energy storage device as in claim 4, wherein said circuit comprises : a first switch disposed between said battery and said electrical device; a second switch disposed between said capacitor and said electronic device; and a controller electrically coupled to said first and second switches and responsive to said current pulses.
6. An energy storage device as in claim 5, wherein said controller, during a current pulse, closes said second switch, and opens said first switch, to connect said capacitor to said electrical device, and disconnect said battery from said electrical devices.
7. An energy storage device as in claim 5, wherein between each of said current pulse, said first switch closes, and acts as a variable resistor to provide a constant recharge current to said capacitor from said battery.
8. An energy storage device as in claim 1, wherein said at least one battery cell is a rechargeable battery cell.
9. An energy storage device as in claim 1, wherein said at least one capacitor is an electrochemical capacitor.
10. An energy storage device having an output for providing electrical charge, including regularly spaced current pulses to an electronic device, said device comprising: at least one battery cell; at least one capacitor connected across said output for providing said current pulses; and an inductor having an inductance, disposed between said battery and said capacitor, and wherein said battery provides a substantially constant current recharge to said capacitor through said inductor.
11. An energy storage device as in claim 10, wherein said inductance is selected according to the frequency of said current pulses.
12. An energy storage device as in claim 10, wherein said at least one battery cell is a rechargeable battery cell.
13. An energy storage device as in claim 10, wherein said at least one capacitor is an electrochemical capacitor.
14. An energy storage device having an output for providing an electrical charge, including regularly spaced current pulses to an electronic device, said device comprising: at least one battery cell connected to said output; at least one capacitor connected across said output for providing said current pulses; and electronic circuitry disposed between said battery and said capacitor comprising a first switch disposed between said battery and said output, a second switch disposed between said capacitor, and said output, and a controller electrically coupled to each said switch, and responsive to said current pulses.
15. An energy storage device as in claim 14, wherein said controller, during a current pulse, closes said second switch, and opens said first switch, to connect said capacitor to said output, and disconnect said battery from said load.
16. An energy storage device as in claim 14, wherein between each said pulse, said first switch closes, and acts as a variable resistor to provide a constant recharge current to said capacitor from said battery.
17. An energy storage device as in claim 14, wherein said at least one battery cell is a rechargeable battery cell.
18. An energy storage device as in claim 14, wherein said at least one capacitor is an electrochemical capacitor.
Description:
ENERGY STORAGE SYSTEM CROSS REFERENCE TO RELATED APPLICATIONS This application is related to pending/issued U. S. application Serial No. 08/534,517, filed September 27,1995, by Thomas, et al, and assigned to Motorola, Inc.

TECHNICAL FIELD This invention relates in general to energy storage devices, and in particular to hybrid rechargeable energy storage devices which provide high power and high capacity for portable electronic devices.

BACKGROUND OF THE INVENTION Consumer markets continue to request smaller, portable electronic devices which having more functional features. Examples of such devices include two-way and broadcast radio receivers, compact disc players, cellular telephones, and computer devices to name but a few. As portable electronic devices have become smaller, the demand for smaller energy sources, such as batteries, to power such devices has increased. Obviously very small energy storage devices, such as an electrochemical battery cell, may be fabricated for a given electrical device; however, compactness comes at the cost of energy capacity. Accordingly, for many high power applications the energy source is too bulky, too heavy, or doesn't last long enough.

As the energy storage device, such as a battery, is discharged, it becomes unable to provide current at a required level. Thus, even though the battery may retain a substantial charge, it is useless to the device to which it is attached. This problem is exacerbated when the device to which the battery is attached requires high power (i. e., current pulses) in an operating cycle which otherwise requires a much lower operating current.

Such is the case with portable communications devices, such as digital two- way radios and cellular phones when in the transmit mode. These power pulses or spikes require significantly higher current outputs than when the device is receiving or in standby mode.

As the physical size of batteries decreases (to meet size requirements of product designers), the capacity of the battery is reduced. This results in

device users needing many batteries if they anticipate being away from a battery charging device for extended periods of time. Alternatively, users may carry portable, high speed, charging devices with them. This however is unacceptable, due to the additional weight associated with the charging device.

