Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EVAPORATOR FOR A FUEL CELL SYSTEM, AND FUEL CELL SYSTEM
Document Type and Number:
WIPO Patent Application WO/2019/210345
Kind Code:
A2
Abstract:
The present invention relates to an evaporator (30) for a fuel cell system (100), comprising an evaporation section (31) for evaporating a liquid medium (60) into a vaporous medium (61) with a liquid inlet (40) for introducing the liquid medium (60) into the evaporation section (31) and a vapor outlet (43) for discharging the vaporous medium (61) from the evaporation section (31). The present invention further relates to a fuel cell system (100), comprising at least one fuel cell stack (1) having a first electrode (2) and a second electrode (3), an air supply section (10) for supplying air (20) to the first electrode (2), a useful gas supply section (11) for supplying useful gas (21) to the second electrode (3), an exhaust air section (12) for discharging exhaust air (22) from the first electrode (2), a useful exhaust gas section (13) for discharging useful exhaust gas (23) from the second electrode (3), and further comprising an evaporator (30).

Inventors:
REICHHOLF DAVID (AT)
REITER BERND (AT)
SCHAUPERL RICHARD (AT)
Application Number:
PCT/AT2019/060149
Publication Date:
November 07, 2019
Filing Date:
May 03, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AVL LIST GMBH (AT)
International Classes:
H01M8/04014; H01M8/04007
Attorney, Agent or Firm:
WIETZKE, Andreas (DE)
Download PDF:
Claims:
Patentansprüche

1. Verdampfer (30) für ein Brennstoffzellensystem (100), aufweisend einen Verdampfungsabschnitt (31 ) zum Verdampfen eines flüssigen Mediums (60) zu einem dampfförmigen Medium (61 ) mit einem Flüssigkeitseinlass (40) zum Einleiten des flüssigen Mediums (60) in den Verdampfungsabschnitt (31 ) und einen Dampfauslass (42) zum Ausleiten des dampfförmigen Mediums (61 ) aus dem Verdampfungsabschnitt (31 ),

dadurch gekennzeichnet, dass

der Verdampfer (30) zumindest eine erste Wärmetauscherstufe (32) mit einem von zumindest einem ersten Heizmedium (34) durchström baren ersten Wärmetauscherabschnitt (33) und eine zweite Wärmetauscherstufe (35) mit einem von zumindest einem zweiten Heizmedium (37) durchström baren zweiten Wärmetauscherabschnitt (36) aufweist, wobei die Wärmetauscherstufen (32, 35) zum Übertragen von thermischer Energie jeweils mit dem Verdampfungsabschnitt (31 ) thermisch kontaktierend verbunden sind und wobei ferner bezüglich einer Strömungsrichtung (62) des flüssigen Mediums (60) und/oder dampfförmigen Mediums (61 ) im Verdampfungsabschnitt (31 ) die zweite Wärmetauscherstufe (35) stromabwärts von der ersten Wärmetauscherstufe (32) angeordnet ist.

2. Verdampfer (30) nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Wärmetauscherstufe (32) mit dem von dem ersten Heizmedium (34) durchströmbaren ersten Wärmetauscherabschnitt (33) und eine zweite Wärmetauscherstufe (35) mit dem von dem zweiten Heizmedium (37) durchströmbaren zweiten Wärmetauscherabschnitt (36) aufweist.

3. Verdampfer (30) nach Anspruch 1 , dadurch gekennzeichnet, dass die erste Wärmetauscherstufe (32) mit dem von dem ersten Heizmedium (34) und dem zweiten Heizmedium (37) durchströmbaren ersten Wärmetauscherabschnitt (33) und eine zweite Wärmetauscherstufe (35) mit dem von dem ersten Heizmedium (34) und dem zweiten Heizmedium (37) durchströmbaren zweiten Wärmetauscherabschnitt (36) aufweist.

4. Verdampfer (30) nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet, dass der zumindest eine erste Wärmetauscherabschnitt (33) und zweite

Wärmetauscherabschnitt (36) voneinander getrennt sind.

5. Verdampfer (30) nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet, dass

der zumindest eine erste Wärmetauscherabschnitt (33) und zweite

Wärmetauscherabschnitt (36) gegeneinander thermisch isoliert sind.

6. Verdampfer (30) nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

der zumindest eine erste Wärmetauscherabschnitt (33) und/oder zweite Wärmetauscherabschnitt (36) einen Abluftanschlussabschnitt (44) zum fluidkommunizierenden Verbinden mit einem Abluftabschnitt (12) des Brennstoffzellensystems (100) aufweist zum Verwenden einer Abluft (22) als erstes Heizmedium (34) und/oder zweites Heizmedium (37).

7. Verdampfer (30) nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

der zumindest eine erste Wärmetauscherabschnitt (33) und/oder zweite Wärmetauscherabschnitt (36) einen Nutzabgasanschlussabschnitt (45) zum fluidkommunizierenden Verbinden mit einem Nutzabgasabschnitt (13) des Brennstoffzellensystems (100) aufweist zum Verwenden eines Nutzabgases (23) als erstes Heizmedium (34) und/oder zweites Heizmedium (37).

8. Verdampfer (30) nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

der zumindest eine erste Wärmetauscherabschnitt (33) und/oder zweite Wärmetauscherabschnitt (36) einen Brennerabgasanschlussabschnitt (46) zum fluidkommunizierenden Verbinden mit einem Brennerabgasabschnitt (17) eines Abgasbrenners (4) des Brennstoffzellensystems (100) aufweist zum Verwenden eines Brennerabgases (24) als erstes Heizmedium (34) und/oder zweites Heizmedium (37).

9. Verdampfer (30) nach einem der vorangegangenen Ansprüche,

dadurch gekennzeichnet, dass

der Flüssigkeitseinlass (40) als ein Wasseranschlussabschnitt (41 ) zum fluidkommunizierenden Verbinden mit einem Wasserzulauf (50) des Brennstoffzellensystems (100) sowie der Dampfauslass (42) als ein Wasserdampfauslass (43) zum fluidkommunizierenden Verbinden mit einem Dampfleitungsabschnitt (51 ) des Brennstoffzellensystems (100) ausgebildet ist zum Bereitstellen von Wasserdampf (26) für das Brennstoffzellensystem (100).

10. Verdampfer (30) nach Anspruch 9,

dadurch gekennzeichnet, dass

der Verdampfungsabschnitt (31 ) einen Wasserstoffanschlussabschnitt (47) zum fluidkommunizierenden Verbinden mit einem Wasserstoffzulauf (52) des Brennstoffzellensystems (100) aufweist zum Einleiten von Wasserstoff (27) in den Verdampfungsabschnitt (31 ).

11. Verdampfer (30) nach Anspruch 9,

dadurch gekennzeichnet, dass

der Verdampfungsabschnitt (31 ) im Bereich der thermischen Kontaktierung mit der ersten Wärmetauscherstufe (32) und/oder mit der zweiten Wärmetauscherstufe (35) eine katalytische Beschichtung zur Erzeugung von Wasserdampf (26) aus Wasser (25) und Wasserstoff (27) aufweist.

12. Brennstoffzellensystem (100), aufweisend zumindest einen

Brennstoffzellenstapel (1 ) mit einer ersten Elektrode (2) und einer zweiten Elektrode (3), einen Luftzuführabschnitt (10) zum Zuführen von Luft (20) zur ersten Elektrode (2), einen Nutzgaszuführabschnitt (11 ) zum Zuführen von Nutzgas (21 ) zur zweiten Elektrode (3), einen Abluftabschnitt (12) zum Abführen von Abluft (22) von der ersten Elektrode (2), einen

Nutzabgasabschnitt (13) zum Abführen von Nutzabgas (23) von der zweiten Elektrode (3), ferner aufweisend einen Verdampfer (30),

dadurch gekennzeichnet, dass

der Verdampfer (30) nach einem der vorangegangenen Ansprüchen ausgebildet ist.

13. Brennstoffzellensystem (100) nach Anspruch 12,

dadurch gekennzeichnet, dass

der Nutzabgasabschnitt (13) einen ersten Nutzabgaszweig (15) und einen zweiten Nutzabgaszweig (16) aufweist, wobei der Abluftabschnitt (12) und der erste Nutzabgaszweig (15) in einen Abgasbrenner (4) zum zumindest teilweisen katalytischen Verbrennen der Abluft (22) und des Nutzabgases (23) münden, wobei das Brennstoffzellensystem (100) ferner einen Brennerabgasabschnitt (17) zum Abführen von Brennerabgas (24) vom Abgasbrenner (4) aufweist, und wobei der Brennerabgasabschnitt (17) mit dem Brennerabgasanschlussabschnitt (46) des ersten Wärmetauschers (32) fluidkommunizierend verbunden ist und der zweite Nutzabgaszweig (16) mit dem Nutzabgasanschlussabschnitt (45) des zweiten Wärmetauschers (35) fluidkommunizierend verbunden ist.

14. Brennstoffzellensystem (100) nach Anspruch 13,

dadurch gekennzeichnet, dass

der Abluftabschnitt (12) und der Nutzabgasabschnitt (13) in einen Abgasbrenner (4) zum zumindest teilweisen katalytischen Verbrennen der Abluft (22) und des Nutzabgases (23) münden, wobei das Brennstoffzellensystem (100) ferner einen Brennerabgasabschnitt (17) zum Abführen von Brennerabgas (24) vom Abgasbrenner (4) aufweist, und wobei der Abluftabschnitt (12) mit dem Abluftanschlussabschnitt (44) des ersten Wärmetauschers (32) fluidkommunizierend verbunden ist und der Brennerabgasabschnitt (17) mit dem Brennerabgasanschlussabschnitt (46) des zweiten Wärmetauschers (35) fluidkommunizierend verbunden ist.

15. Brennstoffzellensystem (100) nach einem der Ansprüche 12 bis 14,

dadurch gekennzeichnet, dass

stromaufwärts des zumindest einen ersten Wärmetauschers (8) und zweiten Wärmetauschers (35) jeweils ansteuerbare Steuerungsventile (5), insbesondere Hochtemperaturventile, zur Steuerung einer Menge des dem Verdampfer (30) zugeführten ersten Heizmediums (34) und zweiten Heizmediums (37) angeordnet sind.

16. Brennstoffzellensystem (100) nach einem der Ansprüche 12 bis 15,

dadurch gekennzeichnet, dass

stromabwärts des zumindest einen ersten Wärmetauschers (8) und zweiten Wärmetauschers (35) jeweils ansteuerbare Steuerungsventile (5) zur Steuerung einer Menge des dem Verdampfer (30) zugeführten ersten Heizmediums (34) und zweiten Heizmediums (37) angeordnet sind.

Description:
Verdampfer für ein Brennstoffzellensystem sowie Brennstoffzellensystem

Die vorliegende Erfindung betrifft einen Verdampfer für ein Brennstoffzellensystem, aufweisend einen Verdampfungsabschnitt zum Verdampfen eines flüssigen Mediums zu einem dampfförmigen Medium mit einem Flüssigkeitseinlass zum Einleiten des flüssigen Mediums in den Verdampfungsabschnitt und einen Dampfauslass zum Ausleiten des dampfförmigen Mediums aus dem Verdampfungsabschnitt. Ferner betrifft die vorliegende Erfindung ein Brennstoffzellensystem, aufweisend zumindest einen Brennstoffzellenstapel mit einer ersten Elektrode und einer zweiten Elektrode, einem Luftzuführabschnitt zum Zuführen von Luft zur ersten Elektrode, einen

Nutzgaszuführabschnitt zum Zuführen von Nutzgas zur zweiten Elektrode, einen Abluftabschnitt zum Abführen von Abluft von der ersten Elektrode, einen

Nutzabgasabschnitt zum Abführen von Nutzabgas von der zweiten Elektrode, ferner aufweisend einen Verdampfer.

Ein Einsatz von Verdampfern in Brennstoffzellensystemen ist grundsätzlich bekannt. Durch derartige Verdampfer können flüssige Medien zumindest teilweise, bevorzugt vollständig, in dampfförmige Medien umgewandelt werden. Insbesondere kann zum Beispiel durch einen derartigen Verdampfer Wasser in Wasserdampf umgewandelt werden. Durch Wasserdampf kann unter Anderem eine katalytische Aufspaltung von beispielsweise Methan zu Wasserstoff in einem nachgeschalteten Reformer des Brennstoffzellensystems ermöglicht oder zumindest unterstützt werden. Auch ein Verdampfen von flüssigem Treibstoff in einen gasförmigen Treibstoff für einen Brennstoffzellenstapel eines Brennstoffzellensystems ist möglich.

Bekannte Verdampfer setzen zumeist elektrische Energie ein, um über eine elektrische Heizvorrichtung insbesondere die zum Verdampfen des flüssigen

Mediums nötige thermische Energie bereitzustellen. Derartige elektrische

Verdampfer sind jedoch aufwendig und verringern insbesondere eine

Gesamteffizienz des Brennstoffzellensystems durch eben die zusätzlich verbrauchte elektrische Energie. Weitere bekannte Ausführungsformen von Verdampfern stellen insbesondere einstufige Verdampfer dar, in denen ein Heizmedium als Wärmequelle verwendet wird, um die zum Verdampfen des flüssigen Mediums nötige Energie bereitzustellen. Problematisch hierbei hat sich jedoch herausgestellt, dass die gesamte nötige Energie durch dieses eine Heizmedium bereitgestellt werden muss. Dies kann jedoch oftmals durch im Brennstoffzellenstapel intern vorhandenen Medien bzw. Fluide nicht bereitgestellt werden.

Aufgabe der vorliegenden Erfindung ist es, der voranstehend beschriebenen

Problematik zumindest teilweise Rechnung zu tragen bzw. zumindest alternative Lösungsmöglichkeiten zu schaffen. Insbesondere ist es Aufgabe der vorliegenden Erfindung, einen Verdampfer sowie ein Brennstoffzellensystem zu schaffen, die in besonders einfacher und kostengünstiger Art und Weise einen Verdampfer sowie ein Brennstoffzellensystem dahin gehend verbessern, dass ein möglichst effizienter Gesamtbetrieb des Brennstoffzellensystems bereitgestellt werden kann, wobei insbesondere bereits im Brennstoffzellensystem vorhandene Fluide bzw. deren Wärmeenergie für ein Betreiben des Verdampfers verwendet werden können.

Die voranstehende Aufgabe wird durch die Patentansprüche gelöst. Insbesondere wird die voranstehende Aufgabe durch den Verdampfer gemäß dem unabhängigen Anspruch 1 sowie durch das Brennstoffzellensystem gemäß dem nebengeordneten Anspruch 12 gelöst. Weitere Vorteile der Erfindung ergeben sich aus den

Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem erfindungsgemäßen Verdampfer beschrieben sind, selbstverständlich auch im Zusammenhang mit dem

erfindungsgemäßen Brennstoffzellensystem und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.

Gemäß einem ersten Aspekt der Erfindung wird die Aufgabe gelöst durch einen Verdampfer für ein Brennstoffzellensystem, aufweisend einen

Verdampfungsabschnitt zum Verdampfen eines flüssigen Mediums zu einem dampfförmigen Medium mit einem Flüssigkeitseinlass zum Einleiten des flüssigen Mediums in den Verdampfungsabschnitt und einen Dampfauslass zum Ausleiten des dampfförmigen Mediums aus dem Verdampfungsabschnitt. Ein erfindungsgemäßer Verdampfer ist dadurch gekennzeichnet, dass der Verdampfer zumindest eine erste Wärmetauscherstufe mit einem von zumindest einem ersten Heizmedium

durchström baren ersten Wärmetauscherabschnitt und eine zweite

Wärmetauscherstufe mit einem von zumindest einem zweiten Heizmedium

durchström baren zweiten Wärmetauscherabschnitt aufweist, wobei die

Wärmetauscherstufen zum Übertragen von thermischer Energie jeweils mit dem Verdampfungsabschnitt thermisch kontaktierend verbunden sind, und wobei ferner bezüglich einer Strömungsrichtung des flüssigen Mediums und/oder dampfförmigen Mediums im Verdampfungsabschnitt die zweite Wärmetauscherstufe stromabwärts von der ersten Wärmetauscherstufe angeordnet ist.

Ein erfindungsgemäßer Verdampfer ist für einen Einsatz in einem

Brennstoffzellensystem vorgesehen. In einem derartigen Brennstoffzellensystem sind zumeist mehrere Medien, insbesondere Fluide, vorhanden, die als Heizmedien eingesetzt werden können. Diese unterschiedlichen Medien, beispielsweise Abgase eines Brennstoffzellenstapels des Brennstoffzellensystems oder eines

Abgasbrenners des Brennstoffzellensystems, können unterschiedliche Temperaturen und damit zumeist einhergehend insbesondere auch unterschiedliche Mengen an gespeicherter Wärmeenergie aufweisen. Durch einen erfindungsgemäßen

Verdampfer soll ein flüssiges Medium wenigstens teilweise, bevorzugt vollständig, in ein dampfförmiges Medium überführt werden. Das flüssige Medium tritt durch einen Flüssigkeitseinlass in einen Verdampfungsabschnitt des Verdampfers ein, wird in diesem durch ein Zuführen thermischer Energie zumindest teilweise, bevorzugt vollständig, verdampft und tritt anschließend durch einen Dampfauslass aus dem Verdampfungsabschnitt wieder aus.

Erfindungswesentlich ist vorgesehen, dass der Verdampfer für das Zuführen der thermischen Energie zumindest zwei Wärmetauscherstufen aufweist, die jeweils von zumindest einem, insbesondere zwei unterschiedlichen, Heizmedium durchströmbar sind. Auf diese Weise können die oben beschriebenen verschiedenen Medien bzw. Fluide, die im Brennstoffzellensystem bereits vorhanden sind, besonders effizient genutzt werden. Für eine Übertragung von Wärmeenergie vom ersten Heizmedium bzw. dem zweiten Heizmedium in das zu verdampfende flüssige Medium im

Verdampfungsabschnitt sind sowohl der erste Wärmetauscherabschnitt der ersten Wärmetauscherstufe als auch der zweite Wärmetauscherabschnitt der zweiten Wärmetauscherstufe jeweils mit dem Verdampfungsabschnitt thermisch

kontaktierend verbunden. Bevorzugt kann dabei die thermische Kontaktierung derart vorgenommen werden, dass eine Vermischung zwischen dem flüssigen zu verdampfenden Medium und den Heizmedien ausgeschlossen ist. Mit anderen Worten sind der Verdampfungsabschnitt und die Wärmetauscherabschnitte der Wärmetauscherstufen voneinander getrennt ausgebildet. Auf diese Weise kann sichergestellt werden, dass das dampfförmige Medium vollständig und ausschließlich durch Verdampfung des flüssigen Mediums gebildet wird.

Durch die erfindungsgemäße Ausbildung des Verdampfers ist es möglich, dass das zu verdampfende Medium mit Vorteil in der ersten Wärmetauscherstufe bzw. im ersten Wärmetauscherabschnitt zumindest teilweise verdampft wird, sodass dieses als zweiphasiges Gemisch in die zweite Wärmetauscherstufe bzw. in den zweiten Wärmetauscherabschnitt Übertritt, in welchem dieses vollständig verdampft und gegebenenfalls überhitzt wird.

Erfindungsgemäß ist vorgesehen, dass bezüglich einer Strömungsrichtung des flüssigen Mediums bzw. des dampfförmigen Mediums im Verdampfungsabschnitt die beiden Wärmetauscherstufen und damit die beiden Wärmetauscherabschnitte nacheinander angeordnet sind. Es sind folglich zwei Heizmedien vorgesehen, welche jeweils zumindest eine Wärmetauscherstufe durchströmen. Erfindungsgemäß kann auch vorgesehen sein, dass beide Heizmedien beide Wärmetauscherstufen durchströmen. Dies ist insbesondere dahin gehend vorteilhaft, dass die beiden Heizmedien zumeist unterschiedliche Temperaturen und/oder unterschiedliche Mengen an gespeicherter Wärmeenergie aufweisen, sodass so viel Wärme wie möglich übertragen werden kann und das zu verdampfende Medium in zwei Stufen verdampfbar ist. Vorteilhaft kann das erste Heizmedium in der ersten

Wärmetauscherstufe, das in Strömungsrichtung des zu verdampfenden flüssigen Mediums zuerst von diesem thermisch kontaktiert wird, eine niedrigere Temperatur aufweisen und das zweite Heizmedium entsprechend eine höhere Temperatur. Ein Anwärmen des flüssigen Mediums durch das erste Heizmedium und einem folglich erst bei einer höheren Temperatur des flüssigen Mediums startenden Verdampfen des flüssigen Mediums durch Wärmeeintrag des zweiten Heizmediums kann auf diese Weise bereitgestellt werden. Auch ist denkbar, dass durch den Eintrag an thermischer Energie in das flüssige Medium im Verdampfungsabschnitt durch das erste Heizmedium ein Verdampfen des flüssigen Mediums bereits einsetzt, und dieses Verdampfen durch den Eintrag an thermischer Energie in das flüssige

Medium im Verdampfungsabschnitt durch das zweite Heizmedium abgeschlossen wird. Ferner ist auch ein Überhitzen des verdampften Mediums durch eine

Aufheizung insbesondere durch die thermische Energie des zweien Heizmediums denkbar. Insbesondere kann durch die Verwendung eines erfindungsgemäßen Verdampfers auch ein Einsatz von zwei unterschiedlichen Heizmedien ermöglicht werden, deren Vermischung nicht möglich ist. Eine bessere Anpassungsfähigkeit eines erfindungsgemäßen Verdampfers im Vergleich zu bekannten Verdampfern an vorhandene Gegebenheiten in Brennstoffzellensystemen kann auf diese Weise bereitgestellt werden. Insbesondere kann durch die Verwendung von bereits im Brennstoffzellensystem vorhandenen Heizmedien eine Gesamteffizienz beim

Betreiben eines Brennstoffzellensystems erhöht werden.

Grundsätzlich ist es zweckmäßig, wenn die beiden Wärmetauscherstufen derart zueinander angeordnet sind, dass das zu verdampfende Medium diese mit

zumindest einer leichten vertikalen Steigung nach oben, entgegen der

Erdanziehungskraft, durchströmt. Das heißt, eine vertikale, zumindest leicht ansteigende Anordnung/ Positionierung des Verdampfers hinsichtlich des zu verdampfenden Mediums ist besonders vorteilhaft. Wichtig ist also, dass das zu verdampfende Medium beide Stufen des Verdampfers zumindest teilweise vertikal von unten nach oben (entgegen der Erdanziehungskraft) durchströmt, sodass

Probleme mit einer Kondensierung und/oder Flüssigkeitsbildung im Verdampfer vermieden oder zumindest reduziert sind.

Es kann vorteilhaft sein, wenn diese vertikal übereinander angeordnet sind, sodass das zu verdampfende Medium diese vertikal durchströmt, das heißt mit einem

Steigungswinkel von etwa 90°. Allerdings kann es auch vorteilhaft sein, wenn die beiden Wärmetauscherstufen derart zueinander angeordnet sind, dass das zu verdampfende Medium diese so durchströmt, dass die Strömungsrichtung sowohl vertikale als auch horizontale Anteile umfasst, das heißt mit einem Steigungswinkel zwischen 1 ° und 89°, insbesondere etwa 45°. Wichtig ist es immer, dass durch die erfindungsgemäße Ausbildung des Verdampfers erreicht wird, dass das zu

verdampfende Medium bei einem Übergang von ersten zur zweiten

Wärmetauscherstufe zweiphasig vorliegen kann oder vorliegt.

Günstig ist es, wenn die erste Wärmetauscherstufe mit dem von dem ersten Heizmedium durchström baren ersten Wärmetauscherabschnitt und eine zweite Wärmetauscherstufe mit dem von dem zweiten Heizmedium durchström baren zweiten Wärmetauscherabschnitt aufweist. Es ist also vorgesehen, dass jeweils ein Heizmedium einen Wärmetauscherabschnitt durchströmt, wobei die Temperatur des Heizmediums, welches durch den zweiten Wärmetauscherabschnitt, welcher vertikal oberhalb des ersten Wärmetauscherabschnittes angeordnet ist, geringer ist als jene des ersten Heizmediums, welches den ersten Wärmetauscherabschnitt durchströmt. So kann beispielsweise das erste Heizmedium stromaufwärts des Verdampfers eine Temperatur im Bereich von etwa 700 °C bis etwa 800 °C und das zweite Heizmedium stromaufwärts des Verdampfers eine Temperatur im Bereich von etwa 300 °C bis etwa 400 °C aufweisen. Stromabwärts des Verdampfers weisen beide Heizmedien mit Vorteil eine Temperatur kleiner oder gleich 100 °C auf, wobei es auch sein kann, dass diese mehr als 100 °C aufweisen. Das zu verdampfende Medium weist stromabwärts des Verdampfers eine Temperatur von etwa 200 °C oder mehr auf; es ist also nicht nur verdampft, sondern auch überhitzt.

Alternativ kann es günstig sein, wenn die erste Wärmetauscherstufe mit dem von dem ersten Heizmedium und dem zweiten Heizmedium durchström baren ersten Wärmetauscherabschnitt und eine zweite Wärmetauscherstufe mit dem von dem ersten Heizmedium und dem zweiten Heizmedium durchström baren zweiten Wärmetauscherabschnitt aufweist. Das heißt, beide Heizmedien durchströmen beide Wärmetauscherstufen. Dabei ist es insbesondere von Vorteil, wenn das Heizmedium, welches eine höhere Temperatur aufweist (beispielsweise das erste Heizmedium im Bereich von etwa 700 °C bis 800 °C) das zu verdampfende Medium in der zweiten Wärmetauscherstufe stromabwärts des zweiten Heizmediums, welches eine niedrige Temperatur im Bereich von etwa 300 °C bis 400 °C aufweist, wärm übertragend trifft. Entsprechend trifft das erste Heizmedium das zu verdampfende Medium in der ersten Wärmetauscherstufe stromaufwärts des zweiten Heizmediums. Ein entsprechender Verdampfer kann also derart ausgebildet sein, dass die beiden Heizmedien diesen vertikal von oben nach unten durchströmen, wobei das zu verdampfende Medium diesen mit einer vorbestimmten Steigung von unten nach oben durchströmt. Die beiden Heizkammern werden folglich von dem zu verdampfenden Medium in einer unterschiedlichen Strömungsrichtung durchströmt. Stromabwärts des Verdampfers weisen die beiden Heizmedien mit Vorteil wieder eine Temperatur kleiner 100 °C auf.

Ferner kann bei einem erfindungsgemäßen Verdampfer vorgesehen sein, dass der zumindest eine erste Wärmetauscherabschnitt und zweite Wärmetauscherabschnitt voneinander getrennt sind. Ein derartiges voneinander Getrenntsein kann im Sinne der Erfindung insbesondere ein räumlich und/oder bauliches Getrenntsein bedeuten. Insbesondere können der erste Wärmetauscherabschnitt und der zweite

Wärmetauscherabschnitt voneinander vollständig getrennte Hohlräume im erfindungsgemäßen Verdampfer darstellen. Eine Vermischung der beiden

Heizmedien kann auf diese Weise besonders einfach und bevorzugt insbesondere vollständig verhindert werden.

Darüber hinaus kann bei einem erfindungsgemäßen Verdampfer vorgesehen sein, dass der zumindest eine erste Wärmetauscherabschnitt und zweite

Wärmetauscherabschnitt gegeneinander thermisch isoliert sind. Wie oben bereits beschrieben, können die Heizmedien in den Wärmetauscherabschnitten zumeist unterschiedliche Temperaturen und/oder unterschiedliche Mengen an in ihnen gespeicherter Wärmeenergie aufweisen. Durch eine thermische Isolierung der beiden Wärmetauscherabschnitte gegeneinander, beispielsweise bereitgestellt durch eine Isolationsschicht oder eine entsprechende Isolationsvorrichtung, kann ein Übertrag von Wärmeenergie zwischen den beiden Heizmedien sicher vermieden oder zumindest deutlich eingeschränkt werden. Mit anderen Worten wird die in den Heizmedien gespeicherte Wärmeenergie nur an das zu verdampfende flüssige Medium abgegeben, wodurch insgesamt eine Effizienz beim Betreiben eines erfindungsgemäßen Verdampfers erhöht werden kann.

Ferner kann ein erfindungsgemäßer Verdampfer dahin gehend ausgebildet sein, dass der zumindest eine erste Wärmetauscherabschnitt und/oder zweite

Wärmetauscherabschnitt einen Abluftanschlussabschnitt zum

fluidkommunizierenden Verbinden mit einem Abluftabschnitt des

Brennstoffzellensystems aufweist zum Verwenden einer Abluft als erstes

Heizmedium und/oder zweites Heizmedium. Durch einen derartigen

Abluftanschlussabschnitt ist ein Verbinden mit einem Abluftabschnitt des

Brennstoffzellensystems ermöglicht. In einem derartigen Abluftabschnitt wird eine Abluft eines Brennstoffzellenstapels des Brennstoffzellensystems geführt, die durch die Reaktionen im Brennstoffzellenstapel aufgeheizt ist und somit eine erhöhte Temperatur aufweist. Ein Einsatz dieser Abluft des Brennstoffzellensystems als Heizmedium kann dadurch ermöglicht werden.

Alternativ oder zusätzlich kann ein erfindungsgemäßer Verdampfer dahin gehend ausgebildet sein, dass der zumindest eine erste Wärmetauscherabschnitt und/oder zweite Wärmetauscherabschnitt einen Nutzabgasanschlussabschnitt zum

fluidkommunizierenden Verbinden mit einem Nutzabgasabschnitt des

Brennstoffzellensystems aufweist zum Verwenden eines Nutzabgases als erstes Heizmedium und/oder zweites Heizmedium. Durch einen derartigen

Nutzabgasanschlussabschnitt ist ein Verbinden mit einem Nutzabgasabschnitt des Brennstoffzellensystems ermöglicht. In einem derartigen Nutzabgasabschnitt wird ein Nutzabgases eines Brennstoffzellenstapels des Brennstoffzellensystems geführt, das durch die Reaktionen im Brennstoffzellenstapel aufgeheizt ist und somit eine erhöhte Temperatur aufweist. Ein Einsatz dieses Nutzabgases des Brennstoffzellensystems als Heizmedium kann dadurch ermöglicht werden.

Ferner kann gemäß einer alternativen oder zusätzlichen Ausführungsform eines erfindungsgemäßen Verdampfers vorgesehen sein, dass der zumindest eine erste Wärmetauscherabschnitt und/oder zweite Wärmetauscherabschnitt einen

Brennerabgasanschlussabschnitt zum fluidkommunizierendem Verbinden mit einem Brennerabgasabschnitt eines Abgasbrenners des Brennstoffzellensystems aufweist zum Verwenden eines Brennerabgases als erstes Heizmedium und/oder zweites Heizmedium. Durch einen derartigen Brennerabgasanschlussabschnitt ist ein

Verbinden mit einem Brennerabgasabschnitt des Brennstoffzellensystems

ermöglicht. In einem derartigen Brennerabgasabschnitt wird ein Brennerabgases eines Abgasbrenners des Brennstoffzellensystems geführt. In einem Abgasbrenner eines Brennstoffzellensystems werden zumeist wenigstens teilweise eine Abluft und ein Nutzabgas des Brennstoffzellenstapels katalytisch verbrannt. Das Brennerabgas ist somit aufgeheizt und weist eine erhöhte Temperatur auf. Ein Einsatz dieses Brennerabgases des Brennstoffzellensystems als Heizmedium kann somit ermöglicht werden.

Besonders bevorzugt kann bei einem erfindungsgemäßen Verdampfer vorgesehen sein, dass der Flüssigkeitseinlass als ein Wasseranschlussabschnitt zum

fluidkommunizierenden Verbinden mit einem Wasserzulauf des

Brennstoffzellensystems sowie der Dampfauslass als Wasserdampfauslass zum fluidkommunizierenden Verbinden mit einem Dampfleitungsabschnitt des

Brennstoffzellensystems ausgebildet ist, zum Bereitstellen von Wasserdampf für das Brennstoffzellensystem. Ein Einsatz von Wasser als flüssiges und Wasserdampf als dampfförmiges Medium, die im erfindungsgemäßen Verdampfer ineinander umgewandelt werden, stellt eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen Verdampfers dar. Durch einen Wasseranschlussabschnitt kann insbesondere bereitgestellt werden, dass Wasser, bereitgestellt durch einen

Wasserzulauf des Brennstoffzellensystems, als flüssiges Medium verwendet werden kann. Ein Wasserdampfauslass wiederum ermöglicht ein Weiterleiten des im

Verdampfer erzeugten Wasserdampfs an entsprechende Stellen des

Brennstoffzellensystems über ein mit dem Wasserdampfauslass

fluidkommunizierenden Dampfleitungsabschnitt des Brennstoffzellensystems.

Beispielsweise kann der Wasserdampf zusammen mit Methan als Nutzgas einem Reformer zugeführt werden, in dem wiederum durch katalytische Reaktionen unter Einwirkung von Wärmeenergie Wasserstoff als Nutzgas erzeugt wird.

Auch kann ein erfindungsgemäßer Verdampfer dahin gehend weiterentwickelt sein, dass der Verdampfungsabschnitt einen Wasserstoffanschlussabschnitt zur fluidkommunizierenden Verbindung mit einem Wasserstoffzulauf des

Brennstoffzellensystems aufweist, zum Einleiten von Wasserstoff in den

Verdampfungsabschnitt. Ein derartiger Wasserstoffanschlussabschnitt ermöglicht somit, dass zusätzlich zu Wasser als flüssigem Medium Wasserstoff in den

Verdampfungsabschnitt eingeleitet werden kann. Durch Wasserstoff im

Verdampfungsabschnitt kann eine Dampferzeugung von Wasser zu Wasserdampf unterstützt werden. Auch kann beispielsweise bei einem Betriebsbeginn durch die durch den Wasserstoff ausgelöste Verdampfung des Wassers erzeugten hohen Temperaturen eine benötigte Zeit für diesen Betriebsstart verkürzt werden. Mit anderen Worten kann durch die zusätzliche Bereitstellung von Wasserstoff ein Erreichen einer Betriebstemperatur eines erfindungsgemäßen Verdampfers verkürzt werden.

Ferner kann ein erfindungsgemäßer Verdampfer dahin gehend weiterentwickelt sein, dass der Verdampfungsabschnitt im Bereich der thermischen Kontaktierung mit der ersten Wärmetauscherstufe und/oder mit der zweiten Wärmetauscherstufe eine katalytische Beschichtung zur Erzeugung von Wasserdampf aus Wasser und

Wasserstoff aufweist. Durch eine derartige katalytische Beschichtung kann eine Reaktion zwischen, bevorzugt gasförmig vorliegendem, Wasserstoff und Wasser zur Erzeugung von Wasserdampf unterstützt werden. Eine noch bessere

Wasserdampferzeugung kann dadurch ermöglicht werden. Auch die oben

beschriebene Aufheizung bei Betriebsbeginn, die durch die Verwendung von zusätzlichem Wasserstoff beschleunigt werden kann, kann durch die katalytische Beschichtung unterstützt werden. Gemäß einem zweiten Aspekt der Erfindung wird die Aufgabe gelöst durch ein Brennstoffzellensystem, aufweisend zumindest einen Brennstoffzellenstapel mit einer ersten Elektrode und einer zweiten Elektrode, einen Luftzuführabschnitt zum

Zuführen von Luft zur ersten Elektrode, einen Nutzgaszuführabschnitt zum Zuführen von Nutzgas zur zweiten Elektrode, einen Abluftabschnitt zum Abführen von Abluft von der ersten Elektrode, einen Nutzabgasabschnitt zum Abführen von Nutzabgas von der zweiten Elektrode, ferner aufweisend einen Verdampfer. Ein

erfindungsgemäßes Brennstoffzellensystem ist dadurch gekennzeichnet, dass der Verdampfer gemäß dem ersten Aspekt der Erfindung ausgebildet ist. Sämtliche Vorteile, die ausführlich in Bezug auf einen Verdampfer gemäß dem ersten Aspekt der Erfindung beschrieben worden sind, können somit auch durch ein

Brennstoffzellensystem gemäß dem zweiten Aspekt der Erfindung bereitgestellt werden, das einen erfindungsgemäßen Verdampfer gemäß dem ersten Aspekt der Erfindung aufweist. In einem derartigen Brennstoffzellensystem ist keine zusätzliche Energie notwendig, um Wasser verdampfen zu können. Die dafür benötigte Energie kommt insbesondere zur Gänze aus dem Brennstoffzellensystem selbst.

Gemäß einer ersten bevorzugten Ausführungsform eines erfindungsgemäßen Brennstoffzellensystems kann ferner vorgesehen sein, dass der Nutzabgasabschnitt einen ersten Nutzabgaszweig und einen zweiten Nutzabgaszweig aufweist, wobei der Abluftabschnitt und der erste Nutzabgaszweig in einen Abgasbrenner zum zumindest teilweisen katalytischen Verbrennen der Abluft und des Nutzabgases münden, wobei das Brennstoffzellensystem ferner einen Brennerabgasabschnitt zum Abführen von Brennerabgas vom Abgasbrenner aufweist, und wobei der

Brennerabgasabschnitt mit dem Brennerabgasanschlussabschnitt des ersten

Wärmetauschers fluidkommunizierend verbunden ist und der zweite Nutzabgaszweig mit dem Nutzabgasanschlussabschnitt des zweiten Wärmetauschers

fluidkommunizierend verbunden ist. In dieser ersten bevorzugten Ausführungsform werden somit Nutzabgas und Brennerabgas als erstes bzw. zweites Heizmedium eingesetzt. Dabei wird das Brennerabgas, das bevorzugt bereits durch

Wärmetauscher Wärmeenergie an Fluide im Brennstoffzellensystem abgegeben haben kann, als erstes Heizmedium zum Erwärmen bzw. Aufheizen des flüssigen Mediums eingesetzt. Nutzabgas, das direkt aus dem Brennstoffzellenstapel zum erfindungsgemäßen Verdampfer geleitet wird, wird als zweites Heizmedium zum eigentlichen Verdampfen des flüssigen Mediums zum verdampften Medium

eingesetzt. Bei Ausführungsformen eines erfindungsgemäßen Brennstoffzellensystems, bei dem im Brennerabgas eine größere Menge an

Wärmeenergie gespeichert ist als im Nutzabgas kann bevorzugt alternativ auch eine umgekehrte Anschlussreihenfolge des Brennerabgasabschnitts und des

Nutzabgasabschnitts am erfindungsgemäßen Verdampfer vorgesehen sein und somit das Nutzabgas als erstes Heizmedium in der ersten Wärmetauscherstufe und das Brennerabgas als zweites Heizmedium in der zweiten Wärmetauscherstufe verwendet werden.

Gemäß einer ebenfalls bevorzugten, weiteren alternativen Ausführungsform eines erfindungsgemäßen Brennstoffzellensystems kann ferner vorgesehen sein, dass der Abluftabschnitt und der Nutzabgasabschnitt in einen Abgasbrenner zum zumindest teilweisen katalytischen Verbrennen der Abluft und des Nutzabgases münden, wobei das Brennstoffzellensystem ferner einen Brennerabgasabschnitt zum Abführen von Brennerabgas vom Abgasbrenner aufweist, und wobei der Abluftabschnitt mit dem Abluftanschlussabschnitt des ersten Wärmetauschers fluidkommunizierend verbunden ist und der Brennerabgasabschnitt mit dem

Brennerabgasanschlussabschnitt des zweiten Wärmetauschers fluidkommunizierend verbunden ist. In dieser alternativen Ausführungsform werden die Brennerabgase direkt an den Verdampfer geleitet, wodurch sie im Gegensatz zur oben

beschriebenen Ausführungsform noch eine sehr hohe Temperatur und dadurch eine große Menge an gespeicherter Wärmeenergie aufweisen. Insbesondere weist das Brennerabgas dadurch zumeist auch eine höhere Temperatur und insbesondere eine größere Menge an in ihr gespeicherter Wärmeenergie auf als eine Abluft des

Brennstoffzellenstapels. Aus diesem Grund ist es in dieser Ausführungsform günstig, die Abluft des Brennstoffzellenstapels als erstes Heizmedium einzusetzen, wofür der Abluftabschnitt des Brennstoffzellensystems mit dem Abluftanschlussabschnitt des ersten Wärmetauschers fluidkommunizierend verbunden ist. Das Brennerabgas wird durch eine fluidkommunizierende Verbindung zwischen dem Brennerabgasabschnitt mit dem Brennerabgasanschlussabschnitt des zweiten Wärmetauschers dem

Verdampfer zugeführt. Auch in dieser Ausführungsform kann somit durch den ersten Wärmetauscherabschnitt ein Erwärmen, durch den zweiten Wärmetauscherabschnitt ein Verdampfen des flüssigen Mediums zum dampfförmigen Medium sichergestellt werden.

Darüber hinaus kann ein erfindungsgemäßes Brennstoffzellensystem dahin gehend ausgebildet sein, dass stromaufwärts des zumindest einen ersten Wärmetauschers und zweiten Wärmetauschers jeweils ansteuerbare Steuerungsventile, insbesondere Hochtemperaturventile, zur Steuerung einer Menge des dem Verdampfer

zugeführten ersten Heizmediums und zweiten Heizmediums angeordnet sind. Durch derartige Steuerungsventile kann eine besonders genaue Steuerung und/oder Regelung eines Betriebs eines erfindungsgemäßen Verdampfers insbesondere durch eine Steuerung und/oder Regelung der durch die Wärmetauscherelemente fließenden Heizmedien bereitgestellt werden. Durch die stromaufwärts

vorgenommene Anordnung der Steuerungsventile sind diese den hohen

Temperaturen der Heizmedien ausgesetzt. Bevorzugt kann daher ein Einsatz von Hochtemperaturventilen als Steuerungsventile vorgesehen sein. Auch ist diese Ausführungsform oftmals für einen stationären Einsatz des Brennstoffzellensystems vorgesehen, da die verwendeten Steuerungsventile eben durch die hohen

thermischen Anforderungen aufwendig sind, insbesondere hinsichtlich des

benötigten Bauraums.

Alternativ oder zusätzlich kann bei einem erfindungsgemäßen

Brennstoffzellensystem ferner vorgesehen sein, dass stromabwärts des zumindest einen ersten Wärmetauschers und zweiten Wärmetauschers jeweils ansteuerbare Steuerungsventile zur Steuerung einer Menge des dem Verdampfer zugeführten ersten Heizmediums und zweiten Heizmediums angeordnet sind. In dieser

Ausführungsform sind die ansteuerbaren Steuerungsventile bezüglich einer

Fließrichtung der Heizmedien nach dem Verdampfer angeordnet. Auch hier ist durch die Steuerungsventile eine besonders genaue Steuerung und/oder Regelung eines Betriebs des Verdampfers durch eine Steuerung und/oder Regelung des durch die Wärmetauscherelemente fließenden Heizmediums ermöglicht. Durch die geringere Temperatur der Heizmedien nach dem Verdampfer ist in dieser Ausführungsform ein Einsatz von Ventilen als Steuerungsventile mit geringen Anforderungen hinsichtlich beispielsweise einer Hitzebeständigkeit der verwendeten Ventile ermöglicht. Die eingesetzten Steuerungsventile können somit kleiner und weniger aufwendig sein. Insbesondere bei einem mobilen Einsatz eines erfindungsgemäßen

Brennstoffzellensystems ist dies von Vorteil.

Weitere, die Erfindung verbessernde Maßnahmen ergeben sich aus der

nachfolgenden Beschreibung zu verschiedenen Ausführungsbeispielen der

Erfindung, welche in den Figuren schematisch dargestellt sind. Sämtliche aus den Ansprüchen, der Beschreibung oder den Figuren hervorgehende Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten und räumlicher Anordnungen, können sowohl für sich als auch in den verschiedenen Kombinationen

erfindungswesentlich sein. Elemente mit gleicher Funktion und Wirkungsweise sind in den Figuren 1 bis 3 jeweils mit denselben Bezugszeichen versehen.

Es zeigen schematisch:

Figur 1 ein erfindungsgemäßer Verdampfer,

Figur 2 eine erste Ausführungsform eines erfindungsgemäßen

Brennstoffzellensystems, und

Figur 3 eine zweite Ausführungsform eines erfindungsgemäßen

Brennstoffzellensystems.

Fig. 1 zeigt einen erfindungsgemäßen Verdampfer 30, der für einen Einsatz in einem erfindungsgemäßen Brennstoffzellensystem 100 (nicht mit abgebildet) vorgesehen ist. Zentrales Bauelement eines erfindungsgemäßen Verdampfers 30 ist

insbesondere ein Verdampfungsabschnitt 31. Dieser Verdampfungsabschnitt 31 weist einen Flüssigkeitseinlass 40 auf, durch den ein flüssiges Medium 60 in einer Strömungsrichtung 62 in den Verdampfungsabschnitt 31 einströmen kann. Bevorzugt kann der Flüssigkeitseinlass 40 als Wasseranschlussabschnitt 41 ausgebildet sein, sodass eine Verbindung eines erfindungsgemäßen Verdampfers 30 mit einem

Wasserzulauf 50 (nicht mit abgebildet) eines Brennstoffzellensystems 100 ermöglicht werden kann. Auf diese Weise kann somit Wasser 25 als flüssiges Medium 60 im erfindungsgemäