Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ESD PROTECTION OF MEMS RF APPLICATIONS
Document Type and Number:
WIPO Patent Application WO/2017/087338
Kind Code:
A1
Abstract:
The present disclosure generally relates to the combination of MEMS intrinsic technology with specifically designed solid state ESD protection circuits in state of the art solid state technology for RF applications. Using ESD protection in MEMS devices has some level of complexity in the integration which can be seen by some as a disadvantage. However, the net benefits in the level of overall performance for insertion loss, isolation and linearity outweighs the disadvantages.

Inventors:
GADDI ROBERTO (US)
HUFFMAN JAMES DOUGLAS (US)
NIU CHENHUI (US)
PARKHURST RAY (US)
Application Number:
PCT/US2016/061933
Publication Date:
May 26, 2017
Filing Date:
November 14, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CAVENDISH KINETICS INC (US)
International Classes:
H01H1/00; H01H59/00; H01L27/02; H04B1/04; H04B1/16; H04B1/40
Domestic Patent References:
WO2015160723A12015-10-22
Foreign References:
US20030214373A12003-11-20
US20140015731A12014-01-16
US6567251B12003-05-20
US20100051428A12010-03-04
Other References:
None
Attorney, Agent or Firm:
VERSTEEG, Steven H. et al. (US)
Download PDF:
Claims:
CLAIMS

1 . A device, comprising: a plurality of MEMS devices connected in parallel with a common RF electrode, wherein the MEMS devices are disposed, electrically, between the RF electrode and ground; and a first ESD device coupled in parallel to the plurality of MEMS devices between the RF electrode and ground.

2. A device, comprising: a plurality of MEMS devices connected in parallel with a common first RF electrode, wherein the MEMS devices are disposed, electrically, between the first RF electrode and a second RF electrode; and a first ESD device coupled between the second RF electrode and ground.

3. The device of claim 2, further comprising a second ESD device coupled in parallel to the plurality of MEMS devices between the first RF electrode and the second RF electrode.

4. The device of claim 3, further comprising a third ESD device connected between ground and the first RF electrode.

5. The device of claim 2, further comprising a second ESD device connected between ground and the first RF electrode.

6. A device, comprising: a plurality of MEMS devices connected in parallel with a first RF electrode, wherein each MEMS device has a corresponding second electrode; and a ESD device coupled between the first RF electrode and ground.

7. The device of claim 6, wherein each MEMS device includes a second ESD device coupled in parallel between the first RF electrode and the corresponding second RF electrode.

8. The device of claim 7, wherein each MEMS device includes a third ESD device coupled between the second RF electrode and ground.

9. The device of claim 6, wherein each MEMS device includes a second ESD device coupled between the second RF electrode and ground.

10. A device, comprising: a SOI semiconductor die; a plurality of pairs of connection pads coupled to the die; and an ESD device coupled between the connection pads of each pair of connection pads.

1 1 . A device, comprising: a SOI semiconductor die; a plurality of connection pads coupled to the die; a floating common node coupled to the die; an ESD device coupled between each connection pad and the floating common node.

12. A device, comprising: a plurality of MEMS devices connected in parallel between a first RF electrode and a second RF electrode; a first ESD device coupled between the first RF electrode and ground; and a second ESD device coupled between the second RF electrode and ground.

13. A device, comprising: a first RF electrode; a plurality of second RF electrodes, wherein a switch is present between each second RF electrode and the first RF electrode; a first ESD device coupled between each second RF electrode and each switch; a second ESD device coupled between each switch and the first RF electrode; and a third ESD device coupled between ground and each first ESD device and the second ESD device.

Description:
ESD PROTECTION OF MEMS RF APPLICATIONS

BACKGROUND OF THE DISCLOSURE

Field of the Disclosure

[0001] Embodiments of the present disclosure generally relate to a micro electromechanical systems (MEMS) device for reducing risk of electro-static discharge (ESD).

Description of the Related Art

[0002] Devices including MEMS technology which have been designed and manufactured for applications in radio frequency telecommunications where risk of electro-static discharge is present, both during the manufacturing process (e.g. assembly) and in the typical usage conditions of the device (e.g. exposure to electrically charged human body). In particular, components such switches and tunable capacitors used to enable reconfigurable analog and mixed-signal circuits for state-of-the-art wireless devices.

[0003] ESD protection devices and circuits are an essential part of the solid state technology enabling electronic components and circuits. These solutions come with a significant performance penalty when applied to radio-frequency components. Key metrics such as insertion loss, isolation, linearity are significantly degraded when standard ESD protection techniques are used. MEMS technology can enable unprecedented performance levels when applied to the implementation of radio- frequency components such as switches and variable capacitors. But traditional ESD protection techniques would degrade such performance to unacceptable levels.

[0004] There is a need in the industry for new ESD solutions for MEMS based components that are able to maintain a high level of RF performance.

SUMMARY OF THE DISCLOSURE

[0005] The present disclosure generally relates to the combination of MEMS intrinsic technology with specifically designed solid state ESD protection circuits in state of the art solid state technology for RF applications. Using ESD protection in MEMS devices has some level of complexity in the integration which can be seen by some as a disadvantage. However, the net benefits in the level of overall performance for insertion loss, isolation and linearity outweighs the disadvantages.

[0006] In one embodiment, a device comprises a plurality of MEMS devices connected in parallel with a common RF electrode, wherein the MEMS devices are disposed, electrically, between the RF electrode and ground; and a first ESD device coupled in parallel to the plurality of MEMS devices between the RF electrode and ground.

[0007] In another embodiment, a device, comprises a plurality of MEMS devices connected in parallel with a common first RF electrode, wherein the MEMS devices are disposed, electrically, between the first RF electrode and a second RF electrode; and a first ESD device coupled between the second RF electrode and ground.

[0008] In another embodiment, a device comprises a plurality of MEMS devices connected in parallel with a first RF electrode, wherein each MEMS device has a corresponding second electrode; and a ESD device coupled between the first RF electrode and ground.

[0009] In another embodiment, a device comprises a SOI semiconductor die; a plurality of pairs of connection pads coupled to the die; and an ESD device coupled between the connection pads of each pair of connection pads.

[0010] In another embodiment, a device comprises a plurality of MEMS devices connected in parallel between a first RF electrode and a second RF electrode; a first ESD device coupled between the first RF electrode and ground; and a second ESD device coupled between the second RF electrode and ground.

[0011] In another embodiment, a device comprises a first RF electrode; a plurality of second RF electrodes, wherein a switch is present between each second RF electrode and the first RF electrode; a first ESD device coupled between each second RF electrode and each switch; a second ESD device coupled between each switch and the first RF electrode; and a third ESD device coupled between ground and each first ESD device and the second ESD device. BRIEF DESCRIPTION OF THE DRAWINGS

[0012] So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.

[0013] Figure 1A is a schematic top-view of an ohmic MEMS switch.

[0014] Figure 1 B is a schematic top view of an ohmic switch cell containing a number of parallel operated MEMS switches.

[0015] Figure 1 C is a schematic top view of an ohmic switch array containing a number of parallel operated switch-cells.

[0016] Figure 2 is a schematic cross-sectional view of a MEMS ohmic switch according to one embodiment.

[0017] Figures 3A-3G exemplify several embodiments of an ESD coupled to a RF electrode of a MEMS device.

[0018] Figure 4 shows multiple ESD elements on a single die according to one embodiment.

[0019] Figure 5 shows multiple ESD elements on a single die according to another embodiment.

[0020] Figures 6A and 6B show two examples of architectures where a variable capacitor (tuner) and four pole switches have been ESD protected using the same ESD circuit implemented with an internal floating common node.

[0021] Figure 7 shows a cascading circuit for ESD protection according to one embodiment. [0022] To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.

DETAILED DESCRIPTION

[0023] The present disclosure generally relates to the combination of MEMS intrinsic technology with specifically designed solid state ESD protection circuits in state of the art solid state technology for RF applications. Using ESD protection in MEMS devices has some level of complexity in the integration which can be seen by some as a disadvantage. However, the net benefits in the level of overall performance for insertion loss, isolation and linearity outweighs the disadvantages.

[0024] Figure 1A is a schematic top-view of an ohmic MEMS switch 100. The switch 100 contains an RF-electrode 102, pull-down electrodes 104 and anchor electrodes 106. When a sufficiently high voltage is applied to the pull-down electrodes 104, the MEMS switch is actuated down and forms an ohmic connection between the RF-electrode 102 and anchor electrodes 106

[0025] Figure 1 B is a schematic top view of an ohmic switch cell 1 10 containing a number of MEMS switches 100. All MEMS switches 100 in the cell 1 10 are turned on at the same time by applying a high-enough voltage on the pulldown-electrodes 104. Because many switches are operated in parallel, the resistance between the RF-electrode 102 and anchor electrodes 106 is reduced.

[0026] Figure 1 C shows a schematic top-view of an ohmic switch-array. It contains a number of parallel operated switch-cells 1 10. The RF-electrodes 102 of each cell are connected together at one end of each switch-cell 1 10, while the anchor-electrodes 106 are connected together at the other end of each switch-cell 1 10. When all cells are turned on this results in a further reduction of the resistance between the RF-electrode 102 and anchor electrode 106. At the same time, because many switches are operated in parallel the total switch-array can handle more current. [0027] Figure 2 shows a cross-section view of an ohmic MEMS switch 200. This disclosure describes a method of improving the current handling capability of the MEMS leg-suspension and anchor. The MEMS switch 200 contains an RF electrode 102, pull-down electrodes 104 and anchor electrodes 106 located on substrate 202. The pull-down electrodes 104 are covered with a dielectric layer 204 to avoid a short-circuit between the MEMS switch and the pull-down electrode 104 in the pulled-down state. Suitable materials for the electrically insulating or dielectric layer 204 include silicon based materials including silicon-oxide, silicon-dioxide, silicon-nitride and silicon-oxynitride. The thickness of this layer 204 is typically in the range of 50nm to 150nm to limit the electric field in the dielectric layer. On top of the RF electrode 102 is the RF contact 206 to which the switch body forms an ohmic contact in the pulled-down state. On top of the anchor-electrode 106 is the anchor contact 208 to which the MEMS device is anchored. Typical materials used for the contacting layers 206, 208 include Ti, TiN, TiAI, TiAIN, AIN, Al, W, Pt, Ir, Rh, Ru, RuO 2 , ITO and Mo and combinations thereof.

[0028] The switch element contains a stiff bridge consisting of conductive layers 210, 212 which are joined together using an array of vias 214. This allows for a stiff plate-section and compliant legs to provide a high contact-force while keeping the operating voltage to acceptable levels. The MEMS bridge is suspended by legs 216 formed in the lower layer 210 and legs 218 formed in the upper layer 212 of the MEMS bridge. The upper layer of the MEMS bridge is anchor to the lower layer of the MEMS with via 220. The lower layer of the MEMS bridge is anchored to the anchor contact 208 with via 222. Current that is injected from the RF contact 206 into the MEMS bridge when the MEMS switch is actuated down flows out through the MEMS-bridge in both directions to the anchor electrodes 106 located on either side of the switch-body. The current handling of the switch is improved by using legs 216, 218 in both layers 210, 212 of the MEMS bridge instead of just a single layer. Because these legs are not joined together with vias 214 like in the MEMS-bridge the compliance of these legs is still low enough to allow for reasonable operating voltages to pull the MEMS bridge 210, 212 in contact with the RF contact 206. [0029] Above the MEMS bridge there is a dielectric layer 224 which is capped with metal pull-up electrode 226 which is used to pull the MEMS up to the roof for the off state. Dielectric layer 224 avoids a short-circuit between the MEMS bridge and the pull-up electrode 226 in the actuated-up state and limits the electric fields for high reliability. Moving the device to the top helps reduce the capacitance of the switch to the RF-electrode 102 in the off state. The cavity roof further contains an additional dielectric layer 228 for mechanical strength. The cavity is sealed with dielectric layer 230 which fills the etch release holes 232 used to remove the sacrificial layers which are present during fabrication. The dielectric layer 230 enters the etch release holes 232 and provides a further mechanical support to the top- layer 212 of the MEMS-bridge in the anchors, while also sealing the cavity so that there is a low pressure environment in the cavity. Suitable materials for the roof dielectric layers 228, 230 include silicon based materials including silicon-oxide, silicon-dioxide, silicon-nitride and silicon-oxynitride.

[0030] The same conductive layer which is used for the pull-up electrode 226 is also used at the sides of the cavity at 234 where it connects to the top-layer 212 of the MEMS-bridge at 236, to the bottom-layer 210 of the MEMS-bridge at location 238 and to the anchor contact 208. Thus this sidewall electrical connection provides for a current path from the MEMS bridge 210, 212 to the anchor contact 208 in parallel with the MEMS-bridge vias 220, 222 and increases the current handling capability of the MEMS anchor.

[0031] In this disclosure, from an architectural stand point, a series of topologies for combining a unit ESD protection elment with a MEMS tunable capacitor or switch is disclosed. Depending on the component and the pinout, one or multiple ESD protection elements are inserted and properly connected in order to avoid disruptive electrical voltages and currents within the MEMS switch elements. Figures 3A-3G exemplify several possibilities.

[0032] The ESD protection elements is implemented in solid state technologies that offer the best performance in terms of loss, isolation and linearity, such as Silicon-on-lnsulator (SOI). The implemented ESD circuit is passive (i.s., requires no power) as the ESD circuit is supposed to "turn-on" with the energy provided by an ESD event. In normal application conditions, the ESD circuit provides minimum amount of loading for the intrinsic MEMS circuit, in terms of very small electrical capacitances and leakage currents.

[0033] Several ESD elements may be included on a single die as shown in Figure 4. Several ESD elements on a single die allows for flexibility in terms of how many ESD elements are needed given the particular MEMS device to be protected. From an integration standpoint, the component includes separate substrates for the MEMS intrinsic part and for the SOI ESD protection circuit. These are combined within the same miniature package. With this approach, the same ESD circuit can be re-utilized within many different components, with reduced costs and complexity.

[0034] In a different novel implementation, the ESD circuit architecture is such that a wide range of products can be protected using the same ESD chip. This added flexibility is provided by having an internal "floating" node in the ESD circuit chip. Any pair of nodes in the final MEMS device can be protected by being connected to any pair of lO's of the ESD chip such as shown in Figure 5.

[0035] Figures 6A and 6B show two examples of architectures where a variable capacitor (tuner) and four pole switches have been ESD protected using the same ESD circuit implemented with an internal floating common node.

[0036] Additionally, the implementation of timing control to protect the ESD IC from turning on too fast and blowing up during the IEC ESD event is disclosed. As an example, a capacitive cascade is shows below which provides the required time delay before the ESD protection circuit turns on, avoiding large but very fast current spikes typical for IEC ESD events from damaging the circuit as shown in Figure 7.

[0037] By using ESD protection with MEMS intrinsic technology the level of overall performance for insertion loss, isolation and linearity improves greatly.

[0038] While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.