Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ESTERS OF STEROIDAL LACTAM AND BIS(2-CHLOROETHYL) AMINOPHENOXY PROPANOIC ACID DERIVATIVES
Document Type and Number:
WIPO Patent Application WO/2017/001439
Kind Code:
A1
Abstract:
Novel homo-aza-steroidal esters with alkylating bis(2-chloroethyl)aminophenoxy propanoic acid and substituted derivatives, processes for their preparation, pharmaceutical compositions containing them and their use in the treatment of cancer.

Inventors:
TRAFALIS DIMITRIOS (GR)
Application Number:
PCT/EP2016/065071
Publication Date:
January 05, 2017
Filing Date:
June 28, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GALENICA S A (GR)
ENERGONBIO TECH S A (GR)
International Classes:
C07J73/00; A61K31/58; A61P35/00
Domestic Patent References:
WO2013142873A22013-09-26
Foreign References:
US4150126A1979-04-17
Other References:
EFTHIMIOU M ET AL: "Comparative study of genetic activity of chlorambucil's active metabolite steroidal esters: The role of steroidal skeleton on aneugenic potential", MUTATION RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 689, no. 1-2, 7 July 2010 (2010-07-07), pages 1 - 11, XP027101642, ISSN: 0027-5107, [retrieved on 20100622]
CHARALAMBOS CAMOUTSIS ET AL: "An overview on the antileukemic potential of D-homo-aza-and respective 17-acetamido-steroidal alkylating esters", INVESTIGATIONAL NEW DRUGS., vol. 21, no. 1, 1 January 2003 (2003-01-01), US, pages 47 - 54, XP055232145, ISSN: 0167-6997, DOI: 10.1023/A:1022964225715
CATSOULACOS P ET AL: "ON THE FORMATION OF ESTRONE LACTAM ESTERS OF N,N-BIS(2-CHLOROETHYL)AMINOCINNAMIC ACID ISOMERS, P-N,N-BIS(2-CHLOROETHYL)AMINOPHENYLBUTYRIC ACID AND THEIR ANTITUMOR ACTIVITY", JOURNAL OF HETEROCYCLIC CHEMISTRY, WILEY-BLACKWELL PUBLISHING, INC, US, vol. 32, no. 3, 1 May 1995 (1995-05-01), pages 1063 - 1066, XP009052342, ISSN: 0022-152X, DOI: 10.1002/JHET.5570320365
CATSOULACOS, PANAYOTIS ET AL: "Comparison of current alkylating agents with a homo-aza-steroidal ester for antineoplastic activity", ONCOLOGY ( 1994 ), 51(1), 74-8 CODEN: ONCOBS; ISSN: 0030-2414, 1994, XP008178263, DOI: 10.1159/000227314 10.1159/000227314
PAPACONSTANTINOU, IOANNA C. ET AL: "Steroidal esters of the aromatic nitrogen mustard 2-[4-N,N-bis(2-chloroethyl)amino-phenyl]butanoic acid (2-PHE-BU): synthesis and in-vivo biological evaluation", ANTI-CANCER DRUGS , 24(1), 52-65 CODEN: ANTDEV; ISSN: 0959-4973, vol. 2013, 2013, XP008178268, DOI: 10.1097/CAD.0B013E328357F687 10.1097/CAD.0B013E328357F687
PAPAGEORGIOU, ATHANASIOS ET AL: "Structure-anti-leukemic activity relationship study of B- and D-ring modified and non-modified steroidal esters of chlorambucil's active metabolite", ANTI-CANCER DRUGS , 16(10), 1075-1082 CODEN: ANTDEV; ISSN: 0959-4973, 2005, XP008178269, DOI: 10.1097/00001813-200511000-00006 10.1097/00001813-200511000-00006
KAPOU, AGNES ET AL: "3D QSAR/CoMFA and CoMSIA Studies on Antileukemic Steroidal Esters Coupled with Conformationally Flexible Nitrogen Mustards", JOURNAL OF CHEMICAL INFORMATION AND MODELING , 48(11), 2254-2264 CODEN: JCISD8; ISSN: 1549-9596, 2008, XP008178270, DOI: 10.1021/CI800240M 10.1021/CI800240M
HURLEY LH, NATURE REV CANCER, vol. 2, 2002, pages 188 - 200
BRENDEL M; RUHLAND A, MUTAT RES, vol. 133, 1984, pages 51 - 85
WALL ME ET AL., J MED CHEM, vol. 12, 1969, pages 810 - 8
CATANE R, CANCER TREAT REP, vol. 62, 1978, pages 1264 - 5
MATSUMOTO K ET AL., MED ONCOL, vol. 30, 2013, pages 717
IARC MONOGR EVAL CARCINOG RISKS HUM, vol. 50, 1990, pages 115 - 22
HIDDEMANN W, EUR J CANCER, vol. 31A, no. 13-14, 1995, pages 2141 - 5
WAMPLER GL; CATSOULACOS P, CANCER TREAT REP, vol. 61, 1977, pages 37 - 41
CATSOULACOS P; CATSOULACOS D, ANTICANCER RES, vol. 11, 1991, pages 1773 - 7
CATSOULACOS P; CATSOULACOS D, ANTICANCER RES, vol. 13, no. 4, 1993, pages 1203 - 8
CATSOULACOS P ET AL., ONCOLOGY, vol. 51, 1994, pages 74 - 8
CATSOULACOS P; CATSOULACOS D, ANTICANCER RES, 1994
CAMOUTSIS C; TRAFALIS DT, INVEST NEW DRUGS, vol. 21, 2003, pages 47 - 54
KOUTSOUREA AL ET AL., BIOORG MED CHEM, vol. 16, 2008, pages 5207 - 15
KOUTSOUREA AL ET AL., STEROIDS, vol. 68, no. 7-8, 2003, pages 659 - 66
MAZUR RH, J ORG CHEM, vol. 28, no. 1, 1963, pages 248 - 250
MORZYCKI JW ET AL., BIOORG MED CHEM, vol. 4, no. 8, 1996, pages 1209 - 15
CAMOUTSIS C; CATSOULACOS P, J HETEROCYCL CHEM, vol. 20, no. 4, 1983, pages 1093 - 4
HUANG Y ET AL., MOLECULES, vol. 18, no. 7, 2013, pages 7436 - 47
VALU ET AL., J MED CHEM, vol. 33, no. 11, 1990, pages 3014 - 19
VALU KK ET AL., J MED CHEM, vol. 33, no. 11, 1990, pages 3014 - 9
IVANENKO TI ET AL., PHARM CHEM J, vol. 16, no. 10, 1982, pages 751 - 6
REGAN BM; NEWTON HAYES F, J AM CHEM SOC, vol. 78, no. 3, 1956, pages 639 - 43
KOUTSOUREA ET AL., STEROIDS, vol. 68, no. 7-8, 2003, pages 659 - 66
TRAFALIS DT ET AL., J BUON, vol. 8, 2003, pages 333 - 9
TRAFALIS DT ET AL., J BUON, vol. 9, no. 3, 2004, pages 275 - 82
TRAFALIS DT ET AL., J BUON, vol. 10, 2005, pages 227 - 34
TRAFALIS DT ET AL., BREAST CANCER RES TREAT, vol. 97, 2006, pages 17 - 31
CATSOULACOS P ET AL., CANCER CHEMOTHER PHARMACOL, vol. 3, no. 1, 1979, pages 67 - 70
CATSOULACOS P ET AL., J PHARM SCI, vol. 67, no. 9, 1978, pages 1342 - 3
CATSOULACOS P ET AL., ANTICANCER RES, vol. 15, 1995, pages 827 - 30
GOLIDIM A ET AL., NAT CANCER INST MONOGR, vol. 55, 1980, pages 25 - 26
"NCI Monograph", vol. 55, 1986, NIH PUBLICATION, pages: 80 - 193
Attorney, Agent or Firm:
ROUKOUNAS, Dimitrios (DE)
Download PDF:
Claims:
CLAIMS

1 . A compound of formula (I) or a pharmaceutically acceptable salt thereof

R2 is selected from the group consisting of H, -CH3, -CH=CH2, -CH2-CH3, - CH2CH2CH3,

R3 is selected from the group consisting of H, -OH, -NH2.

2. A compound according to claim 1 , or a pharmaceutically acceptable salt thereof, wherein Ri is selected from the group consisting of

3. A compound according to claim 2 or a pharmaceutically acceptable salt thereof, wherein R-i is selected from the group consisting of

4. A compound according to claim 2 or a pharmaceutically acceptable salt thereof, wherein R-i is selected from the group consisting of

5. A compound according to any one of claims 1 -4 or a pharmaceutically acceptable salt thereof, wherein R2 is selected from the group consisting of H, -CH3, -CH=CH2, - CH2-CH3, -CH2CH2CH3.

6. A compound according to claim 5 or a pharmaceutically acceptable salt thereof, wherein R2 is H.

7. A compound according to any one of claims 1 -6 or a pharmaceutically acceptable salt thereof, wherein R3 is H.

8. A compound according to any one of claims 1 -6 or a pharmaceutically acceptable salt thereof, wherein R3 is -NH2. 9. A compound according to any one of claims 1 -8 or a pharmaceutically acceptable salt thereof for use in medicine.

10. A compound according to any one of claims 1 -8 or a pharmaceutically acceptable salt thereof for use in the treatment of cancer.

1 1 . A compound according to any one of claims 1 -8 or a pharmaceutically acceptable salt thereof for use in the treatment of ovarian cancer, breast cancer, prostate cancer or leukemia. 12. A pharmaceutical composition comprising a compound according to any one of claims 1 -8 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.

Description:
ESTERS OF STEROIDAL LACTAM AND BIS(2-CHLOROETHYL)

AMINOPHENOXY PROPANOIC ACID DERIVATIVES

Field of the invention

The present invention relates to novel homo-aza-steroidal esters with alkylating mustards, derivatives of aniline, such as bis(2-chloroethyl)aminophenoxy propanoic acid and substituted derivatives.

Background of the invention

Nowadays, alkylating anticancer agents, as nitrogen mustards, still remain an effective class of antitumor drugs in current clinical practice, whose therapeutic effects derive from their ability to attach alkyl groups to cellular DNA and to produce significant DNA damage (Hurley LH, Nature Rev Cancer, 2002, 2:188-200; Brendel M and Ruhland A, Mutat Res, 1984; 133:51 -85).

Steroidal conjugates have been previously used as carriers of cytotoxic alkylating agents because they reduce systemic toxicity and improve efficacy of cancer therapy (Wall ME et al, J Med Chem, 1969, 12:810-8; Catane R, Cancer Treat Rep, 1978; 62:1264-5). Steroidal alkylating agents as Estramustine (ester of estradiol and mechlorethamine) and Prednimustine (ester prednisolone and chlorambucil) are currently applied in cancer therapy on the treatment of prostate cancer and lymphoproliferative malignancies respectively (Catane R, Cancer Treat Rep, 1978, 62:1264-5; Matsumoto K et al, Med Oncol, 2013, 30:717; IARC Monogr Eval Carcinog Risks Hum, 1990, 50:1 15-22; Hiddemann W, Eur J Cancer, 1995, 31A(13- 14):2141 -5).

Whereas these drugs produce diminished acute and systemic toxicity contrary to the much higher toxicity that their alkylating components produced alone, their anticancer activity is not so much improved as well as specificity to targeting cancer cells rather be short despite the initial evaluations. However, even if the main molecular pharmacological mechanisms that estramustine and prednimustine exert anticancer activity are rather different than specific action on the steroid receptors, in general they showed good and improved therapeutic efficacy in clinical practice.

Several homo-aza- or lactam steroidal esters (steroids that contain lactam group - NHC=0- into steroid ring/s conjugated with alkylating agents) have been previously synthesized and tested for toxicity and anticancer activity in preclinical settings, in vitro and in vivo (Wampler GL and Catsoulacos P, Cancer Treat Rep, 1977, 61 :37- 41 ; Catsoulacos P and Catsoulacos D, Anticancer Res, 1991 , 1 1 :1773-7; Catsoulacos P and Catsoulacos D, Anticancer Res, 1993, 13(4): 1203-8; Catsoulacos P et al, Oncology, 1994, 51 :74-8; Catsoulacos P and Catsoulacos D, Anticancer Res, 1994, 14(6B):2525-8; Camoutsis C and Trafalis DT, Invest New Drugs, 2003, 21 :47-54; Koutsourea Al et al, Bioorg Med Chem, 2008, 16:5207-15).

Lactam steroid alkylating esters showed that they generate significantly decreased acute toxicity in vivo, whereas they demonstrated enhanced and very promising antitumor activity in vitro and in vivo, while the respective unmodified (non-lactam) steroidal alkylators produced significantly lower or little anticancer activity against the respective experimental tumor systems. Except of the production of cellular DNA damage, the molecular pharmacological mechanisms that significantly improved anticancer effect of the lactam steroid alkylating esters take action are still uncharted. Moreover, the biological importance of the position that one or more lactam groups are incorporated into the steroidal structure is also unknown. Furthermore, the alkylating agent that conjugated via esteric bond on the lactamic steroid plays significant role and modulates the proportion of acute toxicity and antitumor activity, and consequently the extent of therapeutic ratio that a lactam steroidal alkylator generates. Up to now, several active lactam steroidal alkylators have been synthesized and tested but those which showed higher antitumor activity were more toxic and those which demonstrated lower toxicity were less active. These observations indicate that there is a clear need to develop and produce novel active lactam steroidal alkylating conjugates that generate optimal the lower toxicity and higher anticancer activity and therefore the optimum therapeutic index.

Previous studies on lactam steroidal alkylating esters of nitrogen mustard derivatives showed that 3beta-hydroxy-13alpha-amino-13,17-seco-5alpha- androstan-17-oic-13,17-lactam -[p-[bis (2-chloroethyl)amino]phenyl]acetate (ASE, NSC-290205) produced very well balanced effects in preclinical testing on acute toxicity in vivo and antitumor activity in vitro and in vivo, holding a significantly high therapeutic index.

3beta-hydroxy-13alpha-amino-13,17-seco-5alpha-androstan-17-o ic-13,17-lactam -[p-[bis (2- chloroethyl)amino]phenyl]acetate (ASE, NSC-290205)

Therefore ASE represented the "golden" standard for developing new molecules of the same class of agents and testing them for therapeutic efficacy in comparison to that of ASE.

Summary of the invention

The present invention provides novel esters of steroidal lactams and alkylating agents. More specifically, the compounds of the present invention are esters of steroidal lactams with derivatives of bis(2-chloroethyl)aminophenoxypropanoic acid. These compounds exhibit higher antitumor activity and lower acute toxicity in comparison with lactam steroid alkylating esters of the prior art and are useful as antineoplastic agents and cancer therapeutics.

Detailed description of the invention

The present invention provides a compound of formula (I) or a pharmaceu acceptable salt thereof

R 2 is selected from the group consisting of H, -CH 3 , -CH=CH 2 , -CH 2 -CH 3 , - CH2CH2CH 3 ,

R 3 is selected from the group consisting of H, -OH, -NH 2 . Preferably, Ri is selected from the group consisting of

More preferably, Ri is selected from the group consisting of

Preferably, R 2 is selected from the group consisting of H, -CH 3 , -CH=CH 2 , -CH 2 -CH 3 , -CH2CH2CH 3 . More preferably, R 2 is H.

Preferably, R 3 is H or NH 2 .

The hydroxyl group of the bis(2-chloroethyl)aminophenol moiety of the compounds of formula (I) can be in the ortho-, meta-, or para- position in relation to the amino group of the phenyl ring.

The compounds of formula (I) contain at least one asymmetric center. Where the stereochemistry of an asymmetric center is not specified, the structure is intended to encompass all individual stereoisomers as well as their mixtures.

The compounds of formula (I) contain at least one basic functional group and are capable therefore for forming pharmaceutically acceptable salts by treatment with a suitable acid. Suitable acids include pharmaceutically acceptable inorganic and pharmaceutically acceptable organic acids. Examples of pharmaceutically acceptable salts include hydrochloride, hydrobromide, sulfate, phosphate, nitrate, acetate, propionate, butyrate, maleate, fumarate, tartrate, citrate, lactate, oxalate, succinate, and benzoate. The compounds of formula (I) or their pharmaceutically acceptable salts can be used for the treatment of a wide range of cancers. Preferably, they are used for the treatment of ovarian, breast, prostate cancer or leukemia. The compounds of formula (I) or their pharmaceutically acceptable salts exhibit higher antitumor activity and lower acute toxicity in comparison with lactam steroid alkylating esters of the prior art and are useful as antineoplastic agents and cancer therapeutics. The preclinical testing for biological activity disclosed in the examples hereinafter incorporates in comparison and in order to show the superiority of the new alkylating lactam steroidal esters on cancer therapeutic efficacy two positive controls, the alkylating agent (3-(4-(bis(2-chloroethyl) amino)phenoxy)propanoic acid, pBCEAPOPA) alone, and the "golden" standard of the described class of experimental lactam steroidal alkylators, ASE (NSC-290205). The present invention provides also pharmaceutical compositions comprising a compound of formula (I) or a pharmaceutically acceptable salt thereof. Such a pharmaceutical composition may be formulated for administration by any appropriate route such as oral, nasal, topical or parenteral route. For example, a pharmaceutical composition may be formulated as tablet, capsule, powder, solution, suspension, cream or gel. Such a composition generally contains, in addition to a compound of formula (I) or a pharmaceutically acceptable salt thereof, a pharmaceutically acceptable carrier. Such a carrier comprises excipients well known in the art, such as diluents, binders, fillers, disintegrants, lubricants, solvents, suspending agents, thickening agents, buffers, preservatives. These compositions may be prepared following methods well known in the art.

The present invention provides also processes for the preparation of a compound of formula (I) or a pharmaceutically acceptable salt thereof. The steroidal lactams (aza-homo steroids) in the compounds of formula (I) carry one or more amide functionalities at the rings of the basic steroidal framework. It is known that such steroidal lactams can be synthesized from a ketosteroid via the corresponding oximes and Beckman rearrangement (Koutsourea Al et al, Steroids, 2003, 68(7-8):659-66; Mazur RH, J Org Chem, 1963, 28(1 ):248-250; Morzycki JW et al, Bioorg Med Chem, 1996, 4(8): 1209-15; Camoutsis C and Catsoulacos P, J Heterocycl Chem, 1983, 20(4):1093-4; Huang Y et al, Molecules, 2013, 18(7):7436- 47).

General procedure for the Beckmann rearrangement

The oximes (1 mmol) were dissolved in 17.5 mL of dry dioxane. The mixture was cooled to 0 °C and thionyl chloride (1.9 mL) was added dropwise. The mixture was allowed to reach room temperature and stirred for 24 h. The reaction was quenched with NaHC0 3 and the mixture was extracted with ethyl acetate (3 x 20 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 .

The bis(2-chloroethyl)aminophenoxy propanoic acid derivatives of the compounds of the

Substituted 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acids were synthesized starting from 4-nitrophenol. Alkylation of 4-nitrophenol with different 3- chloropropanoic acids gave the 3-(4-nitrophenoxy)propanoic acids, which were further reduced to amino derivatives by using H 2 and Pd/C as catalyst. Next, the amino group was bis-alkylated with oxirane in CH 3 COOH, THF following a known procedure (Valu et al, J Med Chem, 1990, 33 (1 1 ): 3014-19). Finally, the alcohol groups were transformed to the corresponding chlorides by u sing POCI 3 in benzene and heating, affording the corresponding 3-(4-(bis(2-chloroethyl)amino) phenoxy)propanoic acids. In some cases, when amino or hydroxyl groups are present, extra steps for the protection and the deprotection reactions are necessary. For example when R3 is NH 2 or OH group the Boc or Acetyl protecting groups are used respectively (Valu KK et al, J Med Chem, 1990, 33(1 1 ):3014-9). Following the same process, and starting from 2-nitrophenol or 3-nitrophenol, derivatives of formula (I) in which the hydroxyl group is in ortho- or meta- position in relation to the amino group can be synthesised. For the production of the steroidal lactam esters with alkylating agents the steroidal lactams containing a OH group react with the DNA alkylating agent. For example a steroidal lactam reacts with the 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acid with DCC, DMAP or with 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoyl chloride or with a mixed anhydride of 3-(4-(bis(2- chloroethyl)amino)phenoxy)propanoic acid to produce the corresponding esters. Any steroidal mono- or bis-lactam can be derivatized using the present method.

General procedure A for the esterification of steroidal lactams

Alcohol (1 mmol) was dissolved in 28 mL of dry dichloromethane. Then, acid (2 mmol), DCC (2 mmol) and a catalytic amount of DMAP (3 mol%) were added. After the resulting solution was stirred at room temperature for 24 h the solvent was evaporated and the residue was purified by flash column chromatography on silica gel. General procedure B for the esterification of steroidal lactams

In a round-bottom flask, 1 mmol of the acid were diluted in 3.3 mL of dry benzene. 2,4,6-Trichlorobenzoyl chloride (1 .2 mmol) and triethylamine (2.4 mmol) were added and the mixture refluxed under Ar for 1 h. To this mixture a solution of the steroidal alcohol 50 mg (1 mmol) in 3.3 mL dry benzene and a catalytic amount of 4- dimethylaminopyridine were added. The reflux was continued for 3 h. The benzene was totally removed by evaporation in vacuum and the remaining residue was diluted with CH 2 CI 2 . The resulting mixture was extracted with a 5% HCI aqueous solution, the organic layer was washed with a 7% NaHC0 3 aqueous solution and finally with water, dried over Na 2 S0 4 and the solvent was removed under reduced pressure. The residue was chromatographed by flash column chromatography on silica gel.

General procedure C for the esterification of steroidal lactams

A mixture of alcohol (1 mmol), Et 3 N (1 .3 mmol) and a catalytic amount of DMAP was dissolved in CH 2 CI 2 (5 mL) followed by the addition of benzoyl chloride (0.12 mL, 1 .1 mmol). The reaction was monitored by TLC and stirred at room temperature for 24 h then taken up with CH 2 CI 2 and quenched with saturated aq NH 4 CI. The organic layer was dried and the crude product was purified by flash column chromatography on silica gel.

The following examples are illustrative of the invention. Example 1

Scheme 1

1 : 3-Aza-17/3-hydroxy-A-homo-4cr-androsten-4-one was synthesized by modification (Camoutsis C and Catsoulacos P, J Heterocycl Chem, 1983, 20(4): 1093-4) procedure in three steps from testosterone 17-/3-acetate. Testosterone 17-/3-acetate (914 mg, 2.77mmol) was dissolved in 10 ml of dry pyridine. Hydroxylamine hydrochloride (461 mg, 6.64 mmol) was added and the solution was stirred under reflux for 6 h. The solution was poured into water, and the mixture was extracted with ethyl acetate (3 x 30 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; hexane-ethyl acetate= 4/1 ) to afford 675 mg of the syn- and ani/ ' -oximes (74%) as white solids.

2: Syn- and ani/ ' -testosterone-17-acetate oximes (100 mg, 0.145 mmol) were dissolved in 3.5 mL of dry dioxane. The mixture was cooled to 0 °C and thionyl chloride (0.6 mL) was added dropwise. The mixture was allowed to reach room temperature and stirred for 3h. The reaction was quenched with NaHC0 3 and the mixture was extracted with ethyl acetate (3 x 20 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (ethyl acetate) to afford 63 mg of 3- aza-17/3-acetoxy-A-homo-4cr-androsten-4-one (63%) as white solid.

3-Aza-17/3-acetoxy-A-homo-4cr-androsten-4-one, 1 was dissolved in 4.9 mL MeOH and LiOH (1 N, 2 mL) were added dropwise. The mixture was stirred at room temperature for 2 h. The reaction was quenched with NH 4 CI and the mixture was extracted with dichloromethane (3 x 10 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford 87 mg of 3-aza-17/3-hydroxy-A- homo-4cr-androsten-4-one 2 in 74% yield.

3: 3-Aza-17/3-hydroxy-A-homo-4cr-androsten-4-one 2 was dissolved in 28 mL of dry dichloromethane. Then, 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acid (106 mg, 0.573 mmol), DCC (1 19 mg, 0.574 mmol) and a catalytic amount of DMAP were added. After the resulting solution was stirred at room temperature for 24 h the solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluent; hexane-ethyl acetate= 1/2) to give conjugate 3 (191 mg, 99%). 3: mp=53-56 °C; [a] D 23 +10.5 (c= 0.91 CHCI 3 ); 1 H NMR (500 MHz, cdcls) δ 6.92 (s, 1 H), 6.83 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.6 Hz, 2H), 5.72 (s, 1 H), 4.66 (t, J = 8.4 Hz, 1 H), 4.17 (t, J = 6.0 Hz, 2H), 3.63 (m, 4H), 3.59 (m, 4H), 3.32 - 3.04 (m, 2H), 2.75 (t, J = 6.1 Hz, 2H), 2.48 (m, 1 H), 2.27 (m, 1 H), 2.15 (m, 2H), 1 .50-1.98 (m, 10H), 1 .33 (m, 2H), 1.14 (s, 3H), 1.05 (m, 1 H), 0.80 (s, 3H); 13 C NMR (126 MHz, cdcls) δ 171 .0, 170.4, 161 .3, 151 .3, 140.8, 1 18.8, 1 16.3, 1 14.4, 82.7, 64.4, 54.2, 53.2, 50.2, 44.5, 42.7, 41.9, 40.7, 36.7, 36.2, 35.3, 33.8, 33.1 , 27.5, 25.6, 24.9, 23.4, 21.3, 12.1 ; FT-IR: 3450, 2925, 1731 , 1651 , 1607, 1512, 1469, 1353, 1238, 1 181 , 1041 , 869, 813. xample 2

Scheme 2

4: Estrone oxime was synthesized according to previously described procedure (Ivanenko Tl et al, Pharm Chem J, 1982, 16(10):751 -6). To a solution of estrone (100 mg, 0.37mmol) in 2.2 mL absolute ethanol was added hydroxylamine hydrochloride (62 mg, 0.88 mmol) and pyridine (1 .2 mL). The mixture was refluxed for 6 hours. Then water was added and the mixture was extracted with ethyl acetate (3 x 10 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; hexane: ethyl acetate= 3:1 ) to afford 105 mg of estrone oxime (100 %) as white solid.

5: Lactam 5 was synthesized according to previously described procedure (Regan BM and Newton Hayes F, J Am Chem Soc, 1956, 78(3): 639-43). Estrone oxime (108 mg, 0.376 mmol) were dissolved in 6.3 mL of dry dioxane. The mixture was cooled to 0 °C and thionyl chloride (0.7 mL) was added dropwise. The mixture was allowed to reach room temperature and stirred for 24 h. The reaction was quenched with NaHC0 3 and the mixture was extracted with dichloromethane (3 x 20 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; hexane: ethyl acetate= 2:1 ) to afford 42 mg of lactam 5 (56% based on recovered starting material) accompanied by recovered starting material [32 mg of starting material (0.1 12 mmol)].

6: Lactam 5 was dissolved in 14 mL of dry DMF. Then, 3-(4-(bis(2- chloroethyl)amino) phenoxy)propanoic acid (90 mg, 0.293 mmol), DCC (61 mg, 0.293 mmol) and a catalytic amount of DMAP were added. After the resulting solution was stirred at room temperature for 24 h the solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluent; dichloromethane/acetone= 2/1 ) to give conjugate 6 (56 mg, 68%). Conjugate 6:

[a] D 23 + 73.5 (c = 0.90 CHCI 3 ); 1 H NMR (500 MHz, CDCI 3 ) δ 7.25 (d, J = 6.0 Hz, 1 H), 6.89 (d, J = 8.8 Hz, 2H), 6.82 (s, 1 H), 6.68 (d, J = 8.8 Hz, 2H), 6.31 (s, 1 H), 4.30 (t, J = 6.1 Hz, 2H), 3.62 (dt, J = 29.2, 6.6 Hz, 8H), 2.97 (dd, J = 15.1 , 9.0 Hz, 2H), 2.88 (m, 2H), 2.58 - 2.36 (m, 4H), 2.23 - 2.00 (m, 2H), 1.92 - 1 .66 (m, 3H), 1.60 - 1.29 (m, 4H), 1 .19 (s, 3H); 13 C NMR (126 MHz, CDCI 3 ) δ 171.7, 169.8, 151.3, 148.5, 141 .0, 137.8, 137.2, 126.1 , 121 .3, 1 18.7, 1 16.5, 1 14.5, 64.4, 54.4, 54.2, 46.6, 43.4, 40.7, 39.9, 38.9, 34.9, 30.5, 29.5, 26.5, 25.9, 22.1 , 19.8; FTIR: 3329, 2927, 2850, 1757, 1626, 1577, 1512, 1437, 131 1 , 1244, 1 157, 1088, 1045, 892.

xample 3

Scheme 3 7: 17-Hydroxyandrost-4-ene-3,1 1 -dione (484 mg, 1 .59 mmol) was dissolved in 2.2 mL acetic anhydride. Then, 4 mg (0.037 mmol) of DMAP and 0.25 mL of dry pyridine were added. The mixture was stirred at room temperature for 24 h. The reaction was quenched with water and the mixture was extracted with ethyl acetate (3 x 30 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; hexane: ethyl acetate= 6:1 ) to afford 472 mg of 17- acetoxyandrost-4-ene-3,1 1 -dione in 86% yield. 7: mp=162-164 °C [a] D 23 + 148.0 (c 1 .68 CHCIs); 1 H NMR (500 MHz, cdcl 3 ) δ 5.69 (s, 1 H), 4.76 (t, J = 8.6 Hz, 1 H), 2.83 - 2.69 (m, 1 H), 2.54 - 2.20 (m, 6H), 2.01 (d, J = 1 .2 Hz, 3H), 1.92 (m, 3H), 1.85 - 1 .55 (m, 4H), 1 .51 - 1 .41 (m, 1 H), 1 .44 - 1 .34 (m, 3H), 1.32 - 1.10 (m, 2H), 0.85 - 0.69 (m, 3H); 13 C NMR (126 MHz, cdcl 3 ) δ 208.3, 199.5, 170.8, 168.3, 124.6, 80.2, 62.6, 54.8, 49.4, 46.2, 38.2, 37.0, 34.7, 33.7, 32.1 , 31 .7, 27.6, 22.9, 20.9, 17.2, 12.8; FT-IR: 3443, 2958, 2935, 2850, 1732,1702, 1677, 1618, 1426, 1373, 1360, 1343, 1271 , 1238, 1224, 1045, 1027

8: To a solution of 17-acetoxyandrost-4-ene-3,1 1 -dione (465 mg, 1.35 mmol) in 7 mL absolute ethanol was added hydroxylamine hydrochloride (100 mg, 1 .44 mmol) and dry pyridine (4.2 mL). The mixture was stirred at room temperature for 24 hours. Then, water was added and the mixture was extracted with ethyl acetate (3 x 40 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; dichloromethane: ethyl acetate= 20:1 ) to afford 461 mg of the oximes 8 (95 %).

9: Oxime 8 (264 mg, 0.74 mmol) were dissolved in 13 mL of dry dioxane. The mixture was cooled to 0 °C and thionyl chloride (1.4 mL) was added dropwise. The mixture was allowed to reach room temperature and stirred for 24 h. The reaction was quenched with NaHC0 3 and the mixture was extracted with ethyl acetate (3 x 20 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; ethyl acetate: methanol = 1 : 0.03) to afford 163 mg of lactam 9 in 62 % yield. 9: 1 H NMR (500 MHz, cdcl 3 ) δ 6.39 (s, 1 H), 5.75 (s, 1 H), 4.78 (t, J = 8.6 Hz, 1 H), 3.35 - 3.18 (m, 1 H), 3.09 (dt, J = 14.7, 7.2 Hz, 1 H), 2.67 (dd, J = 14.9, 8.2 Hz, 1 H), 2.48 (td, J = 13.6, 3.9 Hz, 1 H), 2.34 - 2.20 (m, 3H), 2.14 (dd, J = 9.3, 6.5 Hz, 1 H), 2.03 (s, 3H), 2.01 - 1 .86 (m, 2H), 1 .83 - 1 .53 (m, 5H), 1.48 - 1 .37 (m, 1 H), 1 .38 (s, 3H), 1.28 - 1.08 (m, 1 H), 0.76 (s, 3H); 13 C NMR (126 MHz, cdcl 3 ) δ 209.0, 170.8, 169.5, 158.4, 120.1 , 80.1 , 62.4, 55.1 , 49.9, 46.7, 43.6, 40.4, 36.8, 36.8, 35.5, 33.2, 27.6, 22.8, 21.1 , 20.9, 12.8; FT-IR: 3428, 2971 , 2920, 2878, 2364, 2341 , 1736, 1701 , 1664, 1639, 1599, 1444, 1375, 1339, 1245, 1 127, 1089, 1046.

10: Lactam 9 76 mg (0.21 mmol) was dissolved in 3 mL MeOH and LiOH (1 N, 1 .2 mL) were added dropwise. The mixture was stirred at room temperature for 1 h. The reaction was quenched with NH 4 CI and the mixture was extracted with dichloromethane (3 x 5 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford 67 mg of lactam 10. 10: 1 H NMR (500 MHz, dmso) δ 7.72 (s, 1 H), 5.51 (s, 1 H), 4.66 (d, J = 4.7 Hz, 1 H), 3.66 (dd, J = 13.4, 8.4 Hz, 1 H), 3.08 - 2.90 (m, 2H), 2.47 - 2.32 (m, 2H), 2.29 (d, J = 1 1.5 Hz, 1 H), 2.21 (d, J = 1 1 .2 Hz, 1 H), 2.14 - 2.01 (m, 2H), 2.01 - 1 .78 (m, 3H), 1 .74 - 1 .50 (m, 3H), 1.40 (m, 1H), 1.28 (s, 3H), 1.23 (s, 1H), 1.15- 1.02 (m, 1H), 0.55 (s, 3H); 13 C NMR (126 MHz, dmso) δ 210.2, 167.8, 157.3, 120.3, 78.1, 61.0, 54.5, 48.8, 47.1, 43.1, 40.4, 36.8, 35.5, 34.9, 33.1, 29.9, 22.3, 20.9, 11.8; FT-IR: 3423, 3262, 2952, 2923, 2853, 1693, 1647, 1609, 1458, 1407, 1375, 1353, 1261, 1062.

11: Lactam 10 was dissolved in 8.2 mL of dry DCM. Then, 3-(4-(bis(2- chloroethyl)amino)phenoxy)propanoic acid (51 mg, 0.17 mmol), DCC (51 mg, 0.25 mmol) and a catalytic amount of DMAP were added. After the resulting solution was stirred at room temperature for 24 h the solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluent; ethyl acetate) to give conjugate 11 (48.5 mg, 96%). Conjugate 11: 1 H NMR (500 MHz, cdcl 3 ) δ 6.83 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 9.0 Hz, 2H), 6.11 (s, 1 H), 5.76 (s, 1 H), 4.86 (t, J = 8.6 Hz, 1H), 4.17 (t, J = 6.2 Hz, 2H), 3.61 (m, 8H), 3.25 (m, 1H), 3.18 - 3.01 (m, 1H), 2.84 - 2.59 (m, 2H), 2.59 - 2.38 (m, 1H), 2.37 - 2.25 (m, 3H), 2.16 (m, 1H), 2.10 - 1.89 (m, 3H), 1.87 - 1.55 (m, 4H), 1.39 (s, 3H), 1.26 (m, 2H), 1.12 (m, 1H), 0.76 (s, 3H); 13 C NMR (126 MHz, cdcl 3 ) δ 208.9, 170.9, 169.5, 158.7, 151.3, 140.9, 119.9, 116.2, 114.5, 80.4, 64.2, 62.4, 55.1, 54.3, 49.9, 46.8, 43.6, 40.7, 36.8, 35.5, 34.9, 33.9, 27.6, 25.6, 24.9, 22.8, 21.2, 12.8; FT-IR: 3432, 3328, 2927, 2850, 1733, 1701, 1664, 1626, 1599, 1513, 1444, 1389, 1369, 1310, 1273, 1243, 1179, 1087, 1041, 999.

xample 4

Scheme 4

13: To a solution of 12 (100 mg, 0.28 mmol) in 1.5 mL absolute ethanol in a sealed tube was added hydroxylamine hydrochloride (21 mg, 0.31 mmol) and dry pyridine (0.9 mL). The mixture was heated at 140 °C for 7 days. Then, water was added and the mixture was extracted with ethyl acetate (3 x 5 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford a crude product, which was used to the next step without further purification.

14: The crude oximes 13 described above (0.28 mmol) were dissolved in 4.9 mL of dry dioxane. The mixture was cooled to 0 °C and thionyl chloride (0.54 mL) was added dropwise. The mixture was allowed to reach room temperature and stirred for 24 h. The reaction was quenched with NaHC0 3 and the mixture was extracted with ethyl acetate (3 x 20 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure to afford the crude product that was further purified by chromatography on Si0 2 (eluent; ethyl acetate: methanol = 1 : 0.1 ) to afford 52 mg of lactam in 50 % yield. 14: 1 H NMR (500 MHz, cdcl 3 ) δ 7.00 (s, 1 H), 5.77 (s, 1 H), 5. 59 (s, 1 H), 4.61 (t, J = 8.3 Hz, 1 H), 3.20 (m, 2H), 3.02 (dd, J = 9.6, 5.0 Hz, 1 H), 2.48 - 2.40 (m, 2H), 2.31 (d, J= 13.7 Hz, 1H), 2.16 (m, 2H), 2.09 -2.0- 1.97 (m, 5H), 1.74- 1.84 (m, 2H), 1.51 - 1.40 (m, 2H), 1.35- 1.30 (m, 1H),1.24 (s, 3H), 1.23 (m, 1H),

1.08 (m, 1H), 0.95 (s, 3H); 13 C NMR (126 MHz, cdcl 3 ) δ 175.1, 170.9, 169.4, 156.3, 120.4, 80.1, 64.2, 55.5, 45.2, 44.6, 41.0, 40.8, 38.0, 36.3, 34.4, 31.0, 25.4, 25.2,

21.9, 21.0, 11.7.

15: Lactam 1428 mg (0.084 mmol) was dissolved in 1.2 mL MeOH and LiOH (1N, 0.5 mL) were added dropwise. The mixture was stirred at room temperature for 1 h. The reaction was quenched with NH 4 CI and the mixture was extracted with ethylacetate (3 x5 mL). The organic layers were dried (Na 2 S0 4 ) and concentrated under reduced pressure. The crude product that was further purified by chromatography on Si0 2 (eluent; ethyl acetate: methanol = 1: 0.1) to afford 28 mg of lactam 15 in 100 % yield.15: 1 H NMR (500 MHz, dmso) δ 7.75 (s, 1H), 6.13 (d, J =

3.9 Hz, 1 H), 5.53 (s, 1 H), 4.66 (d, J = 5.3 Hz, 1 H), 3.40 (m, 2H), 3.11 - 2.93 (m, 2H), 2.44 -2.34 (m, 1H), 2.29 (s, 2H), 2.04 - 1.72 (m, 5H), 1.65 (m, 2H), 1.24 (m, 3H),

1.20 (s, 3H), 0.89 (m, 1H), 0.66 (s, 3H); 13 C NMR (126 MHz, dmso) δ 174.6, 167.7, 156.1, 120.1, 78.1, 69.8, 63.4, 44.9, 44.2, 41.2, 40.4, 37.7, 35.3, 33.7, 31.3, 27.7, 24.4, 20.9, 10.7.

16: Lactam 15 (30 mg, 0.09 mmol) was dissolved in 9 mL of dry DCM. Then, 3-(4- (bis(2-chloroethyl)amino)phenoxy)propanoic acid (67 mg, 0.22 mmol), DCC (60 mg, 0.29 mmol) and a catalytic amount of DMAP were added. After the resulting solution was stirred at room temperature for 24 h the solvent was evaporated and the residue was purified by flash column chromatography on silica gel (eluent; ethyl acetate/MeOH=10/1) to give conjugate 16 (39 mg, 70%). 1 H NMR (500 MHz, cdcl 3 ) δ 6.85 (d, J = 9.0 Hz, 2H), 6.76 (s, 1 H), 6.65 (d, J = 9.0 Hz, 2H), 5.79 (s, 1 H), 5.46 (s, 1 H), 4.68 (t, J = 8.3 Hz, 1 H), 4.17 (t, J = 6.2 Hz, 2H), 3.60 (m, 4H), 3.51 - 3.42 (m, 1 H), 3.18 (m, 2H), 3.02 (dd, J = 9.5, 5.0 Hz, 1 H), 2.85 - 2.67 (m, 2H), 2.51 (d, J = 13.8 Hz, 1H), 2.44 (dd, J= 13.6, 10.1 Hz, 1H), 2.33 (d, J= 13.8 Hz, 1H), 2.25-2.06 (m, 2H), 2.07 - 1.73 (m, 5H), 1.73 - 1.28 (m, 5H), 1.25 (s, 3H), 1.17 - 1.03 (m, 2H), 0.96 (s, 3H); 13 C NMR (126 MHz, cdcl 3 ) δ 174.7, 170.9, 169.1, 155.6, 151.3, 140.9, 120.7, 116.3, 114.4, 80.5, 64.2, 64.1, 55.5, 54.2, 45.3, 44.5, 41.1, 40.7, 38.1, 36.3, 34.8, 34.4, 33.9, 31.0, 25.6, 25.5, 25.2, 24.9, 21.9, 11.8. FT-IR: 3410, 3330, 2926, 2850, 1734, 1654, 1627, 1577, 1513, 1445, 1349, 1273, 1243, 1180, 1133, 1110, 1087, 1044, 890.

18: In a round-bottom flask 48 mg (0.157 mmol) of the acid were diluted in 0.5 ml of dry benzene. 2,4,6-Trichlorobenzoyl chloride (30 μΙ, 0.189 mmol) and triethylamine (53 μΙ, 0.378 mmol) were added and the mixture refluxed under Ar for 1 h. To this mixture a solution of the steroidal alcohol 50 mg (0.157 mmol) in 0.5 ml dry benzene and a catalytic amount of 4-dimethylaminopyridine were added. The reflux was continued for 3 h. The benzene was totally removed by evaporation in vacuum and the remaining residue was diluted with CH 2 CI 2 . The resulting mixture was extracted with a 5% HCI aqueous solution, the organic layer was washed with a 7% NaHC0 3 aqueous solution and finally with water, dried over Na 2 S0 4 and the solvent removed under reduced pressure. The residue was chromatographed on a silica gel column (eluent; ethyl acetate/MeOH= 100/1 ) to give 46 mg of conjugate 18 in 48% yield. Conjugate 18: 1 H NMR (500 MHz, cdcl 3 ) δ 6.84 (d, J = 8.5 Hz, 2H), 6.67 (d, J = 8.5 Hz, 2H), 5.90 (s, 1 H), 5.86 (s, 1 H), 4.78 (m, 1 H), 4.19 (m, 2H), 3.58-3.59 (m, 8H), 3.48 (m, 1 H), 2.61 -1 .25 (18H), 1 .29 (s, 3H), 0.88 (s, 3H); [M+H] + =605. Example 6

Scheme 6

Lactam 19 was synthesized according to Koutsourea et al (Steroids, 2003, 68(7- 8):659-66).

20: In a round-bottom flask 46 mg, (0.15 mmol) of the acid were diluted in 0.5 ml of dry benzene. 2,4,6-Trichlorobenzoyl chloride (28 μΙ, 0.18 mmol) and triethylamine (50 μΙ, 0.36 mmol) were added and the mixture refluxed under Ar for 1 h. To this mixture a solution of the steroidal alcohol 50 mg (0.150 mmol) in 0.5 ml dry benzene and a catalytic amount of 4-dimethylaminopyridine were added. The reflux was continued for 3 h. The benzene was totally removed by evaporation in vacuum and the remaining residue was diluted with CH 2 CI 2 . The resulting mixture was extracted with a 5% HCI aqueous solution, the organic layer was washed with a 7% NaHC0 3 aqueous solution and finally with water, dried over Na 2 S0 4 and the solvent removed under reduced pressure. The residue was chromatographed on a silica gel column (eluent; ethyl acetate/MeOH= 100/2) to give 19 mg of conjugate 20 in 20% yield. 20: 1 H NMR (500 MHz, cdcl 3 ) δ 7.18 (s, 1 H), 6.84 (d, J = 8.5 Hz, 2H), 6.65 (d, J = 8.5 Hz, 2H), 6.60 (s, 1 H), 5.82 (s, 1 H), 4.80 (1 H, m), 4.21 (2H, m), 3.50 (m, 8H), 3.20 (1 H, m), 2.80-1.30 (19H), 1 .20 (s, 3H), 0.9 (s, 3H); [M+H] + =621 . Example 7

Scheme 7

Lactam 21 was synthesized according to Koutsourea et al (Steroids, 2003, 68(7- 8):659-66).

22: In a round-bottom flask 37 mg, (0.12 mmol) of the acid were diluted in 0.4 ml of dry benzene. 2,4,6-Trichlorobenzoyl chloride (22 μΙ, 0.144 mmol) and triethylamine (40 μΙ, 0.288 mmol) were added and the mixture refluxed under Ar for 1 h. To this mixture a solution of the steroidal alcohol 50 mg (0.120 mmol) in 0.4 ml dry benzene and a catalytic amount of 4-dimethylaminopyridine were added. The reflux was continued for 3 h. The benzene was totally removed by evaporation in vacuum and the remaining residue was diluted with CH 2 CI 2 . The resulting mixture was extracted with a 5% HCI aqueous solution, the organic layer was washed with a 7% NaHC0 3 aqueous solution and finally with water, dried over Na 2 S0 4 and the solvent removed under reduced pressure. The residue was chromatographed on a silica gel column (eluent; ethyl acetate) to give 34 mg of conjugate 22 in 40% yield.22: 1 H NMR (500 MHz, cdcls) δ 6.84 (d, J = 8.5 Hz, 2H), 6.60 (d, J = 8.5 Hz, 2H), 5.90 (s, 1 H), 5.79 (s, 1 H), 4.80 (m 1 H), 4.15 (m, 2H), 3.5 (m, 8H), 3.25 (m, 1 H), 2.8- 0.8 (22H); [M+H] + =605.

Example 8

In vitro and In Vivo biological testing for anticancer activity

A) In vitro anticancer activity

Nine well established human cancer cell lines (table 1 ) were treated for testing cytostatic and cytotoxic activity produced by the newly synthesized compounds. The cell lines were obtained from the American Type Culture Collection (ATCC) and were grown in different culture medium according to the instructions. The MTT ((3- (4, 5-imethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay is a well- established and standard method for evaluating the cytostatic and cytotoxic activity of drugs and chemicals (Trafalis DT et al, J BUON, 2003, 8:333-9; Trafalis DT et al, J BUON, 2004, 9(3):275-82; Trafalis DT et al, J BUON, 2005; 10:227-34; Trafalis DT et al, Breast Cancer Res Treat, 2006, 97: 17-31 ). Briefly, the cells were plated in 96- well plate at a density of -3 x10 4 cells/ml per well and maintained for 72 h at 37°C in a 5% C02 incubator and grown as monolayers or suspensions. After 24 hours, cells were treated with 0.1 -100 pmol/l of the compounds for 48 h. The viability of cultured cells was estimated MTT (Sigma, St Louis, Missouri, USA) metabolic assay as described previously. Absorbance of the converted dye was measured at a wavelength of 540nm on an ELISA reader (Versamax, Orleans, USA). The mean concentrations of each drug that generated 50% or total (100%) growth inhibition (GI50 and TGI , respectively) as well as the drug concentrations that produced cytotoxicity against 50% of the cultured cells [(half maximal cytotoxic concentration (IC50)] were calculated using the linear regression method. Using seven absorbance measurements [time 24 h (Ct24), control growth 72 h (Ct72), and test growth in the presence of drug at five concentration levels (Tt72x)], the percentage of growth was calculated at each level of the drug concentrations. The percentage growth inhibition was calculated according to National Cancer Institute (NCI) as: [(Tt72x)-(Ct24) / (Ct72)-(Ct24)] x 100 for concentrations for which Tt72x>Ct24 and [(Tt72x)-(Ct24)/Ct24] x 100 for concentrations for which Tt72x<Ct24; GI50 was calculated from [(Tt72x)-(Ct24)/(Ct72)-(Ct24)] x 100=50,TGI from [(Tt72x)- (Ct24)/(Ct72)-(Ct24)] x 100=0, and IC50 from [(Tt72x)-(Ct24)/Ct24] x 100= 50. All the experiments were carried out in triplicate.

Table 1

Human Cell line

Cancer Type Oncogenes Special Characteristics designation

Tumor Necrosis Factor;

Ovarian

SK-OV-3 (SKOV-3) Diphtheria Toxin; Cis-platinum Adenocarcinoma

and Adriamycin resistant

And rog e n/Estrog en/P rog esteron

Epithelial Ovarian e receptor positive;

NIH:OVCAR-3

Adenocarcinoma Adriamycin, Melphalan and

Cisplatin resistant p53 +

Estrogen/Progesterone receptor

Ovarian Carcinoma UWB1.289 BRCA1 - negative

(mutated)

UWB1.289+BRCA p53 + Estrogen/Progesterone receptor

Ovarian Carcinoma

1 BRCA1 + negative

Estrogen receptor positive

Epithelial Breast Insulin-like growth factor binding

MCF7 WNT7B+

Adenocarcinoma proteins (IGFBP) BP-2; BP-4;

BP-5

calcitonin; androgen receptor, positive; progesterone receptor,

Epithelial Breast

T-47D WNT7B+ positive; glucocorticoid; Adenocarcinoma

prolactin; estrogen receptor, positive

Prostate

PC-3 Hormone resistant Adenocarcinoma

Acute T-

Terminal deoxynucleotidyl lymphoblastic MOLT-4

transferase (TdT) expressed leukemia

Chronic

myelogenous K-562

leukemia

The results of in vitro cytostatic (GI50, TGI) and cytotoxic (IC50) effects induced by the tested compounds against human cancer cell lines are presented on Tables 2, 3, 4.

Table 2

Compounds

HUMAN pBCEAPOPA

CANCER CELL

LINES GI50 TGI IC50 GI50 TGI IC50 GI50 TGI IC50

UWB1.289 20 76 >100 16 30 54 80 >100 >100

UWB1.289+BRC >100 >100 >100 80 >100 >100 >100 >100 >100

A1

OVCAR-3 56 92 >100 36 52 64 >100 >100 >100

SKOV-3 50 >100 >100 45 92 >100 >100 >100 >100

MCF-7 >100 >100 >100 29 57 96 >100 >100 >100

T-47D 95 >100 >100 22 47 92 85 >100 >100

PC-3 89 >100 >100 34 49 89 90 >100 >100

MOLT-4 31 75 >100 8 56 93 22 63 >100

K-562 46 91 >100 9 78 >100 36 94 >100 Table 3

Compounds

HUMAN CANCER 18 20 6

CELL LINES

GI50 TGI IC50 GI50 TGI IC50 GI50 TGI IC50

UWB1.289 13 42 70 9 36 76 6 20 44

UWB1.289+BRCA1 20 38 69 30 76 >100 18 66 88

OVCAR-3 20 47 70 54 82 >100 30 40 56

SKOV-3 24 46 68 42 78 >100 12 76 >100

MCF-7 21 46 79 25 68 >100 15 36 65

T-47D 14 32 72 26 59 98 10 30 55

PC-3 23 36 70 29 44 68 16 29 51

MOLT-4 5 38 76 1 1 46 85 5 28 50

K-562 6 38 87 13 49 90 5 30 50

Table 4

Compounds

HUMAN CANCER 3 11 16

CELL LINES

GI50 TGI IC50 GI50 TGI IC50 GI50 TGI IC50

UWB1.289 3 8 20 6 20 25 3 28 40

UWB1.289+BRCA1 12 25 40 22 31 42 12 32 50

OVCAR-3 21 32 42 8 18 22 9 20 35

SKOV-3 18 52 76 20 32 44 20 46 70

MCF-7 17 38 70 25 68 >100 15 36 65

T-47D 10 25 66 26 59 98 10 30 55

PC-3 22 30 56 29 44 68 16 29 51

MOLT-4 3 27 65 1 ,5 20 45 4 36 56

K-562 3 30 71 2 35 55 7 47 65

B) In vivo acute toxicity

For intraperitoneal (i.p.) treatment, stock solutions of the tested compounds were prepared immediately before use. They were suspended in corn oil in the desired concentration following initial dissolution in 10% dimethylsulfoxide (DMSO). This concentration by itself produced no observable toxic effect.

C57BI/6 female mice were used for toxicity studies. Mice obtained from experimental section of the Hellenic Pasteur Institute.

Briefly, the acute toxicity induced by the tested compounds was determined, as previously had very well described (Catsoulacos P et al, Cancer Chemother Pharmacol, 1979, 3(1 ):67-70; Catsoulacos P et al, J Pharm Sci, 1978, 67(9):1342-3; Catsoulacos P et al, Anticancer Res, 1995; 15:827-30) following a single intraperitoneal (i.p.) injection into groups of ten (10) C57BI/6 mice at four different dosages; the mice were observed for 30 days and the therapeutic dose of the compounds, which is usually defined as LD10 (lethal dose for 10% of animals) as well as LD50 (lethal dose for 50% of animals) were determined after graphical estimation (30-day curves). The toxicity of the tested compounds was assessed from lethality in C57BI/6 mice. The LD50 and LD10 values were estimated graphically, where the percentage of deaths due to the toxicity of each dose was shown in the ordinate, while the administered doses were indicated on the abscissa (table 5).

C) In vivo antitumor activity

Experiment was initiated on day 0 by implanting intraperitoneally (i.p.) 10 6 ascites cells of P388 lymphocytic leukemia according to the protocol of National Cancer Institute (NCI), USA. For i.p. treatment, stock solutions of the tested compounds were prepared immediately before use. The antitumor activity was assessed from the oncostatic parameter T/C%, which means median survival time (MST) of drug- treated animals (T) to saline treated controls (C). According to the NCI (USA), the minimum criterion of activity is T/C higher than 125 %. Moreover, the antitumor activity was estimated from the number of long-term survivors (cures: defined as mice alive for 90 days after tumor inoculation) (Golidim A et al, Nat Cancer Inst Monogr, 1980, 55: 25-26; NCI Monograph, NIH publication 1986, 55:80-193).

BALB/c scid female mice were used for antitumor evaluation. These animals carry the severe combined immune deficiency mutation (scid) on the BALB/c background, and obtained from NCSR "Demokritos", Institute of Biology. Mice were kept under conditions of constant temperature and humidity, in sterile cages, with water and food. Six mice were included in each group of treatment and eight in the control group.

The tested therapeutic dose of the compounds was defined at the respective LD10 (mg/kgr). Table 5. Acute toxicity of the compounds in C57BI/6. LD50 and LD10

for 50 % and 10% of the population of the treated mice.

COMPOUNDS LD50 (mg/kg) LD10 (mg/kg) pBCEAPOPA 20 15

ASE 50 30

3 150 130

6 100 80

18 1 10 85

20 135 1 10

22 - >300

11 130 100

16 165 140

Table 6. Antileukemic activity of the tested compounds against murine P388 lymphocytic leukemia in vivo.

Compoun Treatmen Dose (LD10) MST ±

ds t (mg/kg) SD T/C Cures schedule (days) % pBCEAPO Day 1 15 (ip) 19 21 1 * 0/6

PA

ASE Day 1 30 (ip) 24 267 * 0/6

3 Day 1 130 (ip) 39 433 * 0/6

6 Day 1 80 (ip) 36 400 * 0/6

18 Day 1 85 (ip) 34 378 * 0/6

20 Day 1 1 10 (ip) 32 356 * 0/6

11 Day 1 100 (ip) 56 622 * 1/6

16 Day 1 140 (ip) 44 489 * 0/6

Controls Day 1 Saline 9 ± 1 ,5 100 0/8

* p<0,001 BALB/c scid female mice were used for the in vivo antitumor evaluation of the tested compounds against the human ovarian cancer SCOV-3. Suspensions of 3x10 6 SCOV-3 cancer cells / 0.2 ml / mouse were inoculated subcutaneously in the right or left flank of each animal. Mice were kept under conditions of constant temperature and humidity, in sterile cages, with water and food. Ten mice were included in each group of treatment and control. Testing was carried out according to well- established laboratory protocols. The efficacy of the drugs was determined by the mean change of tumor volume of treated animals (T) over the control (C) (T/C%=TI, Tumor Inhibition) and by the increase of median survival time, according to tumor cell kinetics and biological properties. Tumor volumes or weights were calculated as 0.52*a 2 xb, where a and b are the minor and major tumor axes and data plotted on a semi-logarithmic graph as mean tumor volumes ± standard error of the mean (±SEM) versus time after treatment. When tumors reached at a volume of 0.085-0.1 mm 3 mice were divided into control and drug treatment groups (10 mice/group), with similar average tumor volumes in each group. The tested compounds were administered i.p. at doses of LD10/4 respectively on days 1 , 5 and 9.

For evaluation of antitumor effect, (a) the weekly mean tumor weight or mean tumor volume change was determined and tumor inhibition (Tl) was calculated by the formula: Tl(%)= [1 )(TWT)TWZ)/(TWC)TWZ)]x100, where TWT is determined as the tumor weight (mg) or tumor volume (mm 3 ) in treated animals at the time of evaluation, TWZ is determined as the tumor weight (mg) or tumor volume (mm 3 ) at the time of initiation of treatment (zero time or day 1 ), TWC is determined as the tumor weight (mg) or tumor volume (mm 3 ) in untreated animals (controls) at the time of evaluation, (b) the percentage of survivors (OS%)at Day-70, (c) the percentage of tumor progression free survivors (PFS%) at the day-70. The results are demonstrated on Table 7.

Table 7. Antitumor activity of the tested compounds against SCOV-3 human ovarian cancer in vivo.

Compoun Treatmen Dose Tl% at OS% on PFS% ds t (LD10/4) Day-35 Day-70 on Day- schedule (mg/kg) 70 pBCEAPO Days 4 (ip) 17 40 0

PA 1 ,5,9

ASE Days 8 (ip) 34 80 40

1 ,5,9

3 Days 32 (ip) 62 100 100

1 ,5,9

6 Days 20 (ip) 56 100 100

1 ,5,9

18 Days 21 (ip) 44 100 80

1 ,5,9

20 Days 28 (ip) 41 100 70

1 ,5,9

11 Days 25 (ip) 73 100 100

1 ,5,9

16 Days 37 (ip) 55 100 100

1 ,5,9

Controls Days Saline 0 0 0

1 ,5,9

All differences on Tl%, OS%, PFS% are significant at levels of p<0.05-0, 001 D) Pharmacological Effects

The new lactam steroidal alkylators induce significant inhibition effect on poly(ADP- ribose) polymerase (PARP1/2) activity showing half maximal inhibitory concentrations (IC50) less than 1 .7 μΜ, better than the well-known PARP1/2 inhibitor the 3-aminobenzamide (3-AB). Moreover, the new lactam steroidal alkylators produce significant changes on the transcription and mRNA expression of PARP1 and PARP2 in a dose and time depended manner, in vitro and in vivo. At first or in lower doses they can induce an increase of the PARP1 and PARP2 mRNA expression which reaches 5-400 folds higher than control values, generating changes on intracellular NAD+ concentrations and cellular ATP depletion, and later or in higher doses they induce a decrease of PARP1 and PARP2 mRNA expression which can reach near to 100%. The new lactam steroidal alkylators produce significant DNA damage comparable with that induced by their alkylating component alone, as was assessed in vitro by Sister Chromatid Exchanges (SCE's) assay and in vivo by producing 8-hydroxy-2' -deoxyguanosine (8-OHdG) adducts in serum or urine, while they generate significantly higher antitumor activity. Furthermore, the new lactam steroidal alkylators inhibit significantly (>60%) the phosphorylation of ERK1/2 and AKT1/2, and consequently the activation of the PI3K and MAPK molecular signaling pathways. For the first time the molecular pharmacological effects of the lactam steroidal alkylators were investigated in depth.