Prior art attempts to address the high power spikes entailed providing electrolytic capacitors in the application device. This had the disadvantage of increasing substantially the size of the application device, as electrolytic capacitors are typically very large, cylindrical devices. Other attempts are described in U. S. Patent No. 5,439,756 to Anani, et al, in which an electrical energy storage device is provided. The device disclosed in the '756 patent includes a battery electrode, a capacitor electrode, and a third electrode as the counter electrode for both the battery and the capacitor electrodes. The device also includes electronics to switch the third electrode between the battery electrode and the capacitor electrode. A second solution to this problem is provided in the aforementioned'517 application which describes a power source having a first component, for example, a battery, for delivering a substantially constant output, and a second component, i. e., a capacitor, which delivers power in response to the power pulses and spikes required by the application device. The capacitor can then be recharged by the battery, assuming the duty cycle permits. While this type of power source addresses the needs of pulsed power application devices, it does not address the fact that changing conditions may require a different trigger point at which the second component is activated. These conditions may be environmental, such as low temperature, or a function of the age of the first power source. Failure to recognize the effect of changed condition may also have the deleterious effect of shrinking the life of the power source. However, recharging the capacitor via the battery has the deleterious effect of imposing a power spike on the battery at the start of the capacitor recharge cycle. While this spike is not as large as that demanded by an application device, the effect on the battery, over time, can be as great. More particularly, the battery recharges the capacitor between pulses via a constant voltage mode charge.

However, this mode can result in incomplete charging of the capacitor because as the voltage difference between the battery and the capacitor narrows, the current flow from the battery reduces, thus requiring a very

long time to fully charge the capacitor. Thus, recharging in that mode can result in the capacitor being less than fully charged.

Accordingly, what is needed is an energy source which is capable of providing sufficient voltage for the high power pulses required of certain devices, while extending the usable life of the energy source. The device should also include means by which current drain from the battery is as smooth and uniform as possible to extend battery life. Such a device should be relatively small, and capable of being easily sized and shaped for a given application. Moreover, such a device should include a mechanism to control and/or manage recharging of the capacitor to assess a full recharge.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an energy storage device in accordance with the instant invention; FIG. 2 is a circuit diagram of an energy storage device in accordance with the invention; FIG. 3 is a circuit diagram of a second energy storage device in accordance with the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT While the specification concludes with claims defining the features of the invention that are regarded as novel, it is believed that the invention will be better understood from a consideration of the following description in conjunction with the drawing figures, in which like reference numerals are carried forward.

Referring now to FIG. 1, there is illustrated therein a block diagram of an energy storage device 10 in accordance with the instant invention.

The device 10 includes a first energy source 12 having a high energy density, a high capacity, and is capable of substantially constant current output, but which may not be able to provide high power as required by certain applications. The first energy source 12 may thus be one or more conventional battery cells, examples of which include, but are not limited to, a lead-acid battery, a nickel-cadmium battery, a nickel-metal hydride battery, a lithium ion battery, a lithium polymer battery, a lithium ion polymer electrolyte battery, a zinc air battery, and combinations thereof.

The battery cell or cells may also be a primary battery, such as a conventional alkaline battery. The battery cell or cells are disposed in a battery pack (not shown).

The diagram 10 also shows that connected electrically in parallel with the first energy source 12, is a second energy source 14. The second energy source is capable of delivering a burst of high power, as may be required by a particular application. As such, the second energy source 14 is a capacitor and is preferably an electrochemical capacitor. The electrochemical capacitor device typically include at least one electrode fabricated of a metal oxide material such as Ru02. The second electrode may also be a similar or different metal oxide, or may be of another type of material altogether. In this regard, the second electrode may be a polymer such as polyanile, polypyrrole, polyurethane, polyacrylamide and combinations thereof. One or both of the electrodes may be alternatively fabricated of a carbon based material. The electrolyte may be alkaline or proton conducting and/or organic solvent based.

In one embodiment, the capacitor is a thin device including a first electrode, a second electrode, and an electrolyte disposed therebetween. In a preferred embodiment, the capacitor may be fabricated as disclosed in one or more of United States Patent Application Serial Nos. 08/415,976 to Bai, et al, entitled"Electrochemical Capacitor and Method of Making Same" ; 08/414,816 to Bai, et al entitled"Electrochemical Charge Storage Device Having Constant Voltage Discharge" ; 08/513,648 to Bai, et al, entitled Electrochemical Cell Having Solid Polymer Electrolyte and Asymmetrical Inorganic Electrodes; 08/340,957 to Howard, et al., entitled"Polymer Gel Electrolyte and Electrochemical Capacitor Device Using Same" ; 08/505,427 to Howard, entitled"Conducting Polymer Electrodes for Energy Storage Devices and Method of Making Same" ; 08/358,294 to Li, et al, entitled "Electrode Material and Electrochemical Devices Using Same" ; 08/396,991 to Li, et al., entitled"Modified Electrolyte for Electrochemical Cells" ; 08/498,450 to Li, et al., entitled"Polymer Electrodes for Energy Storage Devices and Method of Making Same" ; 08/297,074 to Lian, et al., entitled "Amorphous Cobalt Alloy Electrodes for Aqueous Electrochemical Devices" ; and U. S. Patent No. 5,429,895 to Lian, et al., entitled"Nickel Alloy Electrodes for Electrochemical Devices,"the disclosures of which are incorporated herein by reference.

Electrically connected to the first and second energy sources is current controller 16 adapted to condition the current output of the first and second energy sources.

As noted above, the problems occasioned by high power spikes or peaks are most frequently observed in devices requiring brief, intermittent high power levels. Pulsed power communication devices such as digital cellular phones, two-way radios, and talk-back pagers all make such demands of their associated energy sources. Thus, a load is connected at contacts 18 and 20, and is a device which requires high power spikes, such as those applications described above. Other examples include power tools, which require a burst of power to, for example, start turning a drill bit, or a personal computer to start the disc drive or the display backlight. The pulses in these devices are more transient, and are not the uniform, repeating pulses experienced in digital communication.

In order to preserve and extend battery life for the battery cell 12, it is necessary to ensure a constant current output, or at least as smooth and uniform a constant current output as is possible from the battery cell.

Repeated intermittent spikes and power drain from the battery causes build ups in internal impedance of the battery cell, resulting in a shortened battery life and degraded battery performance. While major spikes have been eliminated by placing the capacitor in parallel with the battery pack to address the power spike needs of the application devices, power spikes will still occur upon recharging of the capacitor by the battery. However, the current controller illustrated in FIG. 1 is designed to reduce or eliminate power spikes occasioned by the initiation of the recharge cycle of the capacitor.

Accordingly, and as is illustrated in FIG. 2, there is provided a circuit 30 in which the current controller 16 comprises a pair of switches 32 and 34 electrically coupled to a controller such as a microprocessor 36. The first switch 32 may be coupled between the battery 38 and contact 18. Similarly, switch 34 is disposed between the capacitor 40 and contact 20. The controller 36 is responsive to the power pulses described hereinabove, via measurement of power requirements at resistor 42 and node 44. In normal operation, i. e., when no power pulse is applied, switch 32 is closed and switch 34 is open thus allowing the battery 38 to supply a relatively constant current electrical charge to a load at contacts 18 and 20. However,

when a power pulse is detected by the controller 36 via resistor 42 and node 44, the controller opens switch 32 and closes switch 34, thus coupling the capacitor 40 to contacts 18 and 20. With switch 32 open, the battery 38 is disconnected from the contacts. When the pulse is removed, the switch is returned to the first condition and switch 32 then acts as a variable resistor.

This connects the constant current regulator between the battery and the capacitor which will allow constant current of a set value to flow into the capacitor device for recharging the capacitor. The voltage of the capacitor may be used as a control parameter for terminating charge thereof.

Alternatively, other control parameters such as load current, time, and battery pressure can also be used as controls. Each of these control parameters may be easily measured via the controller 36. The result of this configuration is that the battery 38 will operate in a constant current discharge mode regardless of whether or not the capacitor is being charged.

It is understood that by operating a battery in a constant current discharge mode, one will significantly enhance the cycle life of the battery cell. It has the further advantage, in the instant embodiment, of assuring that the capacitor is fully recharged between current pulses, by assuring adequate current flow from the battery to the charger.

Referring now to FIG. 3, there is illustrated therein a second circuit diagram for a device in accordance with the instant invention. In the embodiment of FIG. 3, the device 50 includes an inductor 52 electrically coupled between the battery 38 and the capacitor 40. When a pulse is applied to the circuit of FIG. 3, more charge will be drawn from the capacitor resulting in a more rapid linear drop of voltage. The size of the capacitor can tend to pull the effect of the charge drain through the battery without protective circuitry. The larger the capacitor, the less the slope of the voltage will be during the pulse. However, the voltage drop is more tolerable than failure of the electrochemical cell alone. Thus, the inductor between the battery and the capacitor eliminates the severe transient current spike from being applied to the battery spreading the current pulse over a greater period of time.

Essentially, the inductor 52 can be interposed between the battery and the capacitor to regulate the current from battery to a desired level.

When a pulse is applied at contacts 18 and 20, the capacitor delivers the current since the inductor will not allow a current flow above a set value,

say 300 milliampers (mA). When the pulse is removed, the capacitor will be charged from the energy stored in the inductor. This prevents the need for the battery to supply transient currents or current spikes to charge the capacitor. The inductor will be selected in such a way that it has sufficient energy stored to charge the capacitor in time for it to deliver the next pulse and is thus stated as a function of the frequency of said current pules.

Current flow from battery charges the inductor by storing the energy in the magnetic flux of the inductor and this energy is released later when the current flow through the inductor decreases. Thus, by eliminating the transient current discharges from the battery by using the inductor, the life of the battery is further extended. Moreover, the resistive losses associated with high current spikes are also eliminated. This saved energy results in the increased use time between recharges of the battery in a pulse power application.

While the preferred embodiments of the invention have been illustrated and described, it will be clear that the invention is not so limited. Numerous modifications, changes, variations, substitutions and equivalents will occur to those skilled in the art without departing from the spirit and scope of the present invention as defined by the appended claims.

What is claimed is: