Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EP1 RECEPTOR LIGANDS
Document Type and Number:
WIPO Patent Application WO/2013/037960
Kind Code:
A1
Abstract:
The present invention belongs to the field of EP1 receptor ligands. More specifically it refers to compounds of general formula (I) having great affinity and selectivity for the EP1 receptor. The invention also refers to the process for their preparation, to their use as medicament for the treatment and/or prophylaxis of diseases or disorders mediated by the EP1 receptor as well as to pharmaceutical compositions comprising them.

Inventors:
MERCE VIDAL RAMON (ES)
CALDENTEY FRONTERA FRANCESC XAVIER (ES)
RODRIGUEZ GARRIDO ANTONIO DAVID (ES)
CARCELLER GONZALEZ ELENA (ES)
SALAS SOLANA JORDI (ES)
Application Number:
PCT/EP2012/068101
Publication Date:
March 21, 2013
Filing Date:
September 14, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ESTEVE LABOR DR (ES)
DRACONIS PHARMA S L (ES)
ALMIRALL SA (ES)
TORRENS JOVER ANDONI (ES)
MERCE VIDAL RAMON (ES)
CALDENTEY FRONTERA FRANCESC XAVIER (ES)
RODRIGUEZ GARRIDO ANTONIO DAVID (ES)
CARCELLER GONZALEZ ELENA (ES)
SALAS SOLANA JORDI (ES)
International Classes:
C07D209/08; A61K31/404; A61P29/00; C07D235/06; C07D265/16; C07D471/04
Domestic Patent References:
WO2004108686A22004-12-16
WO2005040128A12005-05-06
WO2006066968A12006-06-29
WO2011140325A12011-11-10
Foreign References:
US20020082280A12002-06-27
EP1424325A12004-06-02
Other References:
BURGER: "Medicinal Chemistry and Drug Discovery", 2001, WILEY
"Design and Applications of Prodrugs", 1985, HARWOOD ACADEMIC PUBLISHERS
L. G. WADE, JR.: "Organic Chemistry", 2005, PEARSON/PRENTICE HALL, pages: 477
BANFI, L.; NARISANO, E.; RIVA, R.; STIASNI, N.; HIERSEMANN, M.: "Encyclopedia of Reagents for Organic Synthesis", 2004, J. WILEY & SONS, article "Sodium Borohydride"
SEYDEN-PENNE, J.: "Reductions by the Alumino- and Borohydrides in Organic Synthesis", 1991, VCH-LAVOISIER
RICHARD LAROCK: "Comprehensive Organic Transformations", WILEY-VCH
T.W. GREENE; P.G.M. WUTS: "Protective groups in organic synthesis", 1999, JOHN WILEY & SONS
P.J. KOCIENSKI: "Protecting Groups", 1994, GEORG THIEME VERLAG
LAROCK, R. C. ET AL., J. ORG. CHEM., vol. 66, 2001, pages 8042 - 8051
ABE T; KUNZ A; SHIMAMURA M; ZHOU P; ANRATHER J; LADECOLA C.: "The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic", J CEREB BLOOD FLOW METAB., vol. 29, no. 1, 2009, pages 66 - 72
ASBOTH G; PHANEUF S; EUROPE-FINNER GN; TOTH M; BERNAL AL.: "Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells: involvement of EP1 and EP3 receptor subtypes", ENDOCRINOLOGY, vol. 137, no. 6, 1996, pages 2572 - 9
BABA H; KOHNO T; MOORE KA; WOOLF CJ.: "Direct activation of rat spinal dorsal horn neurons by prostaglandin E2", THE JOURNAL OF NEUROSCIENCE, vol. 21, no. 5, 2001, pages 1750 - 1756
BANFI, L.; NARISANO, E.; RIVA, R.; STIASNI, N.; HIERSEMANN, M.: "Encyclopedia of Reagents for Organic Synthesis", 2004, article "Sodium Borohydride"
BREYER MD; BREYER RM.: "Prostaglandin receptors: their role in regulating renal function", CURR OPIN NEPHROL HYPERTENS, vol. 9, no. 1, January 2000 (2000-01-01), pages 23 - 9
CANDELARIO-JALIL E; SLAWIK H; RIDELIS; WASCHBISCH A; AKUNDI RS; HULL M; FIEBICH BL.: "Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum", J MOL NEUROSCI., vol. 27, no. 3, 2005, pages 303 - 10
COLEMAN, R. A.: "Prostanoid Receptors. IUPHAR compendium of receptor characterization and classification", 2000, pages: 338 - 353
DIRIG DM; YAKSH TL.: "In vitro prostanoid release from spinal cord following peripheral inflammation: effects of substance P, NMDA and capsaicin", BR J PHARMACOL., vol. 126, no. 6, 1999, pages 1333 - 40
DURRENBERGER PF; FACER P; CASULA MA; YIANGOU Y; GRAY RA; CHESSELL IP; DAY NC; COLLINS SD; BINGHAM S; WILSON AW: "Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study", BMC NEUROL., vol. 4, no. 6, 2006, pages 1
GABRIEL D; VERNIER M; PFEIFER MJ; DASEN B; TENAILLON L; BOUHELAL R.: "High throughput screening technologies for direct cyclic AMP measurement", ASSAY DRUG DEV. TECHNOL., vol. 1, 2003, pages 291 - 303
GIBLIN GM; BIT RA; BROWN SH; CHAIGNOT HM; CHOWDHURY A; CHESSELL IP; CLAYTON NM; COLEMAN T; HALL A; HAMMOND B: "The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)methyl]oxy]phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain", BIOORG MED CHEM LETT., vol. 17, no. 2, 2007, pages 385 - 9, XP005827238, DOI: doi:10.1016/j.bmcl.2006.10.041
T.W. GREENE; P.G.M. WUTS: "Protective groups in organic synthesis", 1999, JOHN WILEY & SONS, pages: 10
GUAY J.; BATEMAN, K.; GORDON R.; MANCINI J.; RIENDEAU D.: "Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1", J. BIOL CHEM, vol. 279, 2004, pages 24866 - 24872, XP002356598, DOI: doi:10.1074/jbc.M403106200
HALL, A.; BILLINTON A.; GIBLIN G.M.: "EP1 antagonists for the treatment of inflammatory pain", CURR OPIN. DRUG DISCOV. DEVEL., vol. 10, 2007, pages 597 - 612
HALL A; BROWN SH; BUDD C; CLAYTON NM; GIBLIN GM; GOLDSMITH P; HAYHOW TG; HURST DN; NAYLOR A; ANTHONY RAWLINGS D: "Discovery of GSK345931A: An EP(1) receptor antagonist with efficacy in preclinical models of inflammatory pain", BIOORG MED CHEM LETT., vol. 19, no. 2, 2009, pages 497 - 501, XP025816974, DOI: doi:10.1016/j.bmcl.2008.11.032
HONEMANN CW; HEYSE TJ; M611HOFF T; HAHNENKAMP K; BERNING S; HINDER F; LINCK B; SCHMITZ W; VAN AKEN H.: "Anesth Analg", vol. 93, 2001, article "The inhibitory effect of bupivacaine on prostaglandin E(2) (EP(1)) receptor functioning: mechanism of action", pages: 628 - 634
SEYDEN-PENNE, J.: "Reductions by the Alumino- and Borohydrides in Organic Synthesis", 1991, VCH-LAVOISIER: PARIS
JOHANSSON T; NARUMIYA S; ZEILHOFER HU: "Contribution of peripheral versus central EP1 prostaglandin receptors to inflammatory pain", NEUROSCI LETT., vol. 495, no. 2, 2011, pages 98 - 101, XP028197771, DOI: doi:10.1016/j.neulet.2011.03.046
KAWAHARA H; SAKAMOTO A; TAKEDA S; ONODERA H; IMAKI J; OGAWA R.: "A prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-8711) reduces hyperalgesia, allodynia, and c-fos gene expression in rats with chronic nerve constriction", ANESTH ANALG., vol. 93, no. 4, 2001, pages 1012 - 7
P.J. KOCIENSKI: "Protecting Groups", 1994, GEORG THIEME VERLAG, article "Protecting Groups"
LEE T; HEDLUND P; NEWGREEN D; ANDERSSON KE: "Urodynamic effects of a novel EP(1) receptor antagonist in normal rats and rats with bladder outlet obstruction", J UROL., vol. 177, no. 4, 2007, pages 1562 - 1567, XP005935021, DOI: doi:10.1016/j.juro.2006.11.070
LEE C.M; GENETOS DC; YOU Z; YELLOWLEY CE.: "Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells", J CELL PHYSIOL., vol. 212, no. 1, 2007, pages 182 - 188, XP055067944, DOI: doi:10.1002/jcp.21017
LI X; CUDABACK E; KEENE CD; BREYER RM; MONTINE TJ.: "Suppressed microglial E prostanoid receptor 1 signaling selectively reduces tumor necrosis factor alpha and interleukin 6 secretion from toll-like receptor 3 activation", GLIA, vol. 59, no. 4, 2011, pages 569 - 576
LIN CR; AMAYA F; BARRETT L; WANG H; TAKADA J; SAMAD TA; WOOLF CJ: "Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity", J PHARMACOL EXP THER., vol. 319, no. 3, 2006, pages 1096 - 103, XP008163202, DOI: doi:10.1124/jpet.106.105569
MA W; EISENACH JC.: "Four PGE2 EP receptors are up-regulated in injured nerve following partial sciatic nerve ligation", EXP NEUROL., vol. 183, no. 2, 2003, pages 581 - 92
MIKI, T.; MATSUNAMI, M.; OKADA, H.; MATSUYA, H.; KAWABATA, A: "ONO-8130, an EP1 antagonist, strongly attenuates cystitis-related bladder pain caused by cyclophosphamide in mice", J PHARMACOL SCI, vol. 112, no. 1, 2010, pages 1 J - 1,2
MINAMI T; UDA R.; HORIGUCHI S.; ITO S.; HYODO M.; HAYAISHI O.: "Allodynia evoked by intrathecal administration fo prostaglandin E2 to conscious mice", PAIN, vol. 57, 1994, pages 217 - 223, XP024378430, DOI: doi:10.1016/0304-3959(94)90226-7
MINAMI T; NAKANO H; KOBAYASHI T; SUGIMOTO Y; USHIKUBI F; ICHIKAWA A; NARUMIYA S; ITO S.: "Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice", BR J PHARMACOL., vol. 133, no. 3, 2001, pages 438 - 44, XP002980558, DOI: doi:10.1038/sj.bjp.0704092
MIZUGUCHI S; OHNO T; HATTORI Y; AE T; MINAMINO T; SATOH T; ARAI K; SAEKI T; HAYASHI; SUGIMOTO Y: "Roles of prostaglandin E2-EP1 receptor signaling in regulation of gastric motor activity and emptying", AM J PHYSIOL GASTROINTEST LIVER PHYSIOL., vol. 299, no. 5, 2010, pages G1078 - 1086
MORIYAMA T; HIGASHI T; TOGASHI K; LIDA T; SEGI E; SUGIMOTO Y; TOMINAGA T; NARUMIYA S; TOMINAGA M.: "Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins", MOL PAIN, vol. 1, 2005, pages 3, XP021011221, DOI: doi:10.1186/1744-8069-1-3
NAKAYAMA Y; OMOTE K; NAMIKI A.: "Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain", ANESTHESIOLOGY, vol. 97, no. 5, 2002, pages 1254 - 62
NAKAYAMA Y; OMOTE K; KAWAMATA T; NAMIKI A.: "Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn", BRAIN RES., vol. 1010, no. 1-2, 2004, pages 62 - 8
NARUMIYA S.; SUGIMOTO Y.; USHIKUBI F.: "Protanoid receptors: structures, properties, and functions", PHYSIOL REV., vol. 79, 1999, pages 1193 - 1226
NIHO N; MUTOH M; KITAMURA T; TAKAHASHI M; SATO H; YAMAMOTO H; MARUYAMA T; OHUCHIDA S; SUGIMURA T; WAKABAYASHI K.: "Suppression of azoxymethane-induced colon cancer development in rats by a prostaglandin E receptor EP1-selective antagonist", CANCER SCI., vol. 96, no. 5, 2005, pages 260 - 264
OIDDA H.; NAMBA T.; SUGIMOTO Y.; USHIKUBI F.; OHISHI H.; ICHIKAWA A. ET AL.: "In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs", BR J PHARMACOL, vol. 116, 1995, pages 2828 - 2837
OKA T; OKA K; SAPER CB.: "Contrasting effects of E type prostaglandin (EP) receptor agonists on core body temperature in rats", BRAIN RES., vol. 968, no. 2, 2003, pages 256 - 262
OKA T; HOSOI M; OKA K; HORI T.: "Biphasic alteration in the trigeminal nociceptive neuronal responses after intracerebroventricular injection of prostaglandin E2 in rats", BRAIN RES., vol. 749, no. 2, 1997, pages 354 - 7
BRAIN RES, vol. 757, no. 2, pages 299
OKADA, H.; KONEMURA, T.; MARUYAMA, T: "ONO-8539, a novel ep1 receptor antagonist, suppresses bladder hyperactivity via excessive production of prostaglandin e2 (pge2) induced by intravesical instillation of atp in urodynamic evaluation of cynomolgus monkeys", EUR UROL, vol. 9, no. 2, 2010, pages 72
OMOTE K; YAMAMOTO H; KAWAMATA T; NAKAYAMA Y; NAMIKI A.: "The effects of intrathecal administration of an antagonist for prostaglandin E receptor subtype EP(1) on mechanical and thermal hyperalgesia in a rat model of postoperative pain", ANESTH ANALG., vol. 95, no. 6, 2002, pages 1708 - 12
"The effects of peripheral administration of a novel selective antagonist for prostaglandin E receptor subtype EP(1), ONO-8711, in a rat model of postoperative pain", ANESTH ANALG., vol. 92, no. 1, 2001, pages 233 - 238
RAHAL S; MCVEIGH LI; ZHANG Y; GUAN Y; BREYER MD; KENNEDY CR.: "Increased severity of renal impairment in nephritic mice lacking the EP1 receptor", CAN J PHYSIOL PHARMACOL., vol. 84, no. 8-9, 2006, pages 877 - 885
SARKAR S; HOBSON AR; HUGHES A; GROWCOTT J; WOOLF CJ; THOMPSON DG; AZIZ Q.: "The prostaglandin E2 receptor-1 (EP-1) mediates acid-induced visceral pain hypersensitivity in humans", GASTROENTEROLOGY, vol. 124, no. 1, 2003, pages 18 - 25
SAMAD TA; SAPIRSTEIN A; WOOLF CJ.: "Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets", TRENDS MOL MED., vol. 8, no. 8, August 2002 (2002-08-01), pages 390 - 6
SCH OTZER-SCHREHARDT U; ZENKEL M; NOSING R.M.: "Expression and Localization of FP and EP Prostanoid", INVEST. OPHTHALMOL. VIS. SCI., vol. 43, no. 5, 2002, pages 1475 - 1487
SYRIATOWICZ JP; HU D; WALKER JS; TRACEY DJ.: "Hyperalgesia due to nerve injury: role of prostaglandins", NEUROSCIENCE, vol. 94, no. 2, 1999, pages 587 - 94, XP001179510, DOI: doi:10.1016/S0306-4522(99)00365-6
TERAMURA, T.; KAWATANI, M.; MARUYAMA, T.: "Prostaglandin E1 facilitate primary afferent activity from the urinary bladder in the rat using selective EP1- receptor antagonist (ONO-8711", BJU INT, vol. 86, no. 3, 2000
"Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis", CANCER RES., vol. 59, no. 20, 1999, pages 5093 - 5096
WILBRAHAM D.; MASUDA T.; DEACON S.; KUWAYAMA T.; VINCENT S.: "Safety, tolerability and pharmacokinetic of multiple ascending doses of the ep-1 receptor antagonist ono-8539, a potential new and novel therapy to overactive bladder in healthy young and elderly subjects", EUR UROL, vol. 9, no. 2, 2010, pages 250
WOODWARD DF; REGAN JW; LAKE S; OCKLIND A.: "The molecular biology and ocular distribution of prostanoid receptors", SURV OPHTHALMOL., vol. 41, no. 2, 1997, pages 15 - 21
ZHANG M; HO HC; SHEU TJ; BREYER MD; FLICK LM; JONASON JH; AWAD HA; SCHWARZ EM; O'KEEFE RJ.J: "EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair", BONE MINER RES., vol. 26, no. 4, 2011, pages 792 - 802, XP008162736, DOI: doi:10.1002/jbmr.272
Attorney, Agent or Firm:
CARPINTERO LOPEZ, Francisco (S.L.C/ Alcal, 35 Madrid, ES)
Download PDF:
Claims:
CLAIMS

1 . A compound of general formula I:

I

wherein:

W1 is phenyl or a 6-membered heteroaromatic ring containing 1 or 2 N atoms, wherein W1 is substituted by one R1 and optionally substituted by one or more R2; W2 is a 5- or 6-membered heterocyclic ring that contains 1 N atom and can additionally contain 1 or 2 heteroatoms selected from the group consisting of N, O, and S; wherein said ring is aromatic, partially unsaturated or saturated, and which is optionally substituted by one or more R3;

R1 is -R6-R7;

each R2 is independently selected from the group consisting of H, halogen, C1-6- alkyl, Ci-6-haloalkyl, -0-Ci-6-alkyl, -0-Ci-6-haloalkyl, hydroxyCi-6-alkyl, CN, - NR14COR15, -NR14S02R15 and -S02R15;

each R3 is independently selected from the group consisting of H, halogen, d-e-alkyl Ci-6-haloalkyl, -0-Ci-6-alkyl, -0-Ci-6-haloalkyl, hydroxyCi-6-alkyl, -Ci-4-alkylene- OR14, -C2-4-alkenylene-COOH, =0 and CN;

each R4 is independently selected from the group consisting of H and C1-6-alkyl, or both R4 together with the C atom to which they are bonded form a C3.6cycloalkyl;

R5 is selected from the group consisting of H, halogen, Ci-6-haloalkyl, -0-Ci-6-alkyl, -O-d-e-haloalkyl, -OH, d-e-alkyl, C3-6cycloalkyl and -S02R15;

R6 is selected from the group consisting of a direct bond, -Ci-4-alkylene- -0-Ci-4- alkylene- and -C2.4-alkenylene-;

R7 is selected from the group consisting of -C02H, -S03H, 5-tetrazolyl, -OP03H2, -

P03H2, -CONR12R12, -CONH-S02R12, -NR14CONR14-S02R15 and -S02-NHCOR15 Y is selected from the group consisting of -C2-4-alkylene- -0-Ci-4-alkylene- -C2-4- alkenylene- , -Ci-4-alkylene-0- -NR13-d.4-alkylene- and -d_4-alkylene-NR13-; B is selected from the group consisting of C2.6-alkyl, C2.6 alkenyl and Cy, any of them optionally substituted by one or more R8; each R is independently selected from the group consisting of halogen, Ci-6- haloalkyl, -0-Ci-6-alkyl, -0-Ci-6-haloalkyl, Ci-6-alkyl,-OH, -CN, -CH2OR14 and - CONR12R12;

each R9 is independently selected from the group consisting of CR10 and N;

each R10 is independently selected from the group consisting of H, halogen, C1-6- alkyl, Ci-6-haloalkyl, -0-Ci-6-alkyl, -0-Ci-6-haloalkyl and hydroxyCi-6-alkyl;

R11 is CR5 or N,

each R12 is independently selected from the group consisting of H, C1-6-alkyl, C1-6- haloalkyl,-NR14R14 and C3-6cycloalkyl;

each R13 is independently selected from the group consisting of H, C1-6-alkyl, C1-6- haloalkyl, and C3-6cycloalkyl;

each R14 is independently selected from the group consisting of H and Ci-6-alkyl; each R15 is independently selected from the group consisting of Ci-6-alkyl;

Cy is a 3-6 membered monocyclic or 8-12 membered polycyclic ring which can be carbocyclic or heterocyclic containing 1 to 3 heteroatoms selected from N, O and S and which can be aromatic, partially unsaturated or saturated and wherein one or more C or S atoms in Cy can be oxidized to form CO, SO or S02;

with the proviso that when W1 and W2 is a benzimidazole, R6 and R7 are not at the same time respectively a -0-C1-4-alkylene- and a -C02H or that R7 is not -CONH- S02R12;

and the salts, solvates and prodrugs thereof.

2. The compound according to claim 1 wherein each R9 is CR10 and each R10 is H. 3. The compound according to any of the preceding claims wherein each R4 is H.

4. The compound according to any of the preceding claims wherein Y is -0-CH2- or -CH2-0- preferably -0-CH2- . 5. The compound according to any of the preceding claims where R11 is CR5 and

R5 is selected from the group consisting of H, halogen and -C1-6-haloalkyl.

6. The compound according to any of the preceding claims wherein B is phenyl, C3- 6-cycloalkyl, C2.6-alkyl, C2.6 alkenyl or is a 5-6 membered monocyclic heterocycle containing 1 or 2 N atom which can be aromatic, partially unsaturated or saturated, any of them optionally substituted by one or more R8.

7. The compound according to any of the preceding claims wherein B is phenyl optionally substituted by 1 to 5 R8.

8. The compound according to any of cl ims 1 to 7 wherein

represents where E1 , E2 and E3 are CR2; or one of E1 , E2 or E3 is N and the others are CR2; or two of E1 , E2 or E3 are N and the other is CR2.

9. The compound accordin to an of claims 1 to 7 wherein represents

where G is selected from the group consisting of CR3, CR3R3, OCR3R3; OCR3;CR3R3-CR3R3and N;

D is selected from the group consisting of CR3, CR3R3 and N;

— represents a single bond or a double bond. ompound according to any of claims 1 to 7 wherein

is selected from the group consisting of

1 . The compound according to claim 10 wherein

12. The compound according to any of the preceding claims wherein R6 is a direct bond and R7 is-C02H.

13. The compound according to any of the preceding claims wherein each R2 is independently selected from the group consisting of H and halogen and each R3 is H.

14. A compound according to claim 1 selected from:

(E)-1 -(5-chloro-2-(4-chloro-2-fluorostyryl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-bromobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-(cyclopropylmethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(4-chloro-2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2,3,5,6-tetrafluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-bis(trifluoromethyl)benzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid, 1 -(5-chloro-2-((2,3,4-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((2,3,4-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(1 -(2,4-difluorophenyl)ethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((3-bromo-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-bromo-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(3-bromo-2-((4-bromo-2-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-5-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-4,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,6-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((3,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2-chloro-4,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,6-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2-chloro-5-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,5-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(3-bromo-5-chloro-2-((2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((3,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid, 1 -(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)phenyl)ethyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluoro-4-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((3-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-bromo-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((4-bromo-2,6-difluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(3,5-dichloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-bromo-2-((4-chloro-2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid, 1 -((3-((4-chloro-2-fluorobenzyl)oxy)pyridin-2-yl)methyl)-1 H-indole-4- carboxylic acid,

3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)propanoic acid,

1 -(5-chloro-2-(4-chloro-2-fluorophenethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-fluoro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-5- carboxylic acid,

1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-bromo-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-5- carboxylic acid,

1 -(5-bromo-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-fluoro-2-((3,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((2-chloro-4,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxyl acid,

1 -(2-((2-chloro-5-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-bromo-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-5- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

(E)-3-(1 -(2-(benzyloxy)-5-(trifluoromethyl)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-bromo-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)acrylic acid, (E)-3-(1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)acrylic acid,

2-((1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indol-4- yl)oxy)acetic acid,

2-((1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)oxy)acetic acid,

2-((1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)oxy)acetic acid,

1 -(2-(benzyloxy)-5-bromobenzyl)-1 H-indole-6-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-6-carboxylic acid,

3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)propanoic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-b]pyridine- 4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-b]pyridine-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-benzo[d]imidazole-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

7-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-7H-pyrrolo[2,3- d]pyrimidine-4-carboxylic acid,

7-(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-7H-pyrrolo[2,3-d]pyrimidine-4- carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-7-fluoro-1 H-indole-4-carboxylic acid,

1 -{2-[(2,4-difluorobenzyl)oxy]-5-methoxybenzyl}-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(cyclohexylmethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(cyclopentylmethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-propoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 H-indole-4-carboxylic acid, 1 -(5-chloro-2-propoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(2-(tetrahydro-2H-pyran-4-yl)ethoxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2,2-difluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2,2,2-trifluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(neopentyloxy)benzyl]-1 H-indole-4-carboxylic acid,

4-(5-chloro-2-cyclobutoxybenzyl)-3-oxo-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-bromo-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-oxo-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid

4-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-(benzyloxy)benzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((2,4-difluorobenzyl)oxy)benzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

1 -(2-((2-chlorobenzyl)oxy)-5-fluorobenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(2-((2-chlorobenzyl)oxy)-5-methylbenzyl)-1 H-indazole-4-carboxylic acid, 1 -(5-fluoro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(2-((2-fluorobenzyl)oxy)-5-methylbenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((2-chlorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-propoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-fluoro-2-propoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-bromo-2-(4-chloro-2-fluorobenzyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-cyclobutoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(neopentyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[3,2-c]pyridine 4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-7-fluoro-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole- 4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4- carboxylic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-3-(hydroxymethyl)-1 H-indole-4 carboxylic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-fluorobenzyl)-3-(hydroxymethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymethyl)-1 H- indole-4-carboxylic acid,

1 -(2-cyclobutoxy-5-fluorobenzyl)-3-(hydroxymethyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4- carboxylic acid, ■ 1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4- carboxylic acid,

■ 1 -(5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymethyl)-1 H- indole-4-carboxylic acid,

■ 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

■ 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

■ 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(2-hydroxyethyl)-1 H- indole-4-carboxylic acid,

■ 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(2-hydroxyethyl)-1 H-indole- 4-carboxylic acid,

■ 1 -(5-fluoro-2-isobutoxybenzyl)-3-(2-hydroxyethyl)-1 H-indole-4-carboxylic acid,

■ 1 -(5-chloro-2-isobutoxybenzyl)-3-(2-hydroxyethyl)-1 H-indole-4-carboxylic acid,

■ 1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(2-hydroxyethyl)-1 H- indole-4-carboxylic acid,

■ 1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-3-(2-hydroxyethyl)-1 H-indole-4- carboxylic acid,

■ 1 -(5-c loro-2-(3-fluoro-2-methylpropoxy)benzyl)-3-(2-hydroxyethyl)-1 H- indole-4-carboxylic acid,

(E)-3-(2-carboxylatovinyl)-1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

(E)-3-(2-carboxylatovinyl)-1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H- indole-4-carboxylic acid,

■ 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine-4- carboxylic acid,

■ 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine- 4-carboxylic acid,

■ 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)indoline-4-carboxylic acid,

■ 1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)indoline-4-carboxylic acid,

■ 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)indoline-4-carboxylic acid,

■ 1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)indoline-4-carboxylic acid, 1 -(5-chloro-2-isobutoxybenzyl)indoline-4-carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-cyclobutoxybenzyl)indoline-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-(cyclobutylmethoxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -[5-chloro-2-(1 ,2-dimethylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid,

1 -[5-chloro-2-(cyclobutyloxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -{5-chloro-2-[(2-methylprop-2-enyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid,

1 -[5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid,

1 -[5-chloro-2-(2-fluoropropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-{[2-(fluoromethyl)prop-2-enyl]oxy}benzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinoline-5-sulfonic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- sulfonic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- sulfonic acid,

N-((1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinolin- 5-yl)sulfonyl)acetamide,

N-((1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinolin-5-yl)sulfonyl)acetamide, 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H- indazole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymethyl)-1 H- indazole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-(propooxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -(2-(4-chloro-2-fluorobenzyloxy)-5-methylbenzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-(neopentyloxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

4-(2-(4-chloro-2-fluorobenzyloxy)-5-methylbenzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-fluoro-2-isobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-isobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-cyclobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-(cyclopropylmethoxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-(neopentyloxy)benzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

1 -(5-chloro-2-(3-methoxypropoxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-(2-methoxyethoxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-(neopentyloxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-((3-methyloxetan-3-yl)methoxy)benzyl)indoline-4-carboxylic acid,

(S)-1 -(5-chloro-2-(3-hydroxy-2-methylpropoxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-(methoxymethyl)-1 H- indole-4-carboxylic acid, 1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-2-oxoindoline-4-carboxylic acid,

1 -(2-(4-chloro-2-fluorobenzyloxy)-5-cyclopropylbenzyl)-1 H-indazole-4- carboxylic acid,

1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-(methoxymethyl)-1 H- indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4- b]pyridine-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 H-pyrazolo[3,4-b]pyridine- 4-carboxylic acid,

1 -[5-chloro-2-(cyclobutyloxy)benzyl]-1 H-pyrazolo[3,4-b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chlorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine-4- carboxylic acid, 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-(1 H-tetrazol-5-yl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine,

8-{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetrahydro-1 ,8- naphthyridine-4-carboxylic acid,

8-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-5,6,7,8-tetrahydro-1 ,8- naphthyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4- tetrahydroquinoxaline-5-carboxylic acid,

1 -{5-chloro-2-[2-(2,4-difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-1 H- indole-4-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-1 H- indole-4-carboxamide,

1 -(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)-2,3-dihydro-1 H- pyrrolo[2,3-b]pyridine-4-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)- 1 ,2,3,4-tetrahydroquinoline-5-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N- [(dimethylamino)sulfonyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxamide, 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N- [(dimethylamino)sulfonyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxamide,

N-({1 -(5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl})-1 ,2,3,4- tetrahydroquinolin-5-yl]amino}carbonyl) methanesulfonamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxamide,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7-naphthyridine-5- carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(2,4-difluorobenzyl)oxy]-5-fluorobenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -(2-((2,4-difluorobenzyl)oxy)-5-methylbenzyl)-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]-5-fluorobenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]-5-methylbenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

4-(2-cyclobutoxy-5-fluorobenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H- pyrrolo[2,3-c]pyridine-4-carboxylic acid,

1 -(5-chloro-2-cyclobutoxybenzyl)-2-oxoindoline-4-carboxylic acid

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-2-oxoindoline-4-carboxylic acid

and the salts, solvates and prodrugs thereof. 15. A compound according to any of the claims 1 to 14 for use as a medicament.

16. A compound according to any of claims 1 to 14 for use in the treatment and/or prophylaxis of diseases or disorders mediated by the EP1 receptor.

17. A compound according to claim 16 where the disease or disorders comprises inflammatory related pain including low back and neck pain, skeletal pain, postpartum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases, gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt- Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases.

18. A compound according to claim 16 where the disease or disorders comprises pain, inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases, gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine.

19. Pharmaceutical composition comprising at least one compound according to any of claims 1 -14 and at least one pharmaceutically acceptable carrier, additive, adjuvant or vehicle.

Description:
EP1 RECEPTOR LIGANDS

FIELD OF THE INVENTION

The present invention belongs to the field of EP1 receptor ligands. More specifically it refers to compounds of general formula (I) having great affinity and selectivity for the EP1 receptor. The invention also refers to the process for their preparation, to their use as medicament for the treatment and/or prophylaxis of diseases or disorders mediated by the EP1 receptor as well as to pharmaceutical compositions comprising them.

BACKGROUND OF THE INVENTION

Prostanoids are a family of eicosanoids that comprise prostaglandins (PGs), prostacyclins (PGIs), and thromboxanes (Txs). Their receptors belong to the G- protein coupled receptor (GPCR) superfamily of receptors and may be grouped into five classes, namely, prostaglandin D (DP), prostaglandin E (EP), prostaglandin F

(FP), prostaglandin I (IP), and Thromboxane A (TP) based on their sensitivity to five naturally occurring prostanoids, PGD2, PGE2, PGF2[alpha], PGI2, and TxA2, respectively (Coleman, R. A., 2000). Prostaglandins contribute to the sensitization of peripheral and central nociceptive neurons during peripheral inflammation (Dirig and Yaksh, 1999) and play an important role in the pathogenesis of neuropathic pain following nerve injury (Syriatowicz et al 1999; Kawahara et al, 2001 ; Samad et al, 2002; Ma and Eisenach, 2003; Durrenberger et al., 2006).

Prostaglandin E2 (PGE2) is considered to be the dominant pro-nociceptive prostanoid. Guay and colleagues, analyzing the concentrations of different prostaglandins in the cerebrospinal fluid, found that PGE2 was the most prevalent prostanoid and exhibited the highest increase after peripheral carrageenan-induced inflammation (Guay et al., 2004). PGE2 is generated in most cells in response to mechanical, thermal or chemical injury and inflammatory insult, resulting in sensitization or direct activation of nearby sensory nerve endings. Its production requires the activity of at least one of the two cyclooxygenase isoforms, COX-1 constitutively expressed or COX-2 which is inducible and particularly relevant for inflammation-induced PGE2 formation. Therefore, non-selective inhibitors of COX-1 and COX-2, and selective COX-2 inhibitors provide good pain relief. However, the long-term use is associated with gastrointestinal or cardiovascular side effects, respectively.

Downstream components of the inflammatory cascade could be an alternative approach for the treatment of the PGE2 associated pain. PGE2 binds to four different G-protein coupled receptors named EP1 , EP2, EP3 and EP4 (Narumiya et al., 1999).

Studies employing antagonists suggest that blocking EP1 , EP2, EP3 or EP4 receptors may reduce certain types of pain (Oka et al. 1997; Omote et al., 2002; Lin et al, 2006) and agonists increase nociceptive responses (Minami et al., 1994). Among these PGE2 receptor subtypes, most of drug discovery studies have focused on the EP1 receptors (Hall et al., 2007).

EP1 receptor stimulation mediates increases in intracellular calcium ions, facilitating neurotransmitter release (Asboth et al., 1996). EP1 receptor is preferentially expressed in primary sensory neurons, including their spinal cord terminals (Oidda et al., 1995) although it is also distributed in other tissues (Breyer et al., 2000; Schlotzer-Schrehardt et al., 2002). In the brain, marked differences in the level of EP1 expression among the cerebral regions were found. The strongest levels of EP1 mRNA were found in parietal cortex and cerebellum, followed in descending order by frontal cortex and striatum. The hypothalamus, hippocampus and brain stem displayed a low-level EP1 mRNA signal (Candelario-Jalil et al., 2005). In the spinal cord, several studies have reported the effects of PGE2 on neuronal excitability or synaptic transmission (Baba et al., 2001 ) and pain transmission (Nakayama et al., 2004). Therefore, EP1 receptor antagonists, blocking the positive feedback cascade mediated by PGE 2 , may result in analgesic efficacy. In this regard, using EP receptor deficient mice, a prominent contribution of EP1 receptors has been described (Minami et al., 2001 ). EP1 -/- knockout mice demonstrated a role of this receptor in mediating peripheral heat sensitization after subcutaneous PGE2 injection (Moriyama et al. 2005; Johansson et al. 201 1 ), and EP1 receptor antagonism has been reported to reduce mechanical hyperalgesia in nerve injured rats (Kawahara et al., 2001 ), in the carrageenan model (Nakayama et al. 2002), or in the incisional model of postoperative pain (Omote et al 2002). Moreover, EP1 antagonists demonstrated analgesic activity in a complete Freund's adjuvant model of knee joint arthritis (Giblin et al, 2007; Hall et al, 2009). It has also been reported that the contribution of PGE2 in human visceral pain hypersensitivity is mediated through the EP1 receptor (Sarkar et al., 2003).

In addition to being useful for modulating pain, EP1 antagonists may also be useful for the treatment or prevention of other EP1 receptor-mediated diseases such as motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases.

In turn, EP1 receptor agonists also may have a number of utilities. These include, but are not limited to treatment of influenza, bone fracture healing, bone disease, glaucoma, ocular hypertension, dysmenorrhoea, pre-term labour, immune disorders, osteoporosis, asthma, allergy, fertility, male sexual dysfunction, female sexual dysfunction, periodontal disease, gastric ulcer, and renal disease. EP receptor agonists may also be useful for expansion of hematopoietic stem cell populations.

Based on the above mentioned results coming from animal and human studies, EP1 receptor has been identified as a selective target for the development of new potential therapies for the treatment of those disorders where PGE2 action is involved. In view of the potential therapeutic applications of agonists and antagonists of the EP1 receptor, a great effort is being directed to find selective ligands. Despite intense research efforts in this area, very few compounds with selective EP1 activity have been reported. There is thus still a need to find compounds having pharmacological activity towards the EP1 receptor, being both effective and selective, and having good "druggability" properties, i.e. good pharmaceutical properties related to administration, distribution, metabolism and excretion. The present invention hereby provide some novel compounds complying with the above mentioned properties.

OBJECT OF THE INVENTION The present invention discloses novel compounds with great affinity to EP1 receptors which might be used for the treatment of EP1 -related disorders or diseases.

Specifically, it is an object of the invention a compound of general formula I:

wherein:

W 1 is phenyl or a 6-membered heteroaromatic ring containing 1 or 2 N atoms, wherein W 1 is substituted by one R 1 and optionally substituted by one or more R 2 ; W 2 is a 5- or 6-membered heterocyclic ring that contains 1 N atom and can additionally contain 1 or 2 heteroatoms selected from the group consisting of N, O, and S; wherein said ring is aromatic, partially unsaturated or saturated, and which is optionally substituted by one or more R 3 ;

R 1 is -R 6 -R 7 ; each R 2 is independently selected from the group consisting of H, halogen, Ci -6 - alkyl, Ci- 6 -haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, hydroxyCi- 6 -alkyl, CN, - NR 14 COR 15 , -NR 14 S0 2 R 15 and -S0 2 R 15 ;

each R 3 is independently selected from the group consisting of H, halogen, d- 6 -alkyl Ci-6-haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, hydroxyCi- 6 -alkyl, -Ci- 4 -alkylene- OR 14 , -C 2 - 4 -alkenylene-COOH, =0 and CN;

each R 4 is independently selected from the group consisting of H and C 1-6 -alkyl, or both R 4 together with the C atom to which they are bonded form a C 3 - 6 cycloalkyl; R 5 is selected from the group consisting of H, halogen, d- 6 -haloalkyl, -0-C 1-6 -alkyl, -O-Ci-e-haloalkyl, -OH, Ci -6 -alkyl, C 3 - 6 cycloalkyl and -S0 2 R 15 ;

R 6 is selected from the group consisting of a direct bond, -Ci- 4 -alkylene- -O-C 1 -4- alkylene- and -C 2 . 4 -alkenylene-;

R 7 is selected from the group consisting of -C0 2 H, -S0 3 H, 5-tetrazolyl, -OP0 3 H 2 , - P0 3 H 2 , -CONR 12 R 12 -CONH-S0 2 R 12 , -NR 14 CONR 14 -S0 2 R 15 and -S0 2 -NHCOR 15 , Y is selected from the group consisting of -C 2 - 4 -alkylene- -0-Ci -4 -alkylene- -C 2-4 - alkenylene- , -Ci -4 -alkylene-0- -NR 13 -C 1 -4 -alkylene- and -d- 4 -alkylene-NR 13 -; B is selected from the group consisting of C 2 - 6 -alkyl, C 2 - 6 alkenyl and Cy, any of them optionally substituted by one or more R 8 ;

each R 8 is independently selected from the group consisting of halogen, Ci -6 - haloalkyl, -0-Ci -6 -alkyl, -0-Ci -6 -haloalkyl, Ci -6 -alkyl,-OH, -CN, -CH 2 OR 14 and - CONR 12 R 12 ;

each R 9 is independently selected from the group consisting of CR 10 and N;

each R 10 is independently selected from the group consisting of H, halogen, d-e- alkyl, Ci-6-haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 - aloalkyl and hydroxyCi- 6 -alkyl;

R 11 is CR 5 or N,

each R 12 is independently selected from the group consisting of H, d-e-alkyl, d-e- haloalkyl, -NR 14 R 14 and C 3-6 cycloalkyl;

each R 13 is independently selected from the group consisting of H, d- 6 -alkyl, d-e- haloalkyl, and d-ecycloalkyl;

each R 14 is independently selected from the group consisting of H and Ci -6 -alkyl; each R 15 is independently selected from the group consisting of Ci -6 -alkyl;

Cy is a 3-6 membered monocyclic or 8-12 membered polycyclic ring which can be carbocyclic or heterocyclic containing 1 to 3 heteroatoms selected from N, O and S and which can be aromatic, partially unsaturated or saturated and wherein one or more C or S atoms in Cy can be oxidized to form CO, SO or S0 2 ;

with the proviso that when W1 and W2 is a benzimidazole, R6 and R7 are not at the same time respectively a -0-Ci- 4 -alkylene- and a -C0 2 H or that R 7 is not -CONH-

S0 2 R 12 ;

and the salts, solvates and prodrugs thereof.

It is also an object of the invention the process for the preparation of compounds of general formula (I).

In another aspect, the invention relates to a compound of general formula (I) for use as a medicament.

Yet another object of the invention is a compound of general formula (I) for use in the treatment and/or prophylaxis of diseases or disorders mediated by the EP1 receptor. This includes but is not limited to diseases such as inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases, gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain ; neuropathic pain; visceral pain ; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases. It is another object of the invention a pharmaceutical composition comprising at least one compound of general formula (I) and at least one pharmaceutically acceptable carrier, additive, adjuvant or vehicle.

DETAILED DESCRIPTION OF THE INVENTION

In a first aspect the invention relates ds of general formula (I):

wherein:

W 1 is phenyl or a 6-membered heteroaromatic ring containing 1 or 2 N atoms, wherein W 1 is substituted by one R 1 and optionally substituted by one or more R 2 ; W 2 is a 5- or 6-membered heterocyclic ring that contains 1 N atom and can additionally contain 1 or 2 heteroatoms selected from the group consisting of N, O, and S; wherein said ring is aromatic, partially unsaturated or saturated, and which is optionally substituted by one or more R 3 ;

R 1 is -R 6 -R 7 ;

each R 2 is independently selected from the group consisting of H, halogen, C 1-6 - alkyl, Ci- 6 -haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, hydroxyCi- 6 -alkyl, CN, - NR 14 COR 15 , -NR 14 S0 2 R 15 and -S0 2 R 15 ;

each R 3 is independently selected from the group consisting of H, halogen, C _ 6 -alkyl Ci-e-haloalkyl, -0-C 1-6 -alkyl, -O-Ci.e-haloalkyl, hydroxyC 1-6 -alkyl,-C 1 -4 -alkylene- OR 14 , -C 2 - 4 -alkenylene-COOH, =0 and CN;

each R 4 is independently selected from the group consisting of H and C _ 6 -alkyl, or both R 4 together with the C atom to which they are bonded form a C 3 . 6 cycloalkyl; R 5 is selected from the group consisting of H, halogen, Ci- 6 -haloalkyl, -0-Ci- 6 -alkyl, -O-d-e-haloalkyl, -OH, Ci -6 -alkyl, C 3 - 6 cycloalkyl and -S0 2 R 15 ;

R 6 is selected from the group consisting of a direct bond, -Ci -4 -alkylene-, -0-Ci -4 - alkylene- and -C 2 - 4 -alkenylene-; R 7 is selected from the group consisting of -C0 2 H, -S0 3 H, 5-tetrazolyl, -OP0 3 H 2 , - P0 3 H 2 , -CONR 12 R 12 -CONH-S0 2 R 12 , -NR 14 CONR 14 -S0 2 R 15 and -S0 2 -NHCOR 15 ; Y is selected from the group consisting of -C 2 . 4 -alkylene- -O-C^-alkylene- -C 2 . 4 - alkenylene- , -Ci- 4 -alkylene-0- -NR 13 -Ci- 4 -alkylene- and -Ci- 4 -alkylene-NR 13 -; B is selected from the group consisting of C 2 . 6 -alkyl, C 2 . 6 alkenyl and Cy, any of them optionally substituted by one or more R 8 ;

each R 8 is independently selected from the group consisting of halogen, C 1-6 - haloalkyl, -0-Ci -6 -alkyl, -0-Ci -6 -haloalkyl, Ci -6 -alkyl,-OH, -CN, -CH 2 OR 14 and - CONR 12 R 12 ;

each R 9 is independently selected from the group consisting of CR 10 and N;

each R 10 is independently selected from the group consisting of H, halogen, Ci -6 - alkyl, C 1-6 - aloalkyl, -0-C 1-6 -alkyl, -0-C 1-6 - aloalkyl and hydroxyC 1-6 -alkyl;

R 11 is CR 5 or N,

each R 12 is independently selected from the group consisting of H, Ci -6 -alkyl Ci -6 - haloalkyl, -NR 14 R 14 and C 3-6 cycloalkyl;

each R 13 is independently selected from the group consisting of H, Ci -6 -alkyl Ci -6 - haloalkyl, and C 3-6 cycloalkyl;

each R 14 is independently selected from the group consisting of H and Ci -6 -alkyl; each R 15 is independently selected from the group consisting of Ci -6 -alkyl;

Cy is a 3-6 membered monocyclic or 8-12 membered polycyclic ring which can be carbocyclic or heterocyclic containing 1 to 3 heteroatoms selected from N, O and S and which can be aromatic, partially unsaturated or saturated and wherein one or more C or S atoms in Cy can be oxidized to form CO, SO or S0 2 ;

with the proviso that when W1 and W2 is a benzimidazole, R6 and R7 are not at the same time respectively a -0-Ci -4 -alkylene- and a -C0 2 H or that R 7 is not -CONH-

S0 2 R 12 ;

and the salts, solvates and prodrugs thereof.

Also included within the scope of the invention are the isomers, polymorphs, isotopes, salts, solvates and prodrugs of the compounds of formula (I). Any reference to a compound of formula (I) throughout the present specification includes a reference to any isomer, polymorph, isotope, salt, solvate or prodrug of such compound of formula I. The compounds of formula I may exist in different physical forms, i.e. amorphous and crystalline forms. Moreover, the compounds of the invention may have the ability to crystallize in more than one form, a characteristic which is known as polymorphism. Polymorphs can be distinguished by various physical properties well known in the art such as X-ray diffraction pattern, melting point or solubility. All physical forms of the compounds of formula I, including all polymorphic forms ("polymorphs") thereof, are included within the scope of the invention.

Some of the compounds of the present invention may exist as several optical isomers and/or several diastereoisomers. Diastereoisomers can be separated by conventional techniques such as chromatography or fractional crystallization. Optical isomers can be resolved by conventional techniques of optical resolution to give optically pure isomers. This resolution can be carried out on any chiral synthetic intermediate or on the products of formula I. Optically pure isomers can also be individually obtained using enantiospecific synthesis. The present invention covers all individual isomers as well as mixtures thereof (for example racemic mixtures or mixtures of diastereomers), whether obtained by synthesis or by physically mixing them. In addition, any formula given herein is intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the formulas given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 0, 17 0, 31 P, 32 P, 36 S, 18 F , 36 CI, and 125 l, respectively, Such isotopically labelled compounds are useful in metabolic studies (preferably with 14C), reaction kinetic studies (with, for example 2 H or 3 H), detection or imaging techniques [such as positron emission tomography (PET) or single- photon emission computed tomography (SPECT)] including drug or substrate tissue distribution assays, or in radioactive treatment of patients. In particular, an 18 F or 11 C labeled compound may be particularly preferred for PET or SPECT studies. Further, substitution with heavier isotopes such as deuterium (i.e., 2 H) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements. In addition to the unlabeled form, all isotopically labeled forms of the compounds of formula I are included within the scope of the invention. "Halogen" or "halo" as referred in the present invention represent fluorine, chlorine, bromine or iodine.

The term "alkyl," alone or in combination, means an acyclic radical, linear or branched, preferably containing from 1 to about 6 carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert- butyl, pentyl, iso-amyl, hexyl, heptyl, octyl, and the like. Where no specific substitution is specified, alkyl radicals may be optionally substituted with groups consisting of hydroxy, sulfhydryl, methoxy, ethoxy, amino, cyano, chloro, and fluoro. The carbon atom content of various hydrocarbon-containing moieties is indicated by suffix designating a lower and upper number of carbon atoms in the moiety. Thus, for example, 'C1 -6-alkyl' refers to alkyl of 1 to 6 carbon atoms, inclusive.

The term "alkenyl," alone or in combination, means an acyclic radical, linear or branched, preferably containing from 1 to about 6 carbon atoms and containing at least one double bond. Examples of such radicals include ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, sec-butenyl tert-butenyl and the like. Where no specific substitution is specified, alkenyl radicals may be optionally substituted with groups consisting of hydroxy, sulfhydryl, methoxy, ethoxy, amino, cyano, chloro, and fluoro. The carbon atom content of various hydrocarbon-containing moieties is indicated by suffix designating a lower and upper number of carbon atoms in the moiety. Thus, for example, 'C1 -6-alkenyl' refers to alkenyl of 1 to 6 carbon atoms, inclusive.

An "alkylene" linking group preferably contains 1 -4 carbon atoms and represents for example methylene, ethylene, propylene, butylene. The carbon atom content of various hydrocarbon-containing moieties is indicated by suffix designating a lower and upper number of carbon atoms in the moiety. Thus, for example, 'C1 -4-alkylene' refers to an alkylene of 1 to 4 carbon atoms, inclusive.

An "alkenylene" linking group preferably contains 2 to 4 carbon atoms and represents for example ethenylene, 1 ,3-propenylene, 1 ,4-but-1 -enylene, 1 ,4-but-2- ethylene. The carbon atom content of various hydrocarbon-containing moieties is indicated by suffix designating a lower and upper number of carbon atoms in the moiety. Thus, for example, 'C2-4-alkenylene' refers to alkenylene of 2 to 4 carbon atoms, inclusive.

"Cycloalkyl" is preferably a monocyclic cycloalkyl containing from three to six carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. The carbon atom content of various hydrocarbon-containing moieties is indicated by suffix designating a lower and upper number of carbon atoms in the moiety. Thus, for example, 'C3-6-cycloalkyl' refers to cycloalkyl of 3 to 6 carbon atoms, inclusive. The term "carbocyclic", "carbocyclic ring" and "carbocyclyl" refer to a saturated, unsaturated or aromatic mono- or multi-ring cycloalkyl only formed from carbon atoms.

The terms "heterocycle", "heterocyclic ring" and "heterocyclyl" refer to a saturated, unsaturated or aromatic mono- or multi-ring cycloalkyl wherein one or more carbon atoms is replaced by N, S, or O. The terms "heterocycle", "heterocyclic ring system," and "heterocyclyl" include fully saturated ring structures such as piperazinyl, dioxanyl, tetrahydrofuranyl, oxiranyl, aziridinyl, morpholinyl, pyrrolidinyl, piperidinyl, thiazolidinyl, and others. The terms "heterocycle", "heterocyclic ring system," and "heterocyclyl" also include partially unsaturated ring structures such as dihydrofuranyl, dihydropyrrolyl, pyrazolinyl, imidazolinyl, pyrrolinyl, chromanyl, dihydrothienyl, and others. The term "heterocycle", "heterocyclic ring system," and "heterocyclyl" also include aromatic structures such as pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thienyl, furanyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, and tetrazolyl, optionally substituted.

The term "heteroaromatic ring" refers to an aromatic heterocyclic ring. Examples of "heteroaromatic ring" include pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thionyl, furanyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, and tetrazolyl, optionally substituted.

The term "ring" or "ring system" according to the present invention refers to ring systems comprising saturated, unsaturated or aromatic carbocyclic ring systems which contain optionally at least one heteroatom as ring member and which are optionally at least mono-substituted. Said ring systems may be condensed to other carbocyclic ring systems.

The term "monocyclic ring" refers to a ring system composed of a single ring.

The term "polycyclic ring" refers to a ring system composed of at least two rings. The term "salt" must be understood as any form of an active compound used in accordance with this invention in which the said compound is in ionic form or is charged and coupled to a counter-ion (a cation or anion) or is in solution. This definition also includes quaternary ammonium salts and complexes of the active molecule with other molecules and ions, particularly complexes formed via ionic interactions.The definition particularly includes physiologically acceptable salts; this term must be understood as equivalent to "pharmaceutically acceptable salts".

The term "pharmaceutically acceptable salts" in the context of this invention means any salt that is tolerated physiologically (normally meaning that it is not toxic, particularly as a result of the counter-ion) when used in an appropriate manner for a treatment, particularly applied or used in humans and/or mammals. These pharmaceutically acceptable salts may be formed with cations or bases and, in the context of this invention, are understood to be salts formed by at least one compound used in accordance with the invention - normally an acid (deprotonated) - such as an anion and at least one physiologically tolerated cation, preferably inorganic, particularly when used on humans and/or mammals. Salts with alkali and alkali earth metals are particularly preferred, as well as those formed with ammonium cations (NH 4 + ). Preferred salts are those formed with (mono) or (di)sodium, (mono) or (di)potassium, magnesium or calcium.These physiologically acceptable salts may also be formed with anions or acids and, in the context of this invention, are understood as being salts formed by at least one compound used in accordance with the invention - normally protonated, for example in nitrogen - such as a cation and at least one physiologically tolerated anion, particularly when used on humans and/or mammals. This definition specifically includes in the context of this invention a salt formed by a physiologically tolerated acid, i.e. salts of a specific active compound with physiologically tolerated organic or inorganic acids - particularly when used on humans and/or mammals. Examples of this type of salts are those formed with: hydrochloric acid, hydrobromic acid, sulphuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid or citric acid.

The term "solvate" in accordance with this invention should be understood as meaning any form of the active compound in accordance with the invention in which said compound is bonded by a non-covalent bond to another molecule (normally a polar solvent), especially including hydrates and alcoholates, for example methanolate.

The term "prodrug" is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention. Examples of prodrugs include, but are not limited to, derivatives and metabolites of the compounds of formula (I) that include biohydrolyzable moieties such as biohydrolyzable amides, biohydrolyzable esters, biohydrolyzable carbamates, biohydrolyzable carbonates, biohydrolyzable ureides, and biohydrolyzable phosphate analogues. Preferably, prodrugs of compounds with carboxyl functional groups are the lower alkyl esters of the carboxylic acid. The carboxylate esters are conveniently formed by esterifying any of the carboxylic acid moieties present on the molecule. Prodrugs can typically be prepared using well-known methods, such as those described by Burger "Medicinal Chemistry and Drug Discovery 6th ed. (Donald J. Abraham ed., 2001 , Wiley) and "Design and Applications of Prodrugs"

(H. Bundgaard ed., 1985, Harwood Academic Publishers).

The terms "prevention", "preventing", "preventive" "prevent" and "prophylaxis" refer to the capacity of a therapeutic to avoid, minimize or difficult the onset or development of a disease or condition before its onset.

The terms "treating" or "treatment" is meant at least a suppression or an amelioration of the symptoms associated with the condition afflicting the subject, where suppression and amelioration are used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., symptom associated with the condition being treated, such as pain. As such, the method of the present invention also includes situations where the condition is completely inhibited, terminated, such that the subject no longer experiences the condition.

In a particular and preferred embodiment of the present invention each R 9 in the general formula (I) is CR 10 and each R 10 is preferably H.

In another preferred embodiment of the invention each R 4 is H. In still another particular embodiment, Y preferably is or -C 1-4 - alkylene-O- and more preferably -0-CH 2 - or -CH 2 -0-. In a preferred embodiment, Y is -0-Ci- 4 -alkylene- In a more preferred embodiment, Y is -O- CH 2 -.

In another embodiment R 11 is CR 5 and R 5 is selected from the group consisting of H, halogen, Ci- 6 -haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, -OH and Ci_ 6 -alkyl.

In another preferred embodiment of the invention R 5 is selected from the group consisting of H, halogen and— Ci_ 6 -haloalkyl.

Another preferred embodiment is that in which B is Cy, this being preferably phenyl, C 3 - 6 -cycloalkyl, C 2 - 6 -alkyl, C 2 . 6 alkenyl or a 5-6 membered monocyclic heterocycle containing 1 or 2 N atom which can be aromatic, partially unsaturated or saturated, any of them optionally substituted by one or more R 8 .

In another embodiment B is phenyl or cyclopropyl, any of them optionally substituted by one or more R 8 .

In another embodiment B is phenyl and C 2 - 6 -alkyl

In a preferred embodiment B is preferably a phenyl optionally substituted by 1 -5 R 8 , more preferably by 1 -4 R 8 .

In another embodiment B is:

In another embodiment B is

In another embodiment B is

In another embodiment R is independently selected from the group consisting of halogen, Ci_ 6 -haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, Ci- 6 -alkyl, and -OH.

In another embodiment R 8 is selected from the group consisting of halogen and -Ci- 6-haloalkyl.

In a particular embodiment of the invention

represents

where E 1 , E 2 and E 3 are CR 2 ; or one of E 1 , E 2 or E 3 is N and the others are CR 2 ; or two of E 1 , E 2 or E 3 are N and the other is CR 2 .

In another embodiment E 1 , E 2 and E3 are CR 2 .

In another embodiment E 1 is N and E 2 and E 3 are CR 2 .

In another embodiment E 2 is N and E 1 and E 3 are CR 2 .

In another embodiment E 3 is N and E 1 and E 2 are CR 2 .

In another embodiment E 1 and E 3 are N and E 2 is CR 2 . In another particular embodiment of the invention represents

where G is selected from the group consisting of CR 3 , CR 3 R 3 , OCR 3 R 3 , OCR 3 , CR 3 R 3 -CR 3 R 3 and N;

D is selected from the group consisting of CR 3 , CR 3 R 3 and N;

and— represents a single bond or a double bond.

In another embodiment G is selected from the group consisting of CR 3 , CR 3 R 3 , O, S and N.

In another embodiment G is selected from the group consisting of CR 3 =CR 3 , CR 3 R 3 -CR 3 R 3 , N-CR 3 , N-CR 3 R 3 , CR 3 R 3 -N, O-CR 3 , 0-CR 3 R 3 , CR 3 R 3 -0, S-CR 3 , S-CR 3 R 3 and CR 3 R 3 -S.

In another embodiment G is selected from the group consisting of CR 3 , CR 3 R 3 and N.

In another embodiment G is CR 3 R 3 -CR 3 R 3 .

In another embodiment G is selected from the group consisting of CR 3 , CR 3 R 3 , N, CR 3 =CR 3 , CR 3 R 3 -CR 3 R 3 , N-CR 3 , N-CR 3 R 3 , CR 3 R 3 -N;.

In another embodiment G is selected from the group consisting of CR 3 , CR 3 R 3 , N and CR 3 R 3 -CR 3 R 3 .

In another embodiment A"

repres

G is selected from the group consisting of CR 3 , CR 3 R 3 and N;

D is selected from the group consisting of CR 3 , CR 3 R 3 and N;

— represents a single bond or a double bond.

In another embodiment

r

G is selected from the group consisting of CR 3 R 3 -CR 3 R 3 ;

D is selected from the group consisting of CR 3 , CR 3 R 3 and N;

— represents a single bond or a double bond.

In another embodiment D is selected from the group consisting of CR 3 , CR 3 R 3 and N.

In another embodiment

( W 1 W 2 ' is selected from the roup consisting of

In a preferred embodiment of the invention

is selected from the group consisting of

In another preferred embodiment

In another preferred embodiment

In another embodiment R 6 is a direct bond.

In another embodiment R 7 is selected from the group consisting of -C0 2 H, -S0 3 H and 5-tetrazolyl.

In another embodiment R 7 is -C0 2 H.

Another preferred embodiment of the invention is that in which R 6 is a direct bond and R 7 is -C0 2 H. In a particular embodiment R 2 is independently selected from the group consisting of H, halogen, C _ 6 -alkyl, Ci- 6 -haloalkyl, -0-Ci- 6 -alkyl, -0-Ci- 6 -haloalkyl, hydroxyCi-e- alkyl and CN.

In another embodiment R 2 is independently selected from the group consisting of H and halogen.

In another embodiment R 3 is H.

In another embodiment, each R 2 is independently selected from the group consisting of H and halogen and each R 3 is H.

Among all the compounds encompassed by the general formula (I) the following compounds are particularly preferred:

(E)-1 -(5-chloro-2-(4-chloro-2-fluorostyryl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-bromobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl )-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-(cyclopropylmethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(4-chloro-2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-(trifluoromethyl)benzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2,3,5,6-tetrafluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-bis(trifluoromethyl)benzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid, 1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl )-1 H-indole-4- carboxylic acid,

1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl )-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,3,4-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((2,3,4-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(1 -(2,4-difluorophenyl)ethoxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((3-bromo-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl) -1 H-indole-4- carboxylic acid,

1 -(5-bromo-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(3-bromo-2-((4-bromo-2-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-5-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-chloro-4,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,6-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((3,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2-chloro-4,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid, 1 -(2-((2,6-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2-chloro-5-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,5-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(3-bromo-5-chloro-2-((2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((3,5-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)phenyl)ethyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-(benzyloxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluoro-4-(trifluoromethyl)benzyl)oxy)benzyl )-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((3-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl) -1 H-indole-4- carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-bromo-2-((4-bromo-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-4-carboxylic acid, 1 -(5-chloro-2-((4-chloro-2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(2-((4-bromo-2,6-difluorobenzyl)oxy)-5-chlorobenzyl)-1 H-indole-4- carboxylic acid,

1 -(3,5-dichloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-bromo-2-((4-chloro-2,6-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -((3-((4-chloro-2-fluorobenzyl)oxy)pyridin-2-yl)methyl)-1 H-indole-4- carboxylic acid,

3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)propanoic acid,

1 -(5-chloro-2-(4-chloro-2-fluorophenethyl)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-fluoro-2-((2,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl )-1 H-indole-5- carboxylic acid,

1 -(2-((3-bromo-4-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-bromo-2-((4-fluoro-2-(trifluoromethyl)benzyl)oxy)benzyl) -1 H-indole-5- carboxylic acid,

1 -(5-bromo-2-((2-chloro-4-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-fluoro-2-((3,4,5-trifluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((2-chloro-4,5-difluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxyl acid,

1 -(2-((2-chloro-5-fluorobenzyl)oxy)-5-fluorobenzyl)-1 H-indole-5-carboxylic acid,

1 -(5-bromo-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(2-((4-bromo-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl) -1 H-indole-5- carboxylic acid, 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-5-carboxylic acid,

(E)-3-(1 -(2-(benzyloxy)-5-(trifluoromethyl)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-bromo-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indol-4-yl)acrylic acid,

(E)-3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)acrylic acid,

2-((1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-(trifluoromethyl)benzyl )-1 H-indol-4- yl)oxy)acetic acid,

2-((1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)oxy)acetic acid,

2-((1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)-1 H-indol-4-yl)oxy)acetic acid,

1 -(2-(benzyloxy)-5-bromobenzyl)-1 H-indole-6-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-6-carboxylic acid,

3-(1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indol-4- yl)propanoic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-b]pyridine- 4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-b]pyridine-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-benzo[d]imidazole-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)indoline-4 -carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

7-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-7H-pyrro lo[2,3- d]pyrimidine-4-carboxylic acid,

7-(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-7H-pyrrolo[2, 3-d]pyrimidine-4- carboxylic acid, 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-7-fluoro-1 H-indole-4-carboxylic acid,

1 -{2-[(2,4-difluorobenzyl)oxy]-5-methoxybenzyl}-1 H-indole-4-carboxylic acid, 1 -[5-chloro-2-(cyclohexylmethoxy)benzyl]-1 H-indole-4-carboxylic acid, 1 -[5-chloro-2-(cyclopentylmethoxy)benzyl]-1 H-indole-4-carboxylic acid, 1 -(5-fluoro-2-propoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-propoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(2-(tetrahydro-2H-pyran-4-yl)ethoxy)benzyl)-1 H-indole-4- carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -(2-isobutoxybenzyl)-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2,2-difluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(2,2,2-trifluoroethoxy)benzyl]-1 H-indole-4-carboxylic acid,

1 -[5-chloro-2-(neopentyloxy)benzyl]-1 H-indole-4-carboxylic acid,

4-(5-chloro-2-cyclobutoxybenzyl)-3-oxo-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-bromo-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-oxo-3,4-d ihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3,4-dihydro- 2H- benzo[b][1 ,4]oxazine-8-carboxylic acid

4-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3,4-dihy dro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3,4-dihydr o-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3,4-dihydro-2H - benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-(benzyloxy)benzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)-3,4-dihy dro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(2-((2,4-difluorobenzyl)oxy)benzyl)-3,4-dihydro-2H-benzo[b ][1 ,4]oxazine-8- carboxylic acid, 1 -(2-((2-chlorobenzyl)oxy)-5-fluorobenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(2-((2-chlorobenzyl)oxy)-5-methylbenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-fluoro-2-((2-fluorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(2-((2-fluorobenzyl)oxy)-5-methylbenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((2-chlorobenzyl)oxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-propoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-fluoro-2-propoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-bromo-2-(4-chloro-2-fluorobenzyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-cyclobutoxybenzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-(neopentyloxy)benzyl)-1 H-indazole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[3,2-c]pyridine- 4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-7-fluoro-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydrox ymethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymeth yl)-1 H-indole- 4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4- carboxylic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)- 1 H-indole-4- carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-3-(hydroxymeth yl)-1 H-indole-4- carboxylic acid, 1 -(2-((4-chloro-2-fluorobenzyl)oxy)-5-fluorobenzyl)-3-(hydrox ymethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymet hyl)-1 H- indole-4-carboxylic acid,

1 -(2-cyclobutoxy-5-fluorobenzyl)-3-(hydroxymethyl)-1 H-indole-4-carboxylic acid,

1 -(5-fluoro-2-((4-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)- 1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-((4-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)- 1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymet hyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(hydroxymeth yl)-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydrox ymethyl)-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(2-hydr oxyethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-3-(2-hydroxyet hyl)-1 H-indole- 4-carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)-3-(2-hydroxyethyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)-3-(2-hydroxyethyl)-1 H-indole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(2-hydroxye thyl)-1 H- indole-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)-5-fluorobenzyl)-3-(2-hydroxyet hyl)-1 H-indole-4- carboxylic acid,

1 -(5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl)-3-(2-hydroxye thyl)-1 H- indole-4-carboxylic acid,

(E)-3-(2-carboxylatovinyl)-1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-1 H-indole-4-carboxylic acid,

(E)-3-(2-carboxylatovinyl)-1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H- indole-4-carboxylic acid, 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine-4- carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine-

4- carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)indoline-4-carb oxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)indoline-4-car boxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)indoline-4 -carboxylic acid,

1 -(2-((2-chloro-4-fluorobenzyl)oxy)-5-fluorobenzyl)indoline-4 -carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)indoline-4-carboxylic acid,

1 -(5-fluoro-2-isobutoxybenzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-cyclobutoxybenzyl)indoline-4-carboxylic acid,

1 -(2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-(cyclobutylmethoxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -[5-chloro-2-(1 ,2-dimethylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-

5- carboxylic acid,

1 -[5-chloro-2-(cyclobutyloxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -{5-chloro-2-[(2-methylprop-2-enyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid,

1 -[5-chloro-2-(3-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid,

1 -[5-chloro-2-(2-fluoropropoxy)benzyl]-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-{[2-(fluoromethyl)prop-2-enyl]oxy}benzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinoline-5-sulfonic acid, 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- sulfonic acid,

1 -(2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- sulfonic acid,

N-((1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinolin- 5-yl)sulfonyl)acetamide,

N-((1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 ,2,3,4- tetrahydroquinolin-5-yl)sulfonyl)acetamide,

1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydrox ymethyl)-1 H- indazole-4-carboxylic acid,

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-3-(hydroxymet hyl)-1 H- indazole-4-carboxylic acid,

1 -(5-chloro-2-(cyclopentyloxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid,

1 -(5-chloro-2-(propooxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

1 -(2-(4-chloro-2-fluorobenzyloxy)-5-methylbenzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -(5-chloro-2-(neopentyloxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid,

4-(2-(4-chloro-2-fluorobenzyloxy)-5-methylbenzyl)-3,4-dihydr o-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-fluoro-2-isobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-isobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-cyclobutoxybenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

4-(5-chloro-2-(cyclopropylmethoxy)benzyl)-3,4-dihydro-2H- benzo[b][1 ,4]oxazine-8-carboxylic acid,

4-(5-chloro-2-(neopentyloxy)benzyl)-3,4-dihydro-2H-benzo[b][ 1 ,4]oxazine-8- carboxylic acid,

1 -(5-chloro-2-(3-methoxypropoxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-(2-methoxyethoxy)benzyl)indoline-4-carboxylic acid, 1 -(5-chloro-2-(cyclopropylmethoxy)benzyl)indoline-4-carboxyli c acid, 1 -(5-chloro-2-(neopentyloxy)benzyl)indoline-4-carboxylic acid,

1 -(5-chloro-2-((3-methyloxetan-3-yl)methoxy)benzyl)indoline-4 -carboxylic acid,

(S)-1 -(5-chloro-2-(3-hydroxy-2-methylpropoxy)benzyl)indoline-4-ca rboxylic acid,

1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-(methoxym ethyl)-1 H- indole-4-carboxylic acid,

1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-2-oxoindoli ne-4-carboxylic acid,

1 -(2-(4-chloro-2-fluorobenzyloxy)-5-cyclopropylbenzyl)-1 H-indazole-4- carboxylic acid,

1 -(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-(methoxym ethyl)-1 H- indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4- b]pyridine-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 H-pyrazolo[3,4-b]pyridine- 4-carboxylic acid,

1 -[5-chloro-2-(cyclobutyloxy)benzyl]-1 H-pyrazolo[3,4-b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4- tetrahydroquinoline-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chlorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid, 1 -{5-chloro-2-[(2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-2,3-dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid,

1 -(5-chloro-2-isobutoxybenzyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine-4- carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-(1 H-tetrazol-5-yl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine,

8-{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-te trahydro-1 ,8- naphthyridine-4-carboxylic acid,

8-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-5,6,7 ,8-tetrahydro-1 ,8- naphthyridine-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4- tetrahydroquinoxaline-5-carboxylic acid,

1 -{5-chloro-2-[2-(2,4-difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)-1 H- indole-4-carboxamide, 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)-1 H- indole-4-carboxamide,

1 -(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)-2,3-dihydro -1 H- pyrrolo[2,3-b]pyridine-4-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)- 1 ,2,3,4-tetrahydroquinoline-5-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N- [(dimethylamino)sulfonyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N- [(dimethylamino)sulfonyl]-1 ,2,3,4-tetrahydroquinoline-5-carboxamide,

N-({1 -(5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl})-1 ,2,3,4- tetrahydroquinolin-5-yl]amino}carbonyl) methanesulfonamide,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxamide,

1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid,

1 -{2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7-naphthyridine-5- carboxylic acid,

1 -[5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl]-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(2,4-difluorobenzyl)oxy]-5-fluorobenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -(2-((2,4-difluorobenzyl)oxy)-5-methylbenzyl)-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]-5-fluorobenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

1 -{2-[(4-chloro-2-fluorobenzyl)oxy]-5-methylbenzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid

4-(2-cyclobutoxy-5-fluorobenzyl)-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8- carboxylic acid,

1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H- pyrrolo[2,3-c]pyridine-4-carboxylic acid, 1 -(5-chloro-2-cyclobutoxybenzyl)-2-oxoindoline-4-carboxylic acid

1 -(5-chloro-2-(2-fluoro-2-methylpropoxy)benzyl)-2-oxoindoline -4-carboxylic acid and the salts, solvates and prodrugs thereof.

In another embodiment, the sodium salt of the previous compounds is preferred.

In another aspect the invention refers to a process for preparing the compounds of the invention.

The compounds of the invention may be made by a variety of methods, including standard chemistry. Any previously defined variable will continue to have the previously defined meaning unless otherwise indicated. Illustrative general synthetic methods are set out below and then the preparation of specific compounds of the invention is described in more detail in the Experimental Section.

For instance, a process for preparing compounds of general formula (I) comprises the reaction between a compound of general formula (II):

II wherein LG is a leaving group, preferably bromo, with a compound of general formula (III), or a protected form thereof where the R 7 group in W 1 is protected: followed if necessary by the removal of any protecting group that may be present.

In general, a compound of formula III is preferably used in protected form, i.e. with the R 7 group in W1 protected with a suitable protecting group. If III is reacted with II in protected form, a subsequent step to remove the protecting group on R 7 will be required to yield a compound of formula I, which is performed under standard conditions well known in the art. When in a compound of formula III R 7 is -C0 2 H, compound III is used in protected form as an ester, and therefore the acid must be deprotected after the reaction of II with III under standard conditions; a suitable set of conditions comprises the treatment of the corresponding ester with NaOH (10%), in tetrahydrofuran or methanol at about 50 5 C.

A compound of formula I thus obtained can be converted into a salt using standard procedures. For example, when R 7 in a compound of formula I is -C0 2 H, the sodium salt can be obtained for example by treatment of the corresponding carboxylic acid with sodium tert-butoxide in methanol at room temperature.

The process for the synthesis of compound of general formula I can be summarised as follows:

II III

In the above scheme W 1 , W 2 , R 4 , Y, B, R 9 and R 11 have the meaning previously defined and LG represents a leaving group. A leaving group is a group that in an heterolytic bond cleavage keeps the electron pair of the bond. Suitable leaving groups are well known in the art and include CI, Br, I and -0-S0 2 R 14 , wherein R 14 is F, d-4-alkyl, d^-haloalkyl, or optionally substituted phenyl. The preferred leaving groups are: CI, Br, I, tosylate, mesylate, triflate, nonaflate and fluorosulphonate.

Preferably, compounds of formula (II) wherein LG is bromo are used. Compounds of formula (II) and (III) are suitably reacted together in the presence of a base in an inert organic solvent which includes, aromatic hydrocarbons such as toluene, o-, m-, p- xylene; halogenated hydrocarbons such as methylene chloride, chloroform, and chlorobenzene; ethers such as diethylether, diisopropyl ether, tert- butyl methyl ether, 5 dioxane, anisole, and tetrahydrofuran; nitriles such as acetonitrile and propionitrile; ketones such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone; alcohols such as methanol, ethanol, n- propanol, n-butanol, tert-butanol and also DMF (Ν,Ν-dimethylformamide), DMSO (Ν,Ν-dimethyl sulfoxide) and water. The preferred list of solvents includes DMSO, DMF, acetonitrile and THF. Mixtures of these solvents in varying ratios can also be used. Suitable bases are, generally, inorganic compounds such as alkali metal hydroxides and alkaline earth metal hydroxides, such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide; alkali metal oxides and alkaline earth metal oxides, lithium oxide, sodium oxide, magnesium oxide and calcium oxide; alkali metal hydrides and alkaline earth metal hydrides such as lithium hydride, sodium hydride, potassium hydride and calcium hydride; alkali metal, amides and alkaline earth metal amides such as lithium amide, sodium amide, potassium amide and calcium amide; alkali metal carbonates and alkaline earth metal carbonates such as lithium carbonate and calcium carbonate; and also alkali metal hydrogencarbonates and alkaline earth metal hydrogencarbonates such as sodium hydrogencarbonate; organometallic compounds, particularly alkali-metal alkyls such as methyl lithium, butyllithium, phenyl lithium; alkyl magnesium halides such as methyl magnesium chloride, and alkali metal alkoxides and alkaline earth metal alkoxides such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tertbutoxide and di-methoxymagnesium, further more organic bases e.g. triethylamine, triisopropylamine, N-methylpiperidine, pyridine. Sodium hydroxide, Sodium methoxide, Sodium ethoxide, potassium hydroxide, potassium carbonate and triethylamine are especially preferred. Suitably the reaction may be effected in the presence of a phase transfer catalyst such as tetra-n-butylammonium hydrogensulphate and the like. The inert atmosphere may be maintained by using inert gases such as N 2 , Ar or He. Reaction times may vary from 1 to 24 hrs, preferably from 2 to 6 hours, whereafter, if desired, the resulting compound is transformed into a salt thereof. The starting compounds of general formula (I I) can be prepared in several ways. A general scheme of preparation of compound of formula (I I) is represented below:

In the above scheme:

LG represents a leaving group. A leaving group is a group that in an heterolytic bond cleavage keeps the electron pair of the bond. Suitable leaving groups are well known in the art and include CI, Br, I and -0-S0 2 R 16 , wherein R 16 is F, d-4-alkyl, C 1 -4 -haloalkyl, or optionally substituted phenyl. The preferred leaving groups are: CI, Br, I, tosylate, mesylate, triflate, nonaflate and fluorosulphonate.

A 1 represents a group.

- A 2 represents -C n -alkyl-CO-C m -alkyl-B, wherein n and m independently have a value of 0 to 2 and wherein n+m<2. A 3 represents either an -O- or-NR 13 -.

all remaining substituents have the same meanings as previously defined in relation to a compound of formula (I).

Suitable reaction conditions for the preparation a compound of formula (II) include conventional methods for converting the hydroxyl group of the compounds of formula (IVa), (IVb), (IVc) and (IVd) to a leaving group, for example Br. When LG=bromo, the compound of formula (IV) may be reacted with phosporous tribromide in a solvent, e.g. dichloromethane, at reduced temperatures, e.g. less than Ο 'Ό. Such transformations are well known to those skilled in the art and are described in for example L. G. Wade, Jr., Organic Chemistry, 6th ed., p. 477, Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA, 2005.

Suitable reaction conditions for the preparation a compound of formula (IV) include conventional methods for reducing the carbonyl group of the compounds of formula (V) to a hydroxyl group. The reduction step may be carried out using a reducing agent such as NaBH 4 , NaCNBH 3 , LiAIH 4 , LiBH 4 or Zn(BH 4 ) 2 . For compounds of formula (Va), (Vc) and (Vd), preferably, the reduction step is carried out using NaBH4. Preferably, an excess of NaBH4 is used. Preferably, the reduction step is carried out in an alcohol solvent. Typical alcohols are methanol, ethanol, isopropanol, and mixtures thereof. A preferred alcohol is methanol. For compounds of formula (Vb) preferably, the reduction step is carried out using LiAIH 4 . Preferably, an excess of LiAIH 4 is used. Preferably, the reduction step is carried out in an alkylether solvent. Typical alkylether solvents are tetrahydrofuran, diethyleter, dioxane, diisopropylether, and mixtures thereof. A preferred alkylether is tetrahydrofuran. Such transformations are well known to those skilled in the art and are described in for example Banfi, L; Narisano, E.; Riva, R.; Stiasni, N.; Hiersemann, M. "Sodium Borohydride" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York.; and Seyden-Penne, J. "Reductions by the Alumino- and Borohydrides in Organic Synthesis"; VCH- Lavoisier: Paris, 1991 .

Suitable reaction conditions for the preparation a compound of formula (Va) and (Vb) include conventional methods for the alkylation of the compounds of formula (Via) and (VIb) wherein A 3 represents either an -O- or-NR 13 -. A suitable LG group is bromine or chloride. The alkylation reaction of the compounds of formula (Via) and (VIb) may be carried out in an inert organic solvent such as tetrahydrofuran or dimethylformamide at ambient or elevated temperature, optionally in the presence of a suitable base such as potassium or cesium carbonate or a strong base such as sodium t-butoxide or lithium bis(trimethylsilyl)amide (LiHMDS).

Suitable reaction conditions for the preparation a compound of formula (Vc) and (Vd) include conventional methods for reducing the cyano group of the compounds of formula (Vic) and (Vld) to a hydroxyl group. The reduction step may be carried out using a reducing agent such as DIBA-H in an inert organic solvent such as hexane, heptane or cyclohexane, at ambient or low temperature, preferably from 0 5 C to 5 5 C. Intermediates of formula (VI) wherein A 3 represents either an -O- or-NR 13 -, are commercially available, or may readily be prepared by methods known to those skilled in the art, for example from suitable commercially available starting materials.

Compounds of formula (III) are either commercially available or can be obtained by conventional methods.

Particular embodiments of the preparation of compounds of general formula (II) and (III) are provided below in the experimental section under the heading "Intermediate compounds".

Certain substituents in any of the reaction intermediates described above and in the compounds of formula (I) may be converted to other substituents by conventional methods known to those skilled in the art. Examples of such transformations include the Wittig reaction of an aldehyde group to give an alkene group; hydrolysis of esters, alkylation of hydroxy and amino groups; and formation of salts of carboxylic acids. Such transformations are well known to those skilled in the art and are described in for example, Richard Larock, Comprehensive Organic Transformations, 2nd edition, Wiley- VCH, ISBN 0-471 -19031 -4. It will be appreciated that in any of the routes described above, the precise order of the synthetic steps by which the various groups and moieties are introduced into the molecule may be varied. It will be within the skill of the practitioner in the art to ensure that groups or moieties introduced at one stage of the process will not be affected by subsequent transformations and reactions, and to select the order of synthetic steps accordingly. In some instances it may be appropriate to use protecting groups to prevent reactions between one or more groups or moieties. Such procedures are familiar to those skilled in the art (see, for example, "Protective groups in organic synthesis" by T.W. Greene and P.G.M. Wuts (John Wiley & sons 10 1999) or "Protecting Groups" by P.J. Kocienski (Georg Thieme Verlag 1994).

An additional aspect of the invention relates to the therapeutic use of the compounds of general formula (I). As mentioned above, compounds of general formula (I) show a strong affinity to EP1 receptors. For this reason, they are suitable for the treatment and/or the prophylaxis of disorders and diseases mediated by EP1 receptors.

Compounds of the invention are particularly useful for modulating pain. The compounds of the present invention can treat or prevent the pain associated with several pathological conditions comprising, among others, inflammatory related pain

(Hall et al. 2007) including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain (Omote et al. 2001 ) including dental procedures; neuropathic pain (Kawahara et al. 2001 ); visceral pain (Sarkar et al. 2003); tension headache; cluster headaches; migraine and the like.

Moreover, by inhibition of prostanoid-induced smooth muscle contraction by antagonizing contractile prostanoids or mimicking relaxing prostanoids, EP1 modulators may be used in the treatment of motility -related disorders (with or without pain) such as as gastroinstestinal disorders (Sarkar et al. 2003; Mizuguchi et al 2010) and urinary incontinence and other urinary tract diseases (Teramura et al. 2000; Lee et al. 2007; Okada et al., 2010; Wilbraham et al 2010; Miki et al 2010), dysmenorrhea and preterm labour.

The compounds of the invention can also be useful in prostaglandin-mediated proliferation disorders such as in diabetic retinopathy and tumour angiogenesis, cancer (Watanabe et al. 1999; Niho et al. 2005), the inhibition of cellular neoplasic transformations and metastatic tumour growth.

They can further be used in the treatment of neurodegenerative diseases (including senile dementia, Alzheimer's disease, Pick's disease, Huntingdon's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or Amyotrophic Lateral Sclerosis) (Li et al. 201 1 ), neuroprotection/stroke (Abe et al 2009), glaucoma (Woodward et al 1997), bone loss (osteoporosis) and the proportion of bone formation (treatment of fractures) (Zhang et al 201 1 ; Lee et al. 2007) and other bone diseases such as Paget's disease.

As PGE2-induced hyperthermia in the rat is mediated predominantly through the EP1 receptor (Honemann et al. 2001 ; Oka et al. 2003) different kinds of fever as rheumatic fever, symptoms associated with influenza or other viral infections as well as common cold can be also target diseases for EP1 modulators.

The compounds of the invention can also have a cytoprotective activity in patients under different gastrointestinal disorders as related with chemotherapy, or irritable bowel disease. Other diseases that can be treated or prevented with the compounds of the invention include gastrointestinal bleeding, coagulation disorders including anaemia such as hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases (nephritis (Rahal et al. 2006), particularly mesangial proliferative glomerulonephritis and nephritic syndrome); thrombosis, and occlusive vascular diseases.

In this sense, compounds of formula (I) are suitable to treat or to prevent diseases or disorders comprising inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; common cold, gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases.

The invention thus relates to a compound of formula (I) for use in the treatment and/or prophylaxis of an EP1 -mediated disease or disorder. In one embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of pain, motility-related disorders, gastrointestinal disorders, urinary tract diseases, cancer, neurodegenerative diseases, stroke, glaucoma, bone diseases, fever, coagulation disorders and occlusive vascular diseases. In a preferred embodiment, the EP1 - mediated disease or disorder is pain. In another embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt- Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; common cold, gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases. In a preferred embodiment, the EP1 -mediated disease or disorder is pain comprising inflammatory related pain, including low back and neck pain, skeletal pain, postpartum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine.

A related aspect refers to the use of at least one compound of general formula (I) for the manufacture of a medicament for the treatment and/or prophylaxis diseases or disorders mediated by EP1 receptors or in which EP1 receptors are involved.

In one embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of pain, motility-related disorders, gastrointestinal disorders, urinary tract diseases, cancer, neurodegenerative diseases, stroke, glaucoma, bone diseases, fever, coagulation disorders and occlusive vascular diseases. In a preferred embodiment, the EP1 -mediated disease or disorder is pain. In another embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hypertermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; common cold, gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases. In another embodiment, the EP1 - mediated disease or disorder is selected from the group consisting of inflammatory related pain (including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns); postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; and migraine.

An aspect of the invention related to the therapeutic use of the compounds of general formula (I) is a method of treatment and/or prophylaxis of disorders and diseases mediated by EP1 receptors which comprises administering to a patient in need thereof a therapeutically effective amount of at least one compound of general formula (I). In one embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of pain, motility-related disorders, gastrointestinal disorders, urinary tract diseases, cancer, neurodegenerative diseases, stroke, glaucoma, bone diseases, fever, coagulation disorders and occlusive vascular diseases. In a preferred embodiment, the EP1 -mediated disease or disorder is pain. In another embodiment, the EP1 -mediated disease or disorder is selected from the group consisting of inflammatory related pain including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns; postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; migraine; motility-related disorders including gastrointestinal disorders, urinary incontinence and other urinary tract diseases; dysmenorrhea; preterm labour; diabetic retinopathy; tumour angiogenesis; cancer; metastatic tumour growth; neurodegenerative diseases including senile dementia, Alzheimer's disease, Pick's disease, Huntington's chorea, Parkinson's disease, Creutzfeldt-Jakob disease, or amyotrophic lateral sclerosis; neuroprotection/stroke; glaucoma; osteoporosis; bone fractures; Paget's disease; hyperthermia including different types of fever as rheumatic fever; symptoms associated with influenza or other viral infections; common cold, gastrointestinal disorders related with chemotherapy or irritable bowel syndrome; gastrointestinal bleeding; coagulation disorders including anaemia, hypoprothrombinemia, haemophilia or other bleeding problems; kidney diseases including nephritis, particularly mesangial proliferative glomerulonephritis and nephritic syndrome; thrombosis and occlusive vascular diseases. In another embodiment, the EP1 - mediated disease or disorder is selected from the group consisting of inflammatory related pain (including low back and neck pain, skeletal pain, post-partum pain, toothache, sprains and straits, myositis, neuralgia, synovitis, arthritis, including rheumatoid arthritis, degenerative joint diseases (such as osteoarthritis), gout and ankylosing spondylitis, bursitis, burns including radiation and corrosive chemical injuries and sunburns); postoperative pain; neuropathic pain; visceral pain; tension headache; cluster headaches; and migraine.

The amount of active ingredient that must be administered to the patient depends on the patient's weight, the type of application, the condition and severity of the disease. Normally, in human beings 1 to 1500 mg of the active compound is administered daily in one or several doses.

A further aspect of the invention regards a pharmaceutical composition which comprises a compound of general formula (I), and at least a pharmaceutically acceptable carrier, additive, adjuvant or vehicle.

The auxiliary materials or additives can be selected among carriers, excipients, support materials, lubricants, fillers, solvents, diluents, colorants, flavour conditioners such as sugars, antioxidants and/or agglutinants. In the case of suppositories, this may imply waxes or fatty acid esters or preservatives, emulsifiers and/or carriers for parenteral application. The selection of these auxiliary materials and/or additives and the amounts to be used will depend on the form of application of the pharmaceutical composition.

The pharmaceutical composition in accordance with the invention can be adapted to any form of administration, be it orally or parenterally, for example pulmonarily, nasally, rectally and/or intravenously. Therefore, the formulation in accordance with the invention may be adapted for topical or systemic application, particularly for dermal, subcutaneous, intramuscular, intra-articular, intraperitoneal, pulmonary, buccal, sublingual, nasal, percutaneous, vaginal, oral or parenteral application.

Suitable preparations for oral applications are tablets, pills, chewing gums, capsules, granules, drops or syrups. Suitable preparations for parenteral applications are solutions, suspensions, reconstitutable dry preparations or sprays.

The compounds of the invention as deposits in dissolved form or in patches, for percutaneous application.

Skin applications include ointments, gels, creams, lotions, suspensions or emulsions.

The preferred form of rectal application is by means of suppositories.

In the following paragraphs, some specific examples of preparation of intermediate compounds (II) and (III) and compounds of formula (I) are provided, together with examples of the biological activity of the compounds of the invention.

