Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENERGY STORAGE SYSTEM
Document Type and Number:
WIPO Patent Application WO/2019/076897
Kind Code:
A1
Abstract:
The invention relates to an energy storage system for storing heat and coldness and for providing electrical energy, characterized by an energy converter, wherein the energy converter is designed to produce electrical energy from heat and coldness and to produce heat and coldness from electrical energy, the energy converter being in heat-transferring contact with a hot heat exchanger and with a cold heat exchanger, the hot heat exchanger being connected to a heat reservoir and the cold heat exchanger being connected to a coldness reservoir, and a control unit being provided, which operates the energy storage system in a first operating mode, in which heat and coldness are formed from electrical energy by means of the energy converter, and in a second operating mode, in which electrical energy is produced from heat and coldness.

Inventors:
WEBER, Stefan (Schinnrainstr. 15, Karlsruhe, 76227, DE)
WERNER, Petra (Steinweg 17, Schirgiswalde-Kirschau, 02681, DE)
Application Number:
EP2018/078250
Publication Date:
April 25, 2019
Filing Date:
October 16, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BME DR. GOLBS & PARTNER GMBH (Humboldtstr. 25, Bautzen, 02625, DE)
International Classes:
F28D20/00; F24D11/00; F28D20/02; H02J3/28
Domestic Patent References:
WO2011058383A22011-05-19
Foreign References:
US20100107635A12010-05-06
EP2241737A12010-10-20
EP2312129A12011-04-20
US4402188A1983-09-06
Other References:
None
Attorney, Agent or Firm:
BEHR, Wolfgang (LORENZ SEIDLER GOSSEL, Widenmayerstr. 23, München, 80538, DE)
Download PDF:
Claims:
Patentansprüche

1. Energiespeichersystem zum Speichern von Wärme und Kälte sowie zur Bereitstellung elektrischer Energie, gekennzeichnet durch einen Energiewandler, wobei der Energiewandler ausgebildet ist, aus Wärme und Kälte elektrische Energie zu erzeugen und aus elektrischer Energie Wärme und Kälte zu erzeugen, wobei der Energiewandler mit einem warmen Wärmetauscher und mit einem kalten Wärmetaucher in wärmeübertragendem Kontakt steht und wobei der warme Wärmetauscher mit einem Wärmespeicher und der kalte Wärmetauscher mit einem Kältespeicher in Verbindung steht, und wobei eine Steuereinheit vorgesehen ist, die das Energiespeichersystem in einem ersten Betriebsmodus betreibt, in dem aus elektrischer Energie mittels des Energiewandlers Wärme und Kälte gebildet werden, und in einem zweiten Betriebsmodus betreibt, in dem aus Wärme und Kälte elektrische Energie erzeugt wird.

2. Energiespeichersystem nach Anspruch 1 , dadurch gekennzeichnet, dass eine Ermittlungseinheit vorgesehen ist, die mit der Steuereinheit in Verbindung steht und die ausgebildet ist, den Bedarf und/oder die zur Verfügung stehende Menge an Wärme und/oder Kälte und/oder elektrischer Energie zu ermitteln, wobei die Steuereinheit ausgebildet ist, in Abhängigkeit dieser Ermittlung den ersten oder den zweiten Betriebsmodus einzustellen.

3. Energiespeichersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der warme Wärmetauscher und der Wärmespeicher Bestandteil eines vorzugsweise geschlossenen Kreislaufs sind, in dem sich ein Wärmeübertragungsmedium befindet, das in dem Kreislauf durch ein Fördermittel, insbesondere durch eine Pumpe förderbar ist.

4. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der kalte Wärmetauscher und der Kältespeicher Bestandteil eines vorzugsweise geschlossenen Kreislaufs sind, in dem sich ein Wärmeübertragungsmedium befindet, das in dem Kreislauf durch ein Fördermittel, insbesondere durch eine Pumpe förderbar ist.

5. Energiespeichersystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass sich zwischen dem Kreislauf und dem Wärmespeicher und/oder dem Kältespeicher ein Wärmetauscher zur Übertragung von Wärme bzw. Kälte befindet.

6. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich in dem Wärmespeicher und/oder in dem Kältespeicher ein Wärmespeichermedium, insbesondere ein Latentwärmespeichermedium befindet.

7. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Koppelstelle zum direkten Abzug und/oder zur direkten Einspeisung von Wärme oder Kälte aus dem bzw. in das Energiespeichersystem unter Umgehung des Energiewandlers vorgesehen ist.

8. Energiespeichersystem nach Anspruch 7 sowie nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass sich die Koppelstelle in dem Kreislauf befindet.

9. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Energiewandler mit einer Energiequelle für elektrische Energie in Verbindung steht, wobei es sich bei der Energiequelle um eine Photovoltaikanlage oder um eine Windenergieanlage oder um eine sonstige elektrische Energiequelle handelt.

10. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Energiewandler mit einem privaten oder öffentlichen Stromnetz in Verbindung steht.

1 1. Energiespeichersystem nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass das Energiespeichersystem mit einem Gebäude oder mit einer Anlage in Verbindung steht oder Bestandteil eines Gebäudes oder einer Anlage ist, wobei die Verbindung derart ausgebildet ist, dass das Gebäude bzw. die Anlage mittels des Energiespeichersystems beheizbar und/oder kühlbar und/oder mit elektrischer Energie versorgbar ist und/oder wobei aus dem Gebäude bzw. aus der Anlage Wärme und/oder Kälte und/oder elektrische Energie dem Energiespeichersystem zuführbar ist.

12. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl von Wärmespeichern und/oder Kältespeichern vorhanden ist, die über Ventile selektiv ansteuerbar sind.

13. Energiespeichersystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Energiewandler als Wärmepumpe, Thermogenerator, Stirlingmotor oder als thermoelektrisches Element ausgebildet ist.

14. Verfahren zur Wandlung von elektrischer Energie in Wärme und Kälte sowie zur Wandlung von Wärme und Kälte in elektrische Energie mittels eines Energiespeichersystems nach einem der Ansprüche 1 bis 13, wobei in einem ersten Betriebsmodus aus elektrischer Energie Wärme und Kälte gebildet wird, und in einem zweiten Betriebsmodus aus Wärme und Kälte elektrische Energie erzeugt wird.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Wahl des Betriebsmodus von dem Bedarf und/oder der zur Verfügung stehenden Menge an Wärme und/oder Kälte und/oder elektrischer Energie abhängt.

16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass dem Energiespeichersystem in dem ersten Betriebsmodus elektrische Energie aus einer Energiequelle für erneuerbare Energie zugeführt wird.

17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass in dem zweiten Betriebsmodus elektrische Energie aus dem Energiespeichersystem einem Gebäude oder einer Anlage zugeführt wird.

Description:
Energiespeichersystem

Die vorliegende Erfindung betrifft ein Energiespeichersystem.

Aus dem Stand der Technik ist es bekannt, elektrische Energie beispielsweise in einer Batterie, in Form von Druckluft oder mittels eines Pumpspeicherwerks zu speichern.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Energiespeichersystem bereitzustellen, das gegenüber bekannten System einen größeren Anwendungsbereich aufweist.

Diese Aufgabe wird durch ein Energiespeichersystem mit den Merkmalen des Anspruchs 1 gelöst.

Danach ist vorgesehen, dass das Energiespeichersystem zum Speichern von Wärme und Kälte sowie zur Bereitstellung elektrischer Energie ausgebildet ist und gekennzeichnet ist durch einen Energiewandler, wobei der Energiewandler ausgebildet ist, aus Wärme und Kälte elektrische Energie zu erzeugen und aus elektrischer Energie Wärme und Kälte zu erzeugen, wobei der Energiewandler mit einem warmen Wärmetauscher und mit einem kalten Wärmetauscher in wärmeübertragendem Kontakt steht und wobei der warme Wärmetauscher mit einem Wärmespeicher und der kalte Wärmetauscher mit einem Kältespeicher in Verbindung steht, und wobei eine Steuereinheit vorgesehen ist, die das System in einem ersten Betriebsmodus betreibt, in dem aus elektrischer Energie mittels des Energiewandlers Wärme und Kälte gebildet wird, und in einem zweiten Betriebsmodus betriebt, in dem aus in dem Wärme- bzw. Kältespeicher gespeicherter Wärme und Kälte elektrische Energie erzeugt wird.

Durch die vorliegende Erfindung wird eine einfache, kostengünstige und wartungsarme Energiespeichereinheit geschaffen, mittels derer nicht nur elektrische Energie in Form von Wärme und Kälte gespeichert werden kann, sondern umgekehrt auch elektrische Energie aus thermischer Energie bereitgestellt werden kann. Das Energiespeichersystem, das im Folgenden auch einfach als System bezeichnet wird, wird durch eine Steuereinheit so angesteuert, dass je nach Bedarf ein erster oder zweiter Betriebsmodus gewählt wird, wobei das System in dem ersten Betriebsmodus elektrische Energie in thermische Energie wandelt und in dem zweiten Betriebsmodus thermische Energie in elektrische Energie wandelt.

Vorzugsweise wird für beide Wandlungsprozesse ein und derselbe Energiewandler eingesetzt. Denkbar ist jedoch auch, dass in dem ersten Betriebsmodus ein anderer Energiewandler zum Einsatz kommt als in dem zweiten Betriebsmodus.

Der Energiewandler ist exemplarisch als Thermogenerator, Wärmepumpe, Stirlingmotor oder als thermoelektrisches Element ausgeführt.

Vorzugsweise ist eine Ermittlungseinheit vorgesehen, die mit der Steuereinheit in Verbindung steht und die ausgebildet ist, den Bedarf und/oder die zur Verfügung stehende Menge an Wärme und/oder Kälte und/oder elektrischer Energie zu ermitteln, wobei die Steuereinheit ausgebildet ist, in Abhängigkeit dieser Ermittlung den ersten oder den zweiten Betriebsmodus einzustellen. Steht überschüssige elektrische Energie zur Verfügung, beispielsweise von einer Photovoltaikanlage oder von einer Windkraftanlage, kann diese Energie in Wärme und Kälte gewandelt und gespeichert werden.

In dem ersten Betriebsmodus bezieht das System seine Energie aus elektrischen Energieüberschüssen z.B. von Wind- und/oder photovoltaischen Anlagen. Dazu ist ein Energiewandler so verschaltet, dass er elektrische Energie gleichzeitig in Kälte und Wärme umwandelt. Diese Energieformen werden sodann in jeweiligen Speichereinheiten gespeichert. Dazu können Wärmetauscher und Pumpen eingesetzt werden, die ein Wärmeträgermedium fördern, wobei das Wärmeträgermedium zum Transport thermischer Energie dient, die dann letztlich in dem Wärme- und Kältespeicher gespeichert wird.

Ebenso kann in dem zweiten Betriebsmodus aus in den genannten Speichern gespeicherter Wärme oder Kälte bei Bedarf elektrische Energie erzeugt werden.

Unter der Speicherung von Wärme ist zu verstehen, dass thermische Energie bei einem höheren Temperaturniveau (vorzugsweise > 20 °C) gespeichert wird als dies bei der Speicherung von Kälte der Fall ist. Dementsprechend wird unter der Speicherung von Kälte der Fall verstanden, dass thermische Energie bei einem geringeren Temperaturniveau (vorzugsweise < 20 °C) gespeichert wird, als dies bei der Speicherung von Wärme der Fall ist. Die Speicherung bzw. Erzeugung von Kälte ist somit die Speicherung bzw. Erzeugung von thermischer Energie mit einem geringeren Energiegehalt als dies bei der Speicherung bzw. Erzeugung von Wärme der Fall ist.

Dementsprechend bezeichnet der Begriff „Wärme" sowie der Begriff „Kälte" jeweils thermische Energie, wobei der Energiegehalt der Wärme größer ist als der der Kälte.

Vorzugsweise sind der warme Wärmetauscher und der Wärmespeicher Bestandteil eines vorzugsweise geschlossenen Kreislaufs, in dem sich ein Wärmeträgermedium befindet, das in dem Kreislauf durch ein Fördermittel, insbesondere durch eine Pumpe förderbar ist.

Dementsprechend können der kalte Wärmetauscher und der Kältespeicher Bestandteil eines vorzugsweise geschlossenen Kreislaufs sein, in dem sich ein Wärmeträgermedium befindet, das in dem Kreislauf durch ein Fördermittel, insbesondere durch eine Pumpe förderbar ist. Das Wärmeträgermedium hat die Aufgabe, die in den Wärmetauschern anfallende Wärme bzw. Kälte in den Wärmespeicher bzw. in den Kältespeicher zu fördern oder umgekehrt, Wärme bzw. Kälte aus dem Wärmespeicher bzw. aus dem Kältespeicher zu den Wärmetauschern zu fördern.

Weiterhin ist es denkbar, dass sich zwischen dem Kreislauf und dem Wärmespeicher und/oder dem Kältespeicher ein Wärmetauscher zur Übertragung von Wärme bzw. Kälte befindet. Die Be- und Entladung der Wärme- und Kältespeicher erfolgt somit vorzugsweise über Wärmetauscher, die thermische Energie in diese Speicher übertragen oder aus diesen abziehen.

Vorzugsweise befindet sich in dem Wärmespeicher und/oder in dem Kältespeicher ein Latentwärmespeichermedium. Exemplarisch sind als Phasenwechselmatehalien Salzhydrate, Paraffine, Zeolithe etc. zu nennen. Besonders bevorzugt ist der Einsatz von Natriumacetat-Trihydrat.

Die vorliegende Erfindung ist jedoch nicht auf diese Art von Speichermedien beschränkt. Es kommen beliebige Speichermedien mit möglichst hoher Energiedichte in Betracht, die in der Lage sind, eine verlustarme Langzeitspeicherung von Wärme und Kälte zu ermöglichen.

Vorzugsweise kann das System auch verwendet werden, um direkt, d.h. ohne Nutzung des Energiewandlers Wärme und/oder Kälte z.B. zur Beheizung bzw. Kühlung von Gebäuden oder zur Bereitstellung von Wärme oder Kälte für Prozesse beliebiger Art bereitzustellen. Entsprechendes gilt für die Speicherung von Wärme bzw. Kälte in den Speichereinheiten. Fällt z.B. in einem chemischen Prozess Abwärme oder Kälte an, kann diese direkt in dem Wärmespeicher bzw. Kältespeichern eingespeist und dort gespeichert werden, ohne dass dazu der Energiewandler eingesetzt wird.

Dazu weist das System eine Koppelstelle zur direkten Nutzung und/oder Einspeisung von Wärme oder Kälte unter Umgehung des Energiewandlers auf. Vorzugsweise befindet sich die Koppelstelle in dem Kreislauf, in dem sich das Wärmeträgermedium befindet bzw. in dem das Wärmeträgermedium strömt.

Weiterhin kann der Energiewandler mit einer Energiequelle für elektrische Energie in Verbindung stehen, wobei es sich bei der Energiequelle um eine Photovoltaikaniage oder um eine Windenergieanlage handelt. Diese Aufzählung ist exemplarischer Natur und nicht abschließend.

Vorzugsweise steht der Energiewandler mit einem Stromnetz in Verbindung, mittels dessen je nach Betriebsmodus dem Energiewandler Strom zugeführt oder von diesem in das Stromnetz eingespeist wird.

Das System kann mit einem Gebäude oder mit einer Anlage in Verbindung stehen oder Bestandteil eines Gebäudes oder einer Anlage sein, wobei die Verbindung derart ausgebildet ist, dass das Gebäude bzw. die Anlage mittels des Systems beheizbar und/oder kühlbar ist und/oder mit elektrischem Strom versorgbar ist und/oder wobei aus dem Gebäude bzw. aus der Anlage Wärme und/oder Kälte und/oder elektrischer Strom dem System zuführbar ist. Auch die Bereitstellung von elektrischer Energie an das Gebäude bzw. an die Anlage und die Umwandlung von elektrischer Energie, die in oder an dem Gebäude oder an der Anlage anfällt in Wärme oder Kälte ist denkbar.

Beispielsweise ist eine Lösung denkbar, bei der das Gebäude mit einer Photovoltaikaniage (im Folgenden auch als PV-Anlage bezeichnet) ausgestattet ist und zudem einen Wärme- und Kältespeicher aufweist. Bei hinreichender Sonneneinstrahlung wird die durch die PV-Anlage bereitgestellte elektrische Energie in Wärme und Kälte umgewandelt und in den Speichern gespeichert. Wird Wärme oder Kälte zur Beheizung oder Kühlung des Gebäudes benötigt, kann diese unmittelbar aus den jeweiligen Speichern entnommen werden. Wir elektrische Leistung benötigt, etwa für das Stromnetz des Gebäudes kann die Wärme/Kälte in elektrischen Strom gewandelt werden, der im Stromnetz des Gebäudes abgerufen bzw. genutzt werden kann. Denkbar ist, dass genau ein Wärme- und genau ein Kältespeicher vorgesehen sind. Auch ist es möglich und stellt eine bevorzugte Ausgestaltung der Erfindung dar, dass eine Mehrzahl von Wärmespeichern und/oder Kältespeichern vorhanden ist, die über Ventile oder sonstige Schaitelemente selektiv ansteuerbar sind.

Wie bereits oben ausgeführt, kann vorgesehen sein, dass der Energiewandler als Wärmepumpe, Thermogenerator, Stirlingmotor oder thermoelektrisches Element ausgebildet ist. Diese Aufzählung ist nicht abschließend, sondern beispielhafter Natur.

Die vorliegende Erfindung betrifft ein Verfahren zur Wandlung von elektrischer Energie in Wärme und Kälte sowie zur Wandlung von Wärme und Kälte in elektrischer Energie mittels eines Systems nach einem der Ansprüche 1 bis 13, wobei in einem ersten Betriebsmodus aus elektrischer Energie Wärme und Kälte gebildet wird, und in einem zweiten Betriebsmodus aus Wärme und Kälte elektrische Energie erzeugt wird.

Dabei kann die Wahl des Betriebsmodus von dem Bedarf und/oder der zur Verfügung stehenden Menge an Wärme und/oder Kälte und/oder elektrischer Energie abhängen.

Dem System kann in dem ersten Betriebsmodus elektrische Energie aus einer Energiequelle für erneuerbare Energie zugeführt werden, wie z.B. von einer PV- oder Windkraftanlage. in dem zweiten Betriebsmodus elektrische Energie einem Gebäude oder einer Anlage zugeführt wird.

Zudem ist es auch möglich, ohne Nutzung des Energiewandlers Wärme und/oder Kälte in den Wärmespeicher oder Kältespeicher einzuspeisen oder umgekehrt aus dem Wärmespeicher oder Kältespeicher Wärme und/oder Kälte abzuführen, um diese z.B. zur Beheizung bzw. Kühlung eines Gebäudes zu nutzen. Vorteile der vorliegenden Erfindung bestehen unter anderem in gegenüber Batterielösungen geringeren Investitionskosten, einer hohen Lebensdauer (> 20 Jahre), in einem geringen Flächenbedarf sowie in einer verlustarmen Langzeitspeicherung von Energie. Abgesehen davon sind durch die erfindungsgemäße Lösung dezentrale Lösungen realisierbar, die zudem wartungsarm sind. Unter einer dezentralen Lösung ist zu verstehen, dass vorzugsweise das System in einem Haushalt oder in einer industriellen Anlage angeordnet werden kann und nicht als zentrales System eingesetzt werden muss, dass eine Vielzahl von Haushalten oder industriellen Anlagen versorgt, wenngleich dies von der vorliegenden Erfindung ebenfalls nicht ausgeschlossen ist.

An dieser Stelle wird darauf hingewiesen, dass die Begriffe„ein" und„eine" nicht zwingend genau eines der fraglichen Elemente bezeichnet, wenngleich auch dies von der Erfindung umfasst ist, sondern auch die Mehrzahl dieser Elemente mit umfasst. Ebenso ist schließt die Verwendung des Plurals auch das Vorhandensein des fraglichen Elementes im Singular ein und umgekehrt.

Weitere Vorteile und Einzelheiten der Erfindung werden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.

Es zeigen:

Figur 1 : eine schematische Darstellung des Energiespeichersystems in dem ersten Betriebsmodus und

Figur 2: eine schematische Darstellung des Energiespeichersystems in dem zweiten Betriebsmodus.

Figur 1 zeigt das System in dem ersten Betriebsmodus, in dem elektrische Energie aus einer Photovoltaik-Anlage und/oder aus einer Windkraftanlage dem Energiewandler 2 über einen oder mehrere Stromanschlüsse zugeführt wird und diese Energie in Form von Wärme und Kälte gespeichert wird. Auch elektrischer Strom aus Prozessabwärme /-kälte kann dem Energiewandler zugeführt werden. In den srgiewandler wird der zugeführte Strom in Kälte- und Wärmeenergie, d.h. in thermische Energie umgewandelt, wobei die Wärmeenergie in dem warmen Wärmetauscher 4 und die Kälteenergie in dem kalten Wärmetauscher 3 bereitgestellt wird. Wie dies weiter aus der Figur hervorgeht, sind diese Wärmetauscher Bestandteile eines jeweils geschlossenen Kreislaufs, das von einem Wärmeträgermedium durchströmt wird, das seinerseits von einer Pumpe 5, 6 gefördert wird.

Im Falle der Zufuhr elektrischer Energie zu dem Energiewandler 2 wird die in den Wärmeübertragern 3, 4, bereitgestellte Wärme bzw. Kälte von dem Wärmeträgermedium aufgenommen, das sich dabei aufwärmt bzw. abkühlt. Das Wärmeträgermedium transportiert die thermische Energie zu einem weiteren Wärmetauscher bzw. Wärmeübertrager, der die Wärme bzw. Kälte in den Wärmespeicher 1W bzw. in den Kältespeicher 1 K einspeichert. Dort wird die Wärme bzw. Kälte gespeichert, bis sie benötigt wird.

Wie dies aus Figur 1 weiter hervorgeht, sind jeweils zwei Wärmespeicher 1W und zwei Kältespeicher 1 K vorgesehen, wobei sich zwischen der Pumpe 5, 6 und den Speichern eine Schalteinrichtung, vorzugsweise ein oder mehrere Ventile befinden, über die einzelne oder mehrere Speicher ausgewählt werden können, um diese mit Wärme oder Kälte zu beladen. Ist ein Speicher be- oder entladen, kann auf einen weiteren Speicher umgeschaltet werden. Auch ist es denkbar, mehrere Speicher gleichzeitig zu be- oder entladen, sofern dies erforderlich ist.

Das Bezugszugszeichen 7 kennzeichnet Koppelstellen, die sich in den genannten Kreisläufen befinden. In diese Koppelstellen 7 kann direkt, d.h. ohne Nutzung des Energiewandlers Wärme in den Wärmespeicher eingeführt oder abgezogen und ebenso Kälte in den Kältespeicher eingeführt oder abgezogen werden. Dies in Figur 1 durch den Begriff„Prozesswärme/Prozesskälte" gekennzeichnet

Figur 2 zeigt den Vorgang der Stromerzeugung mittels des erfindungsgemäßen Systems. Wird elektrischer Strom benötigt, steuert die Steuerung das System derart an, dass die gespeicherte Wärme- und Kälteenergie aus dem Wärmespeicher (1W) und Kältespeicher (1K) mittels der Pumpen 5, 6 zu den Wärmeübertragern 3, 4 gefeitet wird und zwar mittels des Wärmeträgermediums. Dort wird die thermische Energie zum Energiewandler 2 geleitet. Dieser erzeugt aus Wärme- und Kälteenergie die elektrische Energie zur weiteren Verwendung. Die erzeugte elektrische Energie kann in ein Stromnetz (Hausnetz, öffentliches Netz etc.) eingespeist werden oder steht anderweitig zur Eigennutzung im Umfeld zur Verfügung.

Das System gemäß dem Ausführungsbeispiel kann auch zur direkten Kältenutzung verwendet werden. Dabei wird die gespeicherte Kälteenergie aus dem Kältespeicher ( 1 K) zur Auskoppeleinheit 7 für Kälte geleitet. Die Auskoppeleinheit ist mit entsprechenden Kälteverbrauchern für Prozesse beliebiger Art sowie beispielsweise auch zur Gebäudekühlung bzw. Klimatisierung verbunden.

Das System gemäß dem Ausführungsbeispiel kann auch zur direkten Wärmenutzung verwendet werden. Dazu fördert die Pumpe 6 die gespeicherte Wärmeenergie mittels des Wärmeträgermediums aus dem Wärmespeicher 1W zur Auskoppeleinheit 7 für Wärme. Diese Auskoppeieinhett ist mit entsprechenden Wärmeverbrauchern für Prozesse oder Gebäude, wie z.B. für die Heizung eines Gebäudes verbunden.

Das System gemäß dem Ausführungsbeispiei kann auch verwendet werden, um externe Wärme und/oder Kälte, z.B. Prozessabwärme, die als Überschüsse anfallen über die Auskoppeleinheiten und die Pumpen 5, 6 in die jeweiligen Speichereinheiten 1W, 1K eingespeichert werden. Diese Energie kann dann in Form von thermischer Energie oder über den Stromwandler in Form von elektrischer Energie entnommen werden.

Über die Ventilsteuerungen M lässt sich die Speicherkapazität beliebig erweitern und die an die jeweiligen Anwendungsfälie anpassen. Über die Ventilsteuerungen M ist auch eine parallele oder serielle, d.h. zeitlich hintereinander folgende Be- oder Entladung der Speicher möglich. Dabei ist auch die Anpassung verschiedene Temperaturniveaus möglich. Es lassen sich so flexible Anpassungen, besonders an Prozessabwärme und -kälte vornehmen.




 
Previous Patent: CHILD CAR SEAT SYSTEM

Next Patent: SEMICONDUCTOR DEVICE