Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENERGY TRANSMISSION IN THE ZERO SYSTEM
Document Type and Number:
WIPO Patent Application WO/2019/096440
Kind Code:
A1
Abstract:
The invention relates to a method for an energy transmission between at least two energy stores (914, 924) in a respective zero system of at least two n-phase electric machines (912, 922), in which one respective n-phase electric machine (912, 922) comprises a field winding, which is brought together at a star point. The respective field winding is provided with n-windings corresponding to respective n-phases and has a neutral point (902), a respective energy store (914, 924) is assigned, and an electric connection is established in terms of circuitry between windings of corresponding phases, or between the neutral points (902) of the respective field windings of the at least two n-phase electric machines (912, 922) and a respective identical pole of the energy stores (914, 924), as a result of which an energy transmission between the at least two energy stores (914, 924), which have a different charge state, is carried out.

Inventors:
GÖTZ, Stefan (Schützenweg 5, Forstern, 85659, DE)
KACETL, Jan (Weinstrasse 24, Gemmrigheim, 74376, DE)
KACETL, Thomas (Weinstrasse 24, Gemmrigheim, 74376, DE)
Application Number:
EP2018/025178
Publication Date:
May 23, 2019
Filing Date:
June 27, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DR. ING. H.C. F. PORSCHE AKTIENGESELLSCHAFT (Porscheplatz 1, Stuttgart, 70435, DE)
International Classes:
B60K6/52; B60L15/00; B60L15/02
Domestic Patent References:
WO2016174117A12016-11-03
Foreign References:
DE102013008737A12014-06-18
DE102015104936A12015-10-08
DE102011082973A12013-03-21
US20090033251A12009-02-05
DE102012203525A12013-09-12
US20120112674A12012-05-10
DE102013200674A12014-07-17
DE102010052934A12012-05-31
Download PDF:
Claims:
Patentansprüche

1. Verfahren zu einer Energieübertragung zwischen mindestens zwei Energiespeichern (114, 124, 914, 924) in einem jeweiligen Nullsystem mindestens zweier N-phasiger elektrischer Maschinen (112, 122, 912, 922), bei dem einer jeweiligen N-phasigen elektrischen Maschine (112, 122, 912, 922), die eine in einem Sternpunkt

zusammengeführte Feldwicklung (113, 123) umfasst, wobei die jeweilige Feldwicklung zu jeweils N Phasen entsprechend N Wicklungen und einen Neutralpunkt (217, 227, 902) aufweist, ein jeweiliger Energiespeicher (114, 124, 914, 924) zugeordnet wird und eine elektrische Verbindung zwischen Wicklungen sich entsprechender Phasen oder zwischen den Neutralpunkten (217, 227, 902) der jeweiligen Feldwicklungen (113, 123) der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) und einem jeweiligen gleichen Pol der Energiespeicher (114, 124, 914, 924) schaltungstechnisch hergestellt wird, wodurch eine Energieübertragung zwischen den mindestens zwei Energiespeichern (114, 124, 914, 924), die einen unterschiedlichen Ladezustand aufweisen, durchgeführt wird.

2. Verfahren nach Anspruch 1 , bei dem zu der schaltungstechnischen Herstellung der elektrischen Verbindung ein jeweiliger Schalter (330, 930) zwischen Wicklungen sich entsprechender Phasen und/oder zwischen den Neutralpunkten der jeweiligen

Feldwicklungen (113, 123) angeordnet wird.

3. Verfahren nach Anspruch 1 , bei dem die Wicklungen sich entsprechender Phasen und/oder die Neutralpunkte der jeweiligen Feldwicklungen elektrisch fest miteinander verdrahtet sind und zu der schaltungstechnischen Herstellung der elektrischen

Verbindung ein jeweiliger Schalter (330) zwischen einem jeweiligen gleichen Pol der mindestens zwei Energiespeicher angeordnet wird.

4. Verfahren nach einem der voranstehenden Ansprüche, bei dem nur zu einem Zeitpunkt, bei dem keine Spannungsbelastung in den jeweiligen Nullsystemen der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) vorhanden ist, die schaltungstechnische Verbindung hergestellt wird.

5. Verfahren nach einem der voranstehenden Ansprüche, bei dem der Schalter (330, 930) als ein Halbleiterschalter, insbesondere ein bidirektionaler Halbleiterschalter, oder als ein mechanischer Schalter gewählt wird.

6. Verfahren nach einem der voranstehenden Ansprüche, bei dem durch Kontrolle eines Potentialunterschieds zwischen den N-phasigen elektrischen Maschinen (112, 122, 912, 922) ein Energiefluss gesteuert wird.

7. Verfahren nach Anspruch 6, bei dem der Energiefluss auf einen vorgegebenen Wert begrenzt wird. 8. Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine Einspeisung einer N-ten harmonischen Oberschwingung einer

Grundschwingung einer Versorgungsspannung hervorgerufen wird.

9. Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine generatorische Rückwirkung der ersten N-phasigen elektrischen Maschine hervorgerufen wird.

10. Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch einen durch Schaltvorgänge im Energiespeicher erzeugten Stoßstrom

hervorgerufen wird.

11. Verfahren nach einem der voranstehenden Ansprüche, bei dem als jeweiliger Energiespeicher mindestens N Batteriemodule (802), die jeweilig mindestens zwei Leistungsschalter und mindestens eine mit den Leistungsschaltern verbundene

Energiezelle umfassen, gewählt werden.

12. System, das mindestens zwei Energiespeicher (114, 124, 914, 924), mindestens zwei jeweils mit einem Energiespeicher (114, 124, 914, 924) der mindestens zwei Energiespeicher (114, 124, 914, 924) betriebene und den jeweiligen Energiespeichern (114, 124, 914, 924) zugeordnete N-phasige elektrische Maschinen, mindestens eine mit einem Computerprozessor und einem auf dem Computerprozessor laufenden Computerprogramm ausgestattete Steuereinheit, welche dazu ausgelegt ist, einen jeweiligen Energiespeicher zum Betreiben der ihm jeweils zugeordneten N-phasigen elektrischen Maschine zu steuern, sowie mindestens einen Schalter (330, 930) umfasst, wobei das System dazu ausgelegt ist, ein Verfahren nach einem der voranstehenden Ansprüche auszuführen.

13. System nach Anspruch 12, bei dem ein jeweiliger Energiespeicher (114, 124) ein Energiemodul (116, 126) und einen Wechselrichter umfasst, wobei der Wechselrichter dazu konfiguriert ist, aus einem von dem Energiemodul bereitgestellten Gleichstrom N Phasen eines zum Betreiben der dem Energiespeicher (114, 124) zugeordneten N- phasigen elektrischen Maschine (112, 124) notwendigen Wechselstroms zu generieren.

14. System nach Anspruch 12, bei dem ein jeweiliger Energiespeicher (914, 924) mindestens N Batteriemodule (802) umfasst, wobei das jeweilige Batteriemodul (802) mindestens zwei Leistungsschalter und mindestens eine mit den mindestens zwei Leistungsschaltern elektrisch verbundene Energiezelle umfasst.

GEÄNDERTE ANSPRÜCHE

beim Internationalen Büro eingegangen am 23. Oktober 2018 (23.10.2018)

1. Verfahren zu einer Energieübertragung zwischen mindestens zwei Energiespeichern (114, 124, 914, 924) in einem jeweiligen Nullsystem mindestens zweier sich in einem Betrieb befindlicher N-phasiger elektrischer Maschinen (112, 122, 912, 922) eines Kraftfahrzeuges, bei dem einer jeweiligen N-phasigen elektrischen Maschine (112, 122, 912, 922), durch weiche für N=3 ein Drehstrommotor realisiert wird und die eine in einem Sternpunkt zusammengeführte Feldwicklung (113, 123) umfasst, wobei die jeweilige Feldwicklung zu jeweils N Phasen entsprechend N Wicklungen und einen Neutralpunkt (217, 227, 902) aufweist, ein jeweiliger Energiespeicher (114, 124, 914, 924) zugeordnet wird und eine elektrische Verbindung zwischen Wicklungen sich entsprechender Phasen oder zwischen den Neutralpunkten (217, 227, 902) der jeweiligen Feldwicklungen (113, 123) der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) und dazu noch zwischen einem jeweiligen gleichen Pol der Energiespeicher (114, 124, 914, 924) schaltungstechnisch hergestellt wird, wodurch eine Energieübertragung zwischen den mindestens zwei Energiespeichern (114, 124, 914, 924), die einen unterschiedlichen Ladezustand aufweisen, über die

Feldwicklungen und deren Neutralpunkte der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) durchgeführt wird.

2. Verfahren nach Anspruch 1 , bei dem zu der schaltungstechnischen Herstellung der elektrischen Verbindung ein jeweiliger Schalter (330, 930) zwischen Wicklungen sich entsprechender Phasen und/oder zwischen den Neutralpunkten der jeweiligen

Feldwicklungen (113, 123) angeordnet wird.

3. Verfahren nach Anspruch 1, bei dem die Wicklungen sich entsprechender Phasen und/oder die Neutralpunkte der jeweiligen Feldwicklungen elektrisch fest miteinander verdrahtet sind und zu der schaltungstechnischen Herstellung der elektrischen

Verbindung ein jeweiliger Schalter (330) zwischen einem jeweiligen gleichen Pol der mindestens zwei Energiespeicher angeordnet wird. 4, Verfahren nach einem der voranstehenden Ansprüche, bei dem nur zu einem Zeitpunkt, bei dem keine Spannungsbelastung in den jeweiligen Nullsystemen der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) vorhanden ist, die schaltungstechnische Verbindung hergestellt wird.

5. Verfahren nach einem der voranstehenden Ansprüche, bei dem der Schalter (330, 930) als ein Halbleiterschalter, insbesondere ein bidirektionaler Halbleiterschalter, oder als ein mechanischer Schalter gewählt wird.

6, Verfahren nach einem der voranstehenden Ansprüche, bei dem durch eine mitels mindestens einen Wechselrichter bewirkte Kontrolle eines Potentialunterschieds zwischen den Energiespeichern der mindestens zwei N-phasigen elektrischen Maschinen (112,

122, 912, 922) ein Energiefluss gesteuert wird,

7. Verfahren nach Anspruch 6, bei dem der Energiefluss auf einen vorgegebenen Wert begrenzt wird.

8. Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine Einspeisung einer N-ten harmonischen Oberschwingung einer

Grundschwingung einer Versorgungsspannung hervorgerufen wird.

9, Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine generatorische Rückwirkung der ersten N-phasigen elektrischen Maschine hervorgerufen wird.

10. Verfahren nach einem der voranstehenden Ansprüche, bei dem der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter (330, 930) geöffnet wird, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch einen durch Schaltvorgänge im Energiespeicher erzeugten Stoßstrom

hervorgerufen wird,

11. Verfahren nach einem der voranstehenden Ansprüche, bei dem als jeweiliger Energiespeicher mindestens N Batteriemodule (802), die jeweilig mindestens zwei Leistungsschalter und mindestens eine mit den Leistungsschaltern verbundene

Energiezelle umfassen, gewählt werden.

12. System eines Kraftfahrzeuges, das mindestens zwei Energiespeicher (114, 124, 914, 924), mindestens zwei jeweils mit einem Energiespeicher (114, 124, 914, 924) der mindestens zwei Energiespeicher (114, 124, 914, 924) betriebene und den jeweiligen Energiespeichern (114, 124, 914, 924) zugeordnete sich in einem Betrieb befindliche N- phasige elektrische Maschinen, durch welche für N=3 ein Drehstrommotor realisiert ist, mindestens eine mit einem Computerprozessor und einem auf dem Computerprozessor laufenden Computerprogramm ausgestattete Steuereinheit, welche dazu ausgelegt ist, einen jeweiligen Energiespeicher zum Betreiben der ihm jeweils zugeordneten N-phasigen elektrischen Maschine zu steuern, sowie mindestens einen Schalter (330, 930) umfasst, wobei das System dazu ausgelegt ist, ein Verfahren nach einem der voranstehenden Ansprüche auszuführen, wodurch das System dazu konfiguriert ist, eine

Energieübertragung zwischen den mindestens zwei Energiespeichern (114, 124, 914, 924), wenn diese einen unterschiedlichen Ladezustand aufweisen, über die

Feldwicklungen und deren Neutralpunkte der mindestens zwei N-phasigen elektrischen Maschinen (112, 122, 912, 922) durchzuführen. 13, System nach Anspruch 12, bei dem ein jeweiliger Energiespeicher (114, 124) ein Energiemodul (116, 126) und einen Wechselrichter umfasst, wobei der Wechselrichter dazu konfiguriert ist, aus einem von dem Energiemodul bereitgestellten Gleichstrom N Phasen eines zum Betreiben der dem Energiespeicher (114, 124) zugeordneten N- phasigen elektrischen Maschine (112, 124) notwendigen Wechselstroms zu generieren,

14. System nach Anspruch 12, bei dem ein jeweiliger Energiespeicher (914, 924) mindestens N Batteriemodule (802) umfasst, wobei das jeweilige Batteriemodu! (802) mindestens zwei Leistungsschalter und mindestens eine mit den mindestens zwei Leistungsschaltern elektrisch verbundene Energiezelle umfasst.

Description:
Energieübertragung im Nullsystem

Die vorliegende Erfindung betrifft ein Verfahren und ein System zu einer

Energieübertragung zwischen mindestens zwei Energiespeichern über jeweilige

Nullsysteme N-phasiger Elektromotoren.

Bei einem elektrisch betriebenen Kraftfahrzeug mit jeweils einem Elektromotor an einer Vorderachse und an einer Hinterachse weisen die jeweiligen Elektromotoren ein eigenes Wechselstromsystem auf. Grund dafür sind unterschiedliche Einwirkungen auf Vorder- und Hinterachse bspw. während Kurvenfahrten oder instabilen Fahrsituationen, z.B. bei Driften oder Gleiten. Außerdem bedingt eine starke Beschleunigung eine Verschiebung eines Kraftfahrzeugschwerpunkts Richtung Hinterachse, bzw. ein starkes Bremsen eine Verschiebung Richtung Vorderachse, wodurch sich ein aufzubringendes bzw.

aufgebrachtes Drehmoment in dem jeweiligen Elektromotor erhöht, und, damit gleichbedeutend bezogen auf Leistungsflüsse aus einem Energiespeicher, ein erhöhter Leistungszufluss auf den Elektromotor der Hinterachse bzw. ein erhöhter

Leistungsabfluss hin zu einem Energiespeicher, eine sogenannte Rekuperation, stattfindet. Gewöhnlich besitzen elektrische Kraftfahrzeuge einen einzigen Energiespeicher, um die jeweiligen Elektromotoren der Vorder- und Hinterachse über einen jeweiligen

Wechselrichter zu versorgen. Gemeinhin wird als Elektromotor ein jeweiliger

Drehstrommotor eingesetzt, wobei ein Wechselrichter aus einem durch den

Energiespeicher bereitgestellten Gleichstrom einen Drehstrom für den jeweiligen

Drehstrommotor erzeugt. Da Leistungszuflüsse oder Leistungsabflüsse von den jeweiligen Drehstrommotoren auf den gleichen Energiespeicher einwirken, ist ein

Ladezustand des Energiespeichers nur von einer insgesamt entnommenen oder eingespeisten Energie abhängig. Ist für einen jeweiligen Elektromotor der Vorder- und Hinterachse auch ein jeweiliger Energiespeicher vorhanden, ist der jeweilige Ladezustand abhängig von einer an der jeweiligen Achse auftretenden Last. Da ein Beschleunigungsvorgang hauptsächlich zu einem Leistungsabfluss von einem dem Elektromotor für die Hinterachse zugewiesenen Energiespeicher, und ein Bremsvorgang hauptsächlich zu einem Leistungszufluss zu einem dem Elektromotor für die Vorderachse zugewiesenen Energiespeicher führt, wächst mit zunehmender Fahrtdauer eine Differenz der Ladezustände der jeweiligen Energiespeicher, was die Notwendigkeit eines Energieübertrags zwischen den

Energiespeichern aufbringt, um gegebenenfalls eine Reichweite des Kraftfahrzeugs nicht durch eine unterschiedliche Entladung der Energiespeicher zu beschränken. Verfahren zu einem Energieübertrag sind zwar bekannt, allerdings bislang sehr ineffektiv.

Die Druckschrift US 2012/112674 A offenbart ein Verfahren, um über einen einem Drehstrommotor zugewiesenen Wechselrichter, der ein Pulsweitenmodulationsverfahren ausführt, mittels Aufmodulation eines Signals einen Leistungsfluss zu dem

Drehstrommotor zu steuern. Das Aufmodulieren eines Signals kann auch aus der Einspeisung einer dritten harmonischen Oberschwingung bestehen.

In der Druckschrift DE 10 2013 200 674 wird ein Fahrzeug beschrieben, welches über zwei Teilbordnetze und einen einem Statorsystem eines mehrphasigen Elektromotors zugeordneten Wechselrichter verfügt, wobei der Wechselrichter dem ersten Teilbordnetz zugeordnet ist. Über einen Neutralpunkt, auch Sternpunkt genannt, des in einer

Sternschaltung ausgeführten Stators können mit dem zweiten Teilbordnetz Ströme und damit Energie ausgetauscht werden.

Die Druckschrift WO 2016/17411 7A1 beschreibt einen Energiespeicher, der aus mehreren Batteriemodulen besteht, die sich unter anderem zu einer Sternpunktformation zusammenschalten lassen, bei der drei aus mindestens einem Batteriemodul bestehende Stränge gebildet werden, mit denen entsprechend drei Phasen eines Drehstroms zum Betrieb eines jeweiligen Drehstrommotors gebildet werden. Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren zu einer gegenüber dem Stand der Technik höheren Leistungsübertragung zwischen zwei Energiespeichern bereitzustellen, die jeweilig einem jeweiligen Elektromotor zugewiesen sind und einen unterschiedlichen Ladezustand aufweisen. Ferner ist es eine Aufgabe der vorliegenden Erfindung, ein entsprechendes System zur Durchführung eines solchen Verfahrens bereitzustellen.

Zur Lösung der voranstehend genannten Aufgabe wird ein Verfahren zu einer

Energieübertragung zwischen mindestens zwei Energiespeichern in einem jeweiligen Nullsystem mindestens zweier N-phasiger elektrischer Maschinen, bei dem einer jeweiligen N-phasigen elektrischen Maschine, die eine in einem Sternpunkt

zusammengeführte Feldwicklung umfasst, wobei die jeweilige Feldwicklung zu jeweils N Phasen entsprechend N Wicklungen und einen Neutralpunkt aufweist, ein jeweiliger Energiespeicher zugeordnet wird und eine elektrische Verbindung zwischen Wicklungen sich entsprechender Phasen oder zwischen den Neutralpunkten der jeweiligen

Feldwicklungen der mindestens zwei N-phasigen elektrischen Maschinen und einem jeweiligen gleichen Pol der Energiespeicher schaltungstechnisch hergestellt wird, wodurch eine Energieübertragung zwischen den mindestens zwei Energiespeichern, die einen unterschiedlichen Ladezustand aufweisen, durchgeführt wird. Zu einer Ausführung des erfindungsgemäßen Verfahrens wird als jeweilig gleicher Pol für alle Energiespeicher entweder ein jeweiliger Pluspol oder ein jeweiliger Minuspol gewählt. Neben der

Realisierung des Verfahrens bei einem Personenkraftwagen, bei dem jeweils eine elektrische Maschine samt zugeordnetem Energiespeicher für eine Vorder- und eine Hinterachse vorgesehen ist, ist auch eine Realisierung für einen dreiachsigen

Lastkraftwagen denkbar, bei dem entsprechend drei elektrische Maschinen samt jeweils zugeordneten Energiespeichern vorgesehen sind, oder für ein System, bei dem für jedes einzelne Rad eines Kraftfahrzeugs jeweils eine elektrische Maschine samt zugeordnetem Energiespeicher vorgesehen ist. Die N-phasige elektrische Maschine wird als Energiewandler verstanden, bei dem es sich um einen Elektromotor oder um einen Generator handelt, je nachdem, ob elektrische Leistung in mechanische Leistung überführt wird oder umgekehrt. Zum Betrieb ist ein N- phasiger Wechselstrom notwendig, der bspw. bei N=3 Phasen einem Drehstrom entspricht. Durch eine aus dem Stand der Technik bekannte Symmetrische-Komponenten- Methode lässt sich ein N-phasiges Wechselstromsystem in N Komponenten zerlegen, die jeweilig zu einem aufgebrachten Drehmoment beitragen oder nicht beitragen. Diejenigen Komponenten, welche nicht zum Drehmoment beitragen, vom Fachmann auch als zero- sequence components bezeichnet, lassen sich in einem sogenannten Nullsystem zusammenfassen. Im Falle des Drehstroms erhält man bspw. ein sogenanntes Mitsystem, welches sich mit einem Drehfeld mitbewegt, ein sogenanntes Gegensystem, welches dem Drehfeld entgegenläuft, und eben das Nullsystem. Das Nullsystem stellt einen Freiheitsgrad dar, über den Energie von einem ersten Energiespeicher durch die

Feldwicklung der elektrischen Maschine transferiert werden kann, ohne dabei eine elektromechanische Energieumwandlung zu beeinflussen. Um diese Energie auf einen zweiten Energiespeicher, der selbst einer zweiten elektrischen Maschine zugeordnet ist, zu übertragen, müssen entweder Wicklungen sich entsprechender Phasen oder die Neutralpunkte der jeweiligen Feldwicklungen der beiden elektrischen Maschinen miteinander verbunden werden. Ein Energiefluss zwischen den Energiespeichern ist dann nur noch durch den Potentialunterschied der Energiespeicher bestimmt.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird zu der

schaltungstechnischen Herstellung der elektrischen Verbindung ein jeweiliger Schalter zwischen Wicklungen sich entsprechender Phasen oder zwischen den Neutralpunkten der jeweiligen Feldwicklungen angeordnet. Die Ausnahme bildet ein System mit zwei

Energiespeichern, in dem nur ein Schalter benötigt wird. Es ist denkbar, dass eine mit einem Computerprozessor und einem auf dem Computerprozessor laufenden

Computerprogramm ausgestattete Steuereinheit, die auch einen jeweiligen

Energiespeicher zum Betreiben einer ihm zugeordneten N-phasigen elektrischen

Maschine steuert und damit auch die Einspeisung der N-ten harmonischen Oberschwingung vornimmt, den jeweiligen Schalter dementsprechend steuert, d.h. den sonst geschlossenen Schalter zu Zeitpunkten der Einspeisung einer N-ten harmonischen Oberschwingung öffnet. In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens werden die Wicklungen sich entsprechender Phasen oder die Neutralpunkte der jeweiligen

Feldwicklungen elektrisch fest miteinander verdrahtet und ein jeweiliger Schalter in den Verbindungen zwischen einem jeweiligen gleichen Pol der mindestens zwei

Energiespeicher angeordnet. Die Ansteuerung der jeweiligen Schalter erfolgt auf die gleiche wie im voranstehenden Absatz beschriebene Art und Weise. Generell können die jeweiligen Schalter an einem beliebigen Ort eines die Verbindung zwischen den jeweiligen Feldwicklungen einschließenden Stromkreises eingebracht werden, ohne jedoch bei Öffnung ein ihnen zugeordnetes System aus elektrischer Maschine und der elektrischen Maschine zugeordnetem Energiespeicher außer Funktion zu setzen.

In einer Ausführungsform des erfindungsgemäßen Verfahrens wird nur zu einem

Zeitpunkt, bei dem keine Spannungsbelastung in den jeweiligen Nullsystemen der mindestens zwei N-phasigen elektrischen Maschinen vorhanden ist, die

schaltungstechnische Verbindung hergestellt. Hintergrund ist, dass im Stand der Technik das Nullsystem auch dazu eingesetzt wird, eine höhere Phasen-Phasenspannung zu erzeugen als es mit einem fixen Sternpunkt möglich wäre, in dem auf den Komponenten des Nullsystems eine harmonische Oberschwingung einer Grundschwingung der

Versorgungsspannung eingespeist wird. Bei einer N-phasigen elektrischen Maschine entspricht dies der Einspeisung einer N-ten harmonischen Oberschwingung einer

Grundschwingung der Versorgungsspannung. Wird hierzu eine dritte harmonische

Oberschwingung gewählt, bezeichnet dies ein Fachmann als third-harmonic injection. Da dies im Nullsystem geschieht, bleibt ein Potentialunterschied der N Phasen untereinander unverändert, wohingegen sich ein effektiver Wert der Versorgungsspannung und damit das Spannungspotential in jeder einer Phase zugeordneten Wicklung und am Neutralpunkt des Sternpunktes erhöht. Dies würde zu nicht steuerbaren Stromflüssen innerhalb von Feldwicklungen derjenigen elektrischen Maschinen führen, die in diesem Moment miteinander verbunden sind. Aus diesem Grund ist es vorteilhaft, während dem Auftreten der Einspeisung eine schaltungstechnische Trennung der Verbindung mit einer betroffenen Maschine vorzunehmen, bzw. danach die Verbindung wieder herzustellen.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der Schalter als ein Halbleiterschalter, insbesondere ein bidirektionaler Halbleiterschalter, oder als ein mechanischer Schalter gewählt. Vorteilhaft handelt es sich um einen durch eine

Steuereinheit steuerbaren Schalter. Es kann sich dabei auch um einen Trennschalter handeln, der dazu ausgebildet ist, zwar keinen bestehenden Strom zu unterbrechen, aber bei Aktivierung keinen neu fließenden Strom zulässt. Vorteilhaft kann ein solcher

Trennschalter dazu eingesetzt werden, einen Ausgleich unterschiedlicher Ladezustände der Energiespeicher zu ermöglichen und sich danach zu öffnen. Dies entspricht auch einem Einsatz von Halbleiterschaltern, bspw. Thyristoren, welche einen Ausschaltvorgang solange nicht gestatten, bis ein fließender Strom stoppt oder die Fließrichtung ändert.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird durch Kontrolle eines Potentialunterschieds, bspw. feststellbar durch eine jeweilige

Spannungsmessung gegenüber einem gemeinsamen Massepotential und durch den jeweiligen Wechselrichter regelbar, zwischen den N-phasigen elektrischen Maschinen ein Energiefluss gesteuert. Eine Größe des Energieflusses bestimmt den durch den jeweiligen Schalter fließende Strom.

In einer noch weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der Energiefluss auf einen vorgegebenen Wert begrenzt. Der Energiefluss findet durch einen durch die Wicklungen der jeweiligen Feldwicklung fließenden Strom statt, wobei der Strom zwar nicht zum Drehmoment in der elektrischen Maschine beiträgt, jedoch aber zu Verlusten in den in der Regel aus Kupfer bestehenden Wicklungen führt, die sich in einer Erwärmung der Wicklungen manifestieren. Um diese Wärmeverluste zu vermeiden, wird der Energiefluss auf eine Minimallast der jeweiligen elektrischen Maschine begrenzt. In einer Ausführungsform des erfindungsgemäßen Verfahrens wird der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N- phasigen elektrischen Maschine zu schließende Schalter geöffnet, weil die

Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine Einspeisung einer N-ten harmonischen Oberschwingung einer Grundschwingung einer Versorgungsspannung hervorgerufen wird. Die Einspeisung kann bspw. durch ein auf einem Wechselrichter ausgeführtes Pulsweitenmodulationsverfahren erfolgen. In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N-phasigen elektrischen Maschine zu schließende Schalter geöffnet, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch eine generatorische Rückwirkung, vom Fachmann mit back-EMF, abgekürzt für back electromotive force, bezeichnet, der ersten N-phasigen elektrischen Maschine

hervorgerufen wird.

In einer noch weiteren Ausführungsform des erfindungsgemäßen Verfahrens wird der zur Herstellung einer elektrischen Verbindung zu mindestens einer zweiten Feldwicklung einer zweiten N-phasigen elektrischen Maschine zu schließende Schalter geöffnet, weil die Spannungsbelastung im Nullsystem einer ersten N-phasigen elektrischen Maschine durch einen durch Schaltvorgänge im der ersten N-phasigen elektrischen Maschine

zugeordneten Energiespeicher erzeugten Stoßstrom hervorgerufen wird. Die

Schaltvorgänge können bspw. durch den voranstehend erwähnten Wechselrichter oder durch direktes Verschalten einzelner Batteriemodule bedingt sein.

In einer noch weiteren Ausführungsform des erfindungsgemäßen Verfahrens werden als jeweiliger Energiespeicher mindestens N Batteriemodule, die jeweilig mindestens zwei Leistungsschalter und mindestens eine mit den Leistungsschaltern verbundene

Energiezelle umfassen, gewählt. Die jeweiligen Batteriemodule können über die Leistungsschalter mittels einer Steuereinheit aktiv verschaltet werden, so dass sie bspw. ein Pulsweitenmodulationsverfahren zum Betrieb der zugeordneten N-phasigen

elektrischen Maschine ausführen. Ein bei einer passiven Batterie notwendiger

Wechselrichter entfällt in diesem Fall.

Ferner wird ein System beansprucht, das mindestens zwei Energiespeicher, mindestens zwei jeweils mit einem Energiespeicher der mindestens zwei Energiespeicher betriebene und den jeweiligen Energiespeichern zugeordnete N-phasige elektrische Maschinen, mindestens eine mit einem Computerprozessor und einem auf dem Computerprozessor laufenden Computerprogramm ausgestattete Steuereinheit, welche einen jeweiligen Energiespeicher zum Betreiben der ihm jeweils zugeordneten N-phasigen elektrischen Maschine steuert, sowie mindestens einen Schalter umfasst, und dazu ausgelegt ist, ein voranstehend beschriebenes Verfahren auszuführen. In Ausgestaltung des erfindungsgemäßen Systems umfasst ein jeweiliger Energiespeicher ein Energiemodul und einen Wechselrichter, wobei der Wechselrichter dazu konfiguriert ist, aus einem von dem Energiemodul bereitgestellten Gleichstrom N Phasen eines zum Betreiben einer N-phasigen elektrischen Maschine notwendigen Wechselstroms zu generieren.

In weiterer Ausgestaltung des erfindungsgemäßen Systems, umfasst ein jeweiliger Energiespeicher mindestens N Batteriemodule, wobei das Batteriemodul mindestens zwei Leistungsschalter und mindestens eine mit den mindestens zwei Leistungsschaltern elektrisch verbundene Energiezelle umfasst. Dies können bspw. Batteriemodule nach dem Prinzip einer Multilevelkonverter-Technologie, wie sie bspw. in der Druckschrift DE 10 2010 052 934 Al offenbart wurde, sein.

Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung. Es versteht sich, dass die voranstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Die Figuren werden zusammenhängend und übergreifend beschrieben, gleichen

Komponenten sind dieselben Bezugszeichen zugeordnet.

Figur 1 zeigt in schematischer Darstellung gemäß dem Stand der Technik zwei einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebsysteme, die keine elektrische Verbindung aufweisen.

Figur 2 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines Kraftfahrzeugs zugewiesener Antriebsysteme.

Figur 3 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung mit einem Schalter zwischen den jeweiligen Elektromotoren und festverdrahteten Minuspolen der jeweiligen Energiespeicher.

Figur 4 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung mit einer festverdrahteten Verbindung zwischen den

Elektromotoren und einem Schalter zwischen den Minuspolen der jeweiligen

Energiespeicher.

Figur 5 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung mit festverdrahteten Pluspolen der jeweiligen

Energiespeicher und einem Schalter zwischen den jeweiligen Elektromotoren. Figur 6 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung mit einer festverdrahteten Verbindung zwischen den

Elektromotoren und einem Schalter zwischen den Pluspolen der jeweiligen

Energiespeicher.

Figur 7 zeigt in schematischer Darstellung zwei Ausführungsformen einer

erfindungsgemäß vorgesehenen Verschaltung mit einem Schalter zwischen

verschiedenen Wicklungen gleicher Phase der jeweiligen Feldwicklungen der

Elektromotoren und festverdrahteten Minuspolen der jeweiligen Energiespeicher

Figur 8 zeigt in schematischer Darstellung einen Multilevelkonverter, der in zwei separate Energiespeicher für ein jeweiliges Antriebssystem geschaltet wurde.

Figur 9 zeigt in schematischer Darstellung eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung eines in zwei Energiespeicher aufgeteilten

Multilevelkonverters für zwei einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebsysteme mit einem Schalter zwischen einer Verbindung der Neutralpunkte der jeweiligen Elektromotoren. Figur 10 zeigt in schematischer Darstellung eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung eines in zwei Energiespeicher aufgeteilten Multilevelkonverters für zwei einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebsysteme mit einem Schalter zwischen verschiedenen Wicklungen gleicher Phase der jeweiligen Feldwicklungen der Elektromotoren.

In Figur 1 wird in schematischer Darstellung 100 gemäß dem Stand der Technik zwei einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebssysteme 110, 120, die keine elektrische Verbindung aufweisen, gezeigt. Ein jeweiliges Antriebssystem besteht aus einem Energiespeicher 114, 124 und einer N-phasigen elektrischen Maschine 112, 122. Der jeweilige Energiespeicher 114, 124 besteht aus einem Energiemodul 116, 126 und einem Wechselrichter 115, 125, der aus der Gleichspannung der Energiemodule 116, 126 eine N-phasige Wechselspannung für eine Feldwicklung 113, 123 der N- phasigen elektrischen Maschine 112, 122 bildet. In Figur 2 wird in schematischer Darstellung 200 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines Kraftfahrzeugs zugewiesener Antriebsysteme 110, 120 gezeigt. Ein Minuspol 218 des Energiemoduls 116 ist mit dem Minuspol 228 des Energiemoduls 126 durch eine festverdrahtete Verbindung 202 verbunden. Ebenfalls miteinander verbunden durch eine festverdrahtete Verbindung 204 ist ein Neutralpunkt 217 der Feldwicklung 113 mit einem Neutralpunkt 227 der Feldwicklung 123. Liegt ein unterschiedlicher Ladezustand der Energiemodule 116 und 126 vor, findet über das jeweilige Nullsystem der ansonsten sich im laufendem Betrieb befindlichen N-phasigen elektrischen Maschinen 112 und 122 ein Energietransfer zwischen den jeweiligen Energiespeichern 114 und 124 statt.

In Figur 3 wird in schematischer Darstellung 300 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines Kraftfahrzeugs zugewiesener Antriebsysteme 110, 120 gezeigt. Während jeweilige Minuspole der Batterien 116 und 126 durch eine feste Verbindung 302 miteinander verdrahtet sind, befindet sich zwischen Neutralpunkten der jeweiligen Feldwicklungen 113 und 123 ein Schalter 330. Liegt in einer der N-phasigen elektrischen Maschinen 112 und 122 eine Spannungsbelastung vor, bspw. durch Einspeisung einer dritten harmonischen Oberschwingung der Grundschwingung einer Versorgungsspannung der entsprechenden Feldwicklung 113 bzw. 123, muss der Schalter 330 geöffnet sein, um nichtsteuerbare Stromflüsse zu vermeiden. Ansonsten kann bei einem geschlossenen Schalter 330 über die jeweiligen Nullsysteme der ansonsten sich im laufendem Betrieb befindlichen N- phasigen elektrischen Maschinen 112 und 122 ein Energietransfer zwischen den jeweiligen Energiespeichern 114 und 124 stattfinden. In Figur 4 wird in schematischer Darstellung 400 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines

Kraftfahrzeugs zugewiesener Antriebsysteme 110 und 120 gezeigt. Im Vergleich mit Figur 3 liegt eine fest verdrahtete Verbindung 404 zwischen den Neutralpunkten der jeweiligen Feldwicklungen 113 und 123 vor. Der einen Energieübertrag zwischen den beiden Energiespeichern 114, 124 unterbrechende Schalter 330 ist zwischen einer Verbindungsleitung 402 der beiden Minuspole der Energiespeicher 114, 124 angeordnet. Generell kann ein Schalter 330 an einem beliebigen Ort eines die Verbindung zwischen den jeweiligen Feldwicklungen 113, 123 einschließenden Stromkreises eingebracht werden, wobei er jedoch so angeordnet sein muss, dass er bei Öffnung ein ihm

zugeordnetes System aus jeweiligem Energiespeicher 114, 124 und diesem jeweils zugeordneter elektrischer Maschine 112, 122 nicht außer Funktion setzt.

In Figur 5 wird in schematischer Darstellung 500 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines

Kraftfahrzeugs zugewiesener Antriebsysteme 110 und 120 gezeigt, wobei ein Pluspol 519 des Energiemoduls 116 mit einem Pluspol 529 des Energiemoduls 126 durch eine festverdrahtete Verbindung 502 verbunden ist. Zwischen den Neutralpunkten der jeweiligen Feldwicklungen 113 und 123 befindet sich ein Schalter 330.

In Figur 6 wird in schematischer Darstellung 600 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung zweier einer jeweiligen Achse eines

Kraftfahrzeugs zugewiesener Antriebsysteme 110 und 120 mit einer festverdrahteten Verbindung 204 zwischen den Neutralpunkten der jeweiligen Feldwicklungen 113 und 123 gezeigt. Der einen Energieübertrag zwischen den beiden Energiespeichern 114,

124 unterbrechende Schalter 330 ist in einer Verbindungsleitung der beiden Pluspole 519 und 529 der Energiemodule 116 und 126 angeordnet.

In Figur 7 werden in schematischer Darstellung zwei Ausführungsformen einer

erfindungsgemäß vorgesehenen Verschaltung 701 und 702 zweier einer jeweiligen Achse eines Kraftfahrzeugs zugewiesener Antriebsysteme 110 und 120 gezeigt, wobei jeweils ein Schalter 330 zwischen verschiedenen Wicklungen 711 , 721 und 712, 722 gleicher Phase der jeweiligen Feldwicklungen der Elektromotoren angeordnet ist und die

Minuspole 218 und 228 der jeweiligen Energiespeicher über eine Verbindung 202 fest miteinander verdrahtet sind. In der Verschaltung 701 ist der Schalter 330 in der

Verbindung zu einem Anschluss an die Wicklung 711 der Feldwicklung im Antriebssystem 110 und einem Anschluss an die Wicklung 721 der Feldwicklung im Antriebssystem 120 angeordnet. In der Verschaltung 702 ist der Schalter 330 in der Verbindung zu einem Anschluss an die Wicklung 712 der Feldwicklung im Antriebssystem 110 und einem Anschluss an die Wicklung 722 der Feldwicklung im Antriebssystem 120 angeordnet. Generell sind INI solcher Anschlussmöglichkeiten bei einem N-phasigen Elektromotor denkbar.

In Figur 8 wird in schematischer Darstellung 800 ein Multilevelkonverter gezeigt, der in zwei separate Energiespeicher für entsprechend zwei Antriebssysteme geschaltet wurde und einen Spezialfall für ein aus getrennten Energiespeichern bestehendes System darstellt. Der Multilevelkonverter umfasst eine Mehrzahl an Batteriemodulen 802, wobei die Batteriemodule 802 jeweils mindestens zwei Leistungsschalter und mindestens eine mit den mindestens zwei Leistungsschaltern elektrisch verbundene Energiezelle aufweisen. Sind pro Batteriemodul 802 mehrere Energiezellen vorhanden, so sind diese untereinander in einer vorbestimmten seriell-parallelen Konfiguration fest verdrahtet. Die Batteriemodule 802 sind pro Antriebssystem in N Strängen 804 angeordnet, die die jeweiligen Phasen bilden. Bei dem hier gezeigten Beispiel mit einem Drehstrommotor 812 und einem Drehstrommotor 822 handelt es sich um N=3 Phasen, die für den

Drehstrommotor 812 an den Strangendpunkten 814, 816 und 818 vorliegen, und für Drehstrommotor 822 an den Strangendpunkten 824, 826 und 828 vorliegen. Die Leistungsschalter der Batteriemodule 802 erlauben eine Änderung einer Konfiguration der Batteriemodule 802 untereinander bei laufendem Betrieb. Die gezeigte Konfiguration des Multilevelkonverters ist genauso wie die in Figur 1 gezeigte Darstellung 100 von unterschiedlicher Entladung durch unterschiedlich auftretende Belastungen der jeweiligen Antriebssysteme betroffen.

In Figur 9 wird in schematischer Darstellung 900 eine Ausführungsform einer

erfindungsgemäß vorgesehenen Verschaltung eines in zwei Energiespeicher 914, 924 aufgeteilten Multilevelkonverters für entsprechend zwei jeweils einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebssysteme 912 bzw. 922 gezeigt. Vorteilhaft wird ein Schalter 930 in eine Verbindungsleitung der beiden Neutralpunkte 902 der Drehstrommotoren der jeweiligen Antriebssysteme 912, 922 eingebracht. Das erfindungsgemäße Verfahren sieht vor, den Schalter 930 zu öffnen, sobald bspw. eine dritte harmonische Oberschwingung der Grundschwingung der vom Multilevelkonverter erzeugten Versorgungspannung für mindestens einen der beiden Drehstrommotoren 912, 922 eingespeist wird. Bei geschlossenem Zustand des Schalters 930 findet ein Energietransfer zwischen den Energiespeichern 914 und 924 statt. Weist bspw. der Energiespeicher 914 einen höheren Ladezustand und damit ein höheres

Spannungspotential als der Energiespeicher 924 auf, so fließt bei geschlossenem Schalter 930 ein Strom aus dem Energiespeicher 914 durch die Feldwicklung des Drehstrommotors 912 zu dessen Neutralpunkt 916, und von dort über den

geschlossenen Schalter 930 zu dem Neutralpunkt 902 des Drehstrommotors im

Antriebssystem 922, und über dessen Feldwicklung zu dem Energiespeicher 924. Dies geschieht solange, wie ein Potentialunterschied zwischen den beiden Energiespeichern 914, 924 vorherrscht.

In Figur 10 wird in schematischer Darstellung 1000 eine Ausführungsform einer erfindungsgemäß vorgesehenen Verschaltung eines in zwei Energiespeicher 914 und 924 aufgeteilten Multilevelkonverters für zwei einer jeweiligen Achse eines Kraftfahrzeugs zugewiesene Antriebsysteme 912 und 922 gezeigt, wobei ein Schalter 930 zwischen einem Anschluss 1011 und einem Anschluss 1021 an Wicklungen gleicher Phase der jeweiligen Feldwicklungen der Elektromotoren angeordnet ist. Generell sind N solcher Anschlussmöglichkeiten bei einem N-phasigen Elektromotor denkbar. Bei der in Darstellung 1000 gezeigten Ausführungsform mit einem Drehstrommotor sind alternativ Verbindungen zwischen den Anschlüssen 1012 und 1022, bzw. zwischen den

Anschlüssen 1013 und 1023 an die jeweiligen Wicklungen der jeweiligen Feldwicklungen der Drehstrommotoren denkbar.