EXPERIMENTAL SECTION

The following abbreviations are used along the experimental section:

ACN: Acetonitrile

AcOH: Acetic acid CDI: 1 ,1 '-Carbonyldiimidazole

DAST: Diethylaminosulfur trifluoride

DBU: 1 ,8-Diazabicyclo[5.4.0]undec-7-ene

DCM: Dichloromethane

DIBAL-H: Diisobutylaluminium hydride

DIPEA: N,N-Diisopropylethylamine

DMAP: 4-(Dimethylamino)pyridine

DMF: Dimethylformamide

DMSO: Dimethyl sulfoxide

DPPA: Diphenyl phosphoryl azide

Dppf: 1 ,1 '-Bis(diphenylphosphino)ferrocene

EDCI.HCI: N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride

EDTA: Ethylenediaminetetraacetic acid

Et 2 0: Diethyl ether

EtAcO: Ethyl acetate

EtOH: Ethanol

Hex: hexane

HMTA: Hexamethylenetetramine

HPLC: High Performance Liquid Chromatography

LC-MS: Liquid chromatography-mass spectrometry

LDA: Lithium diisopropylamide

Mel: lodomethane

MEM-CI: 2-Methoxyethoxymethyl chloride

MeOH: Methanol

MES: 2-(N-Morpholino)ethanesulfonic acid

Me-THF: 2-Methyltetrahydrofurane

MsCI: Methanesulfonyl chloride

NaAcO: Sodium acetate

NaBH(OAc)3: Sodium triacetoxyborohydride

NaHMDS: Sodium hexamethyldisilazide

NBS: N-bromosuccinimide

n-BuLi: Butyllithium

NMR: Nuclear magnetic resonance

Pd/C: Palladium on carbon Pd(OAc) 2 : Palladium(ll) acetate

P(OEt) 3 : Triethylphosphite

Pd(PPh 3 ) 4 : Tetrakis(triphenylphosphine)palladium

PPTS: Pyridinium p-toluenesulfonate

p-TsCI: p-Toluenesulfonyl chloride

p-TsOH: p-Toluenesulfonic acid

Rf: Retention factor

RT: Room temperature

TBAF: Tetrabutylammonium fluoride

t-BuONa: Sodium tert-butoxide

TEA: Triethylamine

TFA: Trifluoroacetic acid

THF: Tetrahydrofurane

TLC: Thin layer cromatography

TMSN 3 : Trimethylsilyl azide

tr: Retention time

X-Phos: 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl Intermediate compounds

Intermediate compound 1: Synthesis of 2-(bromomethyl)-4-chloro-1-((2,4- difluorobenzyl)oxy)benzene

a) To a solution of 5-chloro-2-hydroxybenzaldehyde (2.04 g, 13 mmol) in DMF, potassium carbonate (2.64 g, 15.6 mmol) and 1 -(bromomethyl)-2,4- difluorobenzene (2.83 g, 13.7 mmol) were added. The resulting yellow mixture was stirred at 40 5 C overnight.

Then, it was diluted with water and HCI 1 M was added until neutral pH was reached.

The mixture was extracted with EtAcO (x3) and the combined organic phase washed with brine and dried over MgS0 4 . b) The white solid obtained after removing the solvent (3.67 g, 100%) was suspended in 25 mL of absolute EtOH. The mixture was cooled at 0 9 C and then 560 mg (14.7 mmol) of NaBH 4 were added. After 10 minutes the white suspension had turned into a colourless solution and TLC showed no starting material left. It was diluted with water and HCI 1 M was added until acid pH was reached. The mixture was extracted with EtAcO (x3) and the combined organic phase washed with brine and dried over MgS0 4 . Solvent was evaporated to yield 3.42g (12 mmol, 93%) of (5- chloro-2-((2,4-difluorobenzyl)oxy)phenyl)methanol. c) To a solution of 3.42 g of (5-chloro-2-((2,4- difluorobenzyl)oxy)phenyl)methanol in 50 ml_ dry DCM under argon and at 0 5 C PBr 3 (3.25 g, 12 mmol) was added dropwise. The solution was stirred at 0 5 C for 90 minutes, then at room temperature overnight. A saturated solution of sodium hydrogen carbonate was then added until neutral pH was reached. The mixture diluted with dichloromethane and water. The organic phase was separated, washed with water then dried over Na 2 S0 4 and evaporated to dryness.

The crude was purified by column chromatography eluting with Hex/EtAcO 8:2. 2- (bromomethyl)-4-chloro-1 -((2,4-difluorobenzyl)oxy)benzene was obtained as a white solid (3.67 g, 88%).

1 H NMR (400 MHz CDCI 3 ) δ 7.59 (1 H, m), 7.36 (1 H, d), 7.26 (1 H, dd,), 6.96 (1 H, m), 6.89 (2H, m), 5.17 (2H, s), 4.53 (2H, s).

The following compounds were prepared using the same procedure as in intermediate compound 1 :

Intermediate

Compound name Starting materials NMR compound

NMR (300 MHz, CDCI3) δ : 7.35- 7.17 (m, 2H, ArH);

5-chloro-2- 6.78 (d, J= 8.76

2-(bromomethyl)- hydroxybenzaldeh Hz, 1H, ArH); 4.49

1bo 4-chloro-1- yde and 1 - (s, 2H); 3.97 (t, J= propoxybenzene

iodopropane 6.4 Hz, 2H); 1.98- 1.74 (m, 2H); 1.08 (t, J= 7.44 Hz, 3H). l-(bromomethyl)- salicylaldehyde *

1bp 2- and 1-iodo-2- isobutoxybenzene methylpropane

5-chloro-2-

*

2-(bromomethyl)- hydroxybenzaldeh

1bq 4-chloro-1-(2,2- yde and 1 ,1- difluoroethoxy)ben difluoro-2- zene iodoethane

2- 5-chloro-2-

(bromomethyl)-4- hydroxybenzaldeh * chloro-1-(2- yde and 2-

1br

fluoroethoxy)benze fluoroethyl-4- ne methylbenzenesulf

on ate

2- 5-chloro-2-

*

(bromomethyl)-4- hydroxybenzaldeh

1bs chloro-1 -(2,2,2- yde and 1,1,1- trifluoroethoxy)ben trifluoro-2- zene iodoethane Intermediate

Compound name Starting materials NMR compound

2- 5-chloro-2-

*

(bromomethyl)-4- hydroxybenzaldeh

1 bt chloro-1 - yde and 1 -iodo-

(neopentyloxy)ben 2,2- zene dimethylpropane

5-chloro-2- hydroxybenzaldeh

yde and 2-fluoro-2- methylpropyl

2- trifluoromethanesul

(bromomethyl)-4- *

fonate (prepared

chloro-1 -(2-fluoro-

1 bu following the

2- method described

methylpropoxy)ben

in: Limanto, J. et al

zene

J. Org. Chem.

2005, 70, 2372- 2375)

5-fluoro-2-

2- hydroxybenzaldeh *

(bromomethyl)-l - yde and 1 -

1 bv ((4-chloro-2-

(bromomethyl)-4- fluorobenzyl)oxy)- chloro-2- 4-fluorobenzene

fluorobenzene

5-chloro-2-

2- hydroxybenzaldeh

(bromomethyl)-4- yde and **

1 bw chloro-1 - cyclobutylmethyl 4-

(cyclobutylmethoxy

methylbenzenesulf

)benzene

on ate

* Intermediate compouns used directly in t he next step without further analysis. ** LC-MS (method 4): t R = 1 .55 [M-H] = 289

Intermediate compound 2: Synthesis of 2-(1-bromoethyl)-4-chloro-1-((4-chloro- 2-fluorobenzyl)oxy)benzene

a) 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)phenyl)ethanol

To a solution of 5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzaldehyde (200 mg, 0.67 mmol) in dry diethyl ether, a solution of methylmagnesium bromide 3 M in ether (0.45 ml_, 1 .34 mmol) was added at 0 5 C under nitrogen atmosphere. Mixture was stirred and allowed to reach room temperature. After 3 h, TLC showed no starting material left. It was treated with a saturated solution of ammonium chloride, diluted with water and extracted with diethyl ether (x3). The combined organic phases were washed with brine and dried over MgS0 4 . Solvent was removed under vacuum to yield the crude desired product in quantitative yield. b) The title compound was obtained following the general procedure as described intermediate compound 1 (step c) using 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)phenyl)ethanol as starting material.

1 H NMR (400 MHz, CDCI 3 ) δ 7.52 (t, 1 H), 7.49 (d, 1 H), 7.24 - 7.17 (m, 2H), 7.15 (dd, 1 H), 6.85 (d, 1 H), 5.59 (q, 1 H), 5.20 - 5.09 (m, 2H), 2.00 (d, 3H).

Intermediate compound 3: Synthesis of 2-(bromomethyl)-4-chloro-1-(1-(2,4- difluorophenyl)ethoxy)benzene

The title compound was obtained following the general procedure described in intermediate compound 1 (step a, b, c) using 5-chloro-2-hydroxybenzaldehyde and 1 -(1 -bromoethyl)-2,4-difluorobenzene as starting materials.

1 H NMR (400 MHz, CDCI 3 ) δ 7.61 (1 H, dd), 7.35 (1 H, d), 7.24 (1 H, dd), 7.18 (1 H, dd), 7.05 (1 H, td), 6.84 (1 H, d), 5.15 (1 H, m), 4.53 (2H, s), 1 .72 (3H, d).

Intermediate compound 4: Synthesis of 4-bromo-1-((4-bromo-2- (bromomethyl)benzyl)oxy)-2-fluorobenzene

a) To a solution of 2.80 g (13 mmol) of 5-bromo-2-methylbenzoic acid in 1 1 ml_ of MeOH, 2.5 ml_ of HCI 4.0 M (10 mmol) in dioxane were added. The reaction was heated at 70 5 C and stirred at that temperature overnight.

Then, the mixture was concentrated, cooled to 0 5 C and neutralized with saturated NaHC0 3 . The resulting mixture was extracted with DCM and evaporated to obtain methyl 5-bromo-2-methylbenzoate as yellow oil (2.8 g, 94%), which solidified into needles. b) 2.8 g (12.2 mmol) of 5-bromo-2-methylbenzoate was dissolved in 19 mL of CCI 4 and then NBS (2.6 g, 14.7 mmol) and benzoyl peroxide (0.28 g, 0.9 mmol) were added. The resulting yellow mixture was heated to 80 5 C and stirred at that temperature overnight.

The solid was removed by filtration and washed with DCM. The yellow filtrate was concentrated and purified by column chromatography over silica gel eluting with hex/EtAcO 95:5 then 9:1 to yield methyl 5-bromo-2-(bromomethyl)benzoate. c) To a solution of 255 mg (0.7 mmol) of methyl 5-bromo-2- (bromomethyl)benzoate and 1 1 1 mg (0.6 mmol) of 4-bromo-2-fluorophenol in 2 mL of dry DMF, K 2 C0 3 (1 17 mg, 0.85 mmol) was added. Reaction was stirred at 50 5 C overnight.

Then, it was allowed to cool to room temperature. Water was added and a white precipitated appeared. The mixture was extracted with EtAcO (x3), and the organic phases combined and washed with a 10% solution of NaCI in water. It was dried with anhydrous Na 2 S0 4 , filtered and the solvent evaporated. The compound was purified by column chromatography over silica gel eluting with cyclohexane/EtAcO 9:1 .

Methyl 5-bromo-2-((4-bromo-2-fluorophenoxy)methyl)benzoate (290 mg, 98%) was obtained as a white solid. d) To a solution of 290 mg (0.7 mmol) of methyl 5-bromo-2-((4-bromo-2- fluorophenoxy)methyl)benzoate in 4 mL of dry THF cooled at 0 5 C under argon, 0.8 mL of UAIH 4 1 .0M in THF were added dropwise.

After 5 minutes TLC showed that there was no starting material left. Wet EtAcO was used to quench the reaction. The resulting mixture was dried over anhydrous Na 2 S0 4 and then filtered through celite. After solvent evaporation (5-bromo-2-((4- bromo-2-fluorophenoxy)methyl)phenyl)methanol (267 mg, 99%) was obtained as white needles. e) The title compound was obtained following the general procedure described in intermediate compound 1 (step c) using 4-bromo-1 -((4-bromo-2- (bromomethyl)benzyl)oxy)-2-fluorobenzene as starting material.

1 H NMR (400 MHz CDCI 3 ) δ 7.57 (1 H, d), 7.49 (1 H, dd), 7.35-7.28 (2H, m), 7.23-7.20 (1 H, m), 6.95 (1 H, t), 5.21 (2H, s), 4.57 (2H, s).

Intermediate compound 5: Synthesis of 2-(Bromomethyl)-4-chloro-1-(4-chloro- 2-fluorophenethyl)benzene

a) 2-(Bromomethyl)-5-chlorobenzonitrile

5-chloro-2-methylbenzonitrile (2.5 g, 16.5 mmol) was dissolved in carbon tetrachloride (40 ml_), and N-bromosuccinimide (2.94 g, 16.5 mmol) was added, followed by benzoyl peroxide (0.107 g, 0.33 mmol). The mixture was refluxed for 4 h, and the white succinimide residue was filtered off. The solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel eluting with Hexanes:EtAcO (1 :0 to 9:1 ). One pure fraction was collected (2.05 g, 54 % yield) as a white crystalline solid.

1 H NMR (400 MHz, CDCI 3 ) δ 7.65 (1 H, d), 7.57 (1 H, dd), 7.50 (1 H, d), 4.60

(2H, s). b) Diethyl 4-chloro-2-cyanobenzylphosphonate

A solution of 2-(bromomethyl)-5-chlorobenzonitrile (1 .95 g, 8.46 mmol) and P(OEt) 3 (3.63 ml_, 21 .15 mmol) in toluene were heated to 140 5 C for 4 hours. Excess of P(OEt) 3 was removed in vacuo, and the product was extracted with ethyl acetate. Combined organic extracts were dried over MgS0 4 . Column chromatography on silica gel gave the desired product as a slightly yellow oil (2.1 g, 86% yield).

1 H NMR (400 MHz, CDCI 3 ) δ 7.65 - 7.58 (1 H, m), 7.51 (2H, m), 4.19 - 4.00 (4H, m), 3.37 (2H, d), 1 .29 (6H, t). c) (E)-5-Chloro-2-(4-chloro-2-fluorostyryl)benzonitrile

To a solution of 4-chloro-2-fluorobenzaldehyde (1 .43 g, 9.04 mmol) and diethyl 4- chloro-2-cyanobenzylphosphonate (2.6 g, 9.04 mmo) in THF (50 mL) was added potassium tertbutoxide (2.03 g, 18.1 mmol) at room temperature, the reaction was stirred for 3 hours. The mixture was then poured into water and extracted with ethyl acetate. After removing the solvent under vacuum, the crude product was purified by crystallization with methanol (2.6 g, 9.04 mmol).

1 H NMR (400 MHz, CDCI 3 ) δ 7.76 (1 H, d), 7.67 - 7.53 (3H, m), 7.39 (2H, dd), 7.22 - 7.1 1 (2H, m). d) 5-Chloro-2-(4-chloro-2-fluorophenethyl)benzonitrile

(E)-5-Chloro-2-(4-chloro-2-fluorostyryl)benzonitrile was dissolved in THF and a catalytic amount of Pd/C was added. The reaction vessel was purged with H 2 and kept under H 2 (1 atm) for 24 h at room temperature. The reaction mixture was filtered over Celite and concentrated to give the desired product as a white solid.

1 H NMR (400 MHz, CDCI 3 ) δ 7.59 (1 H, d), 7.45 (1 H, dd), 7.15 (1 H, d), 7.08 - 7.00 (3H, m), 3.13 - 3.01 (2H, m), 3.04 - 2.76 (2H, m). e) 5-Chloro-2-(4-chloro-2-fluorophenethyl)benzaldehyde

In a dry Schlenk flask 5-chloro-2-(4-chloro-2-fluorophenethyl)benzonitrile (410 mg, 1 .39 mmol) was dissolved in 20 mL of dry diclhoromethane. The solution is cooled to 0 5 C and 1 .54 mL of DIBAL-H in hexane (c = 1 mol/l) was added dropwise via srynge while the temperature is maintained below 5 5 C. After 20 minutes the cooling bath is removed and the mixture is stirred at room temperature. When TLC indicates the absence of starting material, 10 mL of diluted hydrochloric acid were carefully added. The mixture is demulsified by addition of aq. sat. NaCI solution and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried with MgS0 4 , filtered and concentrated at rotavap. The crude product is purified by flash chromatography (Si0 2 , hexanes/Et 2 0, 9:1 ). The product was obtained as a white solid. 1 H NMR (400 MHz, CDCI 3 ) δ 10.14 (1 H, s), 7.79 (1 H, d), 7.44 (1 H, dd), 7.13 (1 H, d), 7.08 - 6.87 (3H, m), 3.26 (2H, t), 2.89 (2H, t). f) 2-(Bromomethyl)-4-chloro-1 -(4-chloro-2-fluorophenethyl)benzene

The title compound was obtained following the general procedure described in intermediate compound 1 (steps b, c) using 5-chloro-2-(4-chloro-2- fluorophenethyl)benzaldehyde as starting material.

1 H NMR (500 MHz, CDCI 3 ) δ 7.40 (1 H, d), 7.20 (1 H, dd), 7.1 1 - 6.99 (4H, m), 4.67 (2H, s), 2.99 - 2.75 (4H, m).

Intermediate compound 6: Synthesis of (E)-2-(Bromomethyl)-4-chloro-1-(4- chloro-2-fluorostyryl)benzene

a) (E)-5-Chloro-2-(4-chloro-2-fluorostyryl)benzaldehyde

In a dry Schlenk flask (E)-5-chloro-2-(4-chloro-2-fluorostyryl)benzonitrile (335 mg, 1 .15 mmol) was dissolved in 20 mL of dry diclhoromethane. The solution is cooled to 0 5 C and 1 .34 mL of DIBAL-H in hexane (c = 1 mol/l) was added dropwise via syringe while the temperature is maintained below 5 5 C. After 20 minutes the cooling bath is removed and the mixture is stirred at room temperature. When TLC indicates the absence of starting material, 10 mL of diluted hydrochloric acid were carefully added. The mixture is demulsified by addition of aq. sat. NaCI solution and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried with MgS0 4 , filtered and concentrated at rotavap. The product was obtained as a white solid and used in the next step without further purification. b) (E)-2-(Bromomethyl)-4-chloro-1 -(4-chloro-2-fluorostyryl)benzene

The title compound was obtained following the general procedure described inintermediate compound 1 (steps b, c) using (E)-5-chloro-2-(4-chloro-2- fluorostyryl)benzaldehyde as starting material.

1 H NMR (500 MHz, CDCI 3 ) δ 7.58 (1 H, d), 7.52 (1 H, t), 7.41 (2H, dd), 7.31 (1 H, dd), 7.18 - 7.06 (3H, m), 4.81 (2H, s). Intermediate compound 7: Synthesis of methyl 7-fluoro-1 H-indole-4- carboxylate a) 2-(Bromomethyl)-4-chloro-1 -(4-chloro-2-fluorophenethyl)benzene

At -40 °C, vinylmagnesium bromide (75 mmol) in tetrahydrofuran (75 ml_) was added dropwise. in the course of 30 min, to a solution of 4-bromo-1 -fluoro-2- nitrobenzene (5.5 g, 25 mmol) in tetrahydrofuran (100 ml_). After 1 h at -40 °C, the mixture was poured into a saturated aqueous solution (50 ml_) of ammonium chloride. The organic layer was evaporated. The crude was submitted to flash chromatography through silica gel to obtain 1 .2 g (22% yield) of 4-bromo-7-fluoro- 1 H-indole. b) Methyl 7-fluoro-1 H-indole-4-carboxylate

Under inert atmosphere (glove box), in a stainless steel high pressure reactor with a capacity of 25 ml_ and equipped with a magnetic stirrer were placed 4-bromo-7- fluoro-1 H-indole (150 mg, 0.7 mmol), tetrakis(triphenylphosphane)palladium(0) (162 mg, 0.14 mmol), dry methanol (3 ml_) and triethylamine (196 μΙ_, 1 .4 mmol). The system was purged three times with CO and pressurized to 25 bar. The reactor was warmed to 100 5 C and stirred at 600 rpm overnight. Then was cooled to RT and the product was concentrated under reduced pressure. The crude was submitted to flash chromatography through silica gel to obtain 41 mg (30% yield) of the desired product.

1 H NMR (400 MHz, CDCI 3 ) δ 8.60 (1 H, s NH), 7.89 (1 H, dd), 7.38 - 7.35 (1 H, m), 7.21 (1 H, td), 6.94 (1 H, dd), 3.98 (3H, s).

Intermediate compound 8: Synthesis of methyl 7H-pyrrolo[2,3-d]pyrimidine-4- carboxylate

a) 4-iodo-7H-pyrrolo[2,3-d]pyrimidine

A mixture of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (336 mg, 2.15 mmol) and 3.5 ml_ of 57% hydriodic acid was stirred at room temperature for 16 hours. The solid was filtered off, suspended in 3 ml_ of water and brought to pH = 8 with aqueous ammonia solution. The suspension was cooled down to 0 5 C and the solid was filtered off, washed with cold water and dried to give the desired product (410 mg). The product contains about 10% of the starting material. b) Methyl 7H-pyrrolo[2,3-d]pyrimidine-4-carboxylate

Under inert atmosphere (glove box), in a stainless steel high pressure reactor with a capacity of 25 ml_ and equiped with a magnetic stirrer were placed 4-iodo-7H- pyrrolo[2,3-d]pyrimidine (300 mg, 1 .22 mmol), tetrakis(triphenylphosphane)palladium(0) (283 mg, 0.25 mmol), dry methanol (4 ml_) and triehtylamine (342 μΙ_, 2.5 mmol). The system was purged three times with CO and pressurized to 5 bar. The reactor was warmed to 100 5 C and stirred at 600 rpm overnight. Then was cooled to RT and the product was concentrated under reduced pressure. The crude was submitted to flash chromatography through silica gel to obtain 200 mg (92% yield) of the desired product.

1 H NMR (500 MHz, CDCI 3 ) δ 10.27 (1 H, s NH), 9.08 (1 H, s), 7.58 (1 H, dd), 7.16 (1 H, d), 4.1 1 (3H, s).

Intermediate compound 9: Synthesis of of 4-(2-(2-(bromomethyl)-4- chloro henoxy)ethyl)tetrahydro-2H-pyran

a) To a suspension of 180 mg (7.5 mmol) of NaH 60% in mineral oil in 5 ml_ of benzene under argon and cooled at 0 5 C 1 .5 ml_ (7.5 mmol) of triethyl phosphonoacetate was added dropwise (caution: gases evolve). The mixture was stirred at 0 5 C for 20 min, then 250 mg (2.5 mmol) of dihydro-2H-pyran-4(3H)-one was added. Reaction was stirred at room temperature for 2 hours. Then it was quenched with a saturated solution of NH 4 CI, extracted with EtAcO and the combined organic layers washed with water and brine and dried over MgS0 4 . The crude was purified by column chromatography over silica gel eluting with mixtures of hex/EtAcO 95:5 to 8:2. The desired compound ethyl 2-(dihydro-2H-pyran-4(3H)- ylidene)acetate was quantitatively obtained. b) To a solution of 425 mg (2.5 mmol) of ethyl 2-(dihydro-2H-pyran-4(3H)- ylidene)acetate in 15 mL of MeOH, 133 mg of Pd on carbon 10% was added. Hydrogen atmosphere was set (1 atm, with a balloon) and the reaction was stirred at room temperature overnight. It was filtered through a pad of celite washing with abundant EtAcO. After removing the solvent the desired compound ethyl 2- (tetrahydro-2H-pyran-4-yl)acetate was obtained as a colorless oil (99%). c) To a solution of 425 mg (2.5 mmol) of ethyl 2-(tetrahydro-2H-pyran-4- yl)acetate in 10 mL of dry THF cooled at 0 5 C under argon, a 2.71 mL of a solution of LiAII-U 1 M in THF was added. Bubbling was observed. It was stirred at room temperature for 30 min. Then it was quenched with wet EtAcO, dried with MgS0 4 and filtered through celite, washing with abundant EtAcO. After removing the solvent the desired compound, 2-(tetrahydro-2H-pyran-4-yl)ethanol, was obtained (300 mg, 93%). d) To a solution of 300 mg (2.2 mmol) of 2-(tetrahydro-2H-pyran-4-yl)ethanol in 10 mL of DCM at 0 5 C TEA (0.38 mL, 2.7 mmol) and methanesulfonyl chloride (0.19 mL, 2.5 mmol) were added. The mixture was allowed to warm to room temperature and stirred at this temperature overnight. The reaction was stirred with saturated NaHC0 3 for 15 min and the aqueous phase was extracted with DCM (x3). The combined organic layers were dried over MgS0 4 , filtered and concentrated to quantitatively yield 2-(tetrahydro-2H-pyran-4-yl)ethyl methanesulfonate as a colorless oil. e) To a solution of 465 mg (2.2 mmol) of 2-(tetrahydro-2H-pyran-4-yl)ethyl methanesulfonate in 1 1 mL of acetone LiBr (970 mg, 1 1 .1 mmol) was added. The resulting mixture was stirred at 50 5 C for 5 hours. Then, it was allowed to cool to room temperature and the solvent was evaporated. Water was added and the mixture was extracted with DCM (x3). The combined extracts were dried over MgS0 4 , filtered and the solvent removed. The crude was purified by column chromatography over silica gel eluting with mixtures hexane/EtAcO. 4-(2- bromoethyl)tetrahydro-2H-pyran was obtained as a colorless oil (200 mg, 46%). f) To a solution of 5-chloro-2-hydroxybenzaldehyde 162 mg (1 .0 mmol) in DMF (2 ml_), 172 mg of K 2 C0 3 (1 .2 mmol) and 4-(2-bromoethyl)tetrahydro-2H-pyran (200 mg, 1 .0 mmol) were added. Reaction was stirred at 40 5 C overnight. Then, it was allowed to cool to room temperature. Water was added and a white precipitated appeared. The mixture was extracted with EtAcO (x3), and the organic phases combined and washed with a 10% solution of NaCI in water. It was dried with anhydrous Na 2 S0 4 , filtered and the solvent evaporated to obtain 5-chloro-2-(2- (tetrahydro-2H-pyran-4-yl)ethoxy)benzaldehyde (220 mg, 80%). g) To a suspension of 220 mg of 5-chloro-2-(2-(tetrahydro-2H-pyran-4- yl)ethoxy)benzaldehyde in 4 ml_ of absolute ethanol cooled at 0 5 C NaBH 4 (37 mg, 1 .0 mmol) was added. After 15 minutes TLC showed no starting material left. Reaction was quenched with HCI 1 M and extracted with EtAcO (x3), washed with water, dried over anhydrous MgS0 4 and filtered. (5-chloro-2-(2-(tetrahydro-2H- pyran-4-yl)ethoxy)phenyl)methanol was quantitatively obtained. h) To a solution of (5-chloro-2-(2-(tetrahydro-2H-pyran-4- yl)ethoxy)phenyl)methanol (222 mg, 0.82 mmol) in 4 ml_ of DCM, cooled at 0 5 C under argon, PBr 3 (77 μΙ_, 0.82 mmol) was slowly added. The reaction was stirred at 0 5 C for 1 h, then at room temperature overnight. It was quenched with a saturated solution of NaHC0 3 , extracted with DCM and the combined organic extracts were washed with a saturated solution of NaCI, dried over anhydrous Na 2 S0 4 , filtered and the solvent evaporated. 4-(2-(2-(bromomethyl)-4-chlorophenoxy)ethyl)tetrahydro- 2H-pyran was obtained as a white solid (200 mg, 73%).

1 H NMR CDCI 3 (400 MHz) 7.32 (1 H, d, J = 3.4 MHz), 7.23 (1 H, dd, J = 1 1 .7, 3.4 MHz), 6.79 (1 H, d, J = 1 1 . 7 MHz), 4.49 (2H, s), 4.08 (2H, t, J = 8.2 MHz), 3.98 (2H, dd, J = 14.6, 5.0 MHz), 3.43 (2H, td, J= 14.6, 2.5 MHz), 1 .94- 1 .31 (7H, m).

The following compounds were prepared using the same procedure (steps f, g and h) as in 4-(2-(2-(bromomethyl)-4-chlorophenoxy)ethyl)tetrahydro-2H-py rane.

Intermediate

Compound name Starting materials NMR compound

Intermediate compound 10: Synthesis of sodium 1 ,2,3,4-tetrahydroquinoline-

5-sulfonate

a) Thionyl chloride (4.2 ml_) was added dropwise over 30 min to water (25 ml_), cooled to 0 5 C, maintaning the temperature of the mixture 0-7 5 C. The solution was allowed to warm to 18 5 C over 17 h. CuCI (15 mg, 0.14 mmol) was added, and the resulting yellow-green solution was cooled to -3 5 C. b) Concentrated hydrochloric acid (14 ml_) was cooled to 0 5 C for the portionwise addition of quinolin-5-amine (2 g, 13.9 mmol). This was allowed to warm sligthly between additions. After complete addition and at -5 5 C a solution of sodium nitrite (1 .053 g, 15.3 mmol) in water (4 ml_) was added dropwise over 45 min, maintaining the temperature of the reaction mixture between -5 to 0 5 C. c) The slurry from step b, was cooled to -5 5 C and added dropwise to the solution obtained from step a over 30 min, maintaining the temperature of the reaction mixture between -3 to 0 5 C (the slurry from step b was maintained at -5 5 C throughout the addition). When the addition was complete, the reaction mixture was agitated at 0 5 C for 90 min. The solid precipitated was filtered, washed with water and dried under vacuum at 40 5 C to give quinoline-5-sulfonyl chloride (1 .5 g, 48% yield) as a red-orange solid.

1 H NMR (400 MHz, Chloroform-d) δ 9.18 (dt, J = 8.7, 0.8 Hz, 1 H), 9.12 (dd, J = 4.3, 1 .6 Hz, 1 H), 8.57 (d, J = 8.5 Hz, 1 H), 8.45 (dd, J = 7.6, 1 .2 Hz, 1 H), 7.89 (dd,

J = 8.5, 7.6 Hz, 1 H), 7.75 (dd, J = 8.8, 4.3 Hz, 1 H). d) Quinoline-5-sulfonyl chloride (500 mg, 2.2 mmol) was suspended in 10 mL of dioxane at RT. Sodium hydroxide (88 mg, 2.2 mmol) in 5 mL of water was added followed by the addition of 1 mg of DMAP. The progress of the reaction was followed by hplc-mass. After 3h at 60 5 C the solvents were removed under vacuum. The solid obtained was washed with cold EtAcO.

1 H NMR (400 MHz, DMSO-d6) δ 9.18 (dd, J = 8.7, 1 .7 Hz, 1 H), 8.88 (dd, J = 4.1 , 1 .8 Hz, 1 H), 7.98 (2H), 7.68 (t, J = 7.8 Hz, 1 H), 7.54 (dd, J = 8.6, 4.1 Hz, 1 H). e) 330 mg of quinoline-5-sulfonic acid (1 .43 mmol) were suspended in MeOH (25 mL) and Pd/C 10% was added (200 mg). The mixture was hydrogenated (H2 balloon) at RT. The progress of the reaction was followed by hplc-mass. After 4 hours the suspension was passed through a plug of Celite. The filtrate was evaporated and the product was obtained as colorless oil (330 mg, 98% yield).

1 H NMR (500 MHz, Deuterium Oxide) δ 7.31 (dd, J = 7.8, 1 .2 Hz, 1 H), 7.14 (t, J = 7.9 Hz, 1 H), 6.86 (dd, J = 8.1 , 1 .3 Hz, 1 H), 3.26 - 3.20 (m, 2H), 3.10 (t, J = 6.5 Hz, 2H), 1 .98 - 1 .90 (m, 2H).

Intermediate compound 11: Synthesis of methyl 3-formyl-1H-indole-4- carboxylate

To a stirred solution of 573 mg (3.27 mmol) of methyl 1 H-indole-4-carboxylate in 6 mL of anhydrous DMF under dry argon atmosphere, 0.9 mL (9.8 mmol) of phosphorus chloride oxide was added at 0 5 C and the resulting mixture was stirred at room temperature for 1 h. Then, the reaction mixture was poured into cold saturated NaH 2 C0 3 aqueous solution and stirred for 30 min. The resultant mixture was extracted with EtAcO (x3). The combined organic layer was dried over anhydrous Na 2 S0 4 and filtered. Then, the filtrate was condensed under reduced pressure and purified by silica gel flash column chromatography to provide methyl 3- formyl-1 H-indole-4-carboxylate as a white solid (400 mg, 60%).

1 H NMR (300 MHz, Chloroform-d) δ 10.49 (s, 1 H), 9.93 (br s, 1 H, NH), 8.05 (d, J = 3.3 Hz, 1 H), 7.83 (dd, J = 7.5, 1 .0 Hz, 1 H), 7.64 (dd, J = 8.2, 1 .0 Hz, 1 H), 7.31 (t, J = 7.9 Hz, 1 H), 4.00 (s, 3H).

Intermediate compound 12: Synthesis of ethyl 3-formyl-1 H-pyrrolo[2,3- b]pyridine-4-carboxylate

a) Under inert atmosphere (glove box), in a stainlees steel high pressure reactor with a capacity of 100 mL and equiped with a magnetic stirrer were placed 4- bromo-1 H-pyrrolo[2,3-b]pyridine (1 .03 g, 5.2 mmol), Bis(benzonitrile)palladium(ll) chloride (21 mg, 0.05 mmol), dppf (87 mg, 0.16 mmol), degassed ethanol (45 mL) and triehtylamine (876 μί, 6.3 mmol). The system was purged three times with CO and pressurized to 25 bar. The reactor was warmed to 130 5 C and stirred at 600 rpm overnight. Then was cooled to RT and DCM was added. The organic phase was washed with water, dried with MgS04 and concentrated under reduced pressure. The crude was submitted to flash chromatography through silica gel eluting with Cyclohexane:EtAcO (4:1 to 2:1 ) to obtain 700 mg (70% yield) of ethyl 1 H-pyrrolo[2,3-b]pyridine-4-carboxylate as a slightly yellow solid.

1 H NMR (300 MHz, CDCI3) δ 8.59 (s, 1 H), 7.90 (dd, J = 8.4, 4.8 Hz, 1 H), 7.36 (t, J = 2.8 Hz, 1 H), 7.22 (dd, J = 5.6, 3.3 Hz, 1 H), 6.94 (dd, J = 10.4, 8.4 Hz, 1 H), 4.45 (q, J = 7.1 Hz, 2H), 1 .46 (t, J = 7.1 Hz, 3H). b) ethyl 1 H-pyrrolo[2,3-b]pyridine-4-carboxylate (387 mg, 2.0 mmol) was suspended in 4 mL of AcOH 33%. HMTA (428 mg, 3.1 mmol) was added in one portion and the suspension was refluxed overnight. After 16 hours the mixture was cooled to RT and water was added. The reaction was filtrated and washed with water to give the desired product as a white solid.

1 H NMR (300 MHz, DMSO-d6) δ 13.06 (br s, 1 H, NH), 10.09 (s, 1 H), 8.55 (s, 1 H), 8.47 (d, J = 4.8 Hz, 1 H), 7.48 (d, J = 4.9 Hz, 1 H), 4.40 (q, J = 7.1 Hz, 2H), 1 .30 (t, J = 7.1 Hz, 3H). Intermediate compound 13: Synthesis of methyl 3-formyl-1 H-indazole-4- carboxylate

Procedure according to WO 201 1 /140325

1 H NMR (300 MHz) CDCI 3 10.81 (1 H, s), 8.10 (1 H, d, J = 8.4 MHz), 8.10 (1 H, d, J = 7.2 MHz), 7.56 (1 H, t, J = 7.8 MHz).

Intermediate compound 14: Synthesis of N-((1,2,3,4-tetrahydroquinolin-5- yl)sulfonyl)acetamide

a) An aqueous solution of NH4OH (45 mL of 30% w/v) was added to a cold (0 5 C) solution of quinoline-5-sulfonyl chloride (1 g, 4.4 mmol) in dioxane (35 mL) and the reaction was allowed to proceed overnight at RT. Water was added and extracted twice with EtAcO and twice with DCM. The combined organic fractions were dried and the solvent was evaporated to afford quinoline-5-sulfonamide as a slighly brown solid /750 mg, 82% yield)

1 H NMR (400 MHz, Chloroform-d) δ 9.13 - 8.92 (m, 2H), 8.36 (d, J = 7.9 Hz, 2H), 7.80 (t, J = 7.9 Hz, 1 H), 7.61 (dd, J = 8.7, 4.1 Hz, 1 H), 4.95 (s, 2H). b) Acetic anhydride (1 mL, 10.1 mmol) and DMAP (123 mg, 1 .01 mmol) were added to a suspension of quinoline-5-sulfonamide (700 mg, 3.36 mmol) in pyridine 2 mL and the reaction was allowed to proceed at RT with stirring for 6 h.

HPLC-mass spectra showed complete conversion. EtAcO (150 mL) was added and this solution was washed twice with NH4CI sat (50 mL) and H2O (2 x 50 mL). The organic fraction was dried (Mg2S04) and the solvent was removed in vacuo to afford N-(quinolin-5-ylsulfonyl)acetamide as a slightly yellow solid. (350 mg, 42% yield)

1 H NMR (300 MHz, Chloroform-d) δ 9.12 - 8.96 (m, 2H), 8.53 (dd, J = 7.5, 1 .3 Hz, 1 H), 8.43 (dt, J = 8.4, 1 .1 Hz, 1 H), 7.86 (dd, J = 8.5, 7.5 Hz, 1 H), 7.61 (dd, J = 8.8, 4.2 Hz, 1 H), 2.05 (s, 3H). c) 330 mg of N-(quinolin-5-ylsulfonyl)acetamide (1 .32 mmol) were suspended in MeOH (25 mL) and Pd/C 10% was added (281 mg). The mixture was hydrogenated (H2 balloon) at RT. The progress of the reaction was followed by hplc-mass.

3h-complete conversion. The suspension was passed through a plug of Celite, and the solvent removed using a rotatory evaporator. (330 mg, 98% yield) Slighlty brown foam.

1 H NMR (500 MHz, Chloroform-d) δ 7.39 (dd, J = 7.9, 1 .1 Hz, 1 H), 7.08 (t, J = 8.0 Hz, 1 H), 6.69 (dd, J = 8.1 , 1 .2 Hz, 1 H), 3.36 - 3.26 (m, 2H), 3.10 (t, J = 6.4 Hz, 2H), 2.1 1 (s, 3H), 2.01 - 1 .92 (m, 2H).

Intermediate compound 15: Synthesis of (1 H-indol-7-yl)boronic acid

KH (62 mg, 1 .53 mmol) was suspended in anhydrous THF (0.4 ml) under an argon atmosphere at 0 °C in a flask protected from light. 7-Bromoindole (300 mg, 1 .53 mmol) in anhydrous THF (2.6 ml) was added and the mixture stirred for 15 min. After cooling to -78 'Ό a solution of tBuLi in pentane (3.1 mmol), previously cooled to -78 5 C, was added dropwise. The mixture was brought to rt and stirred for 15 min and re-cooled to -78 5 C. B(OMe) 3 (341 μΙ, 1 .53 mmol) was added and stirring was continued for a further 3h at rt. H 2 0 (5 ml) was added and the mixture was extracted with EtAcO (2x10 ml). The aqueous phase was acidified to pH 1 with 10% HCI and was re-extracted with EtAcO (3x10 ml). The combined organic extracts were dried over anhydrous MgS0 4 and filtered. The solvents were evaporated leaving the crude indolylboronic acid as a pale brown oil.

1 H NMR (400 MHz, Chloroform-d) δ 9.52 (s, 1 H), 8.03 (dd, J = 7.1 , 1 .2 Hz, 1 H), 7.98 - 7.92 (m, 1 H), 7.43 (dd, J = 3.2, 2.2 Hz, 1 H), 7.33 (dd, J = 7.8, 7.0 Hz, 1 H), 6.68 (dd, J = 3.3, 2.0 Hz, 1 H).

Intermediate compound 16: Synthesis of methyl 3,4-dihydro-2H- benzo[b][1,4]oxazine-8-carboxylate

To a solution of methyl 2-hydroxy-3-nitrobenzoate (1 1 .1 mmol, 2.18 g) in EtAcO (55 ml_), 10% Pd/C was added. It was stirred at room temperature under H 2 atmosphere (1 atm) until consumption of starting material (TLC). It was filtered through Celite washing with more EtAcO. The solvent was removed under vacuum and the brownish solid was used without further purification. b) To a solution of methyl 3-amino-2-hydroxybenzoate (1 1 mmol, 1 .84 g) in dry DMF (55 ml_), were added oven-dried K 2 C0 3 (33 mmol, 4.56 g) and 1 ,2-dibromoethane (13.2 mmol, 1 .14 ml_). It was stirred at 120 5 C until consumption of starting material. Then, it was cooled, quenched with water and extracted with EtAcO (x3). The organic phases were washed with brine (x2) and solvent was evaporated. The crude product was purified by column chromatography, eluting with cyclohexane/EtAcO 2:1 , to yield methyl 3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylate as a brown oil (81 %). 1 H NMR (400 MHz, CDCI 3 ) 5 7.15 (dd, 1 H), 6.79 - 6.68 (m, 2H), 4.36 - 4.30

(m, 2H), 3.95 (s, 1 H), 3.88 (s, 3H), 3.47 - 3.40 (m, 3H).

Intermediate compound 17: Synthesis of ethyl 8-isobutoxy-1, 2,3,4- tetrahydroquinoline-5-carboxylate

a) To a solution of 5-bromohydroxyquinoline in DMF, K 2 C0 3 was added giving a bright yellow solution. 2-Methylbromopropane was added dropwise and the mixture was stirred at 80 5 C until total consumption of the starting quinolone. Then it was cooled, quenched with water and extracted with EtAcO (x3); the organic phases were washed with brine (x2) and dried with MgS0 4 . Solvent was removed and the crude product was purified by Si0 2 CombiFlash chromatography, eluting with a gradient of cyclohexane/EtAcO from 9:1 to 1 :1 . The pure product was obtained as a yellowish solid (60% yield).

1 H NMR (400 MHz, Chloroform-d) δ 8.97 (dd, 1 H), 8.48 (dd, 1 H), 7.70 (d, 1 H), 7.52 (dd, 1 H), 6.93 (d, 1 H), 3.98 (d, 2H), 2.39 (hept, 1 H), 1 .1 1 (d, 6H). b) Under inert atm (glove box), in a stainless high pressure reactor equipped with a stir bar, were placed 5-bromo-8-isobutoxyquinoline, palladium catalyst, dppf, degassed TEA and degassed EtOH. The system was purged with CO (x3) and pressurized to 25 bar. The reactor was warmed to 130 5 C and stirred at 600 rpm overnight. Then the system was cooled, depressurized and the mixture diluted with

DCM. This organic phase was washed with water, dried with MgS0 4 and solvents were removed under vacuum. The crude product was purified by Si0 2 CombiFlash chromatography, eluting with a gradient of cyclohex/EtAcO from 9:1 to 1 :1 , yielding the pure product as a yellow oil (91 %). 1 H NMR (300 MHz, Chloroform-d) δ 9.46 (dd, 1 H), 8.98 (dd, 1 H), 8.31 (d, 1 H), 7.53 (dd, 1 H), 7.03 (d, 1 H), 4.44 (q, 2H), 4.06 (d, 2H), 2.42 (hept, 1 H), 1 .45 (t, 4H), 1 .12 (d, 6H). c) To a solution of ethyl 8-isobutoxyquinoline-5-carboxylate in acetic acid, sodium cyanoborohydride was added carefully in three portions, over 15 minutes at room temperature. After 2 h, there was no starting material left (TLC). The mixture was diluted with water, basified with NaOH 2M, extracted with DCM (x5), washed with brine and dried over MgS0 4 . The crude product was purified by Si0 2 Combiflash chromatography, eluting with a gradient of cyclohex/EtAcO from 9:1 to

1 :1 . The pure product was obtained as colorless oil (60% yield).

1 H NMR (300 MHz, Chloroform-d) δ 7.27 (d, 2H), 6.59 (d, 1 H), 4.38 (s, 1 H), 4.29 (q, 3H), 3.78 (d, 2H), 3.44 - 3.25 (m, 2H), 3.12 (t, 2H), 2.13 (hept, 1 H), 2.03 - 1 .83 (m, 2H), 1 .36 (t, 3H), 1 .04 (d, 6H).

Intermediate compound 18: Synthesis of (E)-methyl 3-(3-ethoxy-3-oxoprop-1- en-1-yl)-1H-indole-4-carboxylate

To a suspension of NaH 60% in mineral oil (1 18 mg, 3.0 mmol) in 5 mL of benzene under argon and cooled at 0 5 C triethyl phosphonoacetate (0.6 mL, 3.0 mmol) was added dropwise (caution: gases evolve). The mixture was stirred at 0 5 C for 20 min, then dihydromethyl 3-formyl-1 H-indole-4-carboxylate (200 mg, 1 .0 mmol) was added as a solution in 5 mL of benzene. Reaction was stirred at room temperature for 2 hours. Then it was quenched with a saturated solution of NH 4 CI, extracted with EtAcO and the combined organic layers washed with water and brine and dried over MgS0 4 . The crude was purified by column chromatography over silica gel eluting with mixtures of cyclohexane/EtAcO. (E)-methyl 3-(3-ethoxy-3-oxoprop-1 -en-1 -yl)- 1 H-indole-4-carboxylate was obtained (220 mg, 82%).

1 H NMR CDCI 3 (300 MHz) 8.99 (1 H, bs), 8.42 (1 H, d, J = 15.8 MHz), 7.80 (1 H, d, J = 7.7 MHz), 7.68 (1 H, d, J = 2.7 MHz), 7.58 (1 H, d, J = 7.7 MHz), 7.27 (1 H, t, J = 7.7 MHz), 6.16 (1 H, d, J = 15.8 MHz), 4.28 (2H, q, J = 7.1 MHz), 4.01 (3H, s), 1 .35 (3H, t, J = 7.1 MHz).

Intermediate compound 19: Synthesis of 2-(bromomethyl)-4-chloro-1-(3- fluoro-2-methylpropoxy)benzene a) 3-hydroxy-2-methylpropyl 4-methylbenzenesulfonate p-TsCI (1 .00 g, 5.25 mmol) was added to a solution of 2-methylpropane-1 ,3-diol (2.30 mL, 26.23 mmol) and TEA (1 .50 mL, 10.50 mmol) in DCM (20 mL) and stirred at room temperature. After 4 h, the reaction mixture was diluted with DCM (40 mL) and washed with water (30 mL). The organic layer was dried over anhydrous

Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (15→50% EtAcO/hexanes), affording 0.86 g of 3- hydroxy-2-methylpropyl 4-methylbenzenesulfonate [Rf= 0.40 (40% EtAcO/hexanes), colorless oil, 67% yield].

LC-MS ESI+ m/z: 245 (M+1 , 99%) (method 5). b) 5-chloro-2-(3-hydroxy-2-methylpropoxy)benzaldehyde

Following the general procedure, the title compound was obtained in 46% yield (pale yellow oil) after stirring at 80 °C for 17 h, using 5-chloro-2-hydroxybenzaldehyde (2.27 g, 14.48 mmol), K 2 C0 3 (2.00 g, 14.48 mmol) and 3-hydroxy-2-methylpropyl 4- methylbenzenesulfonate (2.95 g, 12.07 mmol) as starting materials.

LC-MS ESI+ m/z: 229 (M+1 , 92%) (method 5). c) 3-(4-chloro-2-formylphenoxy)-2-methylpropyl trifluoromethanesulfonate Tf 2 0 (1 .67 mL, 6.12 mmol) was added dropwise to a solution of 5-chloro-2-(3- hydroxy-2-methylpropoxy)benzaldehyde (1 .40 g, 6.12 mmol) and DIPEA (2.10 mL, 12.24 mmol) in DCM (20 mL) cooled at -78 < C. After 15 min, the reaction mixture was diluted with DCM (20 mL) and washed with water (20 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 2.90 g of 3-(4-chloro-2-formylphenoxy)-2-methylpropyl trifluoromethanesulfonate were obtained [Rf= 0.60 (40% EtAcO/hexanes), brown solid, 100% yield], that were used without further purification. d) 5-chloro-2-(3-fluoro-2-methylpropoxy)benzaldehyde

TBAF (9.18 mL of 1 M solution in THF, 9.18 mmol) was added dropwise to a solution of 3-(4-chloro-2-formylphenoxy)-2-methylpropyl trifluoromethanesulfonate (2.20 g, 6.12 mmol) in THF (20 mL) cooled at 0 °C, and the mixture was allowed to reach room temperature. After 2 h, the solvent was removed by rotatory evaporation and the resulting residue was dissolved in EtAcO (40 mL) and washed with water (30 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5→15% EtAcO/hexanes), affording 0.63 g of 5-chloro-2-(3-fluoro-2- methylpropoxy)benzaldehyde [Rf= 0.70 (30% EtAcO/hexanes), pale yellow oil, 45% yield].

LC: purity 93% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.42 (s, 1 H, CHO); 7.77 (d, J= 2.9 Hz, 1 H, ArH); 7.48 (dd, J= 9.0, 2.9 Hz, 1 H, ArH); 6.95 (d, J= 9.0 Hz, 1 H, ArH); 4.68-4.38 (m, 2H); 4.12-3.98 (m, 2H); 2.52-2.27 (m, 1 H); 1 .13 (dd, J= 6.8, 1 .0 Hz, 3H). e) [5-chloro-2-(3-fluoro-2-methylpropoxy)phenyl]methanol

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 73% yield (colorless oil), using 5-chloro-2-(3- fluoro-2-methylpropoxy)benzaldehyde (0.66 g, 2.86 mmol) and NaBH 4 (0.1 1 g, 2.86 mmol) as starting materials.

LC: purity 96% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.30 (d, J= 2.8 Hz, 1 H, ArH); 7.20 (dd, J= 8.6, 2.8 Hz, 1 H, ArH); 6.79 (d, J= 8.6 Hz, 1 H, ArH); 4.66 (s, 2H); 4.64-4.32 (m, 2H); 4.02- 3.90 (m, 2H); 2.47-2.25 (m, 1 H); 1 .99 (br s, 1 H, OH); 1 .10 (d, J= 7.8 Hz, 3H). f) 2-(bromomethyl)-4-chloro-1 -(3-fluoro-2-methylpropoxy)benzene

Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 98% yield (pale yellow oil), using [5-chloro-2-(3- fluoro-2-methylpropoxy)phenyl]methanol (0.48 g, 2.04 mmol) and PBr 3 (0.19 mL, 2.04 mmol) as starting materials.

Intermediate compound 20: Synthesis of 2-(bromomethyl)-4-chloro-1-(2- fluoropropoxy)benzene

a) 4-chloro-2-(1 ,3-dioxolan-2-yl)phenol

A solution of 5-chloro-2-hydroxybenzaldehyde (5.00 g, 31 .93 mmol), ethylene glycol

(5.40 mL, 95.79 mmol) and p-TsOH (0.30 g, 1 .60 mmol) in toluene (50 mL) was refluxed connected to a Dean-Stark apparatus. After 32 h, the reaction was allowed to reach room temperature, diluted with EtAcO (40 mL) and washed with water (2 x 30 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5D 10% EtAcO/hexanes), affording 3.40 g of 4-chloro-2-(1 ,3-dioxolan-2- yl)phenol [Rf= 0.40 (20% EtAcO/hexanes), white solid, 53% yield].

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.72 (s, 1 H, ArH); 7.25-7.17 (m, 2H, ArH+OH); 6.83 (d, J= 7.7 Hz, 1 H, ArH); 5.92 (s, 1 H); 4.18-4.04 (m, 4H). b) 1 -[4-chloro-2-(1 ,3-dioxolan-2-yl)phenoxy]acetone

A mixture of 1 -chloroacetone (0.29 mL, 3.59 mmol), K 2 C0 3 (0.62 g, 4.49 mmol) and 4-chloro-2-(1 ,3-dioxolan-2-yl)phenol (0.60 g, 2.99 mmol) in DMF (15 mL) was stirred at room temperature for 2 h. The reaction mixture was poured over EtAcO (80 mL) and washed with water (2 x 30 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (40% EtAcO/hexanes), affording 0.69 g of 1 -[4-chloro- 2-(1 ,3-dioxolan-2-yl)phenoxy]acetone [Rf= 0.25 (30% EtAcO/hexanes), pale yellow solid, 90% yield].

LC-MS ESI+ m/z: 257 (M+1 , 98%) (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.54 (d, J= 2.7 Hz, 1 H, ArH); 7.26 (dd, J= 8.9, 2.7 Hz, 1 H, ArH); 6.67 (d, J= 8.9 Hz, 1 H, ArH); 6.20 (s, 1 H); 4.56 (s, 2H); 4.18-4.01 (m, 4H); 2.29 (s, 3H). c) 1 -[4-chloro-2-(1 ,3-dioxolan-2-yl)phenoxy]propan-2-ol

NaBH 4 (0.12 g, 3.20 mmol) was added in small portions to a solution of 1 -[4-chloro- 2-(1 ,3-dioxolan-2-yl)phenoxy]acetone (0.77 g, 2.99 mmol) in MeOH (15 mL) cooled at 0 °C, observing gas evolution. After 10 min, the solvent was removed by rotatory evaporation and the resulting residue was dissolved in DCM (20 mL), acidified with

HCI (aqueous solution 10%, 3 mL), and washed with water (20 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (30D45% EtAcO/hexanes), affording 0.53 g of 1 -[4-chloro-2-(1 ,3-dioxolan-2- yl)phenoxy]propan-2-ol [Rf= 0.33 (40% EtAcO/hexanes), colorless oil, 69% yield].

LC-MS ESI+ m/z: 259 (M+1 , 93%) (method 5). d) 2-[5-chloro-2-(2-fluoropropoxy)phenyl]-1 ,3-dioxolane DAST (0.50 g, 3.07 mmol) was added dropwise to a solution of 1 -[4-chloro-2-(1 ,3- dioxolan-2-yl)phenoxy]propan-2-ol (0.53 g, 2.05 mmol) in DCM (15 ml_) cooled at 0 'Ό, and the mixture was allowed to reach room temperature. After 1 .5 h, the reaction mixture was diluted with DCM (15 ml_) and washed with water (20 ml_). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (8→15% EtAcO/hexanes), affording 0.30 g of 2-[5-chloro-2-(2-fluoropropoxy)phenyl]-1 ,3- dioxolane [Rf= 0.50 (20% EtAcO/hexanes), pale yellow oil, 58% yield].

LC-MS ESI+ m/z: 261 (M+1 , 97%) (method 5). e) 5-chloro-2-(2-fluoropropoxy)benzaldehyde

PPTS (48 mg, 0.19 mmol) was added to a suspension of 2-[5-chloro-2-(2- fluoropropoxy)phenyl]-1 ,3-dioxolane (0.50 g, 1 .92 mmol) in a mixture of water (1 ml_) and acetone (5 ml_), and the reaction was heated at reflux for 6 h. The reaction was allowed to reach room temperature and the volatiles were removed by rotatory evaporation; the resulting residue was dissolved in EtAcO (30 ml_) and washed with water (30 ml_) and NaOH (10%, 10 ml_). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 0.42 g of 5-chloro-2-(2- fluoropropoxy)benzaldehyde were obtained [Rf= 0.50 (20% EtAcO/hexanes), pale yellow oil, 100% yield, crude], that were used without further purification.

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.45 (s, 1 H, CHO); 7.80 (d, J= 2.7 Hz, 1 H, ArH); 7.49 (dd, J= 9.1 , 2.7 Hz, 1 H, ArH); 6.93 (d, J= 9.1 Hz, 1 H, ArH); 5.23-4.90 (m, 1 H); 4.22-4.10 (m, 2H); 1 .56-1 .42 (m, 3H).

f) [5-chloro-2-(2-fluoropropoxy)phenyl]methanol

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 71 % yield (colorless oil), using 5-chloro-2-(2- fluoropropoxy)benzaldehyde (0.60 g, 2.77 mmol) and NaBH 4 (0.10 g, 2.77 mmol) as starting materials.

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.31 (d, J= 2.8 Hz, 1 H, ArH); 7.21 (dd, J= 8.6, 2.8 Hz, 1 H, ArH); 6.77 (d, J= 8.6 Hz, 1 H, ArH); 5.18-4.86 (m, 1 H); 4.68 (dd, J= 15.5, 13.5 Hz, 2H); 4.15-3.99 (m, 2H); 1 .92 (br s, 1 H, OH); 1 .46 (dd, J= 23.5, 6.5 Hz, 3H). g) 2-(bromomethyl)-4-chloro-1 -(2-fluoropropoxy)benzene Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 91 % yield (pale yellow oil), using [5-chloro-2-(2- fluoropropoxy)phenyl]methanol (0.46 g, 2.09 mmol) and PBr 3 (0.20 mL, 2.09 mmol) as starting materials.

Intermediate compound 21: Synthesis of 5-chloro-2-(1 ,2- dimethylpropoxy)benzaldehyde

a) N-(tert-butyl)-N-{(1 E)-[5-chloro-2-(1 ,2-dimethylpropoxy)phenyl]methylene}- amine

3-methylbutan-2-ol (0.41 mL, 3.84 mmol) was added to a suspension of NaH [0.15 g (60% oil dispersion) 3.84 mmol] in 1 ,4-dioxane (10 mL) and heated at 50 °C. After 30 min, a solution of N-(tert-butyl)-N-[(1 E)-(5-chloro-2-fluorophenyl)methylene]amine (0.41 g, 1 .92 mmol) in 6 mL of 1 ,4-dioxane was transferred via canula and the resulting mixture was heated at 70 °C for 15 h. The volatiles were removed by rotatory evaporation; the resulting residue was dissolved in EtAcO (40 mL) and washed with water (30 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 0.60 g of N-(tert-butyl)-N-{(1 E)-[5-chloro-2- (1 ,2-dimethylpropoxy)phenyl]methylene}amine were obtained [Rf= 0.60 (10% EtAcO/hexanes), pale yellow oil, 100% yield, crude], that were used without further purification.

N-(tert-butyl)-N-[(1 E)-(5-chloro-2-fluorophenyl)methylene]amine was prepared following the method described in: Larock, R. C. et al J. Org. C em. 2001 , 66, 8042- 8051 . b) 5-chloro-2-(1 ,2-dimethylpropoxy)benzaldehyde

The crude N-(tert-butyl)-N-{(1 E)-[5-chloro-2-(1 ,2- dimethylpropoxy)phenyl]methylene}amine, obtained in the previous step (1 .92 mmol), was dissolved in a mixture of THF (6 mL), water (6 mL) and AcOH (1 mL) and stirred at room temperature. After 1 h, THF was removed by rotatory evaporation and the resulting residue was diluted with EtAcO (30 mL) and washed with water (20 mL) and NaOH (aqueous solution 10%, 5 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 0.50 g of 5- chloro-2-(1 ,2-dimethylpropoxy)benzaldehyde were obtained [Rf= 0.60 (10% EtAcO/hexanes), pale yellow oil, 100% yield, crude], that were used without further purification.

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.44 (s, 1 H, CHO); 7.77 (d, J= 2.8 Hz, 1 H, ArH); 7.45 (dd, J= 9.0, 2.8 Hz, 1 H, ArH); 6.93 (d, J= 9.0 Hz, 1 H, ArH); 4.34-4.23 (m, 1 H); 2.08-1 .92 (m, 1 H); 1 .29 (d, J= 6.2 Hz, 3H); 1 .02 (d, J= 6.9 Hz, 3H); 0.99 (d, J=

6.6 Hz, 3H). c) [5-chloro-2-(1 ,2-dimethylpropoxy)phenyl]methanol

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 77% yield (colorless oil), using 5-chloro-2-(1 ,2- dimethylpropoxy)benzaldehyde (0.44 g, 1 .92 mmol) and NaBH 4 (0.04 g, 0.96 mmol) as starting materials.

LC: purity 99% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.27 (d, J= 2.7 Hz, 1 H, ArH); 7.18 (dd, J= 8.8, 2.7 Hz, 1 H, ArH); 6.78 (d, J= 8.8 Hz, 1 H, ArH); 4.72-4.57 (m, 2H); 4.27-4.16 (m, 1 H);

2.30 (t, J= 6.5 Hz, 1 H, OH); 2.03-1 .88 (m, 1 H); 1 .24 (d, J= 6.0 Hz, 3H); 1 .03-0.95

(m, 6H). d) 2-(bromomethyl)-4-chloro-1 -(1 ,2-dimethylpropoxy)benzene

Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 95% yield (colorless oil), using [5-chloro-2-(1 ,2- dimethylpropoxy)phenyl]methanol (0.33 g, 1 .44 mmol) and PBr 3 (0.07 mL, 0.72 mmol) as starting materials.

Intermediate compound 22: Synthesis of 2-(bromomethyl)-4-chloro-1- (cyclobutyloxy)benzene a) N-(tert-butyl)-N-{(1 E)-[5-chloro-2-(cyclobutyloxy)phenyl]methylene}amine Cyclobutanol (0.20 mL, 2.55 mmol) was added to a stirred suspension of NaH [0.10 g (60% oil dispersion), 2.55 mmol] in 1 ,4-dioxane (8 mL) observing abundant gas evolution while a viscous solution was formed. After 20 min, a solution of N-(tert- butyl)-N-[(1 E)-(5-chloro-2-fluorophenyl)methylene]amine (0.42 g, 1 .96 mmol) in 4 mL of 1 ,4-dioxane was transferred via canula and the resulting mixture was heated at 70 °C. After 15 h, the volatiles were removed by rotatory evaporation, rendering a sticky yellow solid, N-(tert-butyl)-N-{(1 E)-[5-chloro-2-

(cyclobutyloxy)phenyl]methylene}amine, that was used without further purification. b) 5-chloro-2-(cyclobutyloxy)benzaldehyde

The crude N-(tert-butyl)-N-{(1 E)-[5-chloro-2-(cyclobutyloxy)phenyl]methylene}amine obtained in the previous step (1 .96 mmol) was dissolved in a mixture of THF (6 mL) and HCI (aqueous solution 10%, 5 mL) and stirred at room temperature. After 1 h, THF was removed by rotatory evaporation and the resulting residue was diluted with EtAcO (30 mL) and washed with NaOH (aqueous solution 10%, 10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5% EtAcO/hexanes), affording 0.16 g of 5-chloro-2-(cyclobutyloxy)benzaldehyde [Rf= 0.40 (10% EtAcO/hexanes), colorless oil, 39% yield (2 steps)].

LC: purity 93% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.42 (s, 1 H, CHO); 7.77 (d, J= 2.8 Hz, 1 H, ArH); 7.43 (dd, J= 8.7, 2.8 Hz, 1 H, ArH); 6.77 (d, J= 8.7 Hz, 1 H, ArH); 4.79-4.65 (m, 1 H); 2.58-2.42 (m, 2H); 2.34-2.14 (m, 2H); 2.00-1 .66 (m, 2H). c) [5-chloro-2-(cyclobutyloxy)phenyl]methanol

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 92% yield (white solid), using 5-chloro-2- (cyclobutyloxy)benzaldehyde (0.26 g, 1 .23 mmol) and NaBH 4 (0.05 g, 1 .23 mmol) as starting materials.

LC: purity 86% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.27 (d, J= 2.8 Hz, 1 H, ArH); 7.16 (dd, J= 8.8, 2.8 Hz, 1 H, ArH); 6.63 (d, J= 8.8 Hz, 1 H, ArH); 4.77-4.57 (m, 3H); 2.54 -2.38 (m, 2H); 2.26-2.06 (m, 2H); 1 .96-1 .61 (m, 2H + OH). d) 2-(bromomethyl)-4-chloro-1 -(cyclobutyloxy)benzene

Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 90% yield (colorless oil), using [5-chloro-2- (cyclobutyloxy)phenyl]methanol (0.47 g, 2.21 mmol) and PBr 3 (0.10 ml_, 1 .10 mmol) as starting materials.

Intermediate compound 23: Synthesis of 2-(bromomethyl)-4-chloro-1-[(2- methylprop-2-enyl)oxy]benzene

Following the general procedure described in intermediate compound 1 , section a, the title compound was obtained in 81 % yield (pale yellow oil) after stirring at room temperature for 1 h, using 5-chloro-2-hydroxybenzaldehyde (1 .00 g, 6.38 mmol), NaH [0.28 g (60% oil dispersion), 7.03 mmol] and 3-bromo-2-methylprop-1 -ene (0.86 g, 6.38 mmol) as starting materials.

LC-MS ESI+ m/z: 21 1 (M+1 , 90%) (method 5). b) {5-chloro-2-[(2-methylprop-2-enyl)oxy]phenyl}methanol

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 50% yield (yellow oil), using 5-chloro-2-[(2- methylprop-2-enyl)oxy]benzaldehyde (0.54 g, 2.56 mmol) and NaBH 4 (0.05 g, 1 .28 mmol) as starting materials.

LC-MS ESI- m/z: 181 (M-1 , 99%) (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.30 (d, J= 2.8 Hz, 1 H, ArH); 7.19 (dd, J= 8.8, 2.8 Hz, 1 H, ArH); 6.78 (d, J= 8.8 Hz, 1 H, ArH); 5.12-4.99 (m, 2H); 4.69 (d, J= 6.3 Hz, 2H);

4.46 (s, 2H); 2.23 (t, J= 6.3 Hz, 1 H, OH); 1 .83 (s, 3H). c) 2-(bromomethyl)-4-chloro-1 -[(2-methylprop-2-enyl)oxy]benzene

Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 81 % yield (pale yellow oil), using {5-chloro-2-[(2- methylprop-2-enyl)oxy]phenyl}methanol (0.26 g, 1 .23 mmol) and PBr 3 (0.12 ml_, 1 .23 mmol) as starting materials.

Intermediate compound 24: Synthesis of 2-(bromomethyl)-4-chloro-1-{[2- (fluoromethyl)prop-2-enyl]oxy}benzene

a) 5-chloro-2-{[2-(chloromethyl)prop-2-enyl]oxy}benzaldehyde

Following the general procedure described in intermediate compound 1 , section a, the title compound was obtained in 24% yield (white solid) after stirring at room temperature for 20 h, using 5-chloro-2-hydroxybenzaldehyde (0.50 g, 3.19 mmol), K 2 C0 3 (0.53 g, 3.83 mmol) and 3-chloro-2-(chloromethyl)prop-1 -ene (0.44 mL, 3.83 mmol) as starting materials. It was purified by column chromatography on silica gel (10→30% EtAcO/hexanes), Rf= 0.40 (10% EtAcO/hexanes).

LC: purity 99% (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.44 (s, 1 H, CHO); 7.79 (d, J= 2.7 Hz, 1 H, ArH); 7.48 (dd, J= 8.8, 2.7 Hz, 1 H, ArH); 6.98 (d, J= 8.8 Hz, 1 H, ArH); 5.47-5.44 (m, 1 H); 5.42-5.38 (m, 1 H); 4.74 (br s, 2H); 4.20 (br s, 2H). b) 5-chloro-2-{[2-(iodomethyl)prop-2-enyl]oxy}benzaldehyde

A solution of Nal (0.14 g, 0.98 mmol) and 5-chloro-2-{[2-(chloromethyl)prop-2- enyl]oxy}benzaldehyde (0.16 g, 0.65 mmol) was stirred at room temperature for 14 h. The volatiles were removed by rotatory evaporation; the resulting residue was dissolved in EtAcO (25 mL) and washed with water (10 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 0.22 g of 5- chloro-2-{[2-(iodomethyl)prop-2-enyl]oxy}benzaldehyde were obtained [Rf= 0.40 (10% EtAcO/hexanes), pale yellow oil, 100% yield, crude], that were used without further purification.

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.45 (s, 1 H, CHO); 7.81 (d, J= 2.8 Hz, 1 H, ArH); 7.50 (dd, J= 9.0, 2.8 Hz, 1 H, ArH); 7.00 (d, J= 9.0 Hz, 1 H, ArH); 5.56-5.53 (m, 1 H); 5.35-5.32 (m, 1 H); 4.81 (br s, 2H); 4.03 (br s, 2H). c) 5-chloro-2-{[2-(fluoromethyl)prop-2-enyl]oxy}benzaldehyde

TBAF (1 .82 mL of 1 M solution in THF, 1 .82 mmol) was added dropwise to a solution of 5-chloro-2-{[2-(iodomethyl)prop-2-enyl]oxy}benzaldehyde (0.21 g, 0.62 mmol) in THF (4 mL) and the mixture was stirred at room temperature. After 1 h, the reaction was diluted with EtAcO (30 mL) and washed with brine (20 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (8% EtAcO/hexanes), affording 0.03 g of 5-chloro-2-{[2-(fluoromethyl)prop-2- enyl]oxy}benzaldehyde [Rf= 0.50 (10% EtAcO/hexanes), colorless oil, 21 % yield (2 steps)].

1 H-NMR (CDCI 3 , 250 MHz, δ): 10.43 (s, 1 H, CHO); 7.79 (d, J= 2.8 Hz, 1 H, ArH); 7.48 (dd, J= 9.1 , 2.8 Hz, 1 H, ArH); 6.96 (d, J= 9.1 Hz, 1 H, ArH); 5.46-5.42 (m, 2H); 4.99 (d, J= 57.3 Hz, 2H); 4.71 (br s, 2H). d) (5-chloro-2-{[2-(fluoromethyl)prop-2-enyl]oxy}phenyl)methano l

Following the general procedure described in intermediate compound 1 , section b, the title compound was obtained in 56% yield (colorless oil), using 5-chloro-2-{[2- (fluoromethyl)prop-2-enyl]oxy}benzaldehyde (0.36 g, 1 .56 mmol) and NaBH 4 (0.03 g, 0.78 mmol) as starting materials.

1 H-NMR (CDCI 3 , 250 MHz,□): 7.32 (d, J= 2.8 Hz, 1 H, ArH); 7.20 (dd, J= 8.5, 2.8 Hz, 1 H, ArH); 6.80 (d, J= 8.5 Hz, 1 H, ArH); 5.42-5.38 (m, 2H); 4.97 (d, J= 46.8 Hz, 2H); 4.68 (s, 2H); 4.63 (s, 2H). e) 2-(bromomethyl)-4-chloro-1 -{[2-(fluoromethyl)prop-2-enyl]oxy}benzene Following the general procedure described in intermediate compound 1 , section c, the title compound was obtained in 83% yield (pale yellow oil), using (5-chloro-2-{[2- (fluoromethyl)prop-2-enyl]oxy}phenyl)methanol (0.20 g, 0.85 mmol) and PBr 3 (0.08 ml_, 0.85 mmol) as starting materials.

Intermediate compound 25: Synthesis of (3-methyloxetan-3-yl)methyl trifluoromethanesulfonate

To a solution of (3-methyloxetan-3-yl)methanol (0.58 ml. 5.87 mmol) and TEA (1 .63 ml, 1 1 .75 mmol) in DCM (29 ml), trifluoromethanesulfonic anhydride (0.98 ml, 5.87 mmol) was added at 0 5 C. The reaction mixture was stirred at 0 5 C for 1 h and then at room temperature for 1 h. It was cooled and saturated NaHC0 3 aqueous solution was added. The aqueous layer was extracted with EtAcO (x3). The combined organic layers were washed with brine dried (MgS04) filtered and concentrated. After removal of the solvent, 1 .20 g of the desired compound was obtained (87% yield, crude), that were used without further purification.

1 H NMR (300 MHz, DMSO-d6) δ : 4.48-4.13 (m, 2H); 3.58-3.02 (m, 4H); 1 .17

(s, 3H).

The following compound was prepared using the same procedure as in intermediate compound 25:

Intermediate compound 26: Synthesis of 3-{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}- 1 ,2,3-oxathiazolidine 2,2-dioxide a) 2-({5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}amino)et hanol

2-aminoethanol (5.98 mL, 98.9 mmol) was added dropwise to a solution of 2- (bromomethyl)-4-chloro-1 -[(4-chloro-2-fluorobenzyl)oxy]benzene (4.50 g, 12.4 mmol) in ACN (50 mL) cooled at 0 'Ό. The reaction was allowed to reach room temperature, while a white precipitate appeared. After 15 h, the volatiles were removed by rotatory evaporation. The residue was dissolved in EtAcO (100 mL) and washed with brine (100 mL) and water (50 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 3.50 g of 2-({5-chloro- 2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}amino)ethanol were obtained [Rf= 0.15 (5% MeOH/DCM), white solid, 82% yield], that were used without further purification. LC-MS ESI+ m/z: 344 (M+1 , 86%) (method 5). b) 3-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2- oxide

A solution of SOCI 2 (0.81 mL, 1 1 .1 mmol) in 10 mL of DCM was added dropwise to a suspension of 2-({5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}amino)et hanol (3.48 g, 10.1 mmol) and imidazole (2.75 g, 40.4 mmol) in TEA (3.1 mL, 22.2 mmol) and DCM (100 mL) cooled at 0 °C. The suspension turned into a yellowish solution, and the reaction was allowed to reach room temperature. After 4 h, the mixture was poured over DCM (60 mL) and washed with brine (2 x 40 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 4.1 g of 3-{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2-oxide were obtained [Rf= 0.40 (20% EtAcO/hexanes), yellow oil, quantitative yield], that were used without further purification. c) 3-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2,2-dioxide

To an ice-cold solution of crude 3-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- 1 ,2,3-oxathiazolidine 2-oxide (10.1 mmol) in ACN (60 mL) was added RuCI 3 -H 2 0 (52 mg, 0.10 mmol), followed by Nal0 4 (3.24 g, 15.2 mmol), and then water (40 mL). The reaction was allowed to reach room temperature over 2 h and stirred for additional 5 h. The mixture was diluted with Et 2 0 (60 mL) and the organic phase was separated. The aqueous phase was extracted with Et 2 0 (2 x 40 mL). The combined organic phase was washed with NaHC0 3 (saturated aqueous solution, 2 x 40 mL), dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (20D30% EtAcO/hexanes), affording 1 .31 g of 3-{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2,2-dioxide [Rf= 0.30 (20% EtAcO/hexanes), white solid, 32% yield (3 steps)].

LC-MS ESI- m/z: 404 (M-1 , 97%) (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.51 -7.10 (m, 5H, ArH); 6.92 (d, J= 8.7 Hz, 1 H, ArH); 5.10 (s, 2H); 4.56-4.48 (m, 2H); 4.26 (s, 2H); 3.52-3.43 (m, 2H).

The following compounds were prepared using the same procedure as in intermediate compound 26:

Intermediate

Compound name Starting materials NMR compound

* LC-MS ES - m/z: 388 (M-1 , 97%) (method 5).

** LC-MS ESI+ m/z: 372 (M+1 , 97%) (method 5).

*** LC-MS ESI+ m/z: 338 (M+1 , 98%) (method 5).

Intermediate compound 27: Synthesis of 1-{5-chloro-2-[(2,4- difluorobenzyl)oxy]phenyl}methanamine

A suspension of 5-chloro-2-[(2,4-difluorobenzyl)oxy]benzaldehyde (3.20 g, 12.4 mmol), NH 2 OH- HCI (1 .29 g, 18.6 mmol) and NaAcO (1 .63 g, 19.8 mmol) in EtOH (25 mL) was heated at reflux for 30 min. The reaction was allowed to reach room temperature and EtOH was removed by rotatory evaporation. The resulting residue was dissolved in DCM (60 mL) and washed with brine (2 x 50 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 3.60 g of 5-chloro-2-[(2,4-difluorobenzyl)oxy]benzaldehyde oxime were obtained. This solid was suspended in 25 mL of AcOH and Zn dust (3.24 g, 49.6 mmol) was added in small portions over 2 h. After 3 h, the reaction was filtered through a pad of celite, washing with MeOH. The volatiles were removed by rotatory evaporation and the resulting residue was dissolved in DCM (100 mL) and washed with an aqueous saturated solution of NaHC0 3 (50 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (7% DCM/MeOH), affording 1 .70 g of 1 -{5-chloro-2- [(2,4-difluorobenzyl)oxy]phenyl}methanamine [Rf= 0.25 (10% DCM/MeOH), white solid, 52% yield].

LC-MS ESI+ m/z: 284 (M+1 , 97%) (method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.49-7.38 (m, 1 H, ArH); 7.24 (d, J= 2.7 Hz, 1 H, ArH); 7.18 (dd, J= 8.8, 2.7 Hz, 1 H, ArH); 6.96-6.81 (m , 3H, ArH); 5.08 (s, 2H); 3.80 (s, 2H); 1 .61 (br s, 2H, NH 2 ).

The following compounds were prepared using the same procedure as in intermediate compound 27:

The following examples illustrate the scope of the invention. Examples of compounds of general formula I

The following HPLC methods for LC-MS spectra have been used:

Method 1 : X-Bridge C18, 2.5 μηι 4.6 x 50 mm column; temperature: 35 5 C; rate 1 .5 mL/min; eluent: A = NH 4 HC03 10 mM, B = ACN; gradient: 98% A 0.5 min,

98 to 5% A in 4 min, 5% A 2 min, 5 to 98% A 0.75 min, 98% A 1 .75 min.

Method 2: SunFire C18 3.5 urn, 2.1 x100 mm column; temperature 35 5 C; rate 0.3 mL/min; eluent: A: ACN:MeOH (1 :1 ), B: Water, C: Ammonium acetate 20 mM pH 7; gradient 10:85:5 (A:B:C) 3 min to 95:5 (A: C ) in 17 min and 10 min 95:5 (A: C ). The sample is previously solved in methanol.

Method 3: XDB-C18 5 urn, 4.6x150 mm column; temperature 25 5 C; rate 1 mL/min; eluent: A: Water (0.05% TFA), B: AcN; gradient 5% B to 95:5 (A:B) in 7 min and 4 min 95:5 (A:B). Method 4: Acquity UPLC ® BEH C18 1 .7 μηι, 2.1 x50 mm column; temperature 40 g C; rate 0.5 mlJmin; eluent: A = NH 4 HC03 10 mM, B = ACN; gradient: 90% A 0.25 min, 90 to 10% A in 2.75 min, 10% A 0.75 min, 10 to 90% A 0.01 min, 90% A 1 .24 min.

Method 5: SunFire C1 8 5 urn, 2.1 x50 mm, rate 0.3 mL/min; eluent A: AcCN:MeOH (1 :1 ), B: Ammonium acetate 5 mM pH 7; gradient 10:90 (A:B) 2 min, 10:90 (A:B) to 95:5 (A:B) in 2 min, 95:5 (A:B) 5 min. The sample is previously solved in methanol.

Example 1: (E)- 1-(5-chloro-2-(4-chloro-2-fluorostyryl)benzyl)- 1 H-indole-4- carboxylic acid a) To a suspension of NaH 60% in mineral oil (17 mg, 0.42 mmol) in dry

DMF (1 ml_) at 0 5 C was added a solution of methyl 1 H-indole-4-carboxylate (70 mg, 0.4 mmol) in DMF (1 ml_) dropwise. After 30 min, a solution of (E)-2-(bromomethyl)- 4-chloro-1 -(4-chloro-2-fluorostyryl)benzene (173 mg, 0.48 mmol) in 1 ml_ of DMF was added dropwise.

When TLC analysis showed total conversion, crushed ice was added and the solution was extracted with EtAcO (x3). Combined organic extracts were washed with water, brine and dried over Na2S04. Column chromatography on silica gel gave (E)-methyl 1 -(4-chloro-2-(4-chloro-2-fluorostyryl)benzyl)-1 H-indole-4- carboxylate as a white solid (155 mg, 85% yield).

1 H NMR (500 MHz, CDCI3) δ 7.95 (1 H, dd), 7.57 (1 H, d), 7.49 (1 H, d), 7.31 (1 H, dd), 7.26 (1 H, d), 7.21 (1 H, dd), 7.19 - 7.1 1 (3H, m), 7.09 (1 H, dd), 7.06 - 6.97 (2H, m), 6.82 (1 H, d), 3.99 (3H, s). b) In a sealed tube, were placed the compound obtained above (135 mg, 0.3 mmol), THF (4 ml_) and a solution of LiOH (21 mg, 0.9 mmol) in 1 ml_ of water. The mixture was stirred at 80 5 C until TLC showed no starting material left. Then, it was cooled to room temperature and acidified with HCI 1 M. The mixture was extracted with EtAcO (x3). The organic phases were washed with brine, dried over Na2S04 and filtered. The solvent was removed in vacuo, and the residue was chromatographed using dichloromethane:MeOH (9.5:0.5) as eluent to give 1 10 mg (84% yield) of the title compound (example 1 ) as a white solid.

1 H NMR (400 MHz, DMSO) δ 7.87 - 7.71 (4H, m), 7.63 (1 H, d), 7.55 (1 H, d), 7.48 (1 H, dd), 7.38 (1 H, dd), 7.33 (1 H, dd), 7.21 (2H, dd), 7.05 (1 H, dd), 6.66 (1 H, d), 5.75 (2H, s).

LC-MS: t R = 9.59 [M+H] + = 472 (method 3).

The following compounds were prepared using the same methodology as example 1 using methyl 1 H-indole-4-carboxylate and the compound II specified starting materials.

LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

2 1 -(2-(benzyloxy)-5- 1 -(benzyloxy)-4- bromobenzyl)-1 H- bromo-2- 1 3.32 436 indole-4-carboxylic acid (bromomethyl)benzene

3 1 -(2-(benzyloxy)-5- 1 -(benzyloxy)-2- (trifluoromethyl)benzyl)- (bromomethyl)-4-

1 3.37 426 1 H-indole-4-carboxylic (trifluoromethyl)benzen

acid e

4 1 -(5-bromo-2-((4- 4-bromo-2- fluorobenzyl)oxy)benzyl) (bromomethyl)-1 -(4-

1 3.34 454 -1 H-indole-4-carboxylic fluorobenzyloxy)benze

acid ne LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

5 1 -(5-chloro-2-((4- 2-(bromomethyl)-4- fluorobenzyl)oxy)benzyl) chloro-1 -(4-

1 3.31 410 -1 H-indole-4-carboxylic fluorobenzyloxy)benze

acid ne

1 -(2-((4-chloro-2- 2-(bromomethyl)-1 -(4-

6

fluorobenzyl)oxy)-5- chloro-2- (trifluoromethyl)benzyl)- fluorobenzyloxy)-4- 1 3.58 478 1 H-indole-4-carboxylic (trifluoromethyl)benzen

acid e

7 1 -(5-chloro-2- 2-(bromomethyl)-4- (cyclopropylmethoxy)be chloro-1 -

1 3.19 356 nzyl)-1 H-indole-4- (cyclopropylmethoxy)b

carboxylic acid enzene

1 -(5-bromo-2- 4-bromo-2-

8

(cyclopropylmethoxy)be (bromomethyl)-l -

1 3.22 400 nzyl)-1 H-indole-4- (cyclopropylmethoxy)b

carboxylic acid enzene

1 -(5-bromo-2-((4-chloro- 4-bromo-2-

9

2- (bromomethyl)-1 -(4- fluorobenzyl)oxy)benzyl) chloro-2- 1 3.53 488 -1 H-indole-4-carboxylic fluorobenzyloxy)benze

acid ne

10 4-bromo-1 -

1 -(4-chloro-2- (bromomethyl)-2-((3,5- isobutoxybenzyl)-1 H- 1 3.43 358 dichlorobenzyl)oxy)ben

indole-4-carboxylic acid

zene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

1 1 1 -(5-chloro-2-((4- 2-(bromomethyl)-4- (trifluoromethyl)benzyl)o chloro-1 -((4-

1 3.56 460 xy)benzyl)-1 H-indole-4- (trifluoromethyl)benzyl)

carboxylic acid oxy)benzene

1 -(5-chloro-2-((2-chloro-

12 2-(bromomethyl)-4- 4- chloro-1 -((2-chloro-4- fluorobenzyl)oxy)benzyl) 1 3.53 444 fluorobenzyl)oxy)benz

-1 H-indole-4-carboxylic

ene

acid

13 1 -(5-chloro-2-((2,3,5,6- 3-((2-(bromomethyl)-4- tetrafluorobenzyl)oxy)be chlorophenoxy)methyl)

1 3.38 464 nzyl)-1 H-indole-4- -1 ,2,4,5- carboxylic acid tetrafluorobenzene

1 -(2-((2,4- 1 -((2,4-

14 bis(trifluoromethyl)benzy bis(trifluoromethyl)ben

l)oxy)-5-chlorobenzyl)- zyl)oxy)-2- 1 3.79 528 1 H-indole-4-carboxylic (bromomethyl)-4- acid chlorobenzene

15 1 -(5-chloro-2-((2,4,5-

1 -((2-(bromomethyl)-4- trifluorobenzyl)oxy)benz

chlorophenoxy)methyl) 1 3.40 446 yl)-1 H-indole-4- -2,4,5-trifluorobenzene

carboxylic acid

16 1 -(5-fluoro-2-((2,4,5-

1 -((2-(bromomethyl)-4- trifluorobenzyl)oxy)benz

fluorophenoxy)methyl)- 1 3.29 430 yl)-1 H-indole-4- 2,4,5-trifluorobenzene

carboxylic acid LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

17 1 -(2-((3-bromo-4- 2-bromo-4-((2- fluorobenzyl)oxy)-5- (bromomethyl)-4-

1 3.50 488 chlorobenzyl)-1 H-indole- chlorophenoxy)methyl)

4-carboxylic acid -1 -fluorobenzene

1 -(5-fluoro-2-((4-fluoro-

18 2-(bromomethyl)-4- 2- fluoro-1 -((4-fluoro-2-

(trifluoromethyl)benzyl)o 1 3.47 462

(trifluoromethyl)benzyl)

xy)benzyl)-1 H-indole-4- oxy)benzene

carboxylic acid

19 1 -(2-((2-chloro-4- 2-(bromomethyl)-1 -((2- fluorobenzyl)oxy)-5- chloro-4-

1 3.41 428 fluorobenzyl)-1 H-indole- fluorobenzyl)oxy)-4- 4-carboxylic acid fluorobenzene

1 -(5-fluoro-2-((4-fluoro-

2-(bromomethyl)-4-

20 2- chloro-1 -((4-fluoro-2-

(trifluoromethyl)benzyl)o 1 3.56 462

(trifluoromethyl)benzyl)

xy)benzyl)-1 H-indole-4- oxy)benzene

carboxylic acid

21 1 -(5-chloro-2-((2,3,4-

1 -((2-(bromomethyl)-4- trifluorobenzyl)oxy)benz

chlorophenoxy)methyl) 1 3.43 446 yl)-1 H-indole-4- -2,3,4-trifluorobenzene

carboxylic acid

22 1 -(5-bromo-2-((2,3,4- 1 -((4-bromo-2- trifluorobenzyl)oxy)benz (bromomethyl)phenoxy

1 3.45 490 yl)-1 H-indole-4- )methyl)-2,3,4- carboxylic acid trifluorobenzene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

23 1 -(5-chloro-2-(1 -(2,4- 2-(bromomethyl)-4- difluorophenyl)ethoxy)b chloro-1 -(1 -(2,4-

1 3.50 442 enzyl)-1 H-indole-4- difluorophenyl)ethoxy)

carboxylic acid benzene

24 1 -(2-((3-bromo-4- 2-bromo-4-((2- fluorobenzyl)oxy)-5- (bromomethyl)-4-

1 3.39 472 fluorobenzyl)-1 H-indole- fluorophenoxy)methyl)- 4-carboxylic acid 1 -fluorobenzene

1 -(5-bromo-2-((3-bromo- 2-bromo-4-((4-bromo-

25

4- 2- fluorobenzyl)oxy)benzyl) (bromomethyl)phenoxy 1 2.94 532 -1 H-indole-4-carboxylic )methyl)-1 - acid fluorobenzene

1 -(5-bromo-2-((4-f luoro- 4-bromo-2-

26 2- (bromomethyl)-1 -((4-

(trifluoromethyl)benzyl)o fluoro-2- 1 3.03 522 xy)benzyl)-1 H-indole-4- (trifluoromethyl)benzyl)

carboxylic acid oxy)benzene

1 -(5-bromo-2-((2-chloro- 4-bromo-2-

27

4- (bromomethyl)-1 -((2- fluorobenzyl)oxy)benzyl) chloro-4- 1 2.96 488 -1 H-indole-4-carboxylic fluorobenzyl)oxy)benz

acid ene

28 1 -(3-bromo-2-((4-bromo- 1 -bromo-2-((4-bromo- 2-fluorobenzyl)oxy)-5- 2-fluorobenzyl)oxy)-3-

1 3.20 566 chlorobenzyl)-1 H-indole- (bromomethyl)-5- 4-carboxylic acid chlorobenzene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

29 1 -(5-chloro-2-((2,5- 2-(bromomethyl)-4- difluorobenzyl)oxy)benz chloro-1 -((2,5-

1 3.35 428 yl)-1 H-indole-4- difluorobenzyl)oxy)ben

carboxylic acid zene

1 -(5-chloro-2-((2-chloro-

30 2-(bromomethyl)-4- 5- chloro-1 -((2-chloro-5- fluorobenzyl)oxy)benzyl) 1 3.52 440 fluorobenzyl)oxy)benz

-1 H-indole-4-carboxylic

ene

acid

1 -(5-chloro-2-((2-chloro-

31 2-(bromomethyl)-4- 4,5- chloro-1 -((2-chloro-4,5- difluorobenzyl)oxy)benz 1 3.64 462 difluorobenzyl)oxy)ben

yl)-1 H-indole-4- zene

carboxylic acid

1 -(2-((2,5- 2-(bromomethyl)-4-

32

difluorobenzyl)oxy)-5- fluoro-1 -((2,5-

1 3.23 412 fluorobenzyl)-1 H-indole- difluorobenzyl)oxy)ben

4-carboxylic acid zene

33 1 -(2-((2,6- 2-(bromomethyl)-4- difluorobenzyl)oxy)-5- fluoro-1 -((2,6-

1 3.21 412 fluorobenzyl)-1 H-indole- difluorobenzyl)oxy)ben

4-carboxylic acid zene

34 1 -(5-fluoro-2-((3,4,5- 2-(bromomethyl)-4- trifluorobenzyl)oxy)benz fluoro-1 -((3,4,5-

1 3.34 430 yl)-1 H-indole-4- trifluorobenzyl)oxy)ben

carboxylic acid zene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

35 1 -(5-fluoro-2-((4- 2-(bromomethyl)-4- fluorobenzyl)oxy)benzyl) fluoro-1 -((4-

1 3.21 394 -1 H-indole-4-carboxylic fluorobenzyl)oxy)benz

acid ene

36 1 -(2-((2-chloro-4,5- 2-(bromomethyl)-4- difluorobenzyl)oxy)-5- fluoro-1 -((2-chloro-4,5-

1 3.43 446 fluorobenzyl)-1 H-indole- difluorobenzyl)oxy)ben

4-carboxylic acid zene

1 -(2-((2,6-

37 2-(bromomethyl)-4- difluorobenzyl)oxy)-5- trifluoromethyl-1 -((2,6- (trifluoromethyl)benzyl)- 1 3.40 462 difluorobenzyl)oxy)ben

1 H-indole-4-carboxylic

zene

acid

1 -(2-((2-chloro-5- 2-(bromomethyl)-4-

38

fluorobenzyl)oxy)-5- fluoro-1 -((2-chloro-5-

1 3.39 428 fluorobenzyl)-1 H-indole- fluorobenzyl)oxy)benz

4-carboxylic acid ene

1 -(2-((2,5-

39 2-(bromomethyl)-4- difluorobenzyl)oxy)-5- trifluoromethyl-1 -((2,5- (trifluoromethyl)benzyl)- 1 3.42 462 difluorobenzyl)oxy)

1 H-indole-4-carboxylic

benzene

acid

1 -(3-bromo-5-chloro-2- 2-(bromomethyl)-6-

40

((2,6- bromo-4-chloro-1 - difluorobenzyl)oxy)benz ((2,6- 1 2.94 506 yl)-1 H-indole-4- difluorobenzyl)oxy)ben

carboxylic acid zene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

41 1 -(5-chloro-2-((3,5- 2-(bromomethyl)-4- difluorobenzyl)oxy)benz chloro-1 -((3,5-

1 3.77 428 yl)-1 H-indole-4- difluorobenzyl)oxy)ben

carboxylic acid zene

1 -(1 -(5-chloro-2-((4-

42 2-(1 -bromoethyl)-4- chloro-2- chloro-1 -((4-chloro-2- fluorobenzyl)oxy)phenyl) 1 4.03 458 fluorobenzyl)oxy)benz

ethyl)-1 H-indole-4- ene

carboxylic acid

43 1 -(5-chloro-2-((2,4- 2-(bromomethyl)-4- difluorobenzyl)oxy)benz chloro-1 -((2,4-

1 3.36 428 yl)-1 H-indole-4- difluorobenzyl)oxy)ben

carboxylic acid zene

44 1 -(2-(benzyloxy)-5- 1 -(benzyloxy)-2- chlorobenzyl)-1 H-indole- (bromomethyl)-4- 1 3.32 392 4-carboxylic acid chlorobenzene

45 1 -(5-chloro-2-((2- 2-(bromomethyl)-4- fluorobenzyl)oxy)benzyl) chloro-1 -((2-

1 3.35 410 -1 H-indole-4-carboxylic fluorobenzyl)oxy)benz

acid ene

46 1 -(2-((4-bromo-2- 4-bromo-1 -((2- fluorobenzyl)oxy)-5- (bromomethyl)-4-

1 3.58 488 chlorobenzyl)-1 H-indole- chlorophenoxy)methyl)

4-carboxylic acid -2-fluorobenzene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

1 -(5-chloro-2-((2-fluoro-

47 2-(bromomethyl)-4- 4- chloro-1 -((2-fluoro-4-

(trifluoromethyl)benzyl)o 1 3.61 478

(trifluoromethyl)benzyl)

xy)benzyl)-1 H-indole-4- oxy)benzene

carboxylic acid

1 -(5-chloro-2-((4-chloro-

48 2-(bromomethyl)-4- 2- chloro-1 -((4-chloro-2- fluorobenzyl)oxy)benzyl) 1 3.54 444 fluorobenzyl)oxy)benz

-1 H-indole-4-carboxylic

ene

acid

1 -(2-((3-

49 2-(bromomethyl)-1 -((3- fluorobenzyl)oxy)-5- fluorobenzyl)oxy)-4- (trifluoromethyl)benzyl)- 1 3.41 444

(trifluoromethyl)benzen

1 H-indole-4-carboxylic

e

acid

1 -(2-((4-bromo-2- 4-bromo-1 -((2-

50 fluorobenzyl)oxy)-5- (bromomethyl)-4- (trifluoromethyl)benzyl)- (trifluoromethyl)phenox 1 3.64 522 1 H-indole-4-carboxylic y)methyl)-2- acid fluorobenzene

1 -(2-((2,4- 4-bromo-1 -((2-

51

difluorobenzyl)oxy)-5- (bromomethyl)-4- (trifluoromethyl)benzyl)- (trifluoromethyl)phenox 1 3.45 462 1 H-indole-4-carboxylic y)methyl)-2- acid fluorobenzene LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

1 -(2-((2-

52 2-(bromomethyl)-1 -((2- fluorobenzyl)oxy)-5- fluorobenzyl)oxy)-4- (trifluoromethyl)benzyl)- 1 3.41 444

(trifluoromethyl)benzen

1 H-indole-4-carboxylic

e

acid

53 1 -(2-((2,4- 2-(bromomethyl)-1 - difluorobenzyl)oxy)-5- ((2,4-

1 3.26 412 fluorobenzyl)-1 H-indole- difluorobenzyl)oxy)-4- 4-carboxylic acid fluorobenzene

54 1 -(2-((2,4- 1 -((2- difluorobenzyl)oxy)benz (bromomethyl)phenoxy

1 3.26 394 yl)-1 H-indole-4- )methyl)-2,4- carboxylic acid difluorobenzene

1 -(5-bromo-2-((4-bromo- 4-bromo-1 -((4-bromo-

55

2- 2- fluorobenzyl)oxy)benzyl) (bromomethyl)phenoxy 1 3.01 532 -1 H-indole-4-carboxylic )methyl)-2- acid fluorobenzene

1 -(2-((4-bromo-2- 4-bromo-1 -((2-

56

fluorobenzyl)oxy)-5- (bromomethyl)-4-

1 2.86 472 fluorobenzyl)-1 H-indole- fluorophenoxy)methyl)- 4-carboxylic acid 2-fluorobenzene

1 -(5-chloro-2-((4-chloro-

57 2-((2-(bromomethyl)-4- 2,6- chlorophenoxy)methyl)

difluorobenzyl)oxy)benz 1 2.91 462

-5-chloro-1 ,3- yl)-1 H-indole-4- difluorobenzene

carboxylic acid LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

58 1 -(2-((4-bromo-2,6- 5-bromo-2-((2- difluorobenzyl)oxy)-5- (bromomethyl)-4-

1 2.98 506 chlorobenzyl)-1 H-indole- chlorophenoxy)methyl)

4-carboxylic acid -1 ,3-difluorobenzene

1 -(3,5-dichloro-2-((4-

59 1 -(bromomethyl)-3,5- chloro-2- dichloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl) 1 3.12 478 fluorobenzyl)oxy)benz

-1 H-indole-4-carboxylic

ene

acid

1 -(5-bromo-2-((4-chloro-

60 2-((4-bromo-2- 2,6- (bromomethyl)phenoxy

difluorobenzyl)oxy)benz 1 2.98 506

)methyl)-5-chloro-1 ,3- yl)-1 H-indole-4- difluorobenzene

carboxylic acid

61 1 -((3-((4-chloro-2- 2-(bromomethyl)-3-((4- fluorobenzyl)oxy)pyridin- chloro-2-

1 3.54 41 1 2-yl)methyl)-1 H-indole- fluorobenzyl)oxy)pyridi

4-carboxylic acid ne

3-(1 -(5-chloro-2-((4-

2-(bromomethyl)-1 -

62 chloro-2- ((3,5- fluorobenzyl)oxy)benzyl) 1 3.67 472 difluorobenzyl)oxy)-4- -1 H-indol-4-yl)propanoic

fluorobenzene

acid LC-MS

Examp Compound Starting t R m/z

Metho

le name compound II (mi [M+ d

n) H] +

1 -(5-chloro-2-(4-chloro-

2-(bromomethyl)-4-

63 2- chloro-1 -(4-chloro-2- fluorophenethyl)benzyl)- 1 4.02 442 fluorophenethyl)benze

1 H-indole-4-carboxylic

ne

acid

Examples 64 to 78: Using methyl 1 H-indole-5-carboxylate as stating material The next compounds were obtained using the same methodology as in example 1 but using methyl 1 H-indole-5-carboxylate as starting material of formula III and the compound II indicated.

LC-MS

Exampl

Compound Starting t R m/z e Metho

name compound II (min [M+H d

) Γ

64 1 -(5-chloro-2- 2-(bromomethyl)-4- (cyclopropylmethoxy)b chloro-1 -

1 3.18 356 enzyl)-1 H-indole-5- (cyclopropylmethoxy)

carboxylic acid benzene

1 -((2-(bromomethyl)-

65 1 -(5-fluoro-2-((2,4,5- 4- trifluorobenzyl)oxy)ben

fluorophenoxy)methyl 1 3.28 430 zyl)-1 H-indole-5- )-2,4,5- carboxylic acid

trifluorobenzene LC-MS

Exampl

Compound Starting t R m/z e Metho

name compound II (min [M+H d

) Γ

1 -(2-((2-chloro-4-

2-(bromomethyl)-1 -

66 fluorobenzyl)oxy)-5-

((2-chloro-4- fluorobenzyl)-1 H- 1 3.40 428 fluorobenzyl)oxy)-4- indole-5-carboxylic

fluorobenzene

acid

1 -(5-chloro-2-((4-

67 2-(bromomethyl)-4- fluoro-2- chloro-1 -((4-fluoro-2- (trifluoromethyl)benzyl) 1 3.58 478

(trifluoromethyl)benzy

oxy)benzyl)-1 H-indole- l)oxy)benzene

5-carboxylic acid

1 -(2-((3-bromo-4-

68 2-bromo-4-((2- fluorobenzyl)oxy)-5- (bromomethyl)-4- fluorobenzyl)-1 H- 1 2.93 472 fluorophenoxy)methyl

indole-5-carboxylic

)-1 -fluorobenzene

acid

1 -(5-bromo-2-((4- 4-bromo-2-

69

fluoro-2- (bromomethyl)-1 -((4- (trifluoromethyl)benzyl) fluoro-2- 1 3.02 522 oxy)benzyl)-1 H-indole- (trifluoromethyl)benzy

5-carboxylic acid l)oxy)benzene

1 -(5-bromo-2-((2- 4-bromo-2-

70

chloro-4- (bromomethyl)-1 -((2- fluorobenzyl)oxy)benz chloro-4- 1 2.99 488 yl)-1 H-indole-5- fluorobenzyl)oxy)ben

carboxylic acid zene LC-MS

Exampl

Compound Starting t R m/z e Metho

name compound II (min [M+H d

) Γ

71 1 -(5-fluoro-2-((3,4,5- 2-(bromomethyl)-4- trifluorobenzyl)oxy)ben fluoro-1 -((3,4,5-

1 3.33 430 zyl)-1 H-indole-5- trifluorobenzyl)oxy)be

carboxylic acid nzene

1 -(2-((2-chloro-4,5- 2-(bromomethyl)-4-

72

difluorobenzyl)oxy)-5- fluoro-1 -((2-chloro- fluorobenzyl)-1 H- 4,5- 1 3.43 446 indole-5-carboxylic difluorobenzyl)oxy)be

acid nzene

1 -(2-((2-chloro-5-

73 2-(bromomethyl)-4- fluorobenzyl)oxy)-5- fluoro-1 -((2-chloro-5- fluorobenzyl)-1 H- 1 2.80 428 fluorobenzyl)oxy)ben

indole-5-carboxylic

zene

acid

4-bromo-2-

74 1 -(5-bromo-2-((2,4- (bromomethyl)-l - difluorobenzyl)oxy)ben

((2,4- 1 3.40 472 zyl)-1 H-indole-5- difluorobenzyl)oxy)be

carboxylic acid

nzene

1 -(2-((4-bromo-2- 4-bromo-1 -((2-

75

fluorobenzyl)oxy)-5- (bromomethyl)-4- (trifluoromethyl)benzyl) (trifluoromethyl)phen 1 3.62 522 -1 H-indole-5- oxy)methyl)-2- carboxylic acid fluorobenzene LC-MS

Exampl

Compound Starting t R m/z e Metho

name compound II (min [M+H d

) Γ

1 -(5-chloro-2-((4-

76 2-(bromomethyl)-4- chloro-2- chloro-1 -((4-chloro-2- fluorobenzyl)oxy)benz 1 3.51 444 fluorobenzyl)oxy)ben

yl)-1 H-indole-5- zene

carboxylic acid

1 -(5-chloro-2-((4- 2-(bromomethyl)-4-

77

fluorobenzyl)oxy)benz chloro-1 -(4-

1 3.34 410 yl)-1 H-indole-5- fluorobenzyloxy)benz

carboxylic acid ene

Sodium 1 -(5-chloro-2- 4-chloro-2-

78 ((2,4- (bromomethyl)-l - difluorobenzyl)oxy)ben ((2,4- 1 3.79 428 zyl)-1 H-indole-5- difluorobenzyl)oxy)be

carboxylate nzene

Examples 79 to 83: Using (E)-ethyl 3-(1 H-indol-4-yl)acrylate as stating material

The next compounds were obtained using the same methodology as in example 1 but using (£)-ethyl 3-(1 H-indol-4-yl)acrylate as starting material of formula III and the compound II indicated.

LC-MS

Exampl t R m/z

Compound name Starting compound II Meth e (mi [M+H od

n) Γ LC-MS

Exampl t R m/z

Compound name Starting compound II Meth e (mi [M+H od

n) Γ

(E)-3-(1 -(2-

79

(benzyloxy)-5- 1 -(benzyloxy)-2- (trifluoromethyl)benzyl (bromomethyl)-4- 1 3.45 452 )-1 H-indol-4-yl)acrylic (trifluoromethyl)benzene

acid

80 (E)-3-(1 -(5-bromo-2- 4-bromo-2- (cyclopropylmethoxy)b (bromomethyl)-l -

1 3.34 426 enzyl)-1 H-indol-4- (cyclopropylmethoxy)be

yl)acrylic acid nzene

81 (E)-3-(1 -(5-chloro-2- 2-(bromomethyl)-4- (cyclopropylmethoxy)b chloro-1 -

1 3.29 382 enzyl)-1 H-indol-4- (cyclopropylmethoxy)be

yl)acrylic acid nzene

(E)-3-(1 -(5-chloro-2-

82 2-(bromomethyl)-4- ((2,4- chloro-1 -((2,4- difluorobenzyl)oxy)be 1 3.43 454 difluorobenzyl)oxy)benz

nzyl)-1 H-indol-4- ene

yl)acrylic acid

(E)-3-(1 -(5-chloro-2-

83 2-(bromomethyl)-4-

((4-chloro-2- chloro-1 -((4-chloro-2- fluorobenzyl)oxy)benz 1 3.56 470 fluorobenzyl)oxy)benze

yl)-1 H-indol-4- ne

yl)acrylic acid Examples 84 to 86: Using 2-((1 H-indol-4-yl)oxy)acetate as stating material

The next compounds were obtained using the same methodology as in example 1 but using methyl 2-((1 H-indol-4-yl)oxy)acetate as starting material of formula III and the compound II indicated.

Example 87: Synthesis of 1-(2-(benzyloxy)-5-bromobenzyl)-1H-indole-6- carboxylic acid)

The title compound (example 87) was obtained from using the same methodology as in example 1 but using methyl 1 H-indole-6-carboxylate and 1 -(benzyloxy)-4- bromo-2-(bromomethyl)benzene as starting materials.

LCMS: t R = 3.33, [M+H] + = 438 The next compounds were obtained from using the same methodology and methyl 1 H-indole-6-carboxylate the compound II specified

Example 89: Synthesis of 3-(1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)- 1H-indol-4-yl)propanoic acid

The title compound (example 89) was obtained using the same methodology as in example 1 but using ethyl 3-(1 H-indol-4-yl)propanoate and 2-(bromomethyl)-4- chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene as starting materials.

1 H NMR (400 MHz CDCI 3 ) δ 7.26-7.10 (7H, m), 6.97 (1 H, dd), 6.90 (1 H, d,), 6.84 (1 H, d), 6.59 (1 H, dd), 5.29 (2H, s), 5.12 (2H, s), 3.29 (2H, t), 2.85 (2H, t).

LC-MS: t R = 9.28, [M+H] + = 472 (method 3).

Example 90: Synthesis of 1-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)- 1H-pyrrolo[2,3-b]pyridine-4-carboxylic acid

The title compound (example 90) was obtained using the same methodology as in example 1 but using methyl 1 H-pyrrolo[2,3-b]pyridine-4-carboxylate and 2-

(bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene as starting materials. 1 H NMR (400 MHz, DMSO) δ 8.35 (1 H, d), 7.64 (1 H, d), 7.60 (1 H, d), 7.56 (2H, t), 7.49 (1 H, dd), 7.32 (2H, ddd), 7.21 (1 H, d), 6.91 (1 H, d), 6.82 (1 H, d), 5.49 (2H, s), 5.20 (2H, s).

LC-MS: t R = 9.9 [M+H] + = 445 (method 3)

The next compounds were obtained using the same methodology and 1 H- pyrrolo[2,3-b]pyridine-4-carboxylic acid as staring material of formula III and the compound II specified

Example 92: Synthesis of 1-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)- 1H-benzo[d]imidazole-4-carboxylic acid

To a suspension of NaH 60% (13 mg, 0.31 mmol) in dry DMF (4 mL) at 0 5 C was added dropwise a solution of 1 H-benzo[d]imidazole-4-carboxylic acid (50 mg, 0.3 mmol) in DMF (1 mL). After 30 min a solution of 2-(bromomethyl)-4-chloro-1 -((4- chloro-2-fluorobenzyl)oxy)benzene (103 mg, 0.28 mmol) in 1 mL of DMF was added dropwise and the mixture kept at RT for 16 h. After evaporation of the solvent the residue was chromatographed on silica gel eluting with DCM:MeOH (9.5:0.5 to 9:1 ) to gave the title compound (example 92)as a white solid (96 mg, 72% yield). 1 H NMR (400 MHz, DMSO) δ 8.29 (1 H, d), 7.99 (1 H, d), 7.82 (1 H, dd), 7.54 (1 H, t), 7.48 (1 H, d), 7.40 (2H, ddd), 7.31 (1 H, t), 7.24 (1 H, d), 7.19 (1 H, dd), 5.44 (2H, s), 5.22 (2H, s).

LC-MS: t R = 7.27; [M+H] + = 445 (method 3)

Example 93: Synthesis of 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)indoline-4-carboxylic acid

a) To a suspension of K2CO 3 (43 mg, 0.31 mmol) and methyl indoline-4- carboxylate (53 mg, 0.3 mmol) in dry DMF (1 mL) at 0 5 C was added dropwise a solution of 2-(bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene (1 14 mg, 0.31 mmol) in DMF (1 mL). The reaction was stirred at RT overnight (TLC analysis showed complete conversion) and then the solution was poured onto crushed ice and extracted with EtAcO (x3). Combined organic extracts were washed with water, brine and dried over Na2S04. Column chromatography on silica gel eluting with DCM gave methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)indoline-4-carboxylate as a white solid (1 1 1 mg, 81 % yield).

1 H NMR (400 MHz, CDCI 3 ) δ 7.36 (1 H, dd), 7.30 (1 H, d), 7.29 - 7.26 (2H, m), 7.21 (1 H, dd), 7.14 - 7.09 (1 H, m), 6.49 (1 H, d), 5.09 (2H, s), 4.26 (2H, s), 3.88 (3H, s), 3.49 - 3.42 (2H, m), 3.41 - 3.34 (2H, m). b) In a sealed tube were placed methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)indoline-4-carboxylate (85 mg, 0.19 mmol), EtOH (1 .5 mL), THF (0.5 mL) and a solution of LiOH (13 mg, 0.55 mmol) in 0.23 mL of water. The mixture was stirred at 75 5 C overnight. Then the mixture was cooled to RT and acidified with HCI 1 M to pH-2-3. The reaction mixture was extracted with EtAcO (x3). The organic phases were washed with brine dried over Na2S04 and filtered. The solvent was removed in vacuo and the crude was chromatographed on silica- gel eluting with DCM:MeOH (98:2) to give 75 mg (91 % yield) of the title compound (example 93) as a slightly yellow solid.

1 H NMR (500 MHz, DMSO) δ 7.60 (1 H, t), 7.50 (1 H, dd), 7.36 - 7.28 (3H, m), 7.21 (1 H, d), 7.10 (1 H, d), 7.00 (1 H, t), 6.56 (1 H, d), 5.20 (2H, s), 4.25 (2H, s), 3.36 (2H, t), 3.22 (2H, t). LC-MS: t R = 2.98 min, [M+H] + = 446, (Method 1 ).

Example 94: Synthesis of 1-(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)- 1,2,3,4-tetrahydroqulnollne-5-carboxyllc acid

The title compound (example 94) was obtained following the general procedure described in example 1 using methyl 1 ,2,3,4-tetrahydroquinoline-5-carboxylate and 2-(bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene as starting materials.

1 H NMR (400 MHz, DMSO) δ 7.63 (1 H, t), 7.51 (1 H, dd), 7.34 (1 H, dd), 7.30 (1 H, dd), 7.22 (1 H, d), 6.98 (1 H, d), 6.95 - 6.84 (2H, m), 6.39 - 6.28 (1 H, m), 5.23 (2H, s), 4.40 (2H, s), 3.39 - 3.32 (2H, m), 2.97 (2H, t), 1 .93 - 1 .84 (2H, m).

LC-MS: t R = 9.61 , [M+H] + = 460 (method 3).

The next compounds were obtained using the same methodology and methyl 1 ,2,3,4-tetrahydroquinoline-5-carboxylate as starting material of formula (III) and the compound II specified

Example 96: Synthesis of Sodium 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-1H-indole-4-carboxylate

a) Methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylate was obtained following the general method described in example 1 , using methyl 1 H-indole-4-carboxylate and 2-(bromomethyl)-4-chloro-1 -((4-chloro-2- fluorobenzyl)oxy)benzene as starting materials. b) To a solution of compound obtained above (640 mg, 1 .40 mmol) in EtOH, a solution of NaOH 2M (1 .75 mL, 3.5 mmol) was added at room temperature. The mixture was stirred at 80 5 C until TLC showed there was not starting material left. It was cooled and EtOH was removed in vacuo. The residue was dissolved in EtAcO, washed with water (x3) and brine, and dried with MgS0 4 . The crude product was purified by Si0 2 column chromatography, eluting with a gradient of hexane/EtAcO. Title compound (example 96) was obtained as a white solid (540 mg, 83% yield).

1 H NMR (400 MHz, DMSO) δ 7.72 (1 H, dd), 7.61 (1 H, d), 7.58 - 7.50 (3H, m), 7.34 - 7.30 (2H, m), 7.20 (1 H, d), 7.13 (1 H, t), 6.98 (1 H, d), 6.86 (1 H, d), 5.39 (2H, s), 5.21 (2H, s).

LC-MS: t R = 3.73; [M+H] + = 444 (method 1 ).

Example 97: Synthesis of Sodium 1-(5-chloro-2-((2,4- dlfluorobenzyl)oxy)benzyl)- 1 H-lndole-4-carboxylate

The title compound (example 97) was obtained using the same methodology as in Example 96 but using 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H-indole-4- carboxylic acid as starting material.

1 H NMR (400 MHz DMF-d 7 ) δ 8.05 (1 H, d), 7.92-7.86 (2H, m), 7.79 (1 H, d), 7.54-7.30 (6H, m), 7.13 (1 H, d,), 5.70 (2H, s), 5.46 (2H, s)

LC-MS: t R = 3.95, [M+H] + = 428 (method 1 ).

Examples 98 to 99: Using 2-methyl-7H-pyrrolo[2,3-d]pyrlmldlne-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in Example 96 but using 2-methyl-7H-pyrrolo[2,3-d]pyrimidine-4-carboxylate as starting material of formula III and the compound II indicated.

Exampl Compound name Starting compound II LC-MS e t R m/z

Metho

(min [M+H d

) r sodium 7-(5-chloro-2-

98 ((4-chloro-2- 2-(bromomethyl)-4- fluorobenzyl)oxy)benzy chloro-1 -((4-chloro-2-

1 3.56 446 l)-7H-pyrrolo[2,3- fluorobenzyl)oxy)benze

d]pyrimidine-4- ne

carboxylate sodium 7-(5-chloro-2-

((2,4- 2-(bromomethyl)-4-

99

difluorobenzyl)oxy)ben chloro-1 -((2,4-

1 3.47 430 zyl)-7H-pyrrolo[2,3- difluorobenzyl)oxy)benz

d]pyrimidine-4- ene

carboxylate

Example 100: Synthesis of sodium 1-(5-chloro-2-((2,4- difluorobenzyl)oxy)benzyl)-7-fluoro-1H-indole-4-carboxylate

The title compound (example 100) was obtained using the same methodology as in Example 96 but using methyl 7-fluoro-1 H-indole-4-carboxylate and 2-(bromomethyl)- 4-chloro-1 -((2,4-difluorobenzyl)oxy)benzene as starting materials.

1 H NMR (500 MHz, DMSO) δ 7.71 (1 H, dd), 7.60 - 7.54 (1 H, m), 7.53 (1 H, d), 7.37 - 7.28 (2H, m), 7.23 (1 H, d), 7.1 1 (1 H, td), 7.06 (1 H, t), 6.94 (1 H, dd), 6.54 (1 H, d), 5.51 (2H, s), 5.19 (2H, s).

LC-MS: t R = 3.85; [M+H] + = 444 (Method 1 )

Example 101: Synthesis of sodium 1-{2-[(2,4-difluorobenzyl)oxy]-5- methoxybenzyl}-1H-indole-4-carboxylate

/-BuONa (32 mg, 0.33 mmol) was added to a suspension of 1 -{2-[(2,4- difluorobenzyl)oxy]-5-methoxybenzyl}-1 H-indole-4-carboxylic acid (140 mg, 0.33 mmol) in MeOH (10 ml_) and stirred at room temperature. After 2 h, the solvent was removed out of the clear solution, rendering a white solid that was triturated with Et 2 0 (10 ml_) and vacuum dried, affording 130 mg of sodium 1 -{2-[(2,4- difluorobenzyl)oxy]-5-methoxybenzyl}-1 H-indole-4-carboxylate (87% yield) (example 101 ) .

LC-MS ESI- m/z: 422 [M-Na] " , t R = 18.14 (Method 2)

1 H-NMR (DMSO-de, 250 MHz, δ) : 7.67-7.52 (m, 2H, ArH); 7.40-7.07 (m, 6H, ArH); 6.94 (dd, J= 8.0, 7.4 Hz, 1 H, ArH); 6.79 (dd, J= 8.6, 3.2 Hz, 1 H, ArH); 6.29 (d, J= 2.8 Hz, 1 H, ArH); 5.27 (s, 2H, CH2); 5.14 (s, 2H, CH2); 3.56 (s, 3H, OCH3).

Example 102: Synthesis of sodium 1-[5-chloro-2-(cyclohexylmethoxy)benzyl]- 1H-indole-4-carboxylate

The title compound (example 102) was obtained using the same methodology as in Example 101 but methyl 1 H-indole-4-carboxylate and 2-(bromomethyl)-4-chloro-1 - (cyclohexylmethoxy)benzene as starting materials.

LC-MS ESI- m/z: 396 [M-Na]-, t R = 21 .18 (Method 2)

1 H-NMR (DMSO-de, 250 MHz, δ) : 7.57 (dd, J= 7.4, 1 .0 Hz, 1 H, ArH); 7.36- 7.18 (m, 4H, ArH); 7.07-6.98 (m, 2H, ArH); 6.64 (d, J= 2.7 Hz, 1 H, ArH); 5.33 (s, 2H, CH2); 3.85 (d, J= 5.5 Hz, 2H, CH2); 1 .91 -1 .60 (m, 6H); 1 .38-1 .00 (m, 5H).

Example 103: Synthesis of sodium 1-[5-chloro-2-(cyclopentylmethoxy)benzyl]- 1H-indole-4-carboxylate

The title compound (example 103) was obtained using the same methodology as in Example 15 but methyl 1 H-indole-4-carboxylate and 2-(bromomethyl)-4-chloro-1 - (cyclopentylmethoxy)benzene as starting materials.

LC-MS ESI- m/z: 382 [M-Na]-, t R = 20.40 (Method 2)

1 H-NMR (DMSO-de, 250 MHz, δ) : 7.57 (d, J= 7.0 Hz, 1 H, ArH); 7.39-7.17 (m, 4H, ArH); 7.10-6.90 (m, 2H, ArH); 6.67 (br s, 1 H, ArH); 5.32 (s, 2H, CH2); 3.93 (d, J= 6.2 Hz, 2H, CH2); 2.47-2.30 (m, 1 H); 1 .93-1 .1 1 (m, 8H). Examples 104 to 113: Using methyl 1 H-indole-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in Example 96 but using methyl 1 H-indole-4-carboxylate as starting material of formula III and the compound II indicated.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium 1 -(5-fluoro-

2-(bromomethyl)-4- 2-propoxybenzyl)- fluoro-1 - 4 1 .78 328 1 H-indole-4-

104 propoxybenzene

carboxylate

Sodium 1 -(5-

2-(bromomethyl)-4- chloro-2- chloro-1 -

105 (cyclopentyloxy)ben 4 2.00 370

(cyclopentyloxy)ben

zyl)-1 H-indole-4- zene

carboxylate

Sodium 1 -(5-chloro-

2-(bromomethyl)-4- 2-propoxybenzyl)-

106 chloro-1 - 4 1 .84 344

1 H-indole-4- propoxybenzene

carboxylate

Sodium 1 -(5-chloro-

4-(2-(2- 2-(2-(tetrahydro- (bromomethyl)-4-

2H-pyran-4-

107 chlorophenoxy)ethyl 1 3.44 414 yl)ethoxy)benzyl)- )tetrahydro-2H- 1 H-indole-4- pyran

carboxylate Sodium 1 -(5-fluoro-

2-(bromomethyl)-4- 2-isobutoxybenzyl)-

108 fluoro-1 - 1 3.57 340 *

1 H-indole-4- isobutoxybenzene

carboxylate l-(bromomethyl)-2- isobutoxybenzene

Sodium 1 -(2- isobutoxybenzyl)- 18.6

109 2 324

1 H-indole-4- 5 carboxylate

Sodium 1 -[5-chloro-

2-(bromomethyl)-4-

2-(2,2- chloro-1 -(2,2- 10.1

1 10 difluoroethoxy)benz 2 366 difluoroethoxy)benz 1 yl]-1 H-indole-4- ene

carboxylate

Sodium 1 -[5-chloro-

2-(bromomethyl)-4- 2-(2- chloro-1 -(2- 15.7

1 1 1 fluoroethoxy)benzyl

fluoroethoxy)benzen 2 348 ]-1 H-indole-4- 2

e

carboxylate

Sodium 1 -[5-chloro-

2-(bromomethyl)-4-

2-(2,2,2- chloro-1 -(2,2,2- 16.0

1 12 trifluoroethoxy)benz 2 384 trifluoroethoxy)benz 7 yl]-1 H-indole-4- ene

carboxylate Sodium 1 -[5-chloro-

2-(bromomethyl)-4- .

chloro-1 - 20.0

1 13 (neopentyloxy)benz 2 372

(neopentyloxy)benz 0 yl]-1 H-indole-4- ene

carboxylate m/z [M-H] " instead of m/z [M+H] +

Examples 114 to 115: Using methyl 3-oxo-3,4-dihydro-2H- benzo[b][1,4]oxazine-8-carboxylate as starting material

The next compounds were obtained using the same methodology as in Example 96 but using methyl 3-oxo-3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylate as starting material of formula III and the compound II indicated.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium 4-(5-chloro- cyclobutoxybenzyl)- 2-(bromomethyl)-4-

1 14 3-oxo-3,4-dihydro- chloro-1 - 4 1 .67 388

2H- cyclobutoxybenzene

benzo[b][1 ,4]oxazin

e-8-carboxylate

Sodium 4-(5- bromo-2-(4-chloro-

4-bromo-2-

(bromomethyl)-1 -(4- fluorobenzyloxy)be

1 15 chloro-2- 4 1 .88 520 nzyl)-3-oxo-3,4- fluorobenzyloxy)ben

dihydro-2H- zene

benzo[b][1 ,4]oxazin

e-8-carboxylate Examples 116 to 122: Using methyl 3,4-dihydro-2H-benzo[b][1,4]oxazine-8- carboxylate as starting material

The following compounds were prepared using the same methodology as in example 96 using methyl 3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylate and the compound II specified as starting materials.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium 4-(5-chloro-

2-(2-fluoro-2- 2-(bromomethyl)-4-

1 16 methylpropoxy)ben chloro-1 -(2-fluoro-2-

4 1 .72 394 zyl)-3,4-dihydro-2H- methylpropoxy)benz

benzo[b][1 ,4]oxazin ene

e-8-carboxylate

Sodium 4-(5-chloro-

2-((4-chloro-2-

2-(bromomethyl)-4- fluorobenzyl)oxy)be

chloro-1 -((4-chloro- nzyl)-3,4-dihydro-

1 17 2- 1 3.71 462

2H- fluorobenzyl)oxy)be

benzo[b][1 ,4]oxazin

nzene

e-8-carboxylate Sodium 4-(5-chloro-

2-((2,4-

2-(bromomethyl)-4- difluorobenzyl)oxy)

chloro-1 -((2,4-

1 18 benzyl)-3,4- 1 3.60 446 difluorobenzyl)oxy)b

dihydro-2H- enzene

benzo[b][1 ,4]oxazin

e-8-carboxylate

Sodium 4-(2-((4- chloro-2-

1 -((2- fluorobenzyl)oxy)be

(bromomethyl)phen

nzyl)-3,4-dihydro-

1 19 oxy)methyl)-4- 1 3.64 428

2H- chloro-2- benzo[b][1 ,4]oxazin

fluorobenzene

e-8-carboxylate

Sodium 4-(2- (benzyloxy)benzyl)-

1 -(benzyloxy)-2-

120 3,4-dihydro-2H- (bromomethyl)benz 1 3.39 376 benzo[b][1 ,4]oxazin

ene

e-8-carboxylate

Sodium 4-(2-((2- chloro-4- fluorobenzyl)oxy)-5- 2-(bromomethyl)-1 -

121 fluorobenzyl)-3,4- ((2-chloro-4-

1 3.57 445 dihydro-2H- fluorobenzyl)oxy)-4- benzo[b][1 ,4]oxazin fluorobenzene

e-8-carboxylate Sodium 4-(2-((2,4- difluorobenzyl)oxy) 2-(bromomethyl)-1 -

122 benzyl)-3,4- ((2,4-

1 3.48 412 dihydro-2H- difluorobenzyl)oxy)b

benzo[b][1 ,4]oxazin enzene

e-8-carboxylate

Example 123: Synthesis of sodium 1-(2-((2-chlorobenzyl)oxy)-5-fluorobenzyl)- 1H-indazole-4-car boxy late a) To a suspension of NaH 60% (30 mg, 0.75 mmol) in dry DMF (1 mL) at 0 5 C was added dropwise a solution of methyl 1 H-indazole-4-carboxylate (120 mg, 0.68 mmol) in DMF (2 mL). After 10 min a solution of 2-(bromomethyl)-1 -((2- chlorobenzyl)oxy)-4-fluorobenzene (236 mg, 0.72 mmol) in 1 .5 mL of DMF was added dropwise. After 16 h at 0 5 C water was added and extracted with EtAcO (x3). Combined organic extracts were washed with water, brine and dried over Na2S04. The crude was purified by column chromatography using a combiflash system with a RediSep Rf Gold Normal Phase column and using cyclohexane/EtAcO as solvent. Methyl 1 -(2-((2-chlorobenzyl)oxy)-5-fluorobenzyl)-1 H-indazole-4-carboxylate compound as a slightly brown solid (144 mg, 50% yield).

1 H NMR (400 MHz, CDCI 3 ) δ 8.84 (s, 1 H), 8.56 (s, 1 H), 7.37 (d, J = 3.1 Hz, 1 H), 7.28 (dd, J = 8.8, 2.6 Hz, 1 H), 7.18 - 7.07 (m, 3H), 6.99 (d, J = 2.6 Hz, 1 H), 6.92 (d, J = 8.8 Hz, 1 H), 6.70 (dd, J = 3.1 , 0.8 Hz, 1 H), 5.37 (s, 2H), 5.05 (s, 2H). b) To a suspension of methyl 1 -(2-((2-chlorobenzyl)oxy)-5-fluorobenzyl)-1 H- indazole-4-carboxylate (120 mg, 0.28 mmol) in EtOH (3 mL), and THF (0.3 mL) a solution of NaOH (34 mg, 0.85 mmol) in H 2 0 (0.3 mL) was added at room temperature. The mixture was stirred at 80 5 C overnight. It was cooled and water was added. The aqueous layer was extracted with EtAcO (x3). The combined organic layers were washed with brine dried (MgS04) filtered and concentrated.

LC-MS: t R = 3.44; [M+H] + = 41 1 (Method 1 ) 1 H NMR (300 MHz, Methanol-d4) δ 8.59 (s, 1 H), 7.72 (d, J = 7.1 Hz, 1 H), 7.55 - 7.39 (m, 3H), 7.41 - 7.22 (m, 3H), 7.02 (dtd, J = 17.1 , 8.9, 3.9 Hz, 2H), 6.57 (dd, J = 8.9, 3.0 Hz, 1 H), 5.65 (s, 2H), 5.22 (s, 2H).

Examples 124 to 138: Using methyl 1H-lndazole-4-carboxylate as startmg material

The next compounds were obtained using the same methodology as in Example 123 but using the compound II indicated.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium 1 -(5-chloro- 2-(bromomethyl)-4-

2-((4-chloro-2- chloro-1 -((4-chloro-

124 fluorobenzyl)oxy)be 2- 1 3.65 445 nzyl)-1 H-indazole- fluorobenzyl)oxy)be

4-carboxylate nzene

Sodium 1 -(5-chloro-

2-(bromomethyl)-4-

2-(2-fluoro-2- chloro-1 -(2-fluoro-2-

125 methylpropoxy)ben 1 3.21 377 methylpropoxy)benz

zyl)-1 H-indazole-4- ene

carboxylate

Sodium 1 -(5-chloro-

2-(bromomethyl)-4-

2-((2- chloro-1 -((2-

126 fluorobenzyl)oxy)be 1 3.43 41 1 fluorobenzyl)oxy)be

nzyl)-1 H-indazole- nzene

4-carboxylate Sodium 1 -(2-((2-

2-(bromomethyl)-1 - chlorobenzyl)oxy)- ((2-

127 5-methylbenzyl)- 1 3.56 407 chlorobenzyl)oxy)-4- 1 H-indazole-4- methylbenzene

carboxylate

Sodium 1 -(5-fluoro-

2-(bromomethyl)-4-

2-((2- fluoro-1 -((2-

128 fluorobenzyl)oxy)be 1 3.33 395 fluorobenzyl)oxy)be

nzyl)-1 H-indazole- nzene

4-carboxylate

Sodium 1 -(2-((2-

2-(bromomethyl)-1 - fluorobenzyl)oxy)-5- ((2-

129 methylbenzyl)-1 H- 1 3.43 391 fluorobenzyl)oxy)-4- indazole-4- methylbenzene

carboxylate

Sodium 1 -(5-chloro-

2-(bromomethyl)-4-

2-((2- chloro-1 -((2-

130 chlorobenzyl)oxy)b 1 3.54 427 chlorobenzyl)oxy)be

enzyl)-1 H-indazole- nzene

4-carboxylate

Sodium 1 -(5-chloro-

2-(bromomethyl)-4-

2-(3-fluoro-2- chloro-1 -(3-fluoro-2-

131 methylpropoxy)ben 1 3.30 377 methylpropoxy)benz

zyl)-1 H-indazole-4- ene

carboxylate

Sodium 1 -(5-chloro- 2-propoxybenzyl)- f 2-(bromomethyl)-4-

132 1 H-indazole-4- chloro-1 - 4 1 .70 345 carboxylate propoxybenzene Sodium 1 -(5-

2- chloro-2-

(bromomethyl)- (cyclopentyloxy) 37

133 4-chloro-1 - 4

benzyl)-1 H- 1 .79 1

(cyclopentyloxy)

indazole-4- benzene

carboxylate

Sodium 1 -(5-fluoro-

2-(bromomethyl)-4- 2-isobutoxybenzyl)-

134 fluoro-1 - 4 1 .74 343

1 H-indazole-4- isobutoxybenzene

carboxylate

Sodium 1 -(5-fluoro-

2-(bromomethyl)-4- 2-propoxybenzyl)-

135 fluoro-1 - 4 1 .60 329

1 H-indazole-4- propoxybenzene

carboxylate

Sodium 1 -(5-

4-bromo-2- bromo-2-(4-chloro- (bromomethyl)-1 -(4- 2-

136 chloro-2- 4 1 .95 491 fluorobenzyloxy)be

fluorobenzyloxy)ben

nzyl)-1 H-indazole- zene

4-carboxylate

Sodium 1 -(5-chloro- 2- 2-(bromomethyl)-4-

137 cyclobutoxybenzyl)- chloro-1 - 4 1 .76 357

1 H-indazole-4- cyclobutoxybenzene

carboxylate

Sodium 1 -(5-chloro-

2-(bromomethyl)-4- 2- chloro-1 -

138 (neopentyloxy)benz 4 1 .94 373

(neopentyloxy)benz

yl)-1 H-indazole-4- ene

carboxylate Example 139: Using methyl 1H-pyrrolo[3,2-c]pyridine-4-carboxylate as starting material The next compound was obtained using the same methodology as in Example 123 but using methyl 1 H-pyrrolo[3,2-c]pyridine-4-carboxylate as starting material and the compound II indicated.

Example 140: Using ethyl 7-fluoro-1H-indole-4-carboxylate as starting material

The next compound was obtained using the same methodology as in Example 123 but using ethyl 7-fluoro-1 H-indole-4-carboxylate as starting material and the compound II indicated.

LC-MS

Example Starting t R m/z

Compound name Meth

compound II (mi [M- od

n) H] 1 -((2-

Sodium 1 -(2-((2,4-

(bromomethyl)ph

difluorobenzyl)oxy)b

140 enoxy)methyl)- 1 3.65 410 enzyl)-7-fluoro-1 H-

2,4- indole-4-carboxylate

difluorobenzene

Example 141. Synthesis of sodium 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1H-indole-4-carbo xylate

a) To a suspension of 41 .3 mg (1 .0 mmol) of NaH 60% in mineral oil in 3ml_ of DMF under argon and cooled at 0 5 C 200 mg (0.98 mmol) of methyl 3-formyl-1 H- indole-4-carboxylate was added as a solution in 3ml_ of DMF. The resulting solution was stirred at 0 5 C for 15 minutes. Then, a solution of 2-(bromomethyl)-4-chloro-1 - ((4-chloro-2-fluorobenzyl)oxy)benzene in 4 mL of DMF was added dropwise. Reaction was stirred at 0 5 C for 1 .5 h. It was quenched with water, extracted with EtAcO and the combined organic extracts were washed with brine, dried over anhydrous Na 2 S04, filtered and the solvent evaporated. The crude was purified by column chromatography over silica gel, eluting with mixtures cyclohexane/EtAcO. Methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-formyl- 1 H-indole-4- carboxylate (450 mg, 94%) was obtained as a white solid. b) To a suspension of corresponding aldehyde (195 mg) in ethanol (0.2 M), NaBH 4 was added (1 .2 eq, 21 mg) at 0 5 C. Mixture was stirred for 5 minutes and then 1 mL of THF was added to get complete solution. After 30 minutes, TLC showed there was not starting material left. It was quenched with water and extracted with EtOAc (x3). The organic phases were washed with brine and dried over MgS0 4 . The crude white solid was used without further purification in the follow step reaction.

1 H NMR (300 MHz, CDCI3) δ 7.83 (d, 1 H), 7.45 (d, 1 H), 7.32 - 7.06 (m, 6H), 6.96 - 6.79 (m, 2H), 5.25 (s, 2H), 5.08 (s, 2H), 4.77 (s, 2H), 4.00 (s, 3H). c) To a suspension of 440 mg (0.9 mmol) of methyl 1 -(5-chloro-2-((4-chloro- 2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4-carboxylate in 18 mL of absolute ethanol, 1 .12 mL of an aqueous solution of NaOH 2M was added. The resulting mixture was stirred at 80 5 C for 1 h. Then water was added and it was extracted with EtAcO. After evaporating the solvent sodium 1 -(5-chloro-2-((4-chloro- 2-fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indole-4-carboxylate was obtained (385 mg, 86%).

LC-MS: t R = 3.71 ; [M-H]= 472 (Method 1 )

Examples 142 to 151: Using methyl 3-formyl-1H-indole-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in example 141 using methyl 3-formyl-1 H-indole-4-carboxylate as starting material and the compound II indicated.

Example Compound name Starting LC-MS

compound II Method t R m/z

(min [M-H]

)

Sodium 1 -(5- 2-(bromomethyl)- 1 3.57 456 chloro-2-((2,4- 4-chloro-1 -((2,4- difluorobenzyl)oxy) difluorobenzyl)ox

142

benzyl)-3- y)benzene

(hydroxymethyl)- 1 H-indole-4- carboxylate

Sodium 1 -(2-((2,4- 2-(bromomethyl)- 1 3.20 422 difluorobenzyl)oxy) 1 -((2,4-

143 benzyl)-3- difluorobenzyl)ox

(hydroxymethyl)- y)benzene

1 H-indole-4- carboxylate Sodium 1 -(2-((4- 1 -((2- 1 3.53 438 chloro-2- (bromomethyl)ph

144 fluorobenzyl)oxy)b enoxy)methyl)-4- enzyl)-3- chloro-2-

(hydroxymethyl)- fluorobenzene

1 H-indole-4- carboxylate

Sodium 1 -(2-((2,4- 2-(bromomethyl)- 1 3.21 440 difluorobenzyl)oxy) 1 -((2,4-

145 -5-fluorobenzyl)-3- difluorobenzyl)ox

(hydroxymethyl)- y)-4-

1 H-indole-4- fluorobenzene

carboxylate

Sodium 1 -(2-((4- 2-(bromomethyl)- 1 3.53 456 chloro-2- 1 -((4-chloro-2- fluorobenzyl)oxy)- fluorobenzyl)oxy)-

146 5-fluorobenzyl)-3- 4-fluorobenzene

(hydroxymethyl)-

1 H-indole-4- carboxylate

Sodium 1 -(5- 2-(bromomethyl)- 1 3.25 404 chloro-2-(2-fluoro- 4-chloro-1 -(2-

2- fluoro-2-

147 methylpropoxy)ben methylpropoxy)be

zyl)-3- nzene

(hydroxymethyl)-

1 H-indole-4- carboxylate

Sodium 1 -(2- 2-(bromomethyl)- 1 3.30 368 cyclobutoxy-5- 4-fluoro-1 -

148 fluorobenzyl)-3- cyclobutoxybenze (hydroxymethyl)- ne

1 H-indole-4- carboxylate

Sodium 1 -(5-fluoro- 2-(bromomethyl)- 1 3.40 422

2-((4- 4-fluoro-1 -((4-

149 fluorobenzyl)oxy)b fluorobenzyl)oxy)

enzyl)-3- benzene

(hydroxymethyl)- 1 H-indole-4- carboxylate

Sodium 1 -(5- 2-(bromomethyl)- 1 3.50 438 chloro-2-((4- 4-chloro-1 -((4- fluorobenzyl)oxy)b fluorobenzyl)oxy)

150 enzyl)-3- benzene

(hydroxymethyl)- 1 H-indole-4- carboxylate

Sodium 1 -(5-chloro-2- 2-(bromomethyl)- 1 3.36 404

151 (3-fluoro-2- 4-chloro-1 -(3- methylpropoxy)benzyl)- fluoro-2- 3-(hydroxymethyl)-1 H- indole-4-carboxylate methylpropoxy)be

nzene

Examples 152 to 153: Using methyl 3-formyl-1H-pyrrolo[2,3-b]pyridine-4- carboxylate as starting material

The next compounds were obtained using the same methodology as in example 141 but using methyl 3-formyl-1 H-pyrrolo[2,3-b]pyridine-4-carboxylate as starting material and the compound II indicated.

Example Compound name Starting compound LC-MS II t R m/z

Metho

(mi [M+H d

n) Γ

Sodium 1 -(5-chloro-

2-((2,4- difluorobenzyl)oxy)

2-(bromomethyl)-4- benzyl)-3- chloro-1 -((2,4-

152 (hydroxymethyl)- 1 3.45 459 difluorobenzyl)oxy)b

1 H-pyrrolo[2,3- enzene

b]pyridine-4- carboxylate

Sodium 1 -(5-chloro-

2-((4-chloro-2-

2-(bromomethyl)-4- fluorobenzyl)oxy)be

chloro-1 -((4-chloro- nzyl)-3-

153 2- 1 3.57 475

(hydroxymethyl)- fluorobenzyl)oxy)be

1 H-pyrrolo[2,3- nzene

b]pyridine-4- carboxylate

Example 154: Synthesis of sodium 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(2-hydroxyethyl)-1H-indole-4-carb oxylate

a) To a suspension of 310 mg (0.9 mmol) of (methoxymethyl)triphenylphosphonium chloride in 2ml_ of toluene under argon at - 0 5 C NaHMDS 0.6M in toluene (1 .2 mL, 0.72 mmol) was added via syringe. After stirring at 0 5 C for 20 min methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)- 3-formyl-1 H-indole-4-carboxylate was added as a solution in 5ml_ of toluene and

3.5 mL of DCM. The resulting mixture was stirred at room temperature for 2 hours. Then it was allowed to warm to room temperature and quenched with a saturated solution of NH 4 CI. It was extracted with EtAcO and the combined organic layers were washed with water and brine, dried over MgS0 4 and evaporated. The crude was purified by column chromatography eluting with mixtures cyclohexane/EtAcO. Methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(2-meth oxyvinyl)-1 H- indole-4-carboxylate was obtained as a yellow oil (230 mg, 99%). b) To a solution of methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(2-methoxyvinyl)-1 H-indole-4-carboxylate (230 mg, 0.45 mmol) in 9 ml_ of acetone HCI 1 M ((2.1 ml_, 2.1 mmol) was added. The resulting mixture was stirred at 50 5 C for 1 hour. Then, water was added and it was extracted with EtAcO (x3). The combined organic layers were washed with water and brine, dried over MgS0 4 . Methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(2- oxoethyl)-1 H-indole-4-carboxylate was obtained (190 mg, 85%). c) To a solution of methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(2-oxoethyl)-1 H-indole-4-carboxylate (190 mg, 0.38 mmol) in 7.5 ml_ of THF, NaBH4 (17 mg, 0.46 mmol) was added. Reaction was stirred at room temperature for 1 h. Water was added, and the mixture was extracted with EtAcO, dried over MgS0 4 . 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)- 3,4-dihydrooxepino[5,4,3-cd]indol-6(1 H)-one was obtained (120 mg, 65%). d) To a suspension of 70 mg (0.15 mmol) of 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3,4-dihydrooxepino[5,4,3-cd]indol-6 (1 H)-one in 3 ml_ of absolute ethanol 0.18 ml_ of an aqueous solution of NaOH 2M was added. The resulting mixture was stirred at 80 5 C for 1 h. Then water was added and it was extracted with EtAcO, dried over MgS0 4 . Sodium 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(2-hydroxyethyl)-1 H-indole-4-carboxylate was obtained as a yellow solid (63 mg, 83%). t R = 3.61 min; m/x (M+H) + 488

Examples 155 to 160: Using methyl 3-formyl-1H-indole-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in example 141 step a using methyl 3-formyl-1 H-indole-4-carboxylate as starting material and the compound II indicated in the table below, followed by the use of the same methodology as in example 154.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium 1 -

(5-chloro-2-

((2,4- difluorobenz methyl 1 -(5-chloro- yl)oxy)benz 2-(2,4-

155 yl)-3-(2- difluorobenzyloxy)b 1 3.51 472 hydroxyethy enzyl)-3-formyl-1 H- l)-1 H-indole- indole-4-carboxylate

4- carboxylate

Sodium 1 -(5-fluoro-

2-isobutoxybenzyl)- methyl 1 -(5-fluoro-2-

3-(2-hydroxyethyl)- isobutoxybenzyl)-3-

156 1 3.38 386

1 H-indole-4- formyl-1 H-indole-4- carboxylate carboxylate

Sodium 1 -(5- chloro-2- methyl 1 -(5-chloro- isobutoxybenzyl)-3-

2- isobutoxybenzyl)-

157 (2-hydroxyethyl)- 1 3.48 402

3- formyl-1 H-indole- 1 H-indole-4-

4-carboxylate

carboxylate Sodium 1 -(5-chloro-

2-(2-fluoro-2- methyl 1 -(5-chloro- methylpropoxy)ben

2-(2-fluoro-2- zyl)-3-(2-

158 methylpropoxy)benz 1 3.09 420 hydroxyethyl)-1 H- yl)-3-formyl-1 H- indole-4- indole-4-carboxylate

carboxylate

Sodium 1 -(2-((2,4- difluorobenzyl)oxy)- methyl 1 -(2-(2,4-

5-fluorobenzyl)-3- difluorobenzyloxy)-

159 (2-hydroxyethyl)- 5-fluorobenzyl)-3- 1 3.40 456

1 H-indole-4- formyl-1 H-indole-4- carboxylate carboxylate

Sodium 1 -(5-chloro-

2-(3-fluoro-2- methyl 1 -(5-chloro- methylpropoxy)ben 2-(3-fluoro-2-

160 zyl)-3-(2- methylpropoxy)benz 1

hydroxyethyl)-1 H- yl)-3-formyl-1 H- indole-4- indole-4-carboxylate

carboxylate

Example 161: Synthesis of sodium (E)-3-(2-carboxylatovinyl)-1-(5-chloro-2-((4- chloro-2-fluorobenzyl)oxy)benzyl)-1H-indole-4-carboxylate

a) To a suspension of NaH 60% in mineral oil (19 mg, 0.46 mmol) in 2 mL of DMF under argon and cooled at 0 5 C (E)-methyl 3-(3-ethoxy-3-oxoprop-1 -en-1 -yl)- 1 H-indole-4-carboxylate (120 mg, 0.44 mmol) was added as a solution in 2 mL of DMF. The resulting solution was stirred at 0 5 C for 15 minutes. Then, a solution of 2- (bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene (176 mg, 0.48 mmol) in 2mL of DMF was added dropwise. Reaction was stirred at 0 5 C for 3h. Reaction was quenched with water, extracted with EtAcO and the combined organic extracts were washed with brine, dried over anhydrous Na 2 S0 4 , filtered and the solvent evaporated. The crude was purified by column chromatography over silica gel, eluting with mixtures cyclohexane/EtAcO to yield (E)-methyl 1 -(5-chloro-2-((4- chloro-2-fluorobenzyl)oxy)benzyl)-3-(3-ethoxy-3-oxoprop-1 -en-1 -yl)-1 H-indole-4- carboxylate (230 mg, 94%). b) To a suspension of (E)-methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(3-ethoxy-3-oxoprop-1 -en-1 -yl)-1 H-indole-4-carboxylate (150 mg, 0.27 mmol) in 4 ml_ of absolute EtOH, 0.28 ml_ (0.56 mmol) of an aqueous solution of NaOH 2M was added. The mixture was heated at 80 5 C overnight. It was allowed to cool to room temperature. A white solid appeared. It was filtterd and washed with cold water. The title compound was obtained (143 mg, 93%).

LC-MS: t R = 3.28; [M+H] + = 514 (Method 1 )

Example 162: Using (E)-methyl 3-(3-ethoxy-3-oxoprop-1-en-1-yl)-1H-indole-4- carboxylate as starting material.

The next compound was obtained using the same methodology as in Example 161 with (E)-methyl 3-(3-ethoxy-3-oxoprop-1 -en-1 -yl)-1 H-indole-4-carboxylate but using the compound II indicated.

LC-MS

Example Starting compound t R m/z

Compound name Metho

II (mi [M+H d

n) Γ

Sodium (E)-3-(2- carboxylatovinyl)-1 - 2-(bromomethyl)-4-

162 (5-chloro-2-((2,4- chloro-1 -((2,4-

1 3.16 498 difluorobenzyl)oxy) difluorobenzyl)oxy)b

benzyl)-1 H-indole- enzene

4-carboxylate Example 163: Synthesis of sodium 1-(5-chloro-2-((2,4- difluorobenzyl)oxy)benzyl)-1H-pyrrolo[2,3-c]pyridine-4-carbo xylate

a) To a suspension of NaH 60% (19 mg, 0.47 mmol) in dry DMF (1 mL) at 0 5 C was added dropwise a solution of 1 H-pyrrolo[2,3-c]pyridine-4-carbonitrile (67 mg, 0.45 mmol) in DMF (1 mL). After 10 min a solution of 2-(bromomethyl)-4- chloro-1 -((2,4-difluorobenzyl)oxy)benzene (162 mg, 0.47 mmol) in 1 mL of DMF was added dropwise. After 16 h at 0 5 C water was added and extracted with EtAcO (x3). Combined organic extracts were washed with water, brine and dried over Na2S04. Column chromatography on silica gel eluting with DCM:MeOH (95:5) gave the desired compound as a slightly brown solid (159 mg, 87% yield).

1 H NMR (400 MHz, CDCI3) δ 8.83 (s, 1 H), 8.55 (s, 1 H), 7.37 (d, J = 3.1 Hz, 1 H), 7.29 (dd, J = 8.8, 2.6 Hz, 1 H), 7.22 - 7.14 (m, 1 H), 6.99 (d, J = 2.6 Hz, 1 H), 6.94 (d, J = 8.8 Hz, 1 H), 6.90 - 6.82 (m, 2H), 6.70 (dd, J = 3.1 , 0.8 Hz, 1 H), 5.37 (s, 2H), 5.04 (s, 2H). b) To a suspension of 1 -(5-chloro-2-((2,4-difluorobenzyl)oxy)benzyl)-1 H- pyrrolo[2,3-c]pyridine-4-carbonitrile (148 mg, 0.36 mmol) in EtOH (3 mL), a solution of NaOH (144 mg, 3.61 mmol) in H2O (0.75 mL) was added at room temperature. The mixture was stirred at 90 5 C overnight. It was cooled and the mixture was acidified with HCI 1 M. Water and EtAcO were added and the aqueous phase was extracted with EtAcO (x3). The combined organic phases were washed with brine and dried with Na2S04. The crude product was purified by Si0 2 column cromatography, eluting with a gradient of DCM:MeOH (9.5-0.5 to 9-1 ). Title compound was obtained as a white powder (90 mg, 58% yield).

1 H NMR (300 MHz, DMSO) δ 8.95 (s, 1 H), 8.68 (s, 1 H), 7.67 (d, J = 3.0 Hz, 1 H), 7.55 (dd, J = 15.3, 8.5 Hz, 1 H), 7.37 (dd, J = 8.8, 2.6 Hz, 1 H), 7.34 - 7.25 (m, 1 H), 7.22 (d, J = 8.9 Hz, 1 H), 7.14 (d, J = 2.6 Hz, 1 H), 7.09 (td, J = 8.5, 1 .8 Hz, 1 H), 6.90 (d, J = 2.8 Hz, 1 H), 5.49 (s, 2H), 5.17 (s, 2H). c) t-BuONa (19 mg, 0.2 mmol) was added to a suspension of 1 -(5-chloro-2- ((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine-4-carboxylic acid (87 mg, 0.2 mmol) in MeOH (5 mL) and stirred at room temperature. After 2 h, the solvent was removed out of the clear solution, rendering a slightly yellow solid that was triturated with Et 2 0 and vacuum dried, affording 81 .5 mg of sodium 1 -(5-chloro-2- ((2,4-difluorobenzyl)oxy)benzyl)-1 H-pyrrolo[2,3-c]pyridine-4-carboxylate (89% yield).

1 H NMR (400 MHz, DMSO) δ 8.64 (s, 1 H), 8.55 (s, 1 H), 7.59 (dd, J = 15.3, 8.6 Hz, 1 H), 7.45 (d, J = 3.0 Hz, 1 H), 7.38 - 7.28 (m, 2H), 7.22 (d, J = 8.8 Hz, 1 H), 7.16 - 7.05 (m, 2H), 6.91 (d, J = 2.6 Hz, 1 H), 5.42 (s, 2H), 5.21 (s, 2H).

LC-MS: t R = 3.37 [M+H] + = 429 (method 1 ).

Example 164: Using 1H-pyrrolo[2,3-c]pyridine-4-carbonitrile as starting material.

The next compound was obtained using the same methodology as in Example 163, but starting with 1 H-pyrrolo[2,3-c]pyridine-4-carbonitrile and the compound II indicated.

Example 165: synthesis of sodium 1-(5-chloro-2-((2,4- difluorobenzyl)oxy)benzyl)indoline-4-carboxylate

a) To a suspension of K2CO3 (176 mg, 1 .27 mmol) and methyl indoline-4- carboxylate (215 mg, 1 .21 mmol) in dry DMF (3 mL) at 0 5 C was added 2- (bromomethyl)-4-chloro-1 -((2,4-difluorobenzyl)oxy)benzene (443 mg, 1 .27 mmol) in DMF (3 mL). The reaction was stirred at RT overnight and then the solution was poured onto crushed ice and extracted with EtAcO (x2). Combined organic extracts were washed with water, brine and dried over Na2S04. Column chromatography on silica gel eluting with hexane:EtAcO gave the desired compound as a white solid. (430 mg, 80% yield).

1 H NMR (400 MHz, Chloroform-d) δ 7.39 (td, J = 8.6, 6.3 Hz, 1 H), 7.28 (dd, J = 15.4, 1 .8 Hz, 1 H), 7.21 (dd, J = 8.6, 2.7 Hz, 1 H), 7.04 (t, J = 7.8 Hz, 1 H), 6.90 (d, J = 8.7 Hz, 1 H), 6.89 - 6.79 (m, 2H), 6.49 (dd, J = 7.8, 1 .0 Hz, 1 H), 5.08 (s, 2H), 4.25 (s, 2H), 3.88 (s, 3H), 3.50 - 3.41 (m, 2H), 3.41 - 3.32 (m, 2H). b) To a solution of methyl 1 -(5-chloro-2-((2,4- difluorobenzyl)oxy)benzyl)indoline-4-carboxylate (400 mg, 0.9 mmol) in EtOH (8 ml_), a solution of NaOH (108 mg, 2.7 mmol) in H2O (2 ml_) was added at room temperature. The mixture was stirred at 80 5 C overnight. It was cooled and water was added. The aqueous layer was extracted with EtAcO (x3). The combined organic layers were washed with brine dried (Na2S04) filtered and concentrated. (380 mg, 93% yield).

LC-MS: t R = 3.79 [M+H] + = 430 (method 1 ).

1 H NMR (400 MHz, DMSO) δ 7.63 (dd, J = 15.3, 8.6 Hz, 1 H), 7.35 - 7.27 (m, 3H), 7.20 (d, J = 8.6 Hz, 1 H), 7.10 (td, J = 8.5, 1 .7 Hz, 1 H), 7.04 (dd, J = 7.7, 0.9 Hz, 1 H), 6.81 (t, J = 7.7 Hz, 1 H), 6.27 (d, J = 7.0 Hz, 1 H), 5.17 (s, 2H), 4.15 (s, 2H), 3.24 - 3.17 (m, 4H).

Examples 166 to 171: Using methyl indoline-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in example 165 but using the compound II indicated.

LC-MS

Example Starting t R m/z

Compound name Meth

compound II (mi [M+H od

n) r 2-(bromomethyl)-4-

Sodium 1 -(5-chloro-2- chloro-1 -(2-fluoro-

(2-fluoro-2-

166 2- 1 3.45 378 methylpropoxy)benzyl)in

methylpropoxy)ben

doline-4-carboxylate

zene

2-(bromomethyl)-4-

Sodium 1 -(5-chloro-2- chloro-1 -((4-chloro- ((4-chloro-2-

167 2- 1 3.92 446 fluorobenzyl)oxy)benzyl)

fluorobenzyl)oxy)b

indoline-4-carboxylate

enzene

Sodium 1 -(2-((2-chloro- 2-(bromomethyl)-1 - 4-fluorobenzyl)oxy)-5- ((2-chloro-4-

168 fluorobenzyl)indoline-4- 1 3.72 430 fluorobenzyl)oxy)- carboxylate 4-fluorobenzene

Sodium 1 -(5-chloro-2-

2-(bromomethyl)-4- isobutoxybenzyl)indoline

169 chloro-1 - 1 3.70 360

-4-carboxylate

isobutoxybenzene

Sodium 1 -(5-fluoro-2-

2-(bromomethyl)-4- isobutoxybenzyl)indoline

170 fluoro-1 - 1 3.56 344

-4-carboxylate

isobutoxybenzene

Sodium 1 -(5-chloro-2- 2-(bromomethyl)-4- cyclobutoxybenzyl)indoli chloro-1 -

171 1 3.64 358 ne-4-carboxylate cyclobutoxybenzen

e Examples 172 to 182: Using methyl 1,2,3,4-tetrahydroquinoline-5-carboxylate as starting material

The next compounds were obtained using the same methodology as in Example 165 but using methyl 1 ,2,3,4-tetrahydroquinoline-5-carboxylate as starting material and the compound II indicated. In the preparation of compounds 175 to 182 1 equivalent of Kl was added to the reaction mixture in step a)

LC-MS

Example Starting t R m/z

Compound name Metho

compound II (mi [M+H d

n) Γ

Sodium 1 -(2-((2,4-

1 -((2- difluorobenzyl)oxy)benzy

(bromomethyl)phen

172 0-1 ,2,3,4- 1 3.62 410 oxy)methyl)-2,4- tetrahydroquinoline-5- difluorobenzene

carboxylate

Sodium 1 -(5-chloro-2- ((2,4- 2-(bromomethyl)-4- difluorobenzyl)oxy)benzy chloro-1 -((2,4-

173 1 3.73 444

0-1 ,2,3,4- difluorobenzyl)oxy)b

tetrahydroquinoline-5- enzene

carboxylate

Sodium 1 -(5-chloro-2-

2-(bromomethyl)-4- (cyclobutylmethoxy)benz

174 chloro-1 - yl)-1 , 2,3,4- 4 2.10 386

(cyclobutylmethoxy)

tetrahydroquinoline-5- benzene

carboxylate Sodium 1 -(5-chloro-2- isobutoxybenzyl)- 2-(bromomethyl)-4- 1 ,2,3,4- 19.0

chloro-1 - 2 374 tetrahydroquinoline-5- 6

isobutoxybenzene

carboxylate

Sodium 1 -[5-chloro-2- (1 .2- 2-(bromomethyl)-4- dimethylpropoxy)benzyl] chloro-1 -(1 ,2- 19.5

-1 ,2,3,4- 2 388 dimethylpropoxy)be 2 tetrahydroquinoline-5- nzene

carboxylate

Sodium 1 -[5-chloro-2-(2- fluoro-2- 2-(bromomethyl)-4- methylpropoxy)benzyl]- chloro-1 -(2-fluoro-2- 17.0

1 ,2,3,4- 2 392 methylpropoxy)ben 9 tetrahydroquinoline-5- zene

carboxylate

Sodium 1 -[5-chloro-2- (cyclobutyloxy)benzyl]- 2-(bromomethyl)-4-

1 ,2,3,4- chloro-1 - 18.3

2 372 tetrahydroquinoline-5- (cyclobutyloxy)benz 6

carboxylate ene

Sodium 1 -{5-chloro-2- [(2-methylprop-2- 2-(bromomethyl)-4- enyl)oxy]benzyl}-1 ,2,3,4- chloro-1 -[(2- 18.0

2 372 tetrahydroquinoline-5- methylprop-2- 2

carboxylate enyl)oxy]benzene Sodium 1 -[5-chloro-2-(3- fluoro-2- 2-(bromomethyl)-4- methylpropoxy)benzyl]- chloro-1 -(3-fluoro-2- 17.4

180 1 ,2,3,4- 2 392 methylpropoxy)ben 6 tetrahydroquinoline-5- zene

carboxylate

Sodium 1 -[5-chloro-2-(2- fluoropropoxy)benzyl]- 2-(bromomethyl)-4-

1 ,2,3,4- chloro-1 -(2- 16.2

181 2 378 tetrahydroquinoline-5- fluoropropoxy)benz 5

carboxylate ene

Sodium 1 -(5-chloro-2- {[2-(fluoromethyl)prop-2- 2-(bromomethyl)-4- enyl]oxy}benzyl)-1 ,2,3,4- chloro-1 -{[2- 17.0

182 2 390 tetrahydroquinoline-5- (fluoromethyl)prop- 2

carboxylate 2-enyl]oxy}benzene

Example 183: Synthesis of sodium 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-1 ,2,3,4-tetrahydroquinoline-5-sulfonate

To a suspension of K2CO3 (176 mg, 1 .28 mmol) and sodium 1 ,2,3,4- tetrahydroquinoline-5-sulfonate (100 mg, 0.43 mmol) in dry DMF (4 mL) at RT was added 2-(bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene (186 mg, 0.51 mmol). The reaction was stirred at RT overnight. Water was added and the solution extracted with EtAcO (x3). Combined organic extracts were concentrated.

Column chromatography on C18 column eluting with AcN:Water (2% of AcN to 95% in 10 min) gave the desired compound as a sligthly brown solid.

LC-MS: t R = 3.95 [M+H] + = 496 (method 1 ). 1 H NMR (400 MHz, Methanol-d4) δ 7.53 (t, J = 8.2 Hz, 1 H), 7.30 - 7.17 (m, 4H), 7.08 (d, J = 8.7 Hz, 1 H), 7.04 (d, J = 2.5 Hz, 1 H), 6.88 (t, J = 8.0 Hz, 1 H), 6.36 (dd, J = 8.4, 1 .1 Hz, 1 H), 5.19 (s, 2H), 4.43 (s, 2H), 3.38 (t, 2H), 3.31 (t, 2H), 2.01 (q, J = 8.7, 5.9 Hz, 2H).

Examples 184 to 185: Using sodium 1,2,3,4-tetrahydroqulnollne-5-sulfonate as starting material

The next compounds were obtained using the same methodology as in Example 183 but using the compound II indicated.

Examples 186 to 187: Using N-((1,2,3,4-tetrahydroquinolin-5- yl)sulfonyl)acetamide as starting material

The next compounds were obtained using the same methodology as in the Example 183 but using N-((1 ,2,3,4-tetrahydroquinolin-5-yl)sulfonyl)acetamide and the compound II indicated as starting materials. LC-MS

Example Starting t R m/z

Compound name Meth

compound II (mi [M+H od

n) r

N-((1 -(5-chloro-2- ((2,4- 2-(bromomethyl)-4- difluorobenzyl)oxy)be chloro-1 -((2,4-

186 1 3.76 521 nzyl)-1 , 2,3,4- difluorobenzyl)oxy) tetrahydroquinolin-5- benzene

yl)sulfonyl)acetamide

N-((1 -(5-chloro-2-((4- chloro-2- 2-(bromomethyl)-4- fluorobenzyl)oxy)ben chloro-1 -((4-chloro-

187 zyl)-1 , 2,3,4- 2- 1 3.92 537 tetrahydroquinolin-5- fluorobenzyl)oxy)be

yl)sulfonyl)acetamide nzene

Example 188: synthesis of sodium 1-(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1H-indazole-4-car boxylate

a) To a solution of methyl 3-formyl-1 H-indazole-4-carboxylate (76 mg, 0.4 mmol) in 4.5 ml_ of DMF at 0 5 C NaH 60% in mineral oil (16 mg, 0.4 mmol) and 2- (bromomethyl)-4-chloro-1 -((4-chloro-2-fluorobenzyl)oxy)benzene (135 mg, 0.4 mmol) were added. Reaction was stirred at room temperature for 30 min. Then, water was added. The resulting mixture was extracted with EtAcO (x3) and the combined organic layers were washed with a saturated solution of NH 4 CI and brine and dried over MgS0 4 . After evaporating the solvent the crude was purified by column chromatography over silica gel eluting with mixtures cyclohexane/EtAcO 9:1 to 6:4. Methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-formyl- 1 H- indazole-4-carboxylate was obtained (76 mg, 42%). b) To a solution of methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-formyl-1 H-indazole-4-carboxylate (76 mg, 0.2 mmol) in 3 ml_ of THF cooled at 0 5 C NaBH4 (12 mg, 0.3 mmol) was added. After 1 h water was added and the resulting mixture was extracted with EtAcO. The combined organic phases were washed with brine, dried over MgS0 4 . After evaporating the solvent methyl 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3-(hydrox ymethyl)-1 H- indazole-4-carboxylate was added (60 mg, 79%). c) To a solution of methyl 1 -(5-chloro-2-((4-chloro-2- fluorobenzyl)oxy)benzyl)-3-(hydroxymethyl)-1 H-indazole-4-carboxylate (60 mg, 0.1 mmol) in absolute EtOH (2.5 ml_) an aqueous solution of NaOH 2M was added (0.15 ml_, 0.3 mmol). The mixture was stirred at 80 5 C for 1 h, then, it was allowed to cool to room temperature. Water was added and the resultin mixture was extracted with EtAcO and the organic layers washed with water and dried over MgS0 4 . After removing the solvent sodium 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3- (hydroxymethyl)-1 H-indazole-4-carboxylate was obtained (42 mg, 69%). t R = 3.60 min, m/z (M+H) + = 475.

Example 189: Synthesis of Sodium 1-(5-chloro-2-(2-fluoro-2- methylpropoxy)benzyl)-3-(hydroxymethyl)-1H-indazole-4-carbox ylate

This compound was synthesized using the same methodology as compound 188 using 2-(bromomethyl)-4-chloro-1 -(2-fluoro-(2-methylpropyl)oxy)benzene. t R = 3.23 min, m/z (M+H) + = 407.

Example 190: Synthesis of sodium 1-(5-chloro-2-(propoxy)benzyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxylate

a) To a suspension of methyl 1 ,2,3,4-tetrahydroquinoline-5-carboxylate hydrochloride (172 mg, 0.75 mmol) in dry THF (5 ml_), was added dropwise a solution of 5-chloro-2-propoxybenzaldehyde (150 mg, 0.75 mmol) in THF (3 ml_) and AcOH (2 drops). The reaction mixture was stirred at room temperature overnight. At 0 5 C, NaBH(AcO) 3 was added portion wise and the reaction mixture was stirred at room temperature overnight. The solvent was evaporated to dryness, the residue was diluted with H 2 0 and extracted with EtAcO thrice. The combined organic phases were dried over anhydrous Na 2 S0 4 , filtered and concentrated. The crude residue was chromatographed on a silica gel flash system (Biotage SP1 ) using hexanes/EtAcO mixtures of increasing polarity as eluent to afford 94 mg of the desired product (33.3.% yield).

LC-MS (method 4): t R = 3.43 min; m/z = 374 (MH + ). b) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained.

LC-MS (method 4): t R = 1 .89 [M+H] + = 360 (Method 4)

1 H NMR (300 MHz, DMSO-d6) δ 7.32-7.25 (m, 1 H, ArH); 7.1 1 -6.98 (m, 2H, ArH); 6.75 (t, J= 7.7 Hz, 1 H, ArH); 6.54 (d, J= 6.5 Hz, 1 H, ArH); 6.07 (d, J= 7.3 Hz, 1 H, ArH); 4.39 (s, 2H); 4.05 (t, J= 6.4 Hz, 2H); 3.42-3.29 (m, 2H); 2.95 (t, J= 6.2 Hz, 2H); 1 .97-1 .87 (m, 2H); 1 .86-1 .75 (m, 2H); 1 .07 (t, J= 7.3, 3H).

Examples 191 to 193: Using methyl 1,2,3,4-tetrahydroqulnollne-5-carboxylate hydrochloride as starting material

The next compounds were obtained using the same methodology as in Example 190 but using the corresponding aldehyde specified as starting materials.

LC-MS

Example t R m/z

Compound name Starting aldehyde Metho

(mi [M+H d

n) Γ

Sodium 1 -(5-chloro-

2-

5-chloro-2-

(cyclopentyloxy)ben

191 (cyclopentyloxy)ben 4 2.03 385 zyl)-1 , 2,3,4- zaldehyde

tetrahydroquinoline- 5-carboxylate Sodium 1 -(2-(4- chloro-2-

2-(4-chloro-2- fluorobenzyloxy)-5- fluorobenzyloxy)-5-

192 methylbenzyl)- 4 2.14 440 methylbenzaldehyd

1 ,2,3,4- e

tetrahydroquinoline- 5-carboxylate

Sodium 1 -(5-chloro- 2-

5-chloro-2-

(neopentyloxy)benz

193 (neopentyloxy)benz 4 2.13 388 yl)-1 , 2,3,4- aldehyde

tetrahydroquinoline- 5-carboxylate

Examples 194 to 199: Using methyl 3,4-dihydro-2H-benzo[b][1,4]oxazine-8- carboxylate as starting material

The following compounds were prepared using the same methodology as in

Example 190 using methyl 3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylate and the corresponding aldehyde specified as starting materials.

LC-MS

Example t R m/z

Compound name Starting aldehyde Metho

(mi [M+H d

n) Γ

Sodium 4-(2-(4- chloro-2-

2-(4-chloro-2- fluorobenzyloxy)-5-

194 fluorobenzyloxy)-5- methylbenzyl)-3,4- 4 2.03 442 methylbenzaldehyd

dihydro-2H- e

benzo[b][1 ,4]oxazin

e-8-carboxylate Sodium 4-(5-fluoro- 2-isobutoxybenzyl)- 5-fluoro-2-

195 3,4-dihydro-2H- isobutoxybenzaldeh 4 1 .79 360 benzo[b][1 ,4]oxazin yde

e-8-carboxylate

Sodium 4-(5-chloro- 2-isobutoxybenzyl)- 5-chloro-2-

196 3,4-dihydro-2H- isobutoxybenzaldeh 4 1 .86 376 benzo[b][1 ,4]oxazin yde

e-8-carboxylate

Sodium 4-(5-chloro- 2-

5-chloro-2- cyclobutoxybenzyl)-

197 cyclobutoxybenzald 4 1 .83 374

3,4-dihydro-2H- ehyde

benzo[b][1 ,4]oxazin

e-8-carboxylate

Sodium 4-(5-chloro- 2-

(cyclopropylmethox 5-chloro-2-

198 y)benzyl)-3,4- (cyclopropylmethoxy 4 1 .79 374 dihydro-2H- )benzaldehyde

benzo[b][1 ,4]oxazin

e-8-carboxylate

Sodium 4-(5-chloro- 2-

5-chloro-2-

(neopentyloxy)benz

199 (neopentyloxy)benz 4 2.01 390 yl)-3,4-dihydro-2H- aldehyde

benzo[b][1 ,4]oxazin

e-8-carboxylate Example 200: Synthesis of sodium 1-(5-chloro-2-(3- methoxypropoxy)benzyl)indoline-4-carboxylate

a) Following a similar procedure to that described in example 190 (step a), but starting from methyl indoline-4-carboxylate instead of methyl 1 ,2,3,4- tetrahydroquinoline-5-carboxylate hydrochloride and 5-chloro-2- hydroxybenzaldehyde instead of 5-chloro-2-propoxybenzaldehyde, methyl 1 -(5- chloro-2-hydroxybenzyl)-1 H-indole-4-carboxylate was obtained (83 % yield)

LC-MS (method 4): t R = 2.58 min; m/z = 318 (MH + ). b) To a solution of the compound obtained in the previous section (250 mg, 0.78 mmol) in DMF (10 ml_), potassium carbonate (217 mg, 1 .57 mmol) and 1 - bromo-3-methoxypropane (181 mg, 1 .18 mmol) were added. The reaction mixture was stirred at 60 5 C overnight. The reaction mixture was diluted by adding EtAcO and saturated NH 4 CI aqueous solution (15 ml_) and extracted with EtAcO (3x15 ml_). The combined organic phases were dried over anhydrous Na 2 S0 4 , filtered and concentrated. The crude residue was chromatographed on a silica gel flash system (Biotage SP1 ) using hexanes/EtAcO mixtures of increasing polarity as eluent, to afford the desired product in quantitative yield.

LC-MS (method 4): t R = 3.09 [M+H] + = 390 c) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained

LC-MS (method 4): t R = 1 .72 [M+H] + = 376

1 H NMR (300 MHz, DMSO-d6) δ 7.31 -7.23 (m, 2H, ArH); 7.1 -6.99 (m, 2H, ArH); 6.87 (t, J= 7.68 Hz, 1 H, ArH); 6.36 (d, J= 7.5 Hz, 1 H, ArH); 4.17 (s, 2H); 4.05 (t, J= 6.15 Hz, 2H); 3.47 (t, J= 6.2 Hz, 2H); 3.4-3.31 (m, 2H); 3.26-3.22 (m, 2H); 3.21 (s, 3H); 2.01 -1 .88 (m, 2H).

Examples 201 to 206: Using methyl indoline-4-carboxylate as starting material

The next compounds were obtained using the same methodology as in example 200, but using in each case the corresponding starting materials: LC-MS

Example Starting material t R m/z

Compound name Metho

(step b) (mi [M+H d

n) Γ

Sodium 1 -(5-chloro-

2-(2-

1 -bromo-2-

201 methoxyethoxy)ben 4 1 .59 362 methoxyethane

zyl)indoline-4- carboxylate

Sodium 1 -(5-chloro-

2- 1 . (bromom 4.

202 (cyclopropylmethox ethyl)cyclopropa 2. 5 q y)benzyl)indoline-4- ne 8

1 carboxylate

Sodium 1 -(5-chloro-

2-

1 -iodo-2,2-

203 (neopentyloxy)benz 4 2.19 374 dimethylpropane

yl)indoline-4- carboxylate

Sodium 1 -(5-chloro-

2-((3-methyloxetan- (3-methyloxetan-3-

204 3- yl)methyl

4 1 .68 388 yl)methoxy)benzyl)i trifluoromethanesulf

ndoline-4- on ate

carboxylate

Sodium 1 -(5-chloro-

(3-ethyloxetan-3- 2-((3-ethyloxetan-3- yl)methyl

205 yl)methoxy)benzyl)i 4 1 .80 402 trifluoromethanesulf

ndoline-4- on ate

carboxylate Sodium (S)-1 -(5- chloro-2-(3- hydroxy-2- (S)-3-bromo-2-

206 4 1 .61 376 methylpropoxy)ben methylpropan-1 -ol

zyl)indoline-4- carboxylate

Example 207: Sodium 1-(5-chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3- (methoxymethyl)-1H-indole-4-carboxylate

a) To a suspension of 1 -(5-chloro-2-((4-chloro-2-fluorobenzyl)oxy)benzyl)-3- (hydroxymethyl)-1 H-indole-4-carboxylic acid, obtained as in example 141 but extracting with EOAc at pH=2, (855 mg, 1 .8 mmol) in THF (10 ml_) at 0 5 C, NaH 55% (236 mg, 5.41 mmol) and Mel (0.45 ml_, 7.21 mmol) were added. The resulting mixture was stirred at room temperature overnight and concentrated to dryness. It was cooled to 0 5 C, 2M aqueous HCI solution was added up to pH = 2 and it was extracted 3 times with DCM. The combined organic phases were dried over Na 2 S0 4 and concentrated to dryness. The crude residue was washed successively with EtAcO and DCM . 236 mg (25.8 % yield) of the desired compound were obtained.

LC-MS (method 4): t R = 2.05 [M+H] = 486 b) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained (quantitative yield).

LC-MS (method 4): t R = 2.05 [M+H] = 486

1 H NMR (300 MHz, DMSO-d6) δ 7.72-7.55 (m, 2H, ArH); 7.47-7.1 1 (m, 6H, ArH); 7.04-6.89 (m, 1 H, ArH); 6.85-6.74 (m, 1 H, ArH); 5.4-5.22 (m, 4H); 4.88-4.78 (m, 2H); 3.31 (s, 3H).

Example 208: Synthesis of sodium 1-(5-chloro-2-(4-chloro-2- fluorobenzyloxy)benzyl)-2-oxolndollne-4-carboxylate

a) To a suspension of methyl 1 -(5-chloro-2-(4-chloro-2- fluorobenzyloxy)benzyl)-1 H-indole-4-carboxylate, obtained in example 48 section a, (785 mg, 1 .7 mmol) in DCM (15 ml_), N-chlorosuccinimide (240 mg, 1 .79 mmol) was added. The resulting mixture was stirred at room temperature for 2h, then concentrated to dryness. The resulting foamy residue was dissolved in acetic acid (7 ml_) and the reaction mixture was heated at 70 5 C. 85 % H 3 P0 4 (197 mg, 1 .71 mmol) was added and the reaction mixture was refluxed for 1 h. The reaction mixture was cooled to room temperature, poured into ice water, basified to pH=1 1 with Na 2 C03 and extracted with EtAcO (x3). The combined organic phases were dried over Na 2 S0 4 and concentrated to dryness. The crude residue was chromatographed on a silica gel flash system (Biotage SP1 ) using hexanes/EtAcO mixtures of increasing polarity as eluent. An abundant white solid appeared during the fraction collection that it was filtered and washed with and diethyl ether to afford 230 mg (28.31 % yield) of the desired compound.

LC-MS (method 4): t R = 2.99 [M+H] + = 474 b) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained (93 % yield).

LC-MS (method 4): t R = 1 .94 [M+H] + = 460

1 H NMR (300 MHz, DMSO-d6) δ 7.77-7.49 (m, 3H, ArH); 7.46-7.25 (m, 3H, ArH); 7.16-7.01 (m, 2H, ArH); 6.64 (d, J= 7.6 Hz, 1 H, ArH); 5.31 (s, 2H); 4.84 (s, 2H); 3.89 (s, 2H).

Example 209: Synthesis of sodium 1-(2-(4-chloro-2-fluorobenzyloxy)-5- cyclopropylbenzyl)- 1 H-indazole-4-carboxylate

a) To a suspension of methyl 1 -(5-bromo-2-(4-chloro-2- fluorobenzyloxy)benzyl)-1 H-indazole-4-carboxylate, obtained in example 136, section a, (197 mg, 0.39 mmol) in THF (15 ml_), K 3 P0 4 (166 mg, 0.78 mmol), X- Phos (37 mg, 0.078 mmol), Pd(AcO) 2 (8.8 mg, 0.04 mmol) and cyclopropylboronic acid (40 mg, 0.47 mmol) were added. The reaction mixture was refluxed overnight. The crude reaction was filtered through a plug of Celite ® , and evaporated to dryness. The crude product was diluted with saturated NaCI aqueous solution (10 ml_) and extracted with EtAcO (3x15 ml_). The combined organic phases were dried over anhydrous Na 2 S0 4 , filtered and concentrated. The crude residue was cromatographed on a silica gel flash system (SP1 Biotage) using EtAcO/hexanes mixtures of increasing polarity as eluent to afford 70 mg (38.5 % yield) of the desired compound.

LC-MS (method 4): t R = 3.24 [M+H] + = 465

b) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained (8.65 % yield).

LC-MS (method 4): t R = 2.02 [M+H] = 449

1 H NMR (300 MHz, DMSO-d6) δ 7.73 (d, J= 7 Hz, 1 H, ArH); 7.49 (d, J= 8.5 Hz, 1 H, ArH); 7.22-6.99 (m, 3H, ArH); 6.94-6.8 (m, 3H, ArH); 6.7-6.65 (m, 1 H, ArH); 5.48 (s, 2H); 4.94 (s, 2H); 1 .52 (m, 1 H); 1 .34-1 .06 (m, 4H).

Example 210: Synthesis of sodium (S)-1-(5-chloro-2-(3-hydroxy-2- methylpropoxy)benzyl)indoline-4-carboxylate

a) To a suspension of (S)-methyl 1 -(5-chloro-2-(3-hydroxy-2- methylpropoxy)benzyl)indoline-4-carboxylate, obtained as in example 206 (360 mg, 0.9 mmol) in THF (15 ml_) at 0 5 C, NaH 55% (55 mg, 1 .38 mmol) and Mel (0.07 ml_, 1 .1 mmol) were added. The resulting mixture was stirred at room temperature overnight and concentrated to dryness. It was cooled to 0 5 C, 2M aqueous HCI solution was added up to pH = 2 and it was extracted 3 times with EtAcO. The combined organic phases were dried over MgS0 4 and concentrated to dryness. The residue was purified by reverse phase chromatography 24 mg (7 % yield) of of 1 -(5- chloro-2-(4-chloro-2-fluorobenzyloxy)benzyl)-3-(methoxymethy l)-1 H-indole-4- carboxylic acid was obtained.

LC-MS (method 4): t R = 1 .89 [M+H] + = 390 b) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained (97 % Yield).

LC-MS (method 4): t R = 1 .89 [M+H] = 390

1 H NMR (300 MHz, DMSO-d6) δ 7.3-7.22 (m, 2H, ArH); 7.1 -6.98 (m, 2H, ArH); 6.87 (t, J= 7.65 Hz, 1 H, ArH); 6.36 (d, J= 7.5 Hz, 1 H, ArH); 3.98-3.84 (m, 2H); 3.47-3.24 (m, 6H); 3.21 (s, 3H); 2.24-1 .99 (m, 1 H); 0.99 (d, J= 6.9 Hz, 3H). Example 211. Synthesis of sodium 1-{5-chloro-2-[(4-chloro-2- ethylbenzyl)oxy]benzyl}-1H-indole-4-carboxylate

a) A mixture of methyl 1 -(5-chloro-2-hydroxybenzyl)-1 H-indole-4-carboxylate (0.20 g, 0.63 mmol), K 2 C0 3 (0.13 g, 0.95 mmol) and 1 -(bromomethyl)-4-chloro-2- ethylbenzene (0.18 g, 0.76 mmol) in DMF (8 mL) was stirred at room temperature for 17 h. The reaction mixture was poured over EtAcO (40 mL) and washed with water (2 x 20 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10% EtAcO/hexanes), affording 0.20 g of methyl 1 -{5-chloro-2-[(4-chloro- 2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylate [Rf= 0.50 (20% EtAcO/hexanes), white solid, 68% yield].

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.89 (d, J= 6.6 Hz, 1 H, ArH); 7.40 (d, J= 8.3 Hz, 1 H, ArH); 7.28-7.09 (m, 7H, ArH); 6.89 (d, J= 8.8 Hz, 1 H, ArH); 6.74 (d, J= 2.4 Hz, 1 H, ArH); 5.28 (s, 2H); 5.02 (s, 2H); 3.99 (s, 3H); 2.63 (q, J= 7.5 Hz, 2H); 1 .22 (t, J= 7.5 Hz, 3H). b) NaOH (aqueous solution 10%, 0.3 mL) was added to a solution of methyl 1 -{5-chloro-2-[(4-chloro-2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylate (0.19 g, 0.41 mmol) in EtOH (10 mL) and heated at 80 °C for 2 h. After removal of the volatiles by rotatory evaporation, the resulting residue was dissolved in DCM (20 mL), acidified with HCI (aqueous solution 10%, 5 mL), and washed with water (20 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5D75% EtAcO/hexanes), affording 0.12 g of 1 -{5-chloro-2-[(4-chloro-2- ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylic acid, white solid, 65% yield.

LC-MS ESI+ m/z: 454 (M+1 , 93%) (Method 5). c) /-BuONa (25 mg, 0.26 mmol) was added to a suspension of 1 -{5-chloro-2- [(4-chloro-2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylic acid (1 17 mg, 0.26 mmol) in MeOH (8 mL) and stirred at room temperature. After 1 .5 h, the solvent was removed out of the clear solution, rendering a pale yellow solid that was triturated with Et 2 0 (2 x 5 mL) and vacuum dried, affording 90 mg of sodium 1 -{5-chloro-2-[(4- chloro-2-ethylbenzyl)oxy]benzyl}-1 H-indole-4-carboxylate, white solid, 74% yield.

LC-MS ESI+ m/z: 454 (M+2-Na, 92%) (Method 2). 1 H-NMR (DMSO-de, 250 MHz, δ) : 7.56-7.46 (m, 2H, ArH); 7.39-7.15 (m, 7H, ArH); 6.94 (t, J= 7.7 Hz, 1 H, ArH); 6.61 (br s, 1 H, ArH); 5.32 (s, 2H); 5.20 (s, 2H); 2.72 (q, J= 7.3 Hz, 2H); 1 .20 (t, J= 7.3 Hz, 3H).

Example 212: Synthesis of sodium 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4-b]pyridine-4-carboxylat

a) Hydrazine monohydrate (0.78 mL, 15.94 mmol) was added dropwise to a suspension of 2-fluoro-4-iodonicotinaldehyde (2.00 g, 7.97 mmol) in 2-propanol (20 mL) and heated at 60 °C. After 2 h, the solvent was removed by rotatory evaporation and the residue dissolved in EtAcO (40 mL) and washed with water (30 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10D40% EtAcO/hexanes), affording 1 .62 g of 4-iodo-1 H-pyrazolo[3,4-b]pyridine, [Rf= 0.30 (20% EtAcO/hexanes), white solid, 82% yield].

LC-MS ESI+ m/z: 246 (M+1 , 99%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ) : 12.45 (br s, 1 H); 8.23 (d, J= 5.0 Hz, 1 H, ArH); 7.98 (s, 1 H, ArH); 7.61 (d, J= 5.0 Hz, 1 H, ArH). b) Following the general procedure described in example 1 , section a, 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-iodo-1 H-pyrazolo[3,4-b]pyridine was obtained in 31 % yield (white solid) after 3 h, using 4-iodo-1 H-pyrazolo[3,4- b]pyridine (0.17 g, 0.69 mmol), NaH (33 mg, 0.82 mmol) and 2-(bromomethyl)-4- chloro-1 -[(4-chloro-2-fluorobenzyl)oxy]benzene (0.30 g, 0.83 mmol) as starting materials.

LC-MS ESI+ m/z: 528 (M+1 , 87%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.05 (d, J= 4.6 Hz, 1 H, ArH); 7.90 (s, 1 H, ArH); 7.53 (d, J= 4.6 Hz, 1 H, ArH); 7.36-7.05 (m, 4H, ArH); 6.94 (d, J= 2.4 Hz, 1 H, ArH); 6.86 (d, J= 8.6 Hz, 1 H, ArH); 5.69 (s, 2H); 5.04 (s, 2H). c) A suspension of 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4- iodo-1 H-pyrazolo[3,4-b]pyridine (0.30 g, 0.56 mmol), dppf (31 mg, 0.06 mmol) and TEA (0.16 mL, 1 .13 mmol) in EtOH (8 mL) was thoroughly purged with argon; Pd(AcO) 2 (13 mg, 0.06 mmol) was added and the mixture was purged again with carbon monoxide. The reaction was heated at reflux under carbon monoxide pressure (balloon) for 3 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (5→10% EtAcO/hexanes), affording 105 mg of ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4-b]pyridine- 4-carboxylate [Rf= 0.60 (20% EtAcO/hexanes), white solid, 40% yield].

LC-MS ESI+ m/z: 474 (M+1 , 73%) (Method 5). d) Following the general procedure described in example 21 1 , section b, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4-b]pyridine-4- carboxylic acid was obtained in 58% yield (pale pink solid), using ethyl 1 -{5-chloro-2-

[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4-b]pyridine-4-carboxylate (0.17 g, 0.37 mmol) as starting material.

LC-MS ESI+ m/z: 446 (M+1 , 96%) (Method 5). e) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4- b]pyridine-4-carboxylate was obtained in 95% yield (pale brown solid), using 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 H-pyrazolo[3,4-b]pyridine-4- carboxylic acid (96 mg, 0.22 mmol) as starting material.

LC-MS ESI+ m/z: 446 (M+2-Na, 98%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 8.50 (s, 1 H, ArH); 8.45 (d, J= 5.0 Hz, 1 H, ArH); 7.58 (d, J= 5.0 Hz, 1 H, ArH); 7.37-7.1 1 (m, 4H, ArH); 7.05 (d, J= 8.8 Hz, 1 H, ArH); 6.87 (d, J= 2.6 Hz, 1 H, ArH); 5.70 (s, 2H); 5.07 (s, 2H). Examples 213 to 214: Using 4-iodo-1H-pyrazolo[3,4-b]pyridine as starting material

The next compound was obtained using the same methodology as in Example 212 but using the compound II indicated.

LC-MS

Example Starting t R m/z

Compound name Meth

compound II (mi [M+ od

n) H] + Sodium 1 -[5-chloro-

2-(2-fluoro-2- 2-(bromomethyl)- methylpropoxy)benz 4-chloro-1 -(2- yl]-1 H-pyrazolo[3,4- 14.4

213 fluoro-2- 2 378 b]pyridine-4- 3

methylpropoxy)be

carboxylic acid nzene

Sodium 1 -[5-chloro- 2- 2-(bromomethyl)-

(cyclobutyloxy)benz 4-chloro-1 - 15.0

214 yl]-1 H-pyrazolo[3,4- 2 358

(cyclobutyloxy)be 9 b]pyridine-4- nzene

carboxylate

Example 215: Synthesis of Sodium 1-{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-2-oxo-1,2,3,4-tetrahydroquinoline-5 -carboxylate

a) Following the general procedure described in example 212, section c, ethyl 2-OXO-1 ,2,3, 4-tetrahydroquinoline-5-carboxylate was obtained in 61 % yield (pale orange solid) after 4 h, using 2-oxo-1 ,2,3,4-tetrahydroquinolin-5-yl trifluoromethanesulfonate (66 mg, 0.22 mmol) as starting material. The latter was obtained from the known 5-hydroxy-3,4-dihydroquinolin-2(1 H)-one under standard conditions.

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.36 (br s, 1 H, NH); 7.59 (d, J= 7.7 Hz, 1 H, ArH); 7.23 (t, J= 7.8 Hz, 1 H, ArH); 6.93 (d, J= 7.8 Hz, 1 H, ArH); 4.36 (q, J= 7.1 Hz, 2H); 3.43-3.35 (m, 2H); 2.65-2.56 (m, 2H); 1 .40 (t, J= 7.1 Hz, 3H). b) Following the general procedure described in example 1 , section a, ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4- tetrahydroquinoline-5-carboxylate was obtained forming part of an uncharacterized mixture, using ethyl 2-oxo-1 ,2,3,4-tetrahydroquinoline-5-carboxylate (0.17 g, 0.54 mmol), NaH (37 mg, 0.93 mmol) and 2-(bromomethyl)-4-chloro-1 -[(4-chloro-2- fluorobenzyl)oxy]benzene (0.34 g, 1 .01 mmol) as starting materials. c) Following the general procedure described in example 21 1 , section b,1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4-tetrahydroquinoline-5- carboxylic acid was obtained in 26% yield (white solid), using the mixture obtained in the previous step as starting material.

LC-MS ESI+ m/z: 474 (M+1 , 98%) (Method 5). d) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4- tetrahydroquinoline-5-carboxylate was obtained in 85% yield (white solid), using 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2-oxo-1 ,2,3,4-tetrahydroquinoline- 5-carboxylic acid (62 mg, 0.13 mmol) as starting material.

LC-MS ESI+ m/z: 474 (M+2-Na, 98%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.58 (t, J= 8.5 Hz, 1 H, ArH); 7.33-7.02 (m, 6H, ArH); 6.88 (d, J= 2.5 Hz, 1 H, ArH); 6.73 (d, J= 8.0 Hz, 1 H, ArH); 5.22 (s, 2H); 5.12 (s, 2H); 3.22-3.10 (m, 2H); 2.75-2.65 (m, 2H).

Example 216: Synthesis of sodium 1-{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-2,3-dihydro-1H-pyrrolo[2,3-b]pyridi ne-4-carboxylate a) Freshly prepared LDA (1 .44 mmol) was added to a solution of 2-fluoro-3- iodopyridine (0.32 g, 1 .44 mmol) in THF (12 mL) cooled at -78 °C. After 1 .5 h, a solution of 3-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2,2-dioxide (0.70 g, 1 .72 mmol) in 8 mL of THF was transferred via canula to the anion solution, allowing to reach room temperature (overnight). TLC showed an intense polar spot corresponding to the sulfamic acid intermediate. The solvent was evaporated and the resulting residue was dissolved in 1 ,4-dioxane (6 mL) and treated with 1 .0 mL of HCI (4 M in 1 ,4-dioxane), stirring at room temperature. After 16 h, the reaction was cooled to 0 °C and slowly basified with NaOH (aqueous solution 10%, 5 mL). The mixture was poured over EtAcO (40 mL) and washed with brine (2 x 20 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10D30% EtAcO/hexanes), affording 0.51 g of N-{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-N-[2-(2-fluoro-4-iodopyridin-3-yl)e thyl]amine [Rf= 0.70 (10% MeOH/DCM), colorless oil, 64% yield].

LC-MS ESI+ m/z: 549 (M+1 , 90%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.68 (d, J= 5.1 Hz, 1 H, ArH); 7.58 (d, J= 5.1 Hz, 1 H, ArH); 7.43-7.1 1 (m, 5H, ArH); 6.83 (d, J= 8.8 Hz, 1 H, ArH); 5.07 (s, 2H); 3.82 (s, 2H); 3.01 -2.74 (m, 4H). b) A mixture of N-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-[2-(2- fluoro-4-iodopyridin-3-yl)ethyl]amine (0.51 g, 0.92 mmol) and K 2 C0 3 (0.15 g, 1 .10 mmol) in DMF (10 ml_) was heated at 100 °C for 4 h. The reaction was allowed to reach room temperature, poured over EtAcO (40 ml_) and washed with water (2 x 20 ml_); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10D20% EtAcO/hexanes), affording 0.34 g of 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-4-iodo-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine [Rf= 0.65 (20% EtAcO/hexanes), white solid, 69% yield].

LC-MS ESI+ m/z: 529 (M+1 , 99%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.47-7.37 (m, 2H, ArH); 7.28-7.07 (m, 4H, ArH); 6.86 (d, J= 8.5 Hz, 1 H, ArH); 6.76 (d, J= 5.4 Hz, 1 H, ArH); 5.05 (s, 2H); 4.55 (s, 2H); 3.46 (t, J= 8.4 Hz, 2H); 2.91 (t, J= 8.4 Hz, 2H).

c) Following the general procedure described in example 212, section c, ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H-pyrrolo[2,3- b]pyridine-4-carboxylate was obtained in 71 % yield (pale yellow solid) after 7 h, using 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-iodo-2, 3-dihydro-1 H- pyrrolo[2,3-b]pyridine (0.33 g, 0.61 mmol) as starting material.

LC-MS ESI+ m/z: 475 (M+1 , 97%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.90 (d, J= 5.8 Hz, 1 H, ArH); 7.41 (t, J= 8.7 Hz, 1 H, ArH); 7.27-7.07 (m, 4H, ArH); 6.92-6.84 (m, 2H, ArH); 5.06 (s, 2H); 4.63 (s, 2H); 4.35 (q, J= 7.2 Hz, 2H); 3.55-3.28 (m, 4H); 1 .39 (t, J= 7.2 Hz, 3H). d) Following the general procedure described in example 21 1 , section b, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydr o-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid was obtained in 96% yield (white solid), using ethyl 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine- 4-carboxylate (0.20 g, 0.42 mmol) as starting material.

LC-MS ESI- m/z: 445 (M-1 , 92%) (Method 5). e) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H- pyrrolo[2,3-b]pyridine-4-carboxylate was obtained in 90% yield (white solid), using 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydr o-1 H-pyrrolo[2,3- b]pyridine-4-carboxylic acid (0.18 g, 0.40 mmol) as starting material.

LC-MS ESI+ m/z: 447 (M+2-Na, 97%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.64 (d, J= 6.1 Hz, 1 H, ArH); 7.49 (t, J= 8.0 Hz, 1 H, ArH); 7.28-7.03 (m, 5H, ArH); 6.79 (d, J= 5.4 Hz, 1 H, ArH); 5.14 (s, 2H); 4.55 (s, 2H); 3.48-3.21 (m, 4H).

Examples 217 to 222: Using different starting materials

The next compound was obtained using the same methodology as in Example 216 but using the corresponding starting material as indicated.

LC-MS

Example t R m/z

Compound name Starting material Meth

(mi [M+ od

n) H] +

Sodium 1 -{5-chloro-

2-[(2,4- 3-{5-chloro-2- difluorobenzyl)oxy]b

[(2,4- enzyl}-2,3-dihydro- difluorobenzyl)ox 16.5

217 1 H-pyrrolo[2,3- 2 431 y]benzyl}-1 ,2,3- 9 b]pyridine-4- oxathiazolidine

carboxylate 2,2-dioxide Sodium 1 -{5-chloro-

2-[(4- 3-{5-chloro-2-[(4- chlorobenzyl)oxy]be chlorobenzyl)oxy]

17.3

218 nzyl}-2,3-dihydro- benzyl}-1 ,2,3- 2 429 1 H-pyrrolo[2,3- 4

oxathiazolidine

b]pyridine-4- 2,2-dioxide

carboxylate

Sodium 1 -{5-chloro-

2-[(2- 3-{5-chloro-2-[(2- fluorobenzyl)oxy]be fluorobenzyl)oxy]

16.6

219 nzyl}-2,3-dihydro- benzyl}-1 ,2,3- 2 413 1 H-pyrrolo[2,3- 1

oxathiazolidine

b]pyridine-4- 2,2-dioxide

carboxylate

Sodium 1 -{5-chloro-

2-[(4- 3-{5-chloro-2-[(4- fluorobenzyl)oxy]be fluorobenzyl)oxy]

nzyl}-2,3-dihydro- 16.0

220 benzyl}-1 ,2,3- 2 413

1 H-pyrrolo[2,3- 3

oxathiazolidine

b]pyridine-4- 2,2-dioxide

carboxylate

Sodium 1 -[5-chloro-

2-(2-fluoro-2- 3-[5-chloro-2-(2- methylpropoxy)benz fluoro-2- yl]-2,3-dihydro-1 H- methylpropoxy)be 14.8

221 2 379 pyrrolo[2,3- nzyl]-1 ,2,3- 1 b]pyridine-4- oxathiazolidine

carboxylate 2,2-dioxide Sodium 1 -(5-chloro-

2-isobutoxybenzyl)- 3-(5-chloro-2-

2,3-dihydro-1 H- isobutoxybenzyl)-

16.4

222 pyrrolo[2,3- 1 ,2,3- 2 361

7 b]pyridine-4- oxathiazolidine

carboxylate 2,2-dioxide

Example 223: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- 4-( 1H-tetrazol-5-yl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine sodium salt

a) A solution of 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-iodo- 2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine (0.14 g, 0.26 mmol) and Zn(CN) 2 (37 mg, 0.31 mmol) in DMF (4 mL) was thoroughly purged with argon; Pd(PPh 3 ) 4 (6 mg, 0.01 mmol) was added and the mixture was purged again and heated at 90 'Ό. After 16 h, the reaction was allowed to reach room temperature, poured over EtAcO (20 mL) and washed with water (2 x 10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10→15% EtAcO/hexanes), affording 0.10 g 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine- 4-carbonitrile [Rf= 0.35 (20% EtAcO/hexanes), pale yellow solid, 90% yield].

LC-MS ESI+ m/z: 428 (M+1 , 99%) (Method 5). b) TMSN 3 (91 D L, 0.69 mmol) was added to a suspension of 1 -{5-chloro-2- [(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine-4- carbonitrile (100 mg, 0.23 mmol) and Bu 2 SnO (17 mg, 0.07 mmol) in toluene and heated at 120 °C in a sealed tube. An abundant white solid appeared during the reaction. After 22 h, the reaction was allowed to reach room temperature, and toluene was removed by rotatory evaporation; the solid residue was dissolved in Me-THF (30 mL) and washed with water (10 mL) and HCI (aqueous solution 10%, 5 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (3→10% MeOH/DCM), affording 40 mg of 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-4-(1 H-tetrazol-5-yl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine [Rf= 0.25 (10% MeOH/DCM), pale yellow solid, 37% yield].

LC-MS ESI+ m/z: 471 (M+1 , 83%) (Method 5). c) Following the general procedure described in example 21 1 , section c, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-(1 H-tetrazol-5-yl)-2,3-dihydro- 1 H-pyrrolo[2,3-b]pyridine sodium salt was obtained in 71 % yield (pale yellow solid), using 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-4-(1 H-tetrazol-5-yl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine (40 mg, 0.085 mmol) as starting material.

LC-MS ESI+ m/z: 471 (M+2-Na, 98%) (Method 2).

1 H-NMR (DMSO-d6, 250 MHz, δ): (diluted) 7.78-7.45 (m, 3H, ArH); 7.38-7.07 (m, 5H, ArH); 5.20 (s, 2H); 4.49 (s, 2H). The signals of CH2 are under the peak of water.

Example 224: Synthesis of sodium 8-{5-chloro-2-[(2,4- difluorobenzyl)oxy]benzyl}-5, 6, 7, 8-tetrahydro- 1, 8-naphthyridine-4-carboxylate a) Freshly prepared LDA (8.97 mmol) was added to a solution of 2-fluoro-3- iodopyridine (2.00 g, 8.97 mmol) in THF (15 mL) cooled at -78 °C. After 1 h, 1 - chloro-3-iodopropane (0.96 mL, 8.97 mmol) was added to the anion solution, allowing to reach room temperature (overnight). The reaction volume was reduced to ca. 10 mL and the mixture was poured over EtAcO (60 mL) and washed with water (2 x 20 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (2→4% EtAcO/hexanes), affording 1 .88 g of 3-(3-chloropropyl)-2-fluoro-4- iodopyridine [Rf= 0.70 (5% EtAcO/hexanes), colorless oil, 70% yield].

LC-MS ESI+ m/z: 300 (M+1 , 98%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.70 (d, J= 5.2 Hz, 1 H, ArH); 7.61 (d, J= 5.2 Hz, 1 H, ArH); 3.62 (t, J= 6.5 Hz, 2H); 2.99-2.90 (m, 2H); 2.10-1 .97 (m, 2H). b) A mixture of 3-(3-chloropropyl)-2-fluoro-4-iodopyridine (0.23 g, 0.77 mmol), 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]phenyl}methanamine (0.26 g, 0.92 mmol), Kl (0.15 g, 0.92 mmol) and K 2 C0 3 (0.22 g, 1 .62 mmol) in DMF (10 mL) was heated at 80 'C for 24 h. The reaction was allowed to reach room temperature, poured over EtAcO (40 mL) and washed with water (2 x 10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5→10% EtAcO/hexanes), affording 0.29 g of 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5- iodo-1 ,2,3,4-tetrahydro-1 ,8-naphthyridine [Rf= 0.65 (20% EtAcO/hexanes), white solid, 71 % yield].

LC-MS ESI+ m/z: 527 (M+1 , 92%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.50-7.37 (m, 2H, ArH); 7.16 (dd, J= 8.5, 2.6 Hz, 1 H, ArH); 7.1 1 (d, J= 2.6 Hz, 1 H, ArH); 6.97-6.79 (m, 4H, ArH); 5.05 (s, 2H); 4.84 (s, 2H); 3.36-3.27 (m, 2H); 2.81 -2.73 (m, 2H); 2.00-1 .88 (m, 2H). c) Following the general procedure described in example 212, section c, ethyl 8-{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetra hydro-1 ,8- naphthyridine-4-carboxylate was obtained in 74% yield (pale yellow solid) after 6 h, using 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5-iodo-1 ,2,3,4-tetrahydro-1 ,8- naphthyridine (0.28 g, 0.53 mmol) as starting material.

LC-MS ESI+ m/z: 473 (M+1 , 83%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.96 (d, J= 5.2 Hz, 1 H, ArH); 7.49-7.38 (m, 1 H, ArH); 7.16 (dd, J= 8.6, 2.6 Hz, 1 H, ArH); 7.09 (d, J= 2.6 Hz, 1 H, ArH); 6.93-6.77 (m, 4H, ArH); 5.06 (s, 2H); 4.87 (s, 2H); 4.35 (q, J= 7.2 Hz, 2H); 3.39-3.31 (m, 2H);

3.09-3.01 (m, 2H); 1 .99-1 .87 (m, 2H); 1 .39 (t, J= 7.2 Hz, 3H). d) Following the general procedure described in example 21 1 , section b, 8- {5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetrahy dro-1 ,8-naphthyridine-4- carboxylic acid was obtained in 60% yield (white solid), using ethyl 8-{5-chloro-2-

[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetrahydro-1 ,8-naphthyridine-4-carboxylate (0.15 g, 0.32 mmol) as starting material.

LC-MS ESI+ m/z: 445 (M+1 , 91 %) (Method 5). e) Following the general procedure described in example 21 1 , section c,

Sodium 8-{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetra hydro-1 ,8- naphthyridine-4-carboxylate was obtained in 79% yield (white solid), using 8-{5- chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-5,6,7,8-tetrahydro -1 ,8-naphthyridine-4- carboxylic acid (85 mg, 0.19 mmol) as starting material. LC-MS ESI+ m/z: 445 (M+2-Na, 98%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.70 (d, J= 5.6 Hz, 1 H, ArH); 7.64-7.53 (m, 1 H, ArH); 7.20 (dd, J= 8.6, 2.7 Hz, 1 H, ArH); 7.10-6.95 (m, 4H, ArH); 6.52 (d, J= 5.6 Hz, 1 H, ArH); 5.15 (s, 2H); 4.75 (s, 2H); 3.41 -3.34 (m, 2H); 2.95-2.87 (m, 2H); 2.01 - 1 .88 (m, 2H).

Examples 225: Using a different starting material

The next compound was obtained using the same methodology as in Example 224 but using the corresponding starting material as indicated.

Example 226: Sodium 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- 1,2,3,4-tetrahydro-1,7-naphthyridine-5-carboxylate

a) Freshly prepared LDA (20.46 mmol) was added to a solution of 3-bromo-

5-fluoropyridine (3.00 g, 17.05 mmol) in THF (20 ml_) cooled at -78 °C. After 40 min, a solution of 1 -chloro-3-iodopropane (6.98 g, 34.09 mmol) in THF (10 ml_) was transferred via canula was added to the anion solution, allowing to reach room temperature. After 1 h, the volatiles were removed by rotatory evaporation and the residue was dissolved in EtAcO (60 ml_) and washed with water (2 x 30 ml_); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (2D4% EtAcO/hexanes), affording 3.07 g of 3-bromo-4-(3-chloropropyl)-5-fluoropyridine [Rf= 0.60 (20% EtAcO/hexanes), colorless oil, 71 % yield].

LC-MS ESI+ m/z: 300 (M+1 , 98%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.50 (s, 1 H, ArH); 8.33 (s, 1 H, ArH); 3.59 (t, J= 6.7 Hz, 2H); 3.05-2.92 (m, 2H); 2.16-1 .98 (m, 2H). b) A mixture of 3-bromo-4-(3-chloropropyl)-5-fluoropyridine (0.60 g, 2.38 mmol), 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]phenyl}methanamin e (0.93 g, 3.09 mmol), Kl (0.39 g, 2.38 mmol) and K 2 C0 3 (0.82 g, 5.94 mmol) in DMF (10 ml_) was heated at 150 'Ό for 5 h. The reaction was allowed to reach room temperature, poured over EtAcO (60 ml_) and washed with brine (2 x 25 ml_); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (12% EtAcO/hexanes), affording 0.68 g of 5-bromo-1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- 1 ,2,3,4-tetrahydro-1 ,7-naphthyridine [Rf= 0.35 (20% EtAcO/hexanes), white solid, 58% yield].

LC-MS ESI+ m/z: 496 (M+1 , 98%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.96 (s, 1 H, ArH); 7.60 (s, 1 H, ArH); 7.38 (t, J= 8.2 Hz, 1 H, ArH); 7.23-7.10 (m, 3H, ArH); 7.05 (d, J= 2.4 Hz, 1 H, ArH); 6.89 (d, J= 8.5 Hz, 1 H, ArH); 5.10 (s, 2H); 4.46 (s, 2H); 3.40-3.33 (m, 2H); 2.86-2.79 (m, 2H); 2.09-1 .98 (m, 2H). c) A suspension of 5-bromo-1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7-naphthyridine (0.50 g, 1 .01 mmol), dppf (28 mg, 0.05 mmol) and TEA (0.42 ml_, 3.03 mmol) in EtOH (60 ml_) was thoroughly purged with argon; Pd(AcO) 2 (1 1 mg, 0.05 mmol) was added and the mixture was purged again with carbon monoxide. The mixture was placed in a stainless steel pressure reactor and heated at 130 'Ό under carbon monoxide pressure (30 bar) for 16 h. The reaction was allowed to reach room temperature and carbon monoxide was released. After removal of the solvent, the residue was purified by column chromatography on silica gel (20D25% EtAcO/hexanes), affording 0.42 g of ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4- tetrahydro-1 ,7-naphthyridine-5-carboxylate [Rf= 0.50 (40% EtAcO/hexanes), pale yellow solid, 85% yield]. LC-MS ESI+ m/z: 489 (M+1 , 98%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.32 (s, 1 H, ArH); 7.78 (s, 1 H, ArH); 7.43-7.35 (m, 1 H, ArH); 7.22-7.1 1 (m, 3H, ArH); 7.04 (d, J= 2.5 Hz, 1 H, ArH); 6.89 (d, J= 8.7 Hz, 1 H, ArH); 5.1 1 (s, 2H); 4.49 (s, 2H); 4.36 (q, J= 7.1 Hz, 2H); 3.42-3.36 (m, 2H); 3.18-3.10 (m, 2H); 2.07-1 .96 (m, 2H); 1 .39 (t, J= 7.1 Hz, 3H). d) Following the general procedure described in example 21 1 , section b, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylic acid was obtained in 91 % yield (pale yellow solid), using ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylate (0.40 g, 0.82 mmol) as starting material.

LC-MS ESI+ m/z: 461 (M+1 , 99%) (Method 5). e) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7- naphthyridine-5-carboxylate was obtained in 99% yield (white solid), using 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,7-naphthyridine- 5-carboxylic acid (0.33 g, 0.72 mmol) as starting material.

LC-MS ESI+ m/z: 461 (M+2-Na, 99%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.81 (s, 1 H, ArH); 7.55 (t, J= 7.5 Hz, 1 H,

ArH); 7.44 (s, 1 H, ArH); 7.31 -7.20 (m, 3H, ArH); 7.10 (d, J= 8.6 Hz, 1 H, ArH); 7.04 (d, J= 2.8 Hz, 1 H, ArH); 5.20 (s, 2H); 4.49 (s, 2H); 3.46-3.39 (m, 2H); 3.03-2.95 (m, 2H); 2.07-1 .94 (m, 2H). Examples 227: Using 1-{5-chloro-2-[(2,4-difluorobenzyl)oxy] phenyl} methanamlne material

The next compound was obtained using the same methodology as in Example 226 but using the corresponding starting material as indicated.

LC-MS

Example t R m/z

Compound name Starting material Meth

(mi [M+ od

n) H] + Sodium 1 -{5-chloro-

2-[(2,4- 1 -{5-chloro-2- difluorobenzyl)oxy]b [(2,4-

16.9

227 enzyl}-1 , 2,3,4- difluorobenzyl)ox 2 445

1 tetrahydro-1 ,7- y]phenyl}methan

naphthyridine-5- amine

carboxylate

Example 228: 1-{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1,2,3,4-tetra hydro- 1, 6-naphthyridine-5-carboxylic acid

a) n-BuLi [0.93 mL (1 .6 M in hexanes), 1 .50 mmol] was added dropwise to a solution of 4-chloro-N,N-diisopropylpyridine-2-carboxamide (0.30 g, 1 .25 mmol) in THF (6 mL) cooled at -78 °C. After 1 .5 h, 1 -chloro-3-iodopropane (0.33 mL, 1 .75 mmol) was added to the anion solution, allowing to reach room temperature. After 30 min, the volatiles were removed by rotatory evaporation and the residue was dissolved in EtAcO (40 mL) and washed with brine (2 x 15 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (25% EtAcO/hexanes), affording 0.31 g of 4-chloro-3-(3-chloropropyl)-N,N-diisopropylpyridine-2- carboxamide [Rf= 0.65 (50% EtAcO/hexanes), colorless oil, 77% yield].

LC-MS ESI+ m/z: 317 (M+1 , 93%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.32 (d, J= 5.4 Hz, 1 H, ArH); 7.28 (d, J= 5.4 Hz, 1 H, ArH); 3.68-3.42 (m, 4H); 3.33 (t, J= 6.4 Hz, 2H); 2.29-2.12 (m, 2H); 1 .58 (d, J= 6.5 Hz, 6H); 1 .16 (d, J= 6.5 Hz, 6H). b) A mixture of 4-chloro-3-(3-chloropropyl)-N,N-diisopropylpyridine-2- carboxamide (0.70 g, 2.21 mmol), 1 -{5-chloro-2-[(2,4- difluorobenzyl)oxy]phenyl}methanamine (0.75 g, 2.65 mmol), Kl (0.44 g, 2.65 mmol) and K 2 CO 3 (0.61 g, 4.41 mmol) in DMF (15 mL) was heated at 100 °C for 15 h. The reaction was allowed to reach room temperature, poured over EtAcO (100 mL) and washed with water (2 x 60 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (20D70% EtAcO/hexanes), affording 0.82 g of 1 -{5- chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-N,N-diisopropyl-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carboxamide [Rf= 0.50 (70% EtAcO/hexanes), pale yellow solid, 70% yield].

LC-MS ESI+ m/z: 528 (M+1 , 95%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.92 (d, J= 5.7 Hz, 1 H, ArH); 7.48-7.36 (m, 1 H, ArH); 7.22 (dd, J= 8.6, 2.6 Hz, 1 H, ArH); 7.00 (d, J= 2.6 Hz, 1 H, ArH); 6.97-6.81 (m, 3H, ArH); 6.15 (d, J= 5.7 Hz, 1 H, ArH); 5.09 (s, 2H); 4.43 (s, 2H); 3.73-3.44 (m, 2H); 3.42-3.34 (m, 2H); 2.75 (br s, 2H); 2.05-1 .94 (m, 2H); 1 .58 (d, J= 6.8 Hz, 6H); 1 .16 (d, J= 6.8 Hz, 6H). c) A solution of DIBAL-H [1 .52 mL (1 .5 M in toluene), 2.29 mmol] was added dropwise to a solution of 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-N,N- diisopropyl-1 ,2,3,4-tetrahydro-1 ,6-naphthyridine-5-carboxamide (0.81 g, 1 .52 mmol) in THF (15 mL) cooled at -78 °C. After 1 h, the reaction mixture was warmed to room temperature, and, after 5 h, quenched by dropwise addition of HCI (aqueous solution 10%, 2 mL). The volatiles were removed by rotatory evaporation and the residue was dissolved in EtAcO (50 mL) and washed with water (2 x 25 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5% MeOH/DCM), affording 0.17 g of 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}- 1 ,2,3,4-tetrahydro-1 ,6-naphthyridine-5-carbaldehyde [Rf= 0.50 (10% MeOH/DCM), pale yellow oil, 25% yield].

LC-MS ESI+ m/z: 429 (M+1 , 78%) (Method 5). d) H 2 0 2 (aqueous solution 30%, 0.07 mL, 0.77 mmol) was added dropwise to a solution of 1 -{5-chloro-2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6- naphthyridine-5-carbaldehyde (0.17 g, 0.38 mmol) in formic acid (5 mL) and stirred at room temperature for 22 h. Another 0.07 mL of H 2 0 2 were added and stirring was continued for additional 20 h. The reaction mixture was diluted with DCM (30 mL) and washed with water (2 x 10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (4D 15% MeOH/DCM), affording 0.08 g of 1 -{5-chloro- 2-[(2,4-difluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydro-1 ,6-naphthyridine-5-carboxylic acid, orange solid, 48% yield. LC-MS ESI+ m/z: 445 (M+1 , 99%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.59 (d, J= 6.5 Hz, 1 H, ArH); 7.54-7.42 (m, 1 H, ArH); 7.36 (dd, J= 8.6, 2.0 Hz, 1 H, ArH); 7.22-7.15 (m, 2H, ArH); 7.05-6.92 (m, 2H, ArH); 6.72 (d, J= 6.5 Hz, 1 H, ArH); 5.1 1 (s, 2H); 4.68 (s, 2H); 3.48-3.40 (m, 2H); 3.22-3.12 (m, 2H); 1 .98-1 .85 (m, 2H).

Examples 229: Using 4-chloro-3-(3-chloropropyl)-N,N-diisopropylpyridine-2- carboxamide and 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]phenyl} methanamine as starting materials

Example 230: Synthesis of sodium 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoxaline-5-carboxylate

a) A solution of 2-aminoethanol (0.70 mL, 1 1 .50 mmol) and methyl 2-chloro-

3-nitrobenzoate (0.62 g, 2.88 mmol) in DMF (7 mL) was heated at 70 °C for 30 min. The reaction was allowed to reach room temperature, poured over EtAcO (40 mL) and washed with water (2 x 30 mL) and brine (20 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 0.68 g of methyl 2-[(2-hydroxyethyl)amino]-3-nitrobenzoate were obtained [Rf= 0.30 (30% EtAcO/hexanes), yellow-orange solid, 99% yield], that were used without further purification.

LC-MS ESI+ m/z: 241 (M+1 , 85%) (Method 5).

NOTE: Prolonged reaction times lead to intramolecular cyclization. b) A mixture of 0.25 g of Pd (5%, charcoal) and methyl 2-[(2- hydroxyethyl)amino]-3-nitrobenzoate (0.56 g, 2.33 mmol) in THF (12 mL) was stirred under hydrogen atmosphere (balloon) at room temperature. After 14 h, the reaction was filtered through a pad of celite and the solvent was removed by rotatory evaporation. The residue was purified by column chromatography on silica gel (70% EtAcO/hexanes), affording 0.36 g of methyl 3-amino-2-[(2- hydroxyethyl)amino]benzoate [Rf= 0.15 (50% EtAcO/hexanes), colorless oil, 80% yield, 2 steps].

LC-MS ESI+ m/z: 21 1 (M+1 , 99%) (Method 5). c) MsCI (0.64 mL, 0.83 mmol) was added dropwise to a solution of methyl 3- amino-2-[(2-hydroxyethyl)amino]benzoate (0.18 g, 0.83 mmol) and TEA (0.35 mL, 2.50 mmol) in THF (10 mL) cooled at 0 'Ό, while a white suspension appeared. After 5 min, TLC showed complete conversion of the starting material; the reaction was warmed to room temperature and stirred for additional 6 h. The volatiles were removed by rotatory evaporation and the residue was dissolved in EtAcO (20 mL) and washed with water (2 x 10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (30% EtAcO/hexanes), affording 99 mg of methyl 1 ,2,3,4-tetrahydroquinoxaline-5-carboxylate [Rf= 0.45 (40% EtAcO/hexanes), yellow oil, 62% yield].

LC-MS ESI+ m/z: 193 (M+1 , 99%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.55 (br s, 1 H, NH); 7.30 (d, J= 8.0 Hz, 1 H, ArH); 6.58 (d, J= 7.4 Hz, 1 H, ArH); 6.46-6.38 (m, 1 H, ArH); 3.83 (s, 3H); 3.59-3.50 (m, 2H); 3.40-3.33 (m, 2H). d) Following the general procedure described in example 165, methyl 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoxaline-5- carboxylate was obtained in 55% yield (yellow foam) after 3 h, using methyl 1 ,2,3,4- tetrahydroquinoxaline-5-carboxylate (95 mg, 0.49 mmol), K 2 C0 3 (89 mg, 0.64 mmol), Kl (82 mg, 0.49 mmol) and 2-(bromomethyl)-4-chloro-1 -[(4-chloro-2- fluorobenzyl)oxy]benzene (234 mg, 0.64 mmol) as starting materials.

LC-MS ESI+ m/z: 475 (M+1 , 97%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.46-7.1 1 (m, 6H, ArH); 6.89 (d, J= 8.8 Hz,

1 H, ArH); 6.45-6.36 (m, 2H, ArH); 5.10 (s, 2H); 4.40 (s, 2H); 3.84 (s, 3H); 3.63-3.56 (m, 2H); 3.45-3.38 (m, 2H). e) Following the general procedure described in example 21 1 , section b, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoxaline-5- carboxylic acid was obtained in 68% yield (yellow solid), using methyl 1 -{5-chloro-2- [(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoxaline-5-carboxylate (0.32 g, 0.67 mmol) as starting material.

LC-MS ESI+ m/z: 461 (M+1 , 96%) (Method 5). f) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4- tetrahydroquinoxaline-5-carboxylate was obtained in 99% yield (pale yellow solid), using 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4- tetrahydroquinoxaline-5-carboxylic acid (53 mg, 0.1 1 mmol) as starting material.

LC-MS ESI+ m/z: 461 (M+2-Na, 96%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.53 (t, J= 3.3 Hz, 1 H, ArH); 7.30-7.13 (m, 5H, ArH); 7.06 (d, J= 3.3 Hz, 1 H, ArH); 6.36 (t, J= 7.8 Hz, 1 H, ArH); 6.26 (d, J= 7.8 Hz, 1 H, ArH); 5.17 (s, 2H); 4.36 (s, 2H); 3.51 -3.33 (m, 4H).

Example 231: Synthesis of sodium 1-{5-chloro-2-[2-(2,4- difluorophenyl)ethoxy]benzyl}-1H-indole-4-carboxylate

a) A mixture of 5-chloro-2-hydroxybenzaldehyde (3.0 g, 19.2 mmol), K 2 C0 3 (3.4 g, 24.9 mmol) and MEM-CI (2.4 mL, 21 .1 mmol) in DMF (20 mL) was stirred at room temperature for 18 h. The reaction mixture was poured over EtAcO (100 mL) and washed with water (50 mL) and NaOH(aqueous solution 10%, 3 x 5 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 3.8 g of 5-chloro-2-[(2-methoxyethoxy)methoxy]benzaldehyde were obtained [Rf= 0.20 (20% EtAcO/hexanes), pale yellow oil, 81 % yield], that were used without further purification. b) NaBH 4 (0.59 g, 15.5 mmol) was added in small portions to a solution of 5- chloro-2-[(2-methoxyethoxy)methoxy]benzaldehyde (3.80 g, 15.5 mmol) in MeOH (25 mL) cooled at 0 °C, observing abundant gas evolution. After 20 min, the solvent was removed by rotatory evaporation and the resulting residue was dissolved in Et 2 0 (50 mL) and washed with water (50 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (30% EtAcO/hexanes), affording 3.15 g of {5-chloro-2-[(2-methoxyethoxy)methoxy]phenyl}methanol [Rf= 0.33 (10% EtAcO/hexanes), colorless oil, 82% yield].

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.32 (d, J= 2.6 Hz, 1 H, ArH); 7.20 (dd, J= 8.8, 2.6 Hz, 1 H, ArH); 7.06 (d, J= 8.8 Hz, 1 H, ArH); 5.30 (s, 2H); 4.65 (d, J= 6.0 Hz, 2H); 3.84-3.79 (m, 2H); 3.57-3.51 (m, 2H); 3.35 (s, 3H); 2.38 (t, J= 6.0, 1 H, OH). c) MsCI (1 .00 mL, 12.89 mmol) was added dropwise to a solution of {5- chloro-2-[(2-methoxyethoxy)methoxy]phenyl}methanol (2.65 g, 10.74 mmol) and TEA (2.98 mL, 21 .48 mmol) in DCM, cooled at 0 °C, and the mixture was allowed to reach room temperature. After 20 h, the reaction mixture was diluted with DCM (25 mL) and washed with HCI (aqueous solution 5%, 30 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, 1 .73 g of 4- chloro-2-(chloromethyl)-1 -[(2-methoxyethoxy)methoxy]benzene were obtained [Rf= 0.65 (40% EtAcO/hexanes), colorless oil, 50% yield], that were used without further purification. d) NaH [0.21 g (60% in mineral oil), 5.23 mmol] was added to a solution of methyl 1 H-indole-4-carboxylate (0.76 g, 4.36 mmol) in DMF (10 mL) cooled at 0 < €, leading to the formation of a yellow mixture. After 30 min, a solution of 4-chloro-2- (chloromethyl)-1 -[(2-methoxyethoxy)methoxy]benzene (5 mL of DMF) was added, and the mixture was stirred for additional 2 h. The reaction was poured into EtAcO (50 mL) and washed with water (2 x 30 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was dissolved in 25 mL of MeOH, H 2 S0 4 (0.23 mL, 4.36 mmol) was added and the reaction was heated at reflux for 2 h; it was allowed to reach room temperature and MeOH was eliminated in the rotatory evaporator. The residue was dissolved in DCM (100 mL) and washed with water (50 mL). The organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (30% EtAcO/hexanes), affording 1 .22 g of methyl 1 -(5-chloro-2-hydroxybenzyl)-1 H-indole-4-carboxylate [Rf= 0.50 (40% EtAcO/hexanes), white solid, 88% yield].

LC-MS ESI+ m/z: 316 (M+1 , 99%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.94-7.89 (m, 1 H, ArH); 7.58-7.53 (m, 1 H, ArH); 7.32 (d, J= 8.1 Hz, 1 H, ArH); 7.24-7.17 (m, 2H, ArH); 7.10 (dd, J= 8.6, 2.5 Hz, 1 H, ArH); 6.76 (d, J= 2.8 Hz, 1 H, ArH); 6.72 (d, J= 8.6 Hz, 1 H, ArH); 5.33 (s, 2H); 3.99 (s, 3H). e) A mixture of methyl 1 -(5-chloro-2-hydroxybenzyl)-1 H-indole-4-carboxylate (0.19 g, 0.59 mmol), K 2 C0 3 (0.12 g, 0.88 mmol) and 2-(2,4-difluorophenyl)ethyl 4- methylbenzenesulfonate (0.24 g, 0.77 mmol) in DMF (10 mL) was stirred at 60 °C for 16 h. The reaction mixture was allowed to reach room temperature and poured over EtAcO (40 mL) and washed with water (2 x 20 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10% EtAcO/hexanes), affording 0.25 g of methyl 1 -{5-chloro-2-[2-(2,4-difluorophenyl)ethoxy]benzyl}-1 H-indole-4- carboxylate [Rf= 0.60 (20% EtAcO/hexanes), yellow oil, 92% yield].

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.91 (dd, J= 7.7, 1 .1 Hz, 1 H, ArH); 7.41 (d, J= 8.0 Hz, 1 H, ArH); 7.24-7.13 (m, 5H, ArH); 6.85-6.75 (m, 3H, ArH); 6.64 (d, J= 2.7 Hz, 1 H, ArH); 5.23 (s, 2H); 4.19 (t, J= 6.7 Hz, 2H); 4.00 (s, 3H); 3.10 (t, J= 6.7 Hz, 2H). f) Following the general procedure described in example 21 1 , section b, 1 -{5- chloro-2-[2-(2,4-difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylic acid was obtained in 62% yield (white solid), using methyl 1 -{5-chloro-2-[2-(2,4- difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylate (0.25 g, 0.54 mmol) as starting material.

LC-MS ESI+ m/z: 442 (M+1 , 95%) (Method 5). g) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[2-(2,4-difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylate was obtained in 91 % yield (white solid), using 1 -{5-chloro-2-[2-(2,4- difluorophenyl)ethoxy]benzyl}-1 H-indole-4-carboxylic acid (0.15 g, 0.33 mmol) as starting material.

LC-MS ESI+ m/z: 442 (M+2-Na, 95%) (Method 2).

1 H-NMR (DMSO-de, 250 MHz, δ): 7.61 -7.46 (m, 2H, ArH); 7.32-6.91 (m, 8H, ArH); 6.59 (br s, 1 H, ArH); 5.20 (s, 2H); 4.28 (t, J= 7.2 Hz, 2H); 3.14 (t, J= 7.2 Hz, 2H).

Example 232: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-(methylsulfonyl)-1H-indole-4-carboxamide

A mixture of EDCI (100 mg, 0.52 mmol), methanesulfonamide (49 mg, 0.52 mmol), DMAP (5 mg, 0.04 mmol) and 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- 1 H-indole-4-carboxylic acid (0.19 g, 0.43 mmol) in DCM (6 mL) was stirred at room temperature for 18 h. The reaction mixture was diluted with DCM (20 mL) and washed with water (20 mL) and brine (10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5% MeOH/DCM), affording 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulf onyl)-1 H-indole-4- carboxamide as a pale yellow solid. This solid was triturated with Et 2 0 (2 x 5 mL) and vacuum dried, rendering a white solid in 58% yield.

LC-MS ESI+ m/z: 521 (M+1 , 99%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.60-7.53 (m, 2H, ArH); 7.40-6.99 (m, 8H, ArH); 6.82 (d, J= 2.0 Hz, 1 H, ArH); 5.40 (s, 2H); 5.15 (s, 2H); 3.40 (s, 3H).

Example 233: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-(methylsulfonyl)-1H-lndole-4-carboxamlde sodium salt

Following the general procedure described in example 21 1 , section c, 1 -{5-chloro-2- [(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-1 H-indole-4-carboxamide sodium salt was obtained in 93% yield (white solid), using 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-1 H-indole-4-carboxamide (53 mg, 0.10 mmol) as starting material. LC-MS ESI+ m/z: 521 (M+2-Na, 98%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.72 (d, J= 8.3 Hz, 1 H, ArH); 7.43-7.03 (m, 9H, ArH); 6.69 (d, J= 2.0 Hz, 1 H, ArH); 5.36 (s, 2H); 5.17 (s, 2H); 3.15 (s, 3H).

Example 234: Synthesis of 1-(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)- 2, 3-di hydro- 1 H-pyrrolo[2, 3-b]pyridine-4-carboxamide sodium salt

a) A mixture of EDCI (180 mg, 0.94 mmol), methanesulfonamide (89 mg, 0.94 mmol), DMAP (8 mg, 0.07 mmol) and 1 -(5-chloro-2-isobutoxybenzyl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxylic acid (242 mg, 0.67 mmol) in DCM (10 mL) was stirred at room temperature for 21 h. The reaction mixture was diluted with DCM (20 mL) and washed with water (20 mL) and brine (15 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (1 D5% MeOH/DCM), affording 1 15 mg of 1 -(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)-2,3-dihydro - 1 H-pyrrolo[2,3-b]pyridine-4-carboxamide [Rf= 0.50 (10% MeOH/DCM), pale yellow solid, 39% yield].

LC-MS ESI+ m/z: 438 (M+1 , 97%) (Method 5). b) Following the general procedure described in example 21 1 , section c, sodium 1 -(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)-2,3-dihydro -1 H- pyrrolo[2,3-b]pyridine-4-carboxamide was obtained in 98% yield (pale yellow solid), using 1 -(5-chloro-2-isobutoxybenzyl)-N-(methylsulfonyl)-2,3-dihydro -1 H-pyrrolo[2,3- b]pyridine-4-carboxamide (1 15 mg, 0.26 mmol) as starting material.

LC-MS ESI+ m/z: 438 (M+2-Na, 99%) (Method 2).

1 H-NMR (DMSO-d6, 250 MHz, δ): 7.71 (d, J= 5.2 Hz, 1 H, ArH); 7.25 (dd, J= 8.7, 2.5 Hz, 1 H, ArH); 7.18 (d, J= 2.5 Hz, 1 H, ArH); 7.00 (d, J= 8.7 Hz, 1 H, ArH); 6.85 (d, J= 5.2 Hz, 1 H, ArH); 4.47 (s, 2H); 3.77 (d, J= 6.3 Hz, 2H); 3.46-3.18 (m, 4H); 2.81 (s, 3H); 2.10-1 .93 (m, 1 H); 0.98 (d, J= 6.6 Hz, 6H).

Example 235: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-(methylsulfonyl)-1,2,3,4-tetrahydroquinoline-5-carboxamide sodium salt a) A mixture of CDI (99 mg, 0.61 mmol) and 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid (0.20 g, 0.43 mmol) in DCM (10 mL) was stirred at 0 < C. After 1 h, DBU (0.09 mL, 0.61 mmol) and methanesulfonamide (59 mg, 0.61 mmol) were added, and the reaction was allowed to reach room temperature. After 16 h, more DBU (0.09 mL, 0.61 mmol) and methanesulfonamide (59 mg, 0.61 mmol) were added, and the mixture was heated at 35 'C for 4 h. The reaction mixture was diluted with DCM (20 mL) and washed with water (20 mL) and HCI (aqueous solution 10%, 10 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (1 D3% MeOH/DCM), affording 0.19 g 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)- 1 ,2,3,4-tetrahydroquinoline-5-carboxamide [Rf= 0.45 (5% MeOH/DCM), white solid, 81 % yield].

LC-MS ESI+ m/z: 537 (M+1 , 95%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.47-6.86 (m, 7H, ArH); 6.70 (d, J= 7.2 Hz, 1 H, ArH); 6.44 (d, J= 8.0 Hz, 1 H, ArH); 5.1 1 (s, 2H); 4.44 (s, 2H); 3.54-3.34 (m, 5H); 3.07-2.95 (m, 2H); 2.12-1 .96 (m, 2H). b) Following the general procedure described in example 21 1 , section c, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyls ulfonyl)-1 ,2,3,4- tetrahydroquinoline-5-carboxamide sodium salt was obtained in 99% yield (white solid), using 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)- 1 ,2,3,4-tetrahydroquinoline-5-carboxamide (0.14 g, 0.25 mmol) as starting material.

LC-MS ESI+ m/z: 536 (M+1 -Na, 96%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.55 (t, J= 8.5 Hz, 1 H, ArH); 7.31 -6.99 (m, 5H, ArH); 6.84 (t, J= 8.0 Hz, 1 H, ArH); 6.65 (dd, J= 7.5, 1 .2 Hz, 1 H, ArH); 6.21 (d, J= 7.5 Hz, 1 H, ArH); 5.19 (s, 2H); 4.41 (s, 2H); 3.41 -3.33 (m, 2H); 3.09 (s, 3H); 3.01 - 2.91 (m, 2H); 2.05-1 .93 (m, 2H).

Example 236: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-[(dimethylamino)sulfonyl]-1,2,3,4-tetrahydroquinoline-5-ca rboxamide

A mixture of CDI (0.12 g, 0.76 mmol) and 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid (0.25 g, 0.54 mmol) in DCM (15 mL) was stirred at 0 'C. After 1 h, the solvent was removed and the residue was dissolved in 1 ,4-dioxane (15 mL); DBU (0.12 mL, 0.76 mmol) and Ν,Ν-dimethylsulfamide (94 mg, 0.76 mmol) were added and the reaction was heated at 100 °C for 7 h and 80 °C overnight. The reaction mixture was allowed to reach room temperature and the volatiles were removed by rotatory evaporation. The residue was dissolved in EtAcO (30 ml_) and washed with water (30 ml_) and HCI (aqueous solution 10%, 10 ml_); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (10D20% EtAcO/hexanes), affording 0.15 g 1 -{5- chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-[(dimethyla mino)sulfonyl]-1 ,2,3,4- tetrahydroquinoline-5-carboxamide [Rf= 0.40 (40% EtAcO/hexanes), white solid, 50% yield].

LC-MS ESI+ m/z: 566 (M+1 , 99%) (Method 2).

1 H-NMR (DMSO-d6, 250 MHz, δ): 1 1 .69 (s, 1 H); 7.69-7.49 (m, 2H, ArH); 7.39-7.19 (m, 3H, ArH); 6.99-6.88 (m, 2H, ArH); 6.58 (d, J= 7.3 Hz, 1 H, ArH); 6.30 (d, J= 8.4 Hz, 1 H, ArH); 5.23 (s, 2H); 4.40 (s, 2H); 2.88 (s, 6H); 2.83-2.73 (m, 2H); 1 .99-1 .85 (m, 2H). One of the CH2 is under the peak of water.

Example 237: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-[(dimethylamino)sulfonyl]-1,2,3,4-tetrahydroquinoline-5-ca rboxamide sodium salt

Following the general procedure described in example 21 1 , section c, the title compound was obtained in 87% yield (white solid), using 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-N-[(dimethylamino)sulfonyl]-1 ,2,3,4-tetrahydroquinoline-5- carboxamide (95 mg, 0.17 mmol) as starting material.

LC-MS ESI+ m/z: 566 (M+2-Na, 99%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ): 7.56 (t, J= 8.4 Hz, 1 H, ArH); 7.33-7.00 (m, 5H, ArH); 6.84 (t, J= 7.8 Hz, 1 H, ArH); 6.66 (d, J= 7.6 Hz, 1 H, ArH); 6.20 (d, J= 8.0 Hz, 1 H, ArH); 5.19 (s, 2H); 4.42 (s, 2H); 3.42-3.34 (m, 2H); 3.04-2.95 (m, 2H); 2.83 (s, 6H); 2.06-1 .93 (m, 2H).

Example 238: Synthesis of N-({1-(5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl})-1,2,3,4-tetrahydroquinolin-5-yl]am ino}carbonyl) methanesulfonamide sodium salt

a) DPPA (0.06 ml_, 0.28 mmol) was added to a suspension of 1 -{5-chloro-2- [(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3,4-tetrahydroquinoline-5-carboxylic acid (105 mg, 0.23 mmol), methanesulfonamide (22 mg, 0.23 mmol) and DIPEA (0.08 mL, 0.46 mmol) in toluene (8 mL) and heated at 85 'C. After 19 h, the reaction mixture was allowed to reach room temperature and the volatiles were removed by rotatory evaporation. The residue was dissolved in EtAcO (25 mL) and washed with water (2 x 15 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered.

After removal of the solvent, the residue was purified by column chromatography on silica gel (5% MeOH/DCM), affording 52 mg of N-({1 -(5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl})-1 ,2,3,4-tetrahydroquinolin-5- yl]amino}carbonyl)methanesulfonamide [Rf= 0.60 (10% MeOH/DCM), yellow solid, 41 % yield].

LC-MS ESI+ m/z: 552 (M+1 , 77%) (Method 5). b) Following the general procedure described in example 21 1 , section c, N- ({1 -(5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl})-1 ,2,3,4-tetrahydroquinolin-5- yl]amino}carbonyl)methanesulfonamide sodium salt was obtained in 65% yield (pale yellow solid), using N-({1 -(5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl})-1 , 2,3,4- tetrahydroquinolin-5-yl]amino}carbonyl)methanesulfonamide (61 mg, 0.1 1 mmol) as starting material.

LC-MS ESI+ m/z: 552 (M+2-Na, 95%) (Method 2).

1 H-NMR (DMSO-d6, 250 MHz, δ): 7.69-6.94 (m, 7H, ArH); 6.68 (t, J= 7.8 Hz,

1 H, ArH); 5.82 (d, J= 8.2 Hz, 1 H, ArH); 5.22 (s, 2H); 4.33 (s, 2H); 3.33-3.18 (m, 2H); 2.73 (s, 3H); 1 .97-1 .79 (m, 2H). One of the CH2 is under the peak of water.

Example 239: Synthesis of 1-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}- N-(methylsulfonyl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-4-c arboxamide sodium salt

a) A mixture of EDCI (1 1 1 mg, 0.58 mmol), methanesulfonamide (55 mg, 0.58 mmol), DMAP (5 mg, 0.04 mmol) and 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxylic acid (185 mg, 0.41 mmol) in DCM (8 mL) was stirred at room temperature for 17 h. The reaction mixture was diluted with DCM (20 mL) and washed with water (10 mL) and HCI (aqueous solution 10%, 2 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (0→5% MeOH/DCM), affording 83 mg of 1 -{5-chloro-2- [(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methylsulfonyl)-2,3 -dihydro-1 H-pyrrolo[2,3- b]pyridine-4-carboxamide [Rf= 0.60 (10% MeOH/DCM), pale yellow solid, 39% yield].

LC-MS ESI+ m/z: 524 (M+1 , 99%) (Method 5). b) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N-(methyl sulfonyl)-2,3- dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxamide was obtained in 91 % yield (pale yellow solid), using 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-N- (methylsulfonyl)-2,3-dihydro-1 H-pyrrolo[2,3-b]pyridine-4-carboxamide (78 mg, 0.15 mmol) as starting material.

LC-MS ESI- m/z: 522 (M-Na, 99%) (Method 2).

1 H-NMR (DMSO-d6, 250 MHz, δ): 7.73-7.60 (m, 2H, ArH); 7.50 (dd, J= 10.0, 2.5 Hz, 1 H, ArH); 7.35-7.27 (m, 2H, ArH); 7.22 (d, J= 2.5 Hz, 1 H, ArH); 7.17 (d, J= 8.8 Hz, 1 H, ArH); 6.85 (d, J= 5.7 Hz, 1 H, ArH); 5.19 (s, 2H); 4.46 (s, 2H); 3.41 -3.17 (m, 4H); 2.81 (s, 3H).

Examples 240 to 246: Using different starting materials

The next compound were obtained using the same methodology as in Example 224 but using the corresponding starting material as indicated.

LC-MS

Example t R m/z

Compound name Starting material Meth

(mi [M+ od

n) H] +

Sodium 1 -{2-[(4- chloro-2-

1 -{2-[(4-chloro-2- fluorobenzyl)oxy]be

fluorobenzyl)oxy] 17.0

240 nzyl}-1 ,2,3,4- 2 427 phenyljmethana 9 tetrahydro-1 ,7- mine

naphthyridine-5- carboxylate Sodium 1 -{2-[(2,4- difluorobenzyl)oxy]b 1 -{2-[(2,4- enzyl}-1 , 2,3,4- difluorobenzyl)ox 16.1

241 2 41 1 tetrahydro-1 ,7- y]phenyl}methan 4 naphthyridine-5- amine

carboxylate

Sodium 1 -[5-chloro-

2-(2-fluoro-2- 1 -[5-chloro-2-(2- methylpropoxy)benz fluoro-2-

15.1

242 yl]-1 , 2,3,4- methylpropoxy)ph 2 393

8 tetrahydro-1 ,7- enyl]methanamin

naphthyridine-5- e

carboxylate

Sodium 1 -{2- [(2,4-

1 -{2-[(2,4- difluorobenzyl)oxy]- difluorobenzyl)ox

5-fluorobenzyl}- 16.0

243 y]-5- 2 429

1 ,2,3,4-tetrahydro- 6

fluorophenyljmet

1 ,7-naphthyridine-5- han amine

carboxylate

Sodium 1 -(2- ((2,4-

1 -{2-[(2,4- difluorobenzyl)oxy)- difluorobenzyl)ox

5-methylbenzyl)- 16.8

244 y]-5- 2 425

1 ,2,3,4-tetrahydro- 6

methylphenyljmet

1 ,7-naphthyridine-5- han amine

carboxylate Sodium 1 -{2-[(4- chloro-2- 1 -{2-[(4-chloro-2- fluorobenzyl)oxy]-5- fluorobenzyl)oxy]-

17.2

245 fluorobenzyl}- 5- 2 445

2 1 ,2,3,4-tetrahydro- fluorophenyljmet

1 ,7-naphthyridine-5- han amine

carboxylate

Sodium 1 -{2-[(4- chloro-2- 1 -{2-[(4-chloro-2- fluorobenzyl)oxy]-5- fluorobenzyl)oxy]-

17.7

246 methylbenzyl}- 5- 2 441

8 1 ,2,3,4-tetrahydro- methylphenyljmet

1 ,7-naphthyridine-5- han amine

carboxylate

Example 247. Synthesis of sodium 4-(2-cyclobutoxy-5-fluorobenzyl)-3,4- di hydro-2 H-benzo[b] [1 ,4]oxazi ne-8-carboxylate

a) Following a similar procedure to that described in example 190 (step a), but starting from methyl 3,4-dihydro-2H-benzo[b][1 ,4]oxazine-8-carboxylate instead of methyl 1 ,2,3,4-tetrahydroquinoline-5-carboxylate hydrochloride and 5-fluoro-2- hydroxybenzaldehyde instead of 5-chloro-2-propoxybenzaldehyde, the desired compound was obtained (31 % yield)

LC-MS (method 4): t R = 2.05 min; m/z = 318 (MH + ). b) To a solution of the compound obtained in the previous section (250 mg, 0.78 mmol) in DMF (10 mL), potassium carbonate (217 mg, 1 .57 mmol) and bromocyclobutane (160 mg, 1 .18 mmol) were added. The reaction mixture was stirred at 60 5 C overnight. The reaction mixture was diluted by adding EtAcO and saturated NH 4 CI aqueous solution (15 mL) and extracted with EtAcO (3x15 mL). The combined organic phases were dried over anhydrous Na 2 S0 4 , filtered and concentrated. The crude residue was chromatographed on a silica gel flash system (Biotage SP1 ) using hexanes/EtAcO mixtures of increasing polarity as eluent, to afford the desired product (96 % yield).

LC-MS (method 4): t R = 2.9 [M+H] + = 372 c) Following a similar procedure to that described in example 123 (section b), but using the compound obtained in previous section as starting material, the desired compound was obtained (79 % yield).

LC-MS (method 4): t R = 1 .72 [M+H] + = 358

1 H NMR (300 MHz, DMSO-d6) δ : 7.08-6.78 (m, 3H, ArH); 6.6-6.41 (m, 2H, ArH); 6.32-6.22 (m, 1 H, ArH); 4.87-4.6 (m, 1 H); 4.34 (s, 2H); 4.24-4.04 (m, 2H); 3.57-3.22 (m, 2H); 2.51 -2.33 (m, 2H); 2.21 -1 .96 (m, 2H); 1 .91 -1 .51 (m, 2H).

Example 248. Synthesis of Sodium 1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-2,3-dihydro-1H-pyrrolo[2,3-c]pyridi ne-4-carboxylate a) Freshly prepared LDA (0.90 mmol) was added to a solution of 3-bromo-5- fluoropyridine (0.15 g, 0.82 mmol) in THF (10 mL) cooled at -78 °C. After 30 min, a solution of 3-{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-1 ,2,3-oxathiazolidine 2,2-dioxide (0.37 g, 0.90 mmol) in 3 mL of THF was transferred via canula to the anion solution. After 20 min, TLC showed an intense polar spot corresponding to the sulfamic acid intermediate. The solvent was evaporated and the resulting residue was dissolved in 1 ,4-dioxane (10 mL) and treated with 0.40 mL of HCI (4 M in 1 ,4- dioxane), stirring at room temperature. After 17 h, the reaction was cooled to 0 °C and slowly basified with NaOH (aqueous solution 10%, 4 mL). The mixture was poured over EtAcO (40 mL) and washed with water (30 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (20Dand filtered. After removal of the solveN-[2-(3-bromo-5-fluoropyridin-4-yl)ethyl]-N-{5-chloro-2 -[(4-chloro-2- fluorobenzyl)oxy]benzyl}amine [Rf= 0.70 (5% MeOH/DCM), pale yellow oil, 74% yield].

LC-MS ESI+ m/z: 503 (M+1 , 93%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.48 (s, 1 H, ArH); 8.31 (s, 1 H, ArH); 7.42-7.33 (m, 1 H, ArH); 7.25-7.10 (m, 4H, ArH); 6.84 (d, J= 8.5 Hz, 1 H, ArH); 5.06 (s, 2H); 3.81 (s, 2H); 3.03-2.93 (m, 2H); 2.86-2.78 (m, 2H). b) A mixture of N-[2-(3-bromo-5-fluoropyridin-4-yl)ethyl]-N-{5-chloro-2-[(4- chloro-2-fluorobenzyl)oxy]benzyl}amine (0.30 g, 0.60 mmol) and K 2 C0 3 (0.10 g, 0.72 mmol) in DMF (10 mL) was heated at 120 °C for 12 h and 140 °C for 2 h. The reaction was allowed to reach room temperature, poured over EtAcO (60 mL) and washed with water (60 mL); the organic layer was dried over anhydrous Na 2 S0 4 and filtered. After removal of the solvent, the residue was purified by column chromatography on silica gel (5Dand filtered. After removal of0.18 g of 4-bromo-1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydr o-1 H-pyrrolo[2,3- c]pyridine [Rf= 0.75 (40% EtAcO/hexanes), white solid, 65% yield].

LC-MS ESI+ m/z: 483 (M+1 , 97%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 7.96 (s, 1 H, ArH); 7.60 (s, 1 H, ArH); 7.37-7.08 (m, 5H, ArH); 6.89 (d, J= 8.5 Hz, 1 H, ArH); 5.08 (s, 2H); 4.27 (s, 2H); 3.52-3.42 (m, 2H); 3.06-2.98 (m, 2H). c) A suspension of 4-bromo-1 -{5-chloro-2-[(4-chloro-2- fluorobenzyl)oxy]benzyl}-2,3-dihydro-1 H-pyrrolo[2,3-c]pyridine (0.18 g, 0.37 mmol), dppf (1 1 mg, 0.02 mmol) and TEA (0.15 mL, 1 .1 1 mmol) in EtOH (60 mL) was thoroughly purged with argon; Pd(AcO) 2 (4 mg, 0.02 mmol) was added and the mixture was purged again with carbon monoxide. The mixture was placed in a stainless steel pressure reactor and heated at 120 'Ό under carbon monoxide pressure (30 bar) for 16 h. The reaction was allowed to reach room temperature and carbon monoxide was released. After removal of the solvent, the residue was purified by column chromatography on silica gel (15D25% EtAcO/hexanes), affording 0.15 g of ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3- dihydro-1 H-pyrrolo[2,3-c]pyridine-4-carboxylate [Rf= 0.50 (40% EtAcO/hexanes), pale yellow solid, 84% yield].

LC-MS ESI+ m/z: 475 (M+1 , 99%) (Method 5).

1 H-NMR (CDCI 3 , 250 MHz, δ): 8.49 (s, 1 H, ArH); 7.79 (s, 1 H, ArH); 7.37-7.08 (m, 5H, ArH); 6.89 (d, J= 8.4 Hz, 1 H, ArH); 5.09 (s, 2H); 4.37 (q, J= 7.2 Hz, 2H); 4.31 (s, 2H); 3.50-3.37 (m, 4H); 1 .40 (t, J= 7.2 Hz, 3H). d) Following the general procedure described in example 21 1 , section b, 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydr o-1 H-pyrrolo[2,3- c]pyridine-4-carboxylic acid was obtained in 88% yield (pale yellow solid), using ethyl 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H-pyrrolo[2,3- c]pyridine-4-carboxylate (0.14 g, 0.29 mmol) as starting material.

LC-MS ESI+ m/z: 448 (M+1 , 99%) (Method 5). e) Following the general procedure described in example 21 1 , section c, sodium 1 -{5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihyd ro-1 H- pyrrolo[2,3-c]pyridine-4-carboxylate was obtained in 80% yield (white solid), using 1 - {5-chloro-2-[(4-chloro-2-fluorobenzyl)oxy]benzyl}-2,3-dihydr o-1 H-pyrrolo[2,3- c]pyridine-4-carboxylic acid (0.1 1 g, 0.25 mmol) as starting material.

LC-MS ESI+ m/z: 447 (M+1 -Na, 99%) (Method 2).

1 H-NMR (CD 3 OD, 250 MHz, δ ): 8.22 (s, 1 H, ArH); 7.55 (s, 1 H, ArH); 7.50- 7.07 (m, 6H, ArH); 5.14 (s, 2H); 4.32 (s, 2H); 3.49-3.28 (m, 4H).

Examples 249 to 250: Using a different starting material

The next compounds were obtained using the same methodology as in Example 208 but using the corresponding starting material as indicated.

LC-MS

Example t R m/z

Compound name Starting material Meth

(mi [M+ od

n) H] +

Sodium 1 -(5-chloro- methyl 1 -(5-

2- chloro-2-

249 cyclobutoxybenzyl)- cyclobutoxybenzy 4 1 .69 371

2-oxoindoline-4- l)-1 H-indole-4- carboxylate carboxylate methyl 1 -(5-

Sodium 1 -(5-chloro- chloro-2-(2-

2-(2-fluoro-2- fluoro-2- methylpropoxy)benz methylpropoxy)be 4 1 .61 391

250

yl)-2-oxoindoline-4- nzyl)-1 H-indole-4- carboxylate carboxylate

Examples of biological activity

In the following examples the biological activity of compounds of formula (I) towards EP1 receptors is shown.

Test 1: Human EP1 receptor radioligand binding assay

To investigate binding properties of EP1 receptor ligands to human EP1 receptor, transfected HEK-293 cell membranes and [3H]-PGE2 (Perkin Elmer) were used. In 96-well plates the assay was carried out with a total reaction volume of 250 μΙ, containing 25 μΙ of membrane suspension (30 μg protein/well), 25 μΙ of [3H]-PGE2 (10 nM) in either absence or presence of 25 μΙ of either buffer or PGE2 (10 μΜ) for total and non-specific binding, respectively. Binding buffer contained 10 mM MES, 1 mM MgCI2 and 1 mM EDTA at pH 6.0. Plates were incubated at 25 °C for 60 minutes. After the incubation period, 200 μΙ of incubate were transferred to MultiScreen HTS, FB plates (Millipore), filtered and plates were washed 6 times with ice-cold 10 mM MES, 1 mM MgCI2 and 1 mM EDTA at pH 6.0. Filters were dried and counted in a MicroBeta scintillation counter (Perkin-Elmer) using EcoScint liquid scintillation cocktail.

Percentage inhibition was calculated relating compounds activity to the 0% inhibition of the wells incubated with 10 nM [3H]-PGE2 alone (total binding) and 100% inhibition of the wells incubated with 10 nM [3H]-PGE2 plus 10 μΜ PGE2 (nonspecific binding). Test 2: Measurement of IP1 responses by Homogeneous Time Resolved Fluorescence

IP1 measurements on HEK-293 cells that stably expressed human EP1 receptors were performed by using a system based on Homogeneous Time Resolved Fluorescense (HTRF) (Gabriel et al., 2003). This technology allows the direct measurement of IP1 in living cells. The principle of this assay is based on competition between IP1 produced by cells and IP1 -d2 conjugate for the binding with monoclonal anti-IP1 -cryptate conjugate. The HTRF IP1 kit from CisBio was used according to the manufacturer's directions. The experimental procedure was performed as stated below.

Suspended cells (30,000 cells per well) were added to 96-well culture plates in 40 μΙ of stimulation buffer (supplied by the kit). Compounds were then added in 20 μΙ of stimulation buffer and incubated at 37 5 C for 15 minutes followed by 10 μΙ of PGE2 to a final concentration of 30 nM. After 90 minutes at 37 5 C, the reaction was stopped lysing the cells with a mixture of 15 μΙ of cryptate and 15 μΙ of IP1 -d2 prepared in the lysis buffer supplied by the manufacturer. Plates were incubated for an additional hour at room temperature and read at 665 nm/620 nm using an UltraEvolution Plate reader (Tecan).

Antagonist percentage inhibition was calculated relating compounds activity to the 0% inhibition of the wells incubated with 10 nM PGE2 alone and 100% inhibition of the wells incubated with 10 nM PGE2 plus 1 μΜ of the reference antagonist.

Test 3: Measurement of IP1 responses by Homogeneous Time Resolved Fluorescence

IP1 measurements on HEK-293 cells that stably expressed human EP1 receptors were performed by using a system based on Homogeneous Time Resolved Fluorescense (HTRF) (Gabriel et al., 2003). This technology allows the direct measurement of IP1 in living cells. The principle of this assay is based on competition between IP1 produced by cells and IP1 -d2 conjugate for the binding with monoclonal anti- 1 P1 -cryptate conjugate. The HTRF IP1 kit from CisBio was used according to the manufacturer's directions. The experimental procedure was performed as stated below.

40,000 cells per well were added to 96-well culture plates in 40 μΙ of Optimem and incubated o/n at 37 5 C. Optimem was replaced by 40 μΙ of stimulation buffer (supplied by the kit) and compounds were then added in 20 μΙ of stimulation buffer and incubated at 37 5 C for 15 minutes followed by 10 μΙ of PGE2 to a final concentration of 10 nM. After 90 minutes at 37 5 C, the reaction was stopped lysing the cells with a mixture of 15 μΙ of cryptate and 15 μΙ of IP1 -d2 prepared in the lysis buffer supplied by the manufacturer. Plates were incubated for an additional hour at room temperature and read at 665 nm/620 nm using an UltraEvolution Plate reader (Tecan).

Antagonist percentage inhibition was calculated relating compounds activity to the 0% inhibition of the wells incubated with 10 nM PGE2 alone and 100% inhibition of the wells incubated with 10 nM PGE2 plus 10 μΜ of the reference antagonist.

The results obtained in the biological assays disclosed in tests 1 , 2 and 3 with representative compounds of formula (I) are shown in the Table below.

Example n 9 Results of Test 1* Results of Test 2** Results of Test 3**

2 $

3 $

4 $

5 $

6 $

7 $

8 $

9 $

10 $$

11 # $

12 # $

13 ## $ 14 # $

15 #

16 #

17 ## $

18 $

19 ## $

20 $

21 ## $

22 ##

23 $

24 ## $

25 ## $

26 #

27 #

28 $$

29 # $

30 ##

31 ##

32 ##

33 ## $

34 ## $

35 $

36 $$

37 $

38 $

39 $

40 $$

41 $

42 $

43 $

44 #

45 # $

46 $ 47 # $

48 # $

49 ## $

50 #

51 ## $

52 $

53 $

54 ## $

55 # $

56 #

57 #

58 $

59 $$

60 $

61 $$

62 $

63 $

64 $

65 $

66 $

67 $$

68 ## $

69 ## $

70 $

71 $$

72 $

73 $$

74 $$

75 ## $

76 $$

78 $

79 $

80 $ 81 $

82 $

83 $

84 $

85 $

86 $$

87 $

89 $$

90 $

91 #

92 $$

93 $

94 $

95 $

96

97

98 #

99 # $

100 $

101 ##

104 ##

105 #

106 ##

108 ##

111 ##

112 #

115 # $

117 # $

119 # $

121 # $

122 # $

124 # $

125 # $ 133 #

135 ##

136 # $

137 # $

138 # $

140 ##

141 # $

142 # $

144 # $

145 # $

146 # $

147 # $

148 # $

149 # $

151 # $

152 # $

153 # $

157 # $

158 #

159 #

166 # $

169 # $

170 # $

171 # $

175 # $

176 ##

177 # $

178 # $

182 # $

188 # $

194 # $

195 # $

196 # $ 197 # $

201 ##

203 ##

207 # $

208 # $

212 # $

213 #

214 ##

216 # $

217 # $

220 # $

221 # $

226 # $

227 # $

234 # $

237 # $$

240 # $

242 # $

243 # $

248 # $

* Bind ing assay (Test 1 ) at 10 μΜ # %inh > 75, ## 45 < %inh < 75;

** Functional assay (Test 2 and 3) at 10 μΜ $ %inh > 75 $$ 45 < %inh < 75.

References

Abe T, Kunz A, Shimamura M, Zhou P, Anrather J, ladecola C. (2009) The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic. J Cereb

Blood Flow Metab. 29(1 ):66-72.

Asboth G, Phaneuf S, Europe-Finner GN, Toth M, Bernal AL. (1996) Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells: involvement of EP1 and EP3 receptor subtypes.

Endocrinology. 137(6):2572-9.

Baba H, Kohno T, Moore KA, Woolf CJ. (2001 ) Direct activation of rat spinal dorsal horn neurons by prostaglandin E2 The Journal of Neuroscience, 21 (5):1750- 1756.

Banfi, L; Narisano, E.; Riva, R.; Stiasni, N.; Hiersemann, M. "Sodium Borohydride" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004.

Breyer MD, Breyer RM. (2000) Prostaglandin receptors: their role in regulating renal function. Curr Opin Nephrol Hypertens. 2000 Jan;9(1 ):23-9.

Candelario-Jalil E, Slawik H, Ridelis I, Waschbisch A, Akundi RS, Hull M, Fiebich BL. (2005) Regional distribution of the prostaglandin E2 receptor EP1 in the rat brain: accumulation in Purkinje cells of the cerebellum. J Mol Neurosci. 27(3):303-10.

Coleman, R. A., Prostanoid Receptors. IUPHAR compendium of receptor characterization and classification, 2 nd edition, 338-353, 2000.

Dirig DM, Yaksh TL. (1999) In vitro prostanoid release from spinal cord following peripheral inflammation: effects of substance P, NMDA and capsaicin. Br J Pharmacol. 126(6):1333-40. Durrenberger PF, Facer P, Casula MA, Yiangou Y, Gray RA, Chessell IP, Day NC, Collins SD, Bingham S, Wilson AW, Elliot D, Birch R, Anand P. (2006) Prostanoid receptor EP1 and Cox-2 in injured human nerves and a rat model of nerve injury: a time-course study. BMC Neurol. 4;6:1 .

Gabriel D, Vernier M, Pfeifer MJ, Dasen B, Tenaillon L, Bouhelal R. (2003) High throughput screening technologies for direct cyclic AMP measurement. Assay Drug Dev. Technol. 1 : 291 -303.

Giblin GM, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessell IP, Clayton NM, Coleman T, Hall A, Hammond B, Hurst DN, Michel AD, Naylor A, Novelli R, Scoccitti T, Spalding D, Tang SP, Wilson AW, Wilson R. (2007) The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)methyl]oxy}phenyl)-1 -cyclopenten- 1 -yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin

EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett. 17(2):385-9.

T.W. Greene and P.G.M. Wuts "Protective groups in organic synthesis" (John Wiley & sons 10 1999)

Guay J., Bateman, K., Gordon R., Mancini J., Riendeau D. (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1 J. Biol Chem 2004. 279, 24866-24872.

Hall, A., Billinton A., Giblin G.M. (2007) EP1 antagonists for the treatment of inflammatory pain. Curr Opin. Drug Discov. Devel. 10 (2007) 597-612. Hall A, Brown SH, Budd C, Clayton NM, Giblin GM, Goldsmith P, Hayhow

TG, Hurst DN, Naylor A, Anthony Rawlings D, Scoccitti T, Wilson AW, Winchester WJ. (2009) Discovery of GSK345931 A: An EP(1 ) receptor antagonist with efficacy in preclinical models of inflammatory pain. Bioorg Med Chem Lett. 19(2):497-501 . Honemann CW, Heyse TJ, Mollhoff T, Hahnenkamp K, Berning S, Hinder F, Linck B, Schmitz W, van Aken H. (2001 ) The inhibitory effect of bupivacaine on prostaglandin E(2) (EP(1 )) receptor functioning: mechanism of action. Anesth Analg. 93(3):628-634.

J. Wiley & Sons, New York.; and Seyden-Penne, J. "Reductions by the Alumino- and Borohydrides in Organic Synthesis"; VCH-Lavoisier: Paris, 1991

Johansson T, Narumiya S, Zeilhofer HU. (201 1 ) Contribution of peripheral versus central EP1 prostaglandin receptors to inflammatory pain. Neurosci Lett. 495(2):98-101 .

Kawahara H, Sakamoto A, Takeda S, Onodera H, Imaki J, Ogawa R. (2001 ) A prostaglandin E2 receptor subtype EP1 receptor antagonist (ONO-871 1 ) reduces hyperalgesia, allodynia, and c-fos gene expression in rats with chronic nerve constriction. Anesth Analg. 93(4):1012-7.

P.J. Kocienski "Protecting Groups" (Georg Thieme Verlag 1994)

Richard Larock, Comprehensive Organic Transformations, 2nd edition, Wiley- VCH, ISBN 0-471 -19031 -4.

Lee T, Hedlund P, Newgreen D, Andersson KE. (2007) Urodynamic effects of a novel EP(1 ) receptor antagonist in normal rats and rats with bladder outlet obstruction. J Urol. 177(4):1562-1567.

Lee CM, Genetos DC, You Z, Yellowley CE. (2007b) Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol. 212(1 ):182-188

Li X, Cudaback E, Keene CD, Breyer RM, Montine TJ. (201 1 ) Suppressed microglial E prostanoid receptor 1 signaling selectively reduces tumor necrosis factor alpha and interleukin 6 secretion from toll-like receptor 3 activation. Glia. 59(4):569-576 Lin CR, Amaya F, Barrett L, Wang H, Takada J, Samad TA, Woolf CJ (2006) Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J Pharmacol Exp Ther. 319(3):1096-103.

Ma W, Eisenach JC. (2003) Four PGE2 EP receptors are up-regulated in injured nerve following partial sciatic nerve ligation. Exp Neurol. 183(2):581 -92.

Miki, T.; Matsunami, M.; Okada, H.; Matsuya, H.; Kawabata, A (2010) ONO- 8130, an EP1 antagonist, strongly attenuates cystitis-related bladder pain caused by cyclophosphamide in mice. J Pharmacol Sci 1 12(Suppl. 1 ): Abst P1 J-1 -2

Minami T, Uda R., Horiguchi S., Ito S. Hyodo M., Hayaishi O. (1994) Allodynia evoked by intrathecal administration fo prostaglandin E2 to conscious mice. Pain, 1994, 57: 217-223.

Minami T, Nakano H, Kobayashi T, Sugimoto Y, Ushikubi F, lchikawa A, Narumiya S, Ito S. (2001 ) Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br J Pharmacol. 133(3):438-44.

Mizuguchi S, Ohno T, Hattori Y, Ae T, Minamino T, Satoh T, Arai K, Saeki T, Hayashi I, Sugimoto Y, Narumiya S, Saigenji K, Majima M. (2010) Roles of prostaglandin E2-EP1 receptor signaling in regulation of gastric motor activity and emptying. Am J Physiol Gastrointest Liver Physiol. 299(5) :G1078-1086

Moriyama T, Higashi T, Togashi K, lida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M. (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain. 1 : 3.

Nakayama Y, Omote K, Namiki A. (2002) Role of prostaglandin receptor EP1 in the spinal dorsal horn in carrageenan-induced inflammatory pain. Anesthesiology. 97(5):1254-62. Nakayama Y, Omote K, Kawamata T, Namiki A. (2004) Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn. Brain Res. 1010(1 -2):62-8. Narumiya S., Sugimoto Y., Ushikubi F. (1999) Protanoid receptors: structures, properties, and functions. Physiol Rev. 79 (1999) 1 193-1226.

Niho N, Mutoh M, Kitamura T, Takahashi M, Sato H, Yamamoto H, Maruyama T, Ohuchida S, Sugimura T, Wakabayashi K. (2005) Suppression of azoxymethane-induced colon cancer development in rats by a prostaglandin E receptor EP1 -selective antagonist. Cancer Sci. 96(5):260-264.

Oidda H., Namba T., Sugimoto Y., Ushikubi F., Ohishi H., Ichikawa A. et al (1995) In situ hybridization studies of prostacyclin receptor mRNA expression in various mouse organs. Br J Pharmacol 1995, 1 16, 2828-2837.

Oka T, Oka K, Saper CB. (2003) Contrasting effects of E type prostaglandin (EP) receptor agonists on core body temperature in rats. Brain Res. 968(2):256-262. Oka T, Hosoi M, Oka K, Hori T. (1997) Biphasic alteration in the trigeminal nociceptive neuronal responses after intracerebroventricular injection of prostaglandin E2 in rats. Brain Res. 749(2):354-7. Erratum in: Brain Res 757(2):299.

Okada, H., Konemura, T., Maruyama, T (2010) ONO-8539, a novel ep1 receptor antagonist, suppresses bladder hyperactivity via excessive production of prostaglandin e2 (pge2) induced by intravesical instillation of atp in urodynamic evaluation of cynomolgus monkeys. Eur Urol Suppl 9(2):72

Omote K, Yamamoto H, Kawamata T, Nakayama Y, Namiki A. (2002) The effects of intrathecal administration of an antagonist for prostaglandin E receptor subtype EP(1 ) on mechanical and thermal hyperalgesia in a rat model of postoperative pain. Anesth Analg. 95(6):1708-12. Omote K, Kawamata T, Nakayama Y, Kawamata M, Hazama K, Namiki A. (2001 ) The effects of peripheral administration of a novel selective antagonist for prostaglandin E receptor subtype EP(1 ), ONO-871 1 , in a rat model of postoperative pain. Anesth Analg.92(1 ):233-238.

Rahal S, McVeigh LI, Zhang Y, Guan Y, Breyer MD, Kennedy CR. (2006) Increased severity of renal impairment in nephritic mice lacking the EP1 receptor. Can J Physiol Pharmacol. 84(8-9) :877-885.

Sarkar S, Hobson AR, Hughes A, Growcott J, Woolf CJ, Thompson DG, Aziz Q. (2003) The prostaglandin E2 receptor-1 (EP-1 ) mediates acid-induced visceral pain hypersensitivity in humans. Gastroenterology. 124(1 ):18-25.

Samad TA, Sapirstein A, Woolf CJ. (2002) Prostanoids and pain: unraveling mechanisms and revealing therapeutic targets. Trends Mol Med. 2002 Aug;8(8):390-6.

Schlotzer-Schrehardt U, Zenkel M, Nusing R.M. (2002) Expression and Localization of FP and EP Prostanoid. Invest. Ophthalmol. Vis. Sci. 43(5) 1475- 1487.

Syriatowicz JP, Hu D, Walker JS, Tracey DJ. (1999) Hyperalgesia due to nerve injury: role of prostaglandins. Neuroscience. 94(2):587-94.

Teramura, T.; Kawatani, M.; Maruyama, T. (2000) Prostaglandin E1 facilitate primary afferent activity from the urinary bladder in the rat using selective EP1 - receptor antagonist (ONO-871 1 ). BJU Int 86(Suppl. 3): Abst P6.3.19

L. G. Wade, Jr., Organic Chemistry, 6th ed., p. 477, Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA, 2005.

Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, Maruyama T, Kondo K, Ushikubi F, Narumiya S, Sugimura T, Wakabayashi K. (1999) Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 59(20):5093-5096.

Wilbraham D., Masuda T., Deacon S.,Kuwayama T., Vincent S. (2010) Safety, tolerability and pharmacokinetic of multiple ascending doses of the ep-1 receptor antagonist ono-8539, a potential new and novel therapy to overactive bladder in healthy young and elderly subjects Eur Urol Suppl 9(2):250.

Woodward DF, Regan JW, Lake S, Ocklind A. (1997) The molecular biology and ocular distribution of prostanoid receptors. Surv Ophthalmol. 41 Suppl 2:S15-

21 .

Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM, Jonason JH, Awad HA, Schwarz EM, O'Keefe RJ.J (201 1 ) EP1 (-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair. Bone Miner Res. 26(4):792-802.