Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ENZYMATIC PRODUCTION OF GLUCARIC ACID FROM GLUCURONIC ACID
Document Type and Number:
WIPO Patent Application WO/2020/232536
Kind Code:
A1
Abstract:
Described herein are processes and enzymes for the enzymatic production of glucaric acid from glucuronic acid, and more specifically the enzymatic production of substituted glucaric acid from substituted glucuronic acid. Advantageously, the process and enzymes described herein make preferential use substituted glucuronic acid obtained from natural sources, such as underutilized hemicellulose stream from wood and agricultural biorefineries, to produce substantially enantiomerically pure substituted D-glucaric acid.

Inventors:
MASTER EMMA R (CA)
VUONG THU V (CA)
Application Number:
PCT/CA2020/050658
Publication Date:
November 26, 2020
Filing Date:
May 15, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GOVERNING COUNCIL UNIV TORONTO (CA)
International Classes:
C12P7/58; C07C59/285; C08G69/00; C08L77/00; C12N9/02; C12N9/04; C12N9/24; C12N15/53
Other References:
VUONG ET AL.: "Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase substrate range and H202 stability", NATURE, vol. 6, no. 1, 21 November 2016 (2016-11-21), pages 37356, XP055761857, ISSN: 1476-4687
YAN ET AL.: "- Action of a GH115 α-glucuronidase fromAmphibacillus xylanusat alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan", ENZYME AND MICROBIAL TECHNOLOGY, vol. 104, September 2017 (2017-09-01), pages 22 - 28, XP085092417, ISSN: 0141-0229, DOI: 10.1016/j.enzmictec.2017.05.004
SIGMA ALDRICH: "D-Saccharic acid potassium salt", SIGMA-ALDRICH PRODUCT CATALOG, 16 July 2007 (2007-07-16), XP055761867, Retrieved from the Internet
See also references of EP 3969600A4
Attorney, Agent or Firm:
ROBIC (CA)
Download PDF:
Claims:
CLAIMS:

1. A process for producing glucaric acid, the process comprising: providing a solution comprising dissolved glucuronic acid; providing a recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid; and contacting the dissolved glucuronic acid with said recombinant oxidase or oxidoreductase under conditions enabling enzymatic conversion of the glucuronic acid to glucaric acid.

2. The process of claim 1, wherein the recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid belongs to class E.C. 1.1.99.

3. The process of claim 1 or 2, wherein the recombinant oxidase or oxidoreductase has higher substrate specificity for substituted glucuronic acid as compared to unsubstituted glucuronic acid.

4. The process of any one of claims 1 to 3, wherein the oxidase or oxidoreductase is a gluco- oligosaccharide oxidase (GOOX) variant, such as of class E.C. 1.1.99.B3, that catalyzes the oxidation of glucuronic acid to glucaric acid.

5. The process of claim 4, wherein the GOOX variant has higher substrate specificity for glucuronic acid as compared to the GOOX of SEQ ID NO: 1.

6. The process of any one of claims 1 to 5, wherein the oxidase or oxidoreductase:

(i) is a GOOX variant comprising an FAD-binding domain comprising an amino acid

sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,

77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 2, operably linked to a substrate binding domain comprising an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 3;

(ii) is the GOOX variant of (i), further comprising one or more amino acid differences as compared to SEQ ID NO: 1 at residue positions 207 to 474, wherein the variant exhibits increased substrate specificity for substituted or unsubstituted glucuronic acid as compared to a corresponding GOOX polypeptide lacking said one or more amino acid differences; (111) is a GOOX variant comprising one or more amino acid differences as compared to SEQ ID NO: 1 at residue position 300, 72, 247, 314, 351, 353, 388, or any combination thereof, preferably wherein said GOOX variant exhibits improved activity utilizing substituted or unsubstituted glucuronic acid as substrate over the GOOX of SEQ ID NO: 1;

(iv) is a GOOX variant comprising 300A, 72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1;

(v) is a GOOX variant comprising two or more amino acid differences as compared to SEQ ID NO: 1 at residue position 300 and at residue position 72, 247, 314, 351, 353, 388, or any combination thereof;

(VI) is a GOOX variant comprising 300A and 72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1;

(vii) is a GOOX variant comprising an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1;

(viii) is a variant of a Sarocladium strictum GOOX polypeptide, said Sarocladium strictum

GOOX polypeptide comprising an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1;

(ix) is immobilized to a solid support, particle, or matrix;

(x) catalyzes the oxidation of glucuronic acid to glucaric acid at alkaline pH, such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5;

(xi) catalyzes the oxidation of glucuronic acid to glucaric acid at a temperature above 37°C, such as between 38°C and 45°C, 38°C and 44°C, 38°C and 43°C, 38°C and 42°C, 39°C to 41°C, or about 40°C;

(xii) catalyzes the oxidation of glucuronic acid to glucaric acid in the absence of exogenous cofactor supplementation, such as NAD; or

(xiii) any combination of (i) to (xii).

7. The process of any one of claims 1 to 6, wherein the enzymatic conversion of the glucuronic acid to ghicaric acid occurs:

(i) in a buffer having an ionic strength of at least 100, 150, 200, 250, 300, 350, 400, 450, or 500 mM, wherein said ionic strength increases the molar ratio of glucaric acid to glucuronic acid produced by said process, as compared to a buffer having an ionic strength less than 100 mM or less than 50 mM; (ii) in a buffer having an alkaline pH, such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5;

(iii) at a temperature above 37°C, such as between 38°C and 45°C, 38°C and 44°C, 38°C and 43°C, 38°C and 42°C, 39°C to 41°C, or about 40°C;

(iv) in the absence of exogenous cofactor supplementation, such as NAD supplementation; or

(v) any combination of (i) to (iv).

8. The process of any one of claims 1 to 7, wherein the glucuronic acid is obtained from enzymatic treatment of a glucuronic acid-substituted polysaccharide, such as glucuronic acid-substituted xylan, glucuronic acid-substituted arabinoxylan, and/or glucuronic acid-substituted ulvan, glucuronoxylans from hardwood (deciduous) trees, arabinoglucuronoxylans from softwood (coniferous) trees,

glucuronoarabinoxylan from agricultural fibre, or ulvan from green algae.

9. The process of claim 8, wherein the glucuronic acid is obtained from enzymatic treatment of the glucuronic acid-substituted polysaccharide with a glycoside hydrolase.

10. The process of claim 9, wherein the glycoside hydrolase:

(i) is a glucuronidase catalyzing the release of glucuronic acid from glucuronic acid-substituted polysaccharide (e.g., glucuronoxylan);

(ii) is a glucuronidase belonging to the glycoside hydrolase (GH) family GH2, GH67, or

GH115;

(iii) is a glucuronidase (e.g., alpha-glucuronidase and/or beta- glucuronidase);

(iv) is AxyAgu 115 A or SdeAgu 115 A, or a variant thereof that catalyzes the release of

glucuronic acid from glucuronoxylan;

(v) is a AxyAgu 115A or SdeAgu 115A variant comprising an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO:

4 or 5; or

(vi) any combination of (i) to (v).

11. The process of any one of claims 8 to 10, wherein the enzymatic treatment of the glucuronic acid- substituted polysaccharide to release the glucuronic acid and the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase are performed in the same reaction vessel, preferably at alkaline pH (such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5).

12. The process of any one of claims 8 to 11, which is a sequential two-step process comprising the enzymatic treatment of the glucuronic acid-substituted polysaccharide to release the glucuronic acid, followed by the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase.

13. The process of any one of claims 9 to 12, wherein the glycoside hydrolase and/or the oxidase or oxidoreductase are immobilized to a solid support, particle, or matrix.

14. The process of any one of claims 1 to 13, wherein the glucuronic acid:

(i) is or comprises substituted glucuronic acid (e.g., methyl glucuronic acid or, more

specifically, 4-O-methyl glucuronic acid), which is enzymatically converted to the corresponding substituted glucaric acid by said recombinant oxidase or oxidoreductase;

(ii) is substantially enantiomerically pure substituted D-glucuronic acid (e.g., methyl D- glucuronic acid or, more specifically, 4- -methyl D-glucuronic acid), which is enzymatically converted to the corresponding substantially enantiomerically pure substituted D-glucaric acid by said recombinant oxidase or oxidoreductase; or

(iii) both (i) and (ii).

15. The process of any one of claims 8 to 14, further comprising the use of a catalase to catalyze the breakdown hydrogen peroxide generated by the oxidase or oxidoreductase.

16. The process of any one of claims 8 to 15, wherein the glucuronic acid-stripped polysaccharide produced the enzymatic treatment of the glucuronic acid-substituted polysaccharide is isolated or purified from the released glucuronic acid or glucaric acid.

17. A process for producing glucaric acid from a feedstock, the process comprising:

(a) providing a feedstock comprising a glucuronic acid-substituted polysaccharide;

(b) enzymatically hydrolyzing the glucuronic acid-substituted polysaccharide to produce

glucuronic acid and glucuronic acid-stripped polysaccharide;

(c) enzymatically oxidizing the glucuronic acid to glucaric acid; and

(d) separating or isolating the glucaric acid from the glucuronic acid-stripped polysaccharide.

18. The process of claim 17, wherein step (b) is as defined in any one of claims 1 to 7; and/or step (c) is as defined in any one of claims 8 to 11.

19. The process of claim 17 or 18, which is a process as defined in any one of claims 12 to 16.

20. A composition comprising substantially enantiomerically pure unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4-O-methyl D-glucaric acid.

21. The composition of claim 20, which is produced by the process of any one of claims 1 to 19.

22. The composition of claim 20 or 21, wherein the unsubstituted D-glucaric acid, substituted D- glucaric acid, methyl D-glucaric acid, or 4- -methyl D-glucaric acid is comprised as a substantially single acid form.

23. The composition of any one of claims 20 to 22 for use in the production of nylon. 24. A composition comprising the oxidase or oxidoreductase as defined in any one of claims 1 to 7 or

13, and further comprising: (a) the glucuronic acid as defined in claim 8, 9, or 14; (b) the glycoside hydrolase as defined in claim 10 or 13; (c) the catalase as defined in claim 15; (d) the unsubstituted or substituted glucaric acid as defined in claim 20 or 22; or (e) any combination of (a) to (d). 25. A recombinant oxidase or oxidoreductase for use in catalyzing the conversion of substituted or unsubstituted glucuronic acid to substituted or unsubstituted glucaric acid, the recombinant oxidase or oxidoreductase being the oxidase or oxidoreductase as defined in any one of claims 1 to 7 or 13.

26. The recombinant oxidase or oxidoreductase for use of claim 25, which is for use in the process of any one of claims 1 to 19.

Description:
ENZYMATIC PRODUCTION OF GLUCARIC ACID FROM GLUCURONIC ACID

The present description relates to the enzymatic production of substituted or unsubstituted glucaric acid from substituted or unsubstituted glucuronic acid. More specifically, the present description relates to the production of D-glucaric acid or 4-O-methyl D-glucaric acid from D-glucuronic acid or 4- -methyl D-glucuronic acid, which can be obtained from natural sources, such as wood hemicelluloses, com fibre, and algal sources.

The present description refers to a number of documents, their contents of which is herein incorporated by reference in their entirety.

BACKGROUND

Glucaric acid was listed by the US Department of Energy in 2004 as one of the top 12 bio-based chemicals. This dicarboxylic acid could replace phosphoric acid as a builder component in detergents for calcium and magnesium sequestering, and it is also a potential building block for a number of biopolymers including new nylons and hyperbranched polyesters. The global glucaric acid market size was estimated at USD 550.4 million in 2016 on account of increasing demand from detergents, soaps, food ingredients, corrosion inhibitors, and de-icing applications.

Presently, glucaric acid is commercially synthesized as glucarate by the non-selective nitric acid oxidation of glucose with a yield of ca. 40 %. This conventional approach as well as recent

heterogeneous, metal catalyst methods suffer from low selectivity, increasing the cost for downstream separation of glucaric acid from other organic acid by-products, formed by overoxidation and breaking of C-C bonds. The absence of green technologies for glucaric acid production is one of the reasons for its exclusion from the revised list of new top chemical opportunities from biorefineries (Bozell and Petersen, 2010). Accordingly, considerable investment has been focused on engineering microorganisms, including E. coli (Moon et ah, 2009), Pichia pastoris (Liu et al. , 2016) and Saccharomyces cerevisiae (Chen et ah, 2018), to transform glucose into glucaric acid. However, even when a co-substrate, myo-inositol was added, the yield from glucose remained at 20 % after 216 h of fermentation (Chen et al., 2018).

Furthermore, this fermentation approach still has problems in downstream separation and extraction, due to the presence of medium components and other metabolites. A recent study demonstrated a cell-free approach to produce glucuronic acid from glucuronoxylan (Lee et al., 2016a), where three enzymes including an endo-xylanase (EC 3.2.1.8), alpha-glucuronidase (EC 3.2.1.139), and uronate dehydrogenase (EC 1.1.1.203) were used in a cocktail or co-localized on a scaffold. The xylanase cleaved

glucuronoxylan to various xylo-oligosaccharides, of which some contained 4-O-methyl D-glucuronic acid. The alpha-glucuronidase then removed 4- -methyl D-glucuronic acid that were attached to the non reducing end of short xylo-oligosaccharides. The released 4-O-methyl D-glucuronic acid was finally converted to 4-O-methyl D-glucaric acid by the dehydrogenase (Lee, 2016a). Notably, this approach requires a continuous supply of an exogenous cofactor (NAD) and the separation of the 4- -methyl D- glucaric acid from soluble xylo-oligosaccharides. There thus remains a need for improved processes for the production of glucaric acid.

SUMMARY

The present description relates to the discovery that gluco-oligosaccharide oxidase (GOOX) enzymes have the ability to catalyze the enzymatic conversion of substituted glucuronic acids (such as 4- O-methyl D-glucuronic acid) to their corresponding substituted glucaric acids (such as 4-O-methyl D- glucaric acid). Wild-type GOOX and GOOX variants are shown herein to have striking substrate preference for substituted glucuronic acid over unsubstituted glucuronic acid, with some GOOX variants demonstrating improved performance over the wild-type enzyme for utilizing substituted and/or unsubstituted glucuronic acid as substrates. While previous studies have shown that GOOX can act on oligosaccharides and some monosaccharides (WO/201211431; Foumani et al, 2011), the ability of this enzyme family to utilize glucuronic acid as substrate, and more specifically that the substituted form of glucuronic acid may be the preferred substrate is not believed to have been previously reported.

Furthermore, described herein is a simplified two-step enzymic pathway to glucaric acid from a glucuronic acid-substituted polysaccharide such as glucuronoxylan. In general, the pathway involves treating a glucuronic acid-substituted polysaccharide with an enzyme to release the glucuronic acid substituents from its polysaccharide backbone, thereby producing free glucuronic acid and a glucuronic acid-stripped polysaccharide. The free glucuronic acid is then enzymatically converted to glucaric acid via an oxidase or oxidoreductase, such as the GOOX enzymes described herein.

In some aspects, described herein is a process for producing glucaric acid. The process generally comprises: (a) providing a solution comprising dissolved glucuronic acid; (b) providing a recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid; and (c) contacting the dissolved glucuronic acid with said recombinant oxidase or oxidoreductase under conditions enabling enzymatic conversion of the glucuronic acid to glucaric acid.

In some aspects, described herein is a process for producing glucaric acid from a feedstock, the process comprising: (a) providing a feedstock comprising a glucuronic acid-substituted polysaccharide;

(b) enzymatically hydrolyzing the glucuronic acid-substituted polysaccharide to produce glucuronic acid and glucuronic acid-stripped polysaccharide; (c) enzymatically oxidizing the glucuronic acid to glucaric acid; and (d) separating or isolating the glucaric acid from the glucuronic acid-stripped polysaccharide. In some aspects, described herein a composition comprising substantially enantiomerically pure unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4-O-methyl D- glucaric acid.

In some aspects, described herein is a composition comprising an oxidase or oxidoreductase as described herein, and further comprising: (a) a glucuronic acid as described herein; (b) a glycoside hydrolase as described herein; (c) a catalase as described herein; (d) an unsubstituted or substituted glucaric acid as described herein; or (e) any combination of (a) to (d).

In some aspects, described herein is a recombinant oxidase or oxidoreductase for use in catalyzing the conversion of substituted or unsubstituted glucuronic acid to substituted or unsubstituted glucaric acid, the recombinant oxidase or oxidoreductase being an oxidase or oxidoreductase as described herein.

Abbreviations

AxyAgul l5A: GH115 a-glucuronidase from Amphibacillus xylanus GlcA: D-glucuronic acid; GOOX, gluco-oligosaccharide oxidase; MeGlcA: 4-O-methyl D-glucuronic acid.

General Definitions

Headings, and other identifiers, e.g., (a), (b), (i), (ii), etc., are presented merely for ease of reading the specification and claims. The use of headings or other identifiers in the specification or claims does not necessarily require the steps or elements be performed in alphabetical or numerical order or the order in which they are presented.

The use of the word“a” or“an” when used in conjunction with the term“comprising” in the claims and/or the specification may mean“one” but it is also consistent with the meaning of“one or more”,“at least one”, and“one or more than one”.

The term“about” or“ca.” is used to indicate that a value includes the standard deviation of error for the device or method being employed in order to determine the value. In general, the terminology “about” is meant to designate a possible variation of up to 10 %. Therefore, a variation of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 % of a value is included in the term“about”. Unless indicated otherwise, use of the term “about” before a range applies to both ends of the range.

As used in this specification and claim(s), the words“comprising” (and any form of comprising, such as“comprise” and“comprises”),“having” (and any form of having, such as“have” and“has”), “including” (and any form of including, such as“includes” and“include”) or“containing” (and any form of containing, such as“contains” and“contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.

As used herein,“protein” or“polypeptide”, or any protein/polypeptide enzymes described herein, refers to any peptide-linked chain of amino acids, which may or may not comprise any type of modification (e.g., chemical or post-translational modifications such as acetylation, phosphorylation, glycosylation, sulfatation, sumoylation, prenylation, ubiquitination, etc.). For further clarity,

protein/polypeptide/enzyme modifications are envisaged so long as the modification does not destroy the desired enzymatic activity (e.g., conversion of glucuronic acid to glucaric acid, or cleavage of glucuronic acid from glucuronoxylan). In some embodiments, the proteins/polypeptides/enzymes described herein may be synthesized with one or more D- or L-amino acids, to the extent that the modification does not destroy the desired enzymatic activity.

As used herein, the term“recombinant” in the context of enzymes and polypeptides described herein, refer to those produced via recombinant DNA technology. In some embodiments, the recombinant enzymes and polypeptides described herein may be structurally different, or may be present in a form (e.g., concentration, or purity) that would not be found in nature.

Other objects, advantages and features of the present description will become more apparent upon reading of the following non-re strictive description of specific embodiments thereof, given by way of example only with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In the appended drawings:

Fig. 1: Proposed two-enzyme pathway for 4-O-methyl glucaric acid production from

glucuronoxylan.

Fig. 2: SDS-PAGE of purified AxyAgul 15A and GOOX-Y300A. Lane 1 : Purified AxyAgul 15A (the theoretical molecular mass = 110 kDa); lanes 2 and 3: Different amount of purified GOOX-Y300A (the theoretical molecular mass = 56 kDa including a FAD cofactor).

Fig. 3: HPAEC-PAD analysis of AxyAgul 15A action on glucuronoxylan. The presence of 4- - methyl D-glucuronic acid (MeGlcA) was detected in the treatment of glucuronoxylan with AxyAgul 15A (red line), not in the untreated glucuronoxylan sample (black line). 0.25 mM MeGlcA (grey, dashed line) was included as the standard.

Fig. 4: Nanospray Ionization Ion-trap Mass Spectrometry (NSI-MS) spectrum of released MeGlcA (208.05 g/mol) by AxyAgul 15A. Samples in 50 % methanol were injected in a negative mode and the spectrum was recorded from 100 m/z to 1,000 m/z.

Fig. 5: MeGlcA (0.05 mM - 1 mM) standard curve by HPAEC-PAD.

Fig. 6A: Net charge of MeGlcA at different pH values, as predicted by ACD/Labs 2.0 v5. Fig. 6B: Colorimetric analysis of anion-exchange fractions from AxyAgul 15A digestion of glucuronoxylan. Each fraction (4 pL) was loaded on one square, numbered from 1 to 72, and the silica plate was stained with diphenylamineaniline to detect the presence of MeGlcA, which initiated to show up in the eluent with higher than 0.5 M ammonium acetate (from fraction 63).

Fig. 7: Substrate preference of GOOX-Y300A on GlcA (10 and 50 mM) and MeGlcA (5 and 10 mM).

Fig. 8: NSI-MS spectra of MeGlcA oxidation. (A) Mass spectrum of GOOX-Y300A activity on 1 mM MeGlcA, (B) The corrected mass spectrum to confirm the addition of one oxygen (15.9949 m/z).

Fig. 9: NSI-MS spectrum for the formation of 4-O-methyl D-glucaric acid (224.05 g/mol) by GOOX-Y300A. The reaction was carried in 300 mM Tris buffer pH 8.0 with 60 mM MeGlcA (208.05 g/mol).

Fig. 10: HPAEC-PAD analyses of ¾(¾ effects on AxyAgul 15A activity and MeGlcA degradation. (A) Higher concentrations of H2O2 lowered the amount of MeGlcA released (as quantified by peak area) from glucuronoxylan by AxyAgul 15 A. (B) The presence of H2O2 did not cause a loss of MeGlcA (0.7 mM).

Fig. 11: Activity screening of GOOX variants and glucose oxidase (GO) on GlcA and MeGlcA substrates. The enzymes (16 nM) were assayed at 37°C with 10 mM GlcA and 1 mM MeGlcA in 100 mM Tris buffer pH 8.0 (for GOOX variants) or 50 mM sodium acetate pH 5.0 (for GO). The dotted line indicates the activity of GOOX-VN for MeGlcA for ease of comparison.“CtCBM22A-wtGOOX” and “CtCBM22A-Y300A” represent fusion proteins where the C terminus of the xylan-binding protein CtCBM22A (described in Vuong and Master, 2014) is fused to the N terminus GOOX.

Fig. 12: Isolation of xylan after AxyAgul 15 and GOOX-Y300A treatment. Untreated glucuronoxylan remained soluble before (Fig. 12A) and after (Fig. 12C) centrifugation; however, hydrogel-like material was formed (Fig. 12B) in the reaction incubated with the two enzymes, and it was separated out by centrifugation (Fig. 12D).

Fig. 13: HPAEC-PAD analysis for xylanase digestion of untreated xylan (black), as well as AxyAgul 15A and GOOX-Y300A-pretreated xylan (red). Xylan samples were either treated with XynlOB (Fig. 13A) or Xynl 1A (Fig. 13B); XI, X2 and X3 are xylose, xylobiose and xylotriose correspondingly.

SEOUENCE LISTING

This application contains a Sequence Listing in a computer readable form created on May 15, 2020 having a size of about 28 kb. The computer readable form is incorporated herein by reference.

DETAILED DESCRIPTION

The present description relates to the discovery that gluco-oligosaccharide oxidase (GOOX) enzymes have the ability to catalyze the enzymatic conversion of substituted glucuronic acids (such as 4- O-methyl D-glucuronic acid) to their corresponding substituted glucaric acids (such as 4-O-methyl D- glucaric acid). Wild-type GOOX and GOOX variants are shown herein to have striking substrate preference for substituted glucuronic acid over unsubstituted glucuronic acid, with some GOOX variants demonstrating improved performance over the wild-type enzyme for utilizing substituted and/or unsubstituted glucuronic acid as substrates (see Example 3). While previous studies have shown that wild-type GOOX or some GOOX variants can act on oligosaccharides and some monosaccharides (WO/201211431; Foumani et al., 2011), the ability of this enzyme family to utilize glucuronic acid as substrate, and more specifically that the substituted form of glucuronic acid may be the preferred substrate is not believed to have been previously reported.

In one aspect, described herein is a process for producing glucaric acid from glucuronic acid. The process generally involves providing a solution comprising dissolved glucuronic acid and a recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid.

The dissolved glucuronic acid is allowed to contact the oxidase or oxidoreductase under conditions enabling enzymatic conversion of the glucuronic acid to glucaric acid.

As used herein, the expressions“glucuronic acid” and“glucaric acid” generally include unsubstituted and substituted forms of the acids (e.g., substituted glucuronic acid and/or substituted glucaric acid, 4-O-substituted glucuronic acid and/or 4-O-substituted glucaric acid, methyl glucuronic acid and/or methyl glucaric acid, or more specifically 4-O-methyl glucuronic acid and/or 4- -methyl glucaric acid, or even more specifically 4-O-methyl D-glucuronic acid and/or 4-O-methyl D-glucaric acid), as well as salts thereof, to the extent that the acids are substrates or products of the oxidase or oxidoreductase as described herein. For greater clarity, the expressions“methyl glucuronic acid” and/or “methyl glucaric acid” comprise methyl-substituted forms of the acids, such as 4-O-methyl glucuronic acid and/or 4-O-methyl glucaric acid, or even more specifically 4-O-methyl D-glucuronic acid and/or 4- O-methyl D-glucaric acid).

In some implementations, the oxidase or oxidoreductase may be an enzyme of class E.C. 1.1.99 that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid. In some implementations, the oxidase or oxidoreductase may be an enzyme of class E.C. 1.1.99 that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid, wherein the oxidase or oxidoreductase has higher substrate specificity for substituted glucuronic acid as compared to unsubstituted glucuronic acid (e.g., higher specificity for 4- O-methyl glucuronic acid as compared to unsubstituted glucuronic acid).

In some implementations, the oxidase or oxidoreductase may be a gluco-oligosaccharide oxidase (GOOX) or variant thereof, such as a GOOX of class E.C. 1.1.99.B3 (e.g., a variant of the wild-type GOOX from Sarocladium strictum set forth in SEQ ID NO: 1). In some implementations, the GOOX may comprise an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1.

In some implementations, the GOOX variants described herein may comprise a flavin adenine dinucleotide (FAD)-binding domain comprising an amino acid sequence having at least 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 2, operably linked to a substrate-binding domain comprising an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or

99 % identity to SEQ ID NO: 3.

In some implementations, the GOOX variant may comprise one or more amino acid differences as compared to SEQ ID NO: 1 at residue positions 207 to 474 (substrate-binding domain), wherein the variant exhibits increased substrate specificity to substituted or unsubstituted glucuronic acid as compared to a corresponding GOOX polypeptide (e.g., the GOOX of SEQ ID NO: 1) lacking said amino acid differences. In some implementations, the GOOX is a GOOX variant comprising one or more differences as compared to SEQ ID NO: 1 at least at residue position 300, wherein the GOOX variant catalyzes the conversion of glucuronic acid to glucaric acid. In some implementations, the GOOX is a GOOX variant comprising one or more differences as compared to SEQ ID NO: 1 at residue position 300, 72, 247, 314, 351, 353, 388, or any combination thereof, preferably wherein said GOOX variant exhibits improved activity utilizing substituted or unsubstituted glucuronic acid as substrate over the GOOX of SEQ ID NO: 1. In some implementations, the GOOX is a GOOX variant comprising one or more differences as compared to SEQ ID NO: 1, wherein the GOOX variant catalyzes the conversion of methyl glucuronic acid to methyl glucaric acid. In some implementations, the GOOX is a GOOX variant comprising one or more differences as compared to SEQ ID NO: 1, wherein the GOOX variant has higher substrate preference or specificity for substituted glucuronic acid (e.g., methyl glucuronic acid) as compared to the corresponding unsubstituted glucuronic acid (e.g., as shown in Example 3). In some implementations, the GOOX variants described herein may comprise 300A relative to the amino acid residue numbering of SEQ ID NO: 1. In some implementations, the GOOX variants described herein may comprise 300A,

72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1. In some implementations, the GOOX variants described herein may comprise two or more amino acid differences as compared to SEQ ID NO: 1 at residue position 300 and at residue position 72, 247, 314, 351, 353, 388, or any combination thereof, preferably wherein said GOOX variant exhibits improved activity utilizing substituted or unsubstituted glucuronic acid as substrate over the GOOX of SEQ ID NO: 1. In some implementations, the GOOX variants described herein may comprise 300A and 72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1. In some implementations, the GOOX is a variant of a Sarocladium strictum (previously known as Acremonium strictum ) GOOX polypeptide, wherein the Sarocladium strictum GOOX polypeptide comprises, or is defined by, an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1.

In some implementations, one or more the oxidase or oxidoreductase (e.g., GOOX enzymes) described herein may be immobilized to a solid support, particle, or matrix. In some implementations, the oxidase or oxidoreductase enzymes (e.g., GOOX enzymes) described herein catalyze the oxidation of glucuronic acid to glucaric acid in the absence of exogenous cofactor supplementation, such as NAD. For greater clarity,“exogenous cofactor” refers to the glucuronic acid to glucaric acid conversion via a dehydrogenase as described in Lee et al., 2016a, which requires a continuous supply of NAD to be added to the reaction solution, but excludes the endogenous FAD cofactor present in GOOX (see Fig. 1).

In some implementations, processes as described herein comprising the enzymatic conversion of the glucuronic acid to glucaric acid may occur in a buffer having an ionic strength of at least 100, 150, 200, 250, 300, 350, 400, 450, or 500 mM. In some implementations, the higher ionic strength increases the molar ratio of glucaric acid to glucuronic acid produced by the process, as compared to a buffer having a lower ionic strength (e.g., less than 100 mM or less than 50 mM). In this regard, Example 3 and Fig. 9 show that oxidation of glucuronic acid to glucaric acid by GOOX was improved when the ionic strength of the buffer used was increased to 300 mM. In some implementations, processes as described herein comprising the enzymatic conversion of the glucuronic acid to glucaric acid may occur in a buffer having an ionic strength of C max , wherein C max is the ionic strength at which the molar ratio of glucaric acid to glucuronic acid produced by the process is highest.

In some implementations, processes described herein comprising the enzymatic conversion of the glucuronic acid to glucaric acid may advantageously occur in a buffer having an alkaline pH (e.g., above 7.5. 7.6. 7.7. 7.8. 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5; or from 7.5 to 11, 8 to 11, 8.5 to l l, 9 to 11, 9.5 to 11, or 9.5 to 10.5). In this regard, enzymes described herein (e.g., GOOX and alpha-glucuronidase from glycoside hydrolase family) are shown to prefer alkaline conditions. Furthermore, H2O2 that may be generated as a by-product from the oxidation of glucuronic acid to glucaric acid by the oxidase or oxidoreductase described herein (e.g., GOOX) is less stable in alkaline conditions, facilitating its inactivation and reducing its potential inhibitory or detrimental effects to the process. Furthermore, alkaline conditions are associated with other advantages, such as the ability to increase polysaccharide feedstock loading (e.g., to greater than 1 %, 2 %, 3 %, 4 %, 5 %, 6 %, 7 %, 8 %, 9 %, or 10 % w/v), and to reduce the presence of multiple lactone forms of glucaric acid (Hong et ah, 2016) that could hinder product recovery.

In some implementations, processes described herein comprising the enzymatic conversion of the glucuronic acid to glucaric acid may advantageously occur at a temperature above 37°C, such as between 38°C and 45°C, 38°C and 44°C, 38°C and 43°C, 38°C and 42°C, 39°C to 41°C, or about 40°C. H 2 0 2 that may be generated as a by-product from the oxidation of glucuronic acid to glucaric acid by the oxidase or oxidoreductase described herein (e.g., GOOX) is less stable at higher temperatures, facilitating its inactivation and reducing its potential inhibitory or detrimental effects.

In some implementations, processes described herein comprising the enzymatic conversion of the glucuronic acid to glucaric acid may advantageously occur in the absence of exogenous continuous cofactor supplementation (e.g., NAD supplementation), which would considerably increase production costs.

In some implementations, processes described herein may utilize glucuronic acid obtained or produced by any suitable means (e.g., enzymatically or chemically). In some implementations, processes described herein may utilize substituted glucuronic acid, which is enzymatically converted to the corresponding substituted glucaric acid by the recombinant oxidase or oxidoreductase described herein. In some implementations, processes described herein may utilize methyl glucuronic acid (e.g., 4-O-methyl glucuronic acid), which is enzymatically converted to methyl glucaric acid (e.g., 4- -methyl glucaric acid) by the recombinant oxidase or oxidoreductase described herein. In some implementations, processes described herein may utilize substantially enantiomerically pure D-glucuronic acid or methyl D- glucuronic acid, which is enzymatically converted to substantially enantiomerically pure methyl D- glucaric acid (e.g., 4-O-methyl D-glucaric acid) by the recombinant oxidase or oxidoreductase described herein. As used herein,“substantially enantiomerically pure” generally refers to a level of purity such that the presence of undesired enantiomeric forms is negligible and/or undetectable, or not present in sufficient quality to be of functional significance for the intended use (e.g., polymer/nylon synthesis from D-glucaric acid or 4-O-methyl D-glucaric acid). In some embodiments,“substantially enantiomerically pure” refer to a purity of at least 95 %, 96 %, 97 %, 98 %, 99 %, or 99.5 % by weight. In some implementations, processes described herein may utilize glucuronic acid obtained (released from) from enzymatic treatment of a glucuronic acid-substituted polysaccharide, thereby producing released (free) glucuronic acid and glucuronic acid-stripped polysaccharide. As used herein, the expression“glucuronic acid-substituted polysaccharide” refers to any polysaccharide containing glucuronic acid or the substituted form of glucuronic acid (e.g., 4-O-methyl-glucuronic acid), including glucuronoxylans from hardwood (deciduous) trees, arabinoglucuronoxylans from softwood (coniferous) trees, glucuronoarabinoxylan from agricultural fibre, and ulvan from green algae. In some

implementations, the glucuronic acid-substituted polysaccharide may be or comprise glucuronic acid- substituted xylan, glucuronic acid-substituted arabinoxylan, and/or glucuronic acid-substituted ulvan. More specifically in some implementations, the glucuronic acid-substituted polysaccharide may be or comprise methyl -glucuronoxylan, arabinoglucuronoxylan, glucuronoarabinoxylan, or ulvan. In more specific implementations, processes described herein may utilize glucuronic acid obtained (released from) from enzymatic treatment of glucuronoxylan to produce glucuronic acid and stripped xylan (Example 2 and Figs. 3-5).

In some implementations, the glucuronic acid may be obtained from enzymatic treatment of the glucuronic acid-substituted polysaccharide with a glycoside hydrolase. In some implementations, the glycoside hydrolase catalyzes the release of glucuronic acid from glucuronoxylan, preferably under alkaline conditions. In some implementations, the glycoside hydrolase may be a glucuronidase. As used herein, the expression“glucuronidase” refers to either alpha-glucuronidase and/or beta-glucuronidase that removes glucuronic acid with either alpha linkages and/or beta linkages from glucuronic acid- substituted. In some implementations, the glycoside hydrolase may be a glucuronidase belonging to the glycoside hydrolase (GH) family GH2, GH67 or GH115. Such enzymes generally have the ability to release glucuronic acid from glucuronoxylan, although glucuronidases (e.g., alpha-glucuronidase) from family GH115 are expected to perform better than glucuronidases from family GH67.

In some implementations, processes described herein may utilize glucuronic acid obtained (released from) from enzymatic treatment of glucuronoxylan with a glucuronidase (e.g., an alpha- glucuronidase) from glycoside hydrolase family GH115 (Example 2 and Figs. 3-5).

In some implementations, the alpha-glucuronidase may be a GH115 alpha-glucuronidase from Amphibacillus xylanus (AxyAgul 15A) (Y an et ah, 2017), or a variant thereof, or another glucuronidase that catalyzes the release of glucuronic acid from glucuronoxylan. In some implementations, the

AxyAgul 15A variant polypeptide may comprise, or be defined by, an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 4. In some implementations, the alpha-glucuronidase may be a GH115 alpha-glucuronidase from SdeAgul 15A (Wang et ah, 2016), or a variant thereof, or another glucuronidase that catalyzes the release of glucuronic acid from glucuronoxylan. In some implementations, the SdeAgul 15A variant polypeptide may comprise, or be defined by, an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,

96, 97, 98, or 99 % identity to SEQ ID NO: 5.

In some implementations, the enzymatic treatment of glucuronic acid-substituted polysaccharide to release the glucuronic acid and the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase may advantageously be performed in the same reaction vessel (i.e., a one-pot reaction), preferably at alkaline pH (such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5). In some implementations, both enzymatic steps may be performed simultaneously or sequentially.

Sequential two-step processes comprise the enzymatic treatment of glucuronic acid-substituted polysaccharide to release the glucuronic acid, followed by the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase (Example 4 and Fig. 10). Such an approach may be advantageous, as peroxide (e.g., H2O2) generated as a by-product of the oxidation of glucuronic acid to glucaric acid may inhibit or interfere with other reaction components, such as the activity and/or stability of the glucuronidase. In some implementations, the processes described herein may be carried under conditions that minimize or reduce the level of peroxide to levels that do not substantially negative affect the enzymatic cleavage of glucuronic acid from the glucuronic acid-substituted polysaccharide (e.g., alkaline pH, elevated temperature, lighting conditions). In some implementations, the processes described herein may comprise a catalase that catalyzes the breakdown hydrogen peroxide generated by the oxidase or oxidoreductase.

In some implementations, at least a fraction of one or more of the enzymes described herein (e.g., glycoside hydrolase, glucuronidase, oxidase or oxidoreductase, and/or catalase) may be immobilized to a solid support, particle, or matrix. In some implementations, at least a fraction of one or more of the enzymes described herein (e.g., glycoside hydrolase, glucuronidase, oxidase or oxidoreductase, and/or catalase) may be free in the reaction solution.

In some implementations, the process described here may comprise isolating or purifying the glucuronic acid-stripped polysaccharide (e.g., glucuronic acid-stripped xylan) produced the enzymatic treatment of the glucuronic acid-substituted polysaccharide (e.g., glucuronoxylan) to cleave glucuronic acid. In this regard, Example 5 and Fig. 12 show that the resulting xylan pursuant to the two-step processed described herein, is hydrogel-like, facilitating its separation from the reaction. Xylanases were able to hydrolyze this pre-treated xylan to release xylose and xylo-oligosaccharides (Fig. 13). In some aspects, described herein is a process for producing glucaric acid from a hemicellulose feedstock. The process comprises (a) providing a feedstock comprising a glucuronic acid-substituted polysaccharide; (b) enzymatically hydrolyzing the glucuronic acid-substituted polysaccharide to produce glucuronic acid and glucuronic acid-stripped polysaccharide; (c) enzymatically oxidizing the glucuronic acid to glucaric acid; and (d) separating or isolating the glucaric acid from the glucuronic acid-stripped polysaccharide. In some implementations, steps (b) and/or (c) are as described herein.

In some aspects, described herein a composition comprising substantially enantiomerically pure unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4-O-methyl D- glucaric acid. In some implementations, the composition may be produced by a process as described herein. In some implementations, the unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4- -methyl D-glucaric acid may be comprised as a substantially single acid form (as opposed as an oxidized form such as 1,5-lactone), which is favored by alkaline conditions of the processes described herein. In some implementations, the glucaric acids produced by the processed described herein (e.g., unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4-O-methyl D-glucaric acid) may be employed in the production of (bio-based) nylons having novel or unique properties. Furthermore, the methylated form of glucaric acid could bring additional functional properties to the chemical, including higher compatibility with surfactants in detergents and hydrophobic biopolymers (Rorrer et ah, 2016). Methyl groups of monomers contributed to the molecular architecture and subsequent properties of their derived biopolymers (Rorrer et ah, 2016).

In some implementations, the glucuronoxylan utilised in the processes described herein may be obtained from a xylan waste stream (e.g., com fibre hemicelluloses). Ethanol production from com grain generates a protein-rich co-product that is also typically used as an animal feed. In addition to this, a com fibre stream is generated that is currently underutilized. Roughly 30 % of com fibre recovered from com ethanol plants is xylan, which could be a good source of glucuronoxylan for the glucaric acid production processes described herein. In turn, the stripped xylan (which may be of higher uniformity than other xylan sources) that is recovered may be utilized as rheology modifiers, coatings, packaging films, and food additives.

In some implementations, the process can include pre-treatment or preparation steps to produce a feedstock that includes glucuronoxylan (or other glucuronic acid-substituted polysaccharide) and/or glucuronic acid for conversion into end products. The pre-treatment steps can involve the processing of plant-based biomass to form a solution that contains desired levels of glucuronic acid-substituted polysaccharide, glucuronoxylan, glucuronic acid, or other compounds that include glucuronic acid groups. For example, as mentioned above, ethanol production from com grain can generate com fibre that is suitable for use as a source of glucuronoxylan. The com fibres can be dissolved in water at desired pH and temperature levels, with or without prior grinding, to produce a feedstock material that can be used for enzymatic conversion. Prior to enzymatic conversion, the feedstock material can then be pre-treated by separating certain undesirable compounds, such as suspended solids. In another example, the source of glucuronic acid-substituted polysaccharide, glucuronoxylan and/or glucuronic acid is from biomass, such as softwood or hardwood, used in the pulp and paper industry. When biomass is cooked using hot water or steam extraction without the use of harsh chemicals, the resulting cooked slurry can be separated to form a pulp fibre stream for paper production and an extraction solution rich in hemicellulose. This extraction solution can be used as feedstock for enzymatic conversion as described herein. The extraction solution can also be pre-treated by filtration or other solids-removal methods to remove pulp fibres or other suspended solids. The temperature and/or pH of the extraction solution can also be adjusted, depending on the extraction procedure. It should be noted that the pre-treatment can be adapted depending on the source of glucuronic acid to be processed and converted into glucaric acid. For instance, when glucuronoxylan is a source, then the feedstock can be prepared for to facilitate enzymatic conversion into glucuronic acid and stripped xylan. When another compound is a source of the glucuronic acid groups bound to other groups, then the feedstock can be pre-treated appropriately so that the source can be converted into glucuronic acid.

In some implementations, the feedstock including compounds that include glucuronic acid groups is subjected to a first conversion step to produce a first output material that includes glucuronic acid that has been cleaved from the other groups. In the case of glucuronoxylan, the glucuronic acid groups and thus separated from the xylan groups, and this conversion can be done enzymatically as described herein. Depending on the starting compounds from which the glucuronic acid groups are to be cleaved, the first conversion step can be performed by enzymatic and/or chemical conversion. The first output material can then be subjected to a second conversion step that includes enzymatic conversion of the glucuronic acid groups to produce a second output material that includes glucaric acid. The second output material can then be subjected to separation to remove certain target compounds, such as the glucaric acid and other compounds cleaved from the initial compounds that included glucuronic acid groups. In the case of glucuronoxylan as a starting material, the stripped xylan can be present in the second output material and can be separated to obtain a co-product. Alternatively, the first output material can be subjected to one or more separation steps to remove desired compounds, e.g., stripped xylan, and then the separated glucuronic acid can be subjected to enzymatic conversion to produce glucaric acid. In some cases, the first and second conversion steps are performed sequentially, which may be in a same vessel or two separate vessels. In addition, depending on the target compounds to be separated, various separation techniques can be used (e.g., centrifugation). In some aspects, described herein is a composition comprising an oxidase or oxidoreductase as described herein and further comprising: (a) a glucuronic acid as described herein; (b) a glycoside hydrolase as described herein; (c) the catalase as described herein; (d) the unsubstituted or substituted glucaric acid as described herein; or (e) any combination of (a) to (d).

In some aspects, described herein is a recombinant oxidase or oxidoreductase for use in catalyzing the conversion of substituted or unsubstituted glucuronic acid to substituted or unsubstituted glucaric acid, the recombinant oxidase or oxidoreductase being an oxidase or oxidoreductase as described herein. In some implementations, the recombinant oxidase or oxidoreductase is for use in a process as defined herein.

ITEMS

1. A process for producing glucaric acid, the process comprising: providing a solution comprising dissolved glucuronic acid; providing a recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid; and contacting the dissolved glucuronic acid with said recombinant oxidase or oxidoreductase under conditions enabling enzymatic conversion of the glucuronic acid to glucaric acid.

2. The process of item 1, wherein the recombinant oxidase or oxidoreductase that catalyzes the enzymatic conversion of glucuronic acid to glucaric acid belongs to class E.C. 1.1.99.

3. The process of item 1 or 2, wherein the recombinant oxidase or oxidoreductase has higher

substrate specificity for substituted glucuronic acid as compared to unsubstituted glucuronic acid.

4. The process of any one of items 1 to 3, wherein the oxidase or oxidoreductase is a gluco- oligosaccharide oxidase (GOOX) variant, such as of class E.C. 1.1.99.B3, that catalyzes the oxidation of glucuronic acid to glucaric acid.

5. The process of item 4, wherein the GOOX variant has higher substrate specificity for glucuronic acid as compared to the GOOX of SEQ ID NO: 1.

6. The process of any one of items 1 to 5, wherein the oxidase or oxidoreductase:

(i) is a GOOX variant comprising an FAD-binding domain comprising an amino acid

sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 2, operably linked to a substrate binding domain comprising an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 3; (ii) is the GOOX variant of (i), further comprising one or more amino acid differences as compared to SEQ ID NO: 1 at residue positions 207 to 474, wherein the variant exhibits increased substrate specificity for substituted or unsubstituted glucuronic acid as compared to a corresponding GOOX polypeptide lacking said one or more amino acid differences;

(iii) is a GOOX variant comprising one or more amino acid differences as compared to SEQ ID NO: 1 at residue position 300, 72, 247, 314, 351, 353, 388, or any combination thereof, preferably wherein said GOOX variant exhibits improved activity utilizing substituted or unsubstituted glucuronic acid as substrate over the GOOX of SEQ ID NO: 1;

(iv) is a GOOX variant comprising 300A, 72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1;

(v) is a GOOX variant comprising two or more amino acid differences as compared to SEQ ID NO: 1 at residue position 300 and at residue position 72, 247, 314, 351, 353, 388, or any combination thereof;

(vi) is a GOOX variant comprising 300A and 72F, 247A, 314A, 351A, 353A or 353N, 388S, or any combination thereof relative to the amino acid positioning of SEQ ID NO: 1;

(vii) is a GOOX variant comprising an amino acid sequence having at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1;

(viii) is a variant of a Sarocladium strictum GOOX polypeptide, said Sarocladium strictum

GOOX polypeptide comprising an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO: 1;

(ix) is immobilized to a solid support, particle, or matrix;

(x) catalyzes the oxidation of glucuronic acid to glucaric acid at alkaline pH, such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5;

(xi) catalyzes the oxidation of glucuronic acid to glucaric acid at a temperature above 37°C, such as between 38°C and 45°C, 38°C and 44°C, 38°C and 43°C, 38°C and 42°C, 39°C to 41°C, or about 40°C;

(xii) catalyzes the oxidation of glucuronic acid to glucaric acid in the absence of exogenous cofactor supplementation, such as NAD; or

(xiii) any combination of (i) to (xii).

The process of any one of items 1 to 6, wherein the enzymatic conversion of the glucuronic acid to glucaric acid occurs: (i) in a buffer having an ionic strength of at least 100, 150, 200, 250, 300, 350, 400, 450, or 500 mM, wherein said ionic strength increases the molar ratio of glucaric acid to glucuronic acid produced by said process, as compared to a buffer having an ionic strength less than 100 mM or less than 50 mM;

(ii) in a buffer having an alkaline pH, such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5;

(iii) at a temperature above 37°C, such as between 38°C and 45°C, 38°C and 44°C, 38°C and 43°C, 38°C and 42°C, 39°C to 41°C, or about 40°C;

(iv) in the absence of exogenous cofactor supplementation, such as NAD supplementation; or

(v) any combination of (i) to (iv).

The process of any one of items 1 to 7, wherein the glucuronic acid is obtained from enzymatic treatment of a glucuronic acid-substituted polysaccharide, such as glucuronic acid-substituted xylan, glucuronic acid-substituted arabinoxylan, and/or glucuronic acid-substituted ulvan, glucuronoxylans from hardwood (deciduous) trees, arabinoglucuronoxylans from softwood (coniferous) trees, glucuronoarabinoxylan from agricultural fibre, or ulvan from green algae.

The process of item 8, wherein the glucuronic acid is obtained from enzymatic treatment of the glucuronic acid-substituted polysaccharide with a glycoside hydrolase.

The process of item 9, wherein the glycoside hydrolase:

(i) is a glucuronidase catalyzing the release of glucuronic acid from glucuronic acid-substituted polysaccharide (e.g., glucuronoxylan);

(ii) is a glucuronidase belonging to the glycoside hydrolase (GH) family GH2, GH67, or

GH115;

(iii) is a glucuronidase (e.g., alpha-glucuronidase and/or beta- glucuronidase);

(iv) is AxyAgu 115 A or SdeAgu 115 A, or a variant thereof that catalyzes the release of

glucuronic acid from glucuronoxylan;

(v) is a AxyAgu 115A or SdeAgu 115A variant comprising an amino acid sequence that has at least 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 % identity to SEQ ID NO:

4 or 5; or

(vi) any combination of (i) to (v).

The process of any one of items 8 to 10, wherein the enzymatic treatment of the glucuronic acid- substituted polysaccharide to release the glucuronic acid and the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase are performed in the same reaction vessel, preferably at alkaline pH (such as from 7.5 to 11, 8 to 11, 8.5 to 11, 9 to 11, 9.5 to 11, or 9.5 to 10.5).

12. The process of any one of items 8 to 11, which is a sequential two-step process comprising the enzymatic treatment of the glucuronic acid-substituted polysaccharide to release the glucuronic acid, followed by the conversion of glucuronic acid to glucaric acid by the oxidase or oxidoreductase.

13. The process of any one of items 9 to 12, wherein the glycoside hydrolase and/or the oxidase or oxidoreductase are immobilized to a solid support, particle, or matrix.

14. The process of any one of items 1 to 13, wherein the glucuronic acid:

(i) is or comprises substituted glucuronic acid (e.g., methyl glucuronic acid or, more

specifically, 4-O-methyl glucuronic acid), which is enzymatically converted to the corresponding substituted glucaric acid by said recombinant oxidase or oxidoreductase;

(ii) is substantially enantiomerically pure substituted D-glucuronic acid (e.g., methyl D- glucuronic acid or, more specifically, 4- -methyl D-glucuronic acid), which is enzymatically converted to the corresponding substantially enantiomerically pure substituted D-glucaric acid by said recombinant oxidase or oxidoreductase; or

(iii) both (i) and (ii).

15. The process of any one of items 8 to 14, further comprising the use of a catalase to catalyze the breakdown hydrogen peroxide generated by the oxidase or oxidoreductase.

16. The process of any one of items 8 to 15, wherein the glucuronic acid-stripped polysaccharide produced the enzymatic treatment of the glucuronic acid-substituted polysaccharide is isolated or purified from the released glucuronic acid or glucaric acid.

17. A process for producing glucaric acid from a feedstock, the process comprising:

(a) providing a feedstock comprising a glucuronic acid-substituted polysaccharide;

(b) enzymatically hydrolyzing the glucuronic acid-substituted polysaccharide to produce

glucuronic acid and glucuronic acid-stripped polysaccharide;

(c) enzymatically oxidizing the glucuronic acid to glucaric acid; and

(d) separating or isolating the glucaric acid from the glucuronic acid-stripped polysaccharide.

18. The process of item 17, wherein step (b) is as defined in any one of items 1 to 7; and/or step (c) is as defined in any one of items 8 to 11.

19. The process of item 17 or 18, which is a process as defined in any one of items 12 to 16.

20. A composition comprising substantially enantiomerically pure unsubstituted D-glucaric acid, substituted D-glucaric acid, methyl D-glucaric acid, or 4-O-methyl D-glucaric acid.

21. The composition of item 20, which is produced by the process of any one of items 1 to 19. 22. The composition of item 20 or 21, wherein the unsubstituted D-glucaric acid, substituted D- glucaric acid, methyl D-glucaric acid, or 4-O-methyl D-glucaric acid is comprised as a substantially single acid form.

23. The composition of any one of items 20 to 22 for use in the production of nylon.

24. A composition comprising the oxidase or oxidoreductase as defined in any one of items 1 to 7 or 13, and further comprising: (a) the glucuronic acid as defined in item 8, 9, or 14; (b) the glycoside hydrolase as defined in item 10 or 13; (c) the catalase as defined in item 15; (d) the unsubstituted or substituted glucaric acid as defined in item 20 or 22; or (e) any combination of (a) to (d).

25. A recombinant oxidase or oxidoreductase for use in catalyzing the conversion of substituted or unsubstituted glucuronic acid to substituted or unsubstituted glucaric acid, the recombinant oxidase or oxidoreductase being the oxidase or oxidoreductase as defined in any one of items 1 to 7 or 13.

26. The recombinant oxidase or oxidoreductase for use of item 25, which is for use in the process of any one of items 1 to 19.

EXAMPLES

Example 1: Materials and Methods

1.1 Materials

4-O-methyl glucuronoxylan from beechwood, also known as glucuronoxylan (cat.no. M5144) was purchased from Sigma (USA). 4- -methyl D-glucuronic acid (MeGlcA, purity > 95 %, by 1H-NMR, cat. no. MG244) was purchased from Synthose Inc. (Canada) while D-glucuronic acid (GlcA, not methylated, purify > 98 % by GC, cat.no. G5269) was purchased from Sigma (USA). Catalase (cat. no. C40, > 10,000 units/mg protein) and glucose oxidase (cat. no. G2133) were purchased from Sigma (USA). Two Thermobifida fusca bacterial xylanases, XynlOB and Xynl 1A used were originally published in Irwin et al., 1994 and Kim et al., 2004, respectively, while a fungal xylanase (cat. no.

NS51024) was obtained from Novozymes (Denmark).

1.2 Protein production

AxyAgul 15A and GOOX-Y300A were produced based on the previous publications (Vuong et al., 2013; Yan et al., 2017). Briefly, for AxyAgul 15A purification, Escherichia coli BL21 (7DE3) CodonPlus™ was grown at 37°C in Luria-Bertani medium containing 500 mM sorbitol, 2.5 mM glycine betaine, 34 pg/mL chloramphenicol and 100 pg/mL ampicillin. Cells were induced by 0.5 mM IPTG at 15°C for 16 h. Cells were then sonicated in a binding buffer (300 mM NaCl, 50 mM HEPES pH 7.0, 5 % glycerol, and 5 mM imidazole). After centrifugation, the supernatant was incubated with Ni-NTA resin for 2 h at 4 °C, and the protein was eluted with an elution buffer (300 mM NaCl, 50 mM HEPES pH 7.0,

5 % v/v glycerol, and 250 mM imidazole). The protein was purified further using a Bio-Gel P10 column. Other GOOX variants were produced in the previous work (Foumani et al., 2011; Vuong and Master, 2014; Vuong et al., 2013). The concentration and purity of these recombinant proteins were determined by gel densitometry using a bovine serum albumin (Thermo Fisher Scientific, USA) as the standard. All recombinant GOOX enzymes were produced and characterized herein correspond to wild-type GOOX sequence of SEQ ID NO: 1, and further comprise at the C-terminus a myc-tag followed by 6xHis-tag for detection and purification purposes.

1.3 Enzymatic hydrolysis and oxidation

Glucuronoxylan (6 %) was incubated with AxyAgul 15 A (10 pg/mL) and GOOX-Y300A (10 pg/mL) in 100 mM Tris buffer pH 8.0 at 40°C in a rotator oven for up to 72 h. The reactions were then vacuum -filtered using 96-well filter plates (0.22-pm PVDF membrane) (Millipore, USA) in a Tecan liquid handler (500 mbar) (Tecan Trading AG, Switzerland). Enzymatic products in the flow-through were confirmed by mass spectrometry and quantified by HPAEC-PAD analysis.

The specific activity of GOOX-Y300A (16 nM) on MeGlcA and GlcA (1 mM) was measured in 50 mM Tris buffer pH 8.0 at 40°C. The amount of methyl glucaric acid was determined by measuring the release of H2O2 using a previously published colorimetric assay (Lin et al, 1991). The kinetics of GOOX- Y300A on these acidic sugars were measured at the same condition, but using up to 60 mM MeGlcA and GlcA and in 0.3 M Tris buffer pH 8.0.

Untreated glucuronoxylan (2 %) and those were pre-treated with AxyAgul 15A (10 pg/mL) alone or with both AxyAgul 15 A and GOOX-Y300A (10 pg/mL each) were individually incubated with bacterium xylanases XynlOB and Xynl 1A (0.1 pM) in 50 mM potassium phosphate pH 6. 0 for 16 h at 40°C in a rotator (6 rpm). These xylan samples were also incubated in MilliQ™ water with Novozymes fungal xylanase NS51024 (8 c 10 4 %, w/v) for 20 min at 40 °C at 700 rpm in a thermomixer (Eppendorf, USA). The release of xylose and xylo-oligosaccharides was quantified by HPAEC-PAD analysis after vacuum filtration.

1.4 Quantification of MeGlcA from glucuronoxylan

MeGlcA present in glucuronoxylan was released by a modified acidic methanolysis (De Ruiter et al., 1992). Glucuronoxylan (10 mg), as well as MeGlcA (1 mM), was treated with 1 mL of 2 M HC1 in anhydrous methanol in glass vials at 100 °C for 3 h. Samples were then dried by nitrogen flow, and re dissolved in MilliQ™ water for HPAEC-PAD analysis. 1.5 H2O2 inhibition assay

AxyAgul 15A (10 pg/mL) was incubated with 1 % glucuronoxylan in 50 mM Tris buffer pH 8.0 in the presence of various H2O2 concentrations (0.01 - 100 mM). MeGlcA (1 mM) was also incubated with the same H2O2 concentrations. The reactions were kept in the dark at 40°C for 16 h in a thermomixer (Eppendorf, USA). Catalase (200 pg/mL) was then added, and the reactions were kept incubating for another 30 min to remove H2O2 before HPAEC-PAD analysis.

1.6 Anion-exchange chromatography

Anion-exchange chromatography was performed using Dowex 1 x8 anion exchange resin (50-100 mesh) in a glass column (2.6 cm ID x 30 cm) connected to a BioLogic DuoFlow FPLC unit with a Quadtec UV detector (Bio-Rad, USA) with flow rates ranging from 1-3.0 mL/min. MilliQ™ water was used as the primary eluent, and acidic sugars were eluted using a 0-2 M ammonium acetate (pH 6.5) gradient. Fractions containing eluted products were desalted and concentrated by lyophilization. The presence of sugar products in fractions was detected by spotting the samples on silica plates on aluminum backing (Sigma- Aldrich, USA), a mobile phase consisting of ethyl acetate/acetic acid/isopropanol/formic acid/ water (25: 10:5: 1: 15) was used. Carbohydrates were visualized using the diphenylamineaniline stain (MacCormick et al., 2018).

1.7 HPAEC-PAD analysis

Reaction samples were vacuum-fdtered using 0.22-pm, PVDF fdter plates (Millipore, USA) with a Tecan liquid handler (500 mbar) (Tecan Trading AG, Switzerland). The flow-through was collected to Nunc™ 96-well polypropylene microplates (Thermo Fisher Scientific, USA), and covered with Nunc™ 96-well silicone cap mats. The presence of acidic sugars was detected using an ICS5000 HPAEC-PAD system (Dionex, USA) with a CarboPac PA1 (2 c 250 mm) analytical column (Dionex, USA). The HPAEC-PAD samples were eluted at 0.25 mF/min using NaOAc gradient (0 -0.5 M) in 0.1 M NaOH. Chromatograms were analyzed using Chromeleon 7.2 (Dionex, USA).

1.8 Nanospray Ionization Ion-trap Mass Spectrometry (NSI-MS)

Reaction solutions were prepared in 50 % methanol and directly injected using a nano-ESI source on a Q-Exactive mass spectrometer (Thermo Scientific, USA) with a disposable pico-emitter. Samples were analyzed in a negative mode at a spray voltage of 2.5 kV, capillary temperature of 250°C, automatic gain control target of lxlO 6 , injection time of 100 ms, and resolution of 140,000. Spectra were analyzed using Qual Browser in Thermo Xcalibur (v2.2) software (Thermo Scientific, USA). 1.8 LC-MS analysis

Reaction solutions were vacuum-filtered using 0.22-mhi. PVDF filter plates (Millipore, USA) and collected into 96-well, skirted PCR plates (Eppendorf, USA) covered with adhesive aluminum sealer (Greiner Bio-One GmbH, Austria). Each sample was then analyzed using a Q-Exactive mass spectrometer (Thermo Scientific, USA), equipped with an Ultimate 3000 HPLC system (Thermo Scientific, USA) and a Hypersil GOLD column (50 x 2.1 mm) (Thermo Scientific, USA).

Example 2: Release of 4-O-methyl D-glucuronic acid by AxyAgull5A

AxyAgul 15A was produced with high purity (Fig. 2). The treatment of glucuronoxylan with AxyAgul 15A released only MeGlcA, as analyzed by HPAEC-PAD (Fig. 3), and no additional release of MeGlcA was seen after 16 h. The half-life of AxyAgul 15A at 40°C was 24 h (Yan et al., 2017), thus the enzyme remained active during 16-h hydrolysis. The release of MeGlcA was also confirmed by NSI-MS. A mass scan from 100 m/z to 1,000 m/z showed that MeGlcA and its dimer are the two major peaks in the spectrum (Fig. 4). The simulated spectrum of MeGlcA was also matched well to the acquired spectrum.

The concentration of MeGlcA released from 1.5 g glucuronoxylan was 21.6 ± 1.2 mM, calculated by on the MeGlcA standard curve (Fig. 5) whereas the estimated molar concentration of MeGlcA, based on a previous analysis of glucuronoxylan composition (Teleman et al., 2002), was 24.4 mM. Therefore, AxyAgul 15A was able to release almost all of MeGlcA present in glucuronoxylan. This finding was supported by methanolysis, where the total concentration of MeGlcA released from glucuronoxylan was measured at approximately 15.6 mM. The lower concentration of MeGlcA by methanolysis is due to partial MeGlcA degradation by a high temperature (100°C) and acid concentration (2M HC1), as nearly 20 % of MeGlcA was lost during methanolysis. A similar percentage of MeGlcA degradation by methanolysis was also previously reported (Bertaud et al., 2002).

The pKa of MeGlcA is 3.0, as predicted by ACD/Labs 2.0 v5 (www.ilab.acdlabs.com) (Fig. 6A), so at alkaline conditions, MeGlcA is negatively charged. Therefore, anion exchange chromatography was used to purify MeGlcA released by AxyAgul 15 A, which showed that the acidic sugar was eluted from Dowex resin when the concentration of ammonium acetate was higher than 0.5 M (Fig. 6B). Ammonium acetate was then removed by freeze-drying.

Example 3: Oxidation of 4-O-methyl D-glucuronic acid by GOOX variants

A preliminary screening of 17 GOOX variants on 100 mM GlcA and 10 mM MeGlcA strikingly revealed that the methylated form of D-glucuronic acid was the preferred substrate (Fig. 11 and Table below).

A commercial glucose oxidase (GO, cat. no. G2133 from Sigma) did not show any activity on GlcA and MeGlcA. Wild-type GOOX (wtGOOX) and all GOOX variants shown in Fig. 11 and in the Table above exhibited substrate preference for MeGlcA over GlcA. GOOX variants 300A and 388S exhibited improved activity over wtGOOX with MeGlcA as substrate, and GOOX variants 72F, 247A, 351A, 353A or 353N, and 388S exhibited improved activity over wtGOOX with GlcA as substraate. The GOOX variant Y300A showed the highest specific activity on MeGlcA (Fig. 7). Therefore, this GOOX variant, hereafter GOOX-Y300A, was produced and used for further characterization (Fig. 2).

The formation of methyl glucaric acid by GOOX-Y300A was confirmed by NSI-MS (Fig. 8), where methyl glucaric acid was seen at 223.05 m/z, confirming oxidation (addition of 15.99 m/z) of MeGlcA. There was a dose response for the production of methyl glucaric acid, as the relative abundance of methyl glucaric acid increased when the substrate concentration was raised from 1 mM to 10 mM. Consistent with this prediction, kinetic analysis of GOOX-Y 300A on MeGlcA revealed a K m of 21 ± 2 mM and k cat of 0.91 ± 0.06 min 1 . This K m value is higher than that of GOOX-Y300A on glucose (8.1 mM) while its k CM was nearly three orders of magnitude lower (Foumani et al., 2011), suggesting the necessary of future rational engineering of GOOX-Y300A for improvement of MeGlcA catalysis.

In an attempt to improve the oxidation of GOOX-Y300A, the ionic strength of the Tris buffer was increased to 300 mM and the concentration of MeGlcA was brought up to 60 mM, higher than its K m . NSI-MS confirmed an increase in the intensity ratio of methyl glucaric acid over MeGlcA (Fig. 9). Furthermore, based on substrate consumption, HPAEC-PAD analyses showed that the efficiency of GOOX-Y300A on MeGlcA oxidation after 24 h was 62 %, which is 55 % higher than the non-selective oxidation of glucose to produce glucaric acid (Armstrong et al., 2017). Provided that a similar xylan source was used, the conversion yield reported from the 3 -enzyme pathway by Lee et al. (2016) (Lee et al., 2016a) was estimated ca. 20 %, as determined by measuring NADH absorbance at 340 nm.

Methyl glucaric acid was also chemically produced from MeGlcA using Ca(OH)2 and NaOH; however, the highest yield was only 24 %, and the final reaction solution contained eight other dicarboxylic acids (Lowendahl et al., 1975). Several approaches that use heterogeneous metal catalysts including Pt/C, Pt/Au, Au/C or AuBi/C or PtiC TiCL (Lee et al., 2016b; Solmi et al., 2017) could gain a complete conversion of glucose; however, the full selectivity of glucose to GlcAA is not achievable, requiring a separation of GlcAA from other oxidized products, including those from overoxidation and C- C breaking. This low selectivity would prevent those chemo-catalytic approaches from oxidation of complex feedstock such carbohydrate-rich hydrolysate of hemicellulose generated in pulp paper or corn- based ethanol industries.

When GOOX-Y300A oxides MeGlcA, it also reduces molecular oxygen to hydrogen peroxide; therefore, to test for potential degradation of MeGlcA by ¾(¾, MeGlcA was incubated with different concentrations of LLCL in 50 mM Tris pH 8.0, no loss of MeGlcA was seen even by HPAEC-PAD at 100 mM H2O2 (Fig. 10), which is nearly five times higher than K m of GOOX-Y300A on MeGlcA. Even at 200 mM H2O2, GOOX-Y300A retained more than 50 % of its activity on glucose and 100 % of its activity on cellobiose (Vuong et al., 2016). Furthermore, H2O2 is less stable in alkaline conditions, when exposed to light, and particularly at elevated temperatures (40°C) (Y azici and Deveci, 2010). This suggests the addition of catalase is not necessary.

Example 4: Sequential one-pot reaction for methyl glucaric acid production

The MeGlcA concentration released by AxyAgul 15A from 6 % glucuronoxylan after 16 h was around the K m of GOOX-Y300A on this acidic sugar, supporting the usage of GOOX-Y300A and AxyAgul 15 in a one-pot reaction. Furthermore, both enzymes prefer alkaline conditions, which offer several advantages, including the ability to increase xylan loading (e.g., to 6 % w/v used here, compared to 1 % reported in Lee et al. (2016) (Lee et al., 2016a), and to reduce the presence of lactone forms of glucaric acid (Hong et al., 2016) that could hinder product recovery. However, AxyAgul 15A activity was inhibited when the concentration of H2O2 was greater than 1 mM, and approximately half of

AxyAgul 15A activity was lost in the presence of 10 mM H2O2 (Fig. 10). Therefore, GOOX-Y300A subsequently added after AxyAgul 15A digestion may be advantageous. HPAEC-PAD analysis indicated that most of MeGlcA was released by AxyAgul 15A during 4 h of incubation. Thus, a one-pot sequential reaction was performed where GOOX-Y300A was added to the reaction after pre-hydrolysis of glucuronoxylan by AxyAgul 15A for 4 h. Following 16 h of incubation with GOOX-Y300A, methyl glucaric acid yields were similar to those achieved using the two-pot sequential system described above (i.e., 60 % yield as confirmed by LC-MS).

Example 5: Simplified separation of stripped xylan

The xylan after AxyAgul 15 A and GOOX-Y300A treatments formed a hydrogel-like material (Fig. 12), which was easily separated from the reaction by a quick centrifuge (10,000 x g for 1 min). After washing with MilliQ™ water to remove any remaining soluble products, the resulting xylan was still hydrolysable by both bacterial xylanases XynlOB and Xynl 1A (Fig. 13), and by Novozymes fungal xylanase NS51024.

REFERENCES

Armstrong RD, Kariuki BM, Knight DW, Hutchings GJ. How to synthesise high purity, crystalline D-glucaric acid selectively. European J Org Chem. 2017;2017:6811-4.

Bertaud F. Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydrate Polymers. 2002;48:319-24.

Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates— the US Department of Energy’s‘Top 10” revisited. Green Chemistry. 2010;12:539.

Chen N, Wang JY, Zhao YY, Deng Y. Metabolic engineering of Saccharomyces cerevisiae for efficient

production ofglucaric acid at high titer. Microbial Cell Factories. 2018;17:67.

De Ruiter GA, Schols HA, Voragen AGJ, Rombouts FM. Carbohydrate analysis of water-soluble uronic acid- containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem.

1992;207: 176-85.

Foumani M, Vuong TV, Master ER. Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Biotechnol Bioeng. 2011 ; 108:2261-9.

Hong CH, Kim SH, Kim YG, Shin NR. Method for producing glucaric acid. US9227904 Bl: Hyundai Motor Company, Snu R&Db Foundation; 2016.

Irwin D, Jung ED, Wilson DB. Characterization and sequence of a Thermomonospora fiisca xylanase. Appl Environ Microbiol. 1994;60:763-70.

Kim JH, Irwin D, Wilson DB. Purification and characterization of Thermobifida fiisca xylanase 10B. Can J Microbiol. 2004;50:835-43. Lee CC, Kibblewhite RE, Paavola CD, Orts WJ, Wagschal K. Production of glucaric acid from hemicellulose substrate by rosettasome enzyme assemblies. Mol Biotechnol. 2016a;58:489-96.

Lee J, Saha B, Vlachos DG. Pt catalysts for efficient aerobic oxidation of glucose to glucaric acid in water.

Green Chemistry. 2016b; 18:3815-22.

Lin S-L, Yang T-Y, Inukai T, Yamasaki M, Tsai Y-C. Purification and characterization of a novel

glucooligosaccharide oxidase from Acremonium strictum Tl. Biochim Biophys Acta. 1991;1118:41- 7.

Liu Y, Gong X, Wang C, Du G, Chen J, Kang Z. Production of glucaric acid from myo-inositol in engineered Pichia pastoris. Enzyme Microb Technol. 2016;91:8-16.

Lowendahl L, Petersson G, Samuelson O. Lormation of dicarboxylic acids from 4-O-methyl-D-glucuronic acid in alkaline solution in the presence and absence of oxygen. Carbohydrate Research. 1975;43:355- 9.

MacCormick B, Vuong TV, Master ER. Chemo-enzymatic synthesis of clickable xylo-oligosaccharide

monomers from hardwood 4-O-methylglucuronoxylan. Biomacromolecules. 2018;19:521-30.

Moon TS, Yoon SH, Lanza AM, Roy-Mayhew JD, Prather KL. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol. 2009;75:589-95.

Rorrer NA, Dorgan JR, Vardon DR, Martinez CR, Yang Y, Beckham GT. Renewable unsaturated polyesters from muconic acid. ACS Sustainable Chemistry & Engineering. 2016;4:6867-76.

Solmi S, Morreale C, Ospitali F, Agnoli S, Cavani F. The oxidation of D-glucose to glucaric acid using Au/C catalysts. ChemCatChem. 2017:DOI: 10.1002/cctc.201700089.

Teleman A, Tenkanen M, Jacobs A, Dahlman O. Characterization of 0-acetyl-(4-0-methylglucurono)xylan isolated from birch and beech. Carbohydr Res. 2002;337:373-7.

Vuong TV, Foumani M, MacCormick B, Kwan R, Master ER. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and ELCE stability. Sci Rep. 2016;6:37356.

Vuong TV, Master ER. Fusion of a xylan-binding module to gluco-oligosaccharide oxidase increases activity and promotes stable immobilization. PLOS One. 2014;9:e95170.

Vuong TV, Vesterinen AH, Foumani M, Juvonen M, Seppala J, Tenkanen M, et al. Xylo- and cello- oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition. Biotechnol Biofuels. 2013;6: 148.

Wang W, Yan R, Nocek BP, Vuong TV, Di Leo R, Xu X, Cui H, Gatenholm P, Toriz G, Tenkanen M,

Savchenko A, Master ER. Biochemical and structural characterization of a five-domain GH115 a- glucuronidase from the marine bacterium Saccharophagus degradans 2-40T. J Biol Chem.

2016;291(27): 14120-33. Yan R, Vuong TV, Wang W, Master ER. Action of a GH115 alpha-glucuronidase from Amphibacillus xylanus at alkaline condition promotes release of 4-O-methylglucopyranosyluronic acid from glucuronoxylan and arabinoglucuronoxylan. Enzyme Microb Technol. 2017;104:22-8.

Yazici EY, Deveci H. Factors affecting decomposition of hydrogen peroxide. Proceedings of the Xllth International Mineral Processing Symposium 2010. p. 609-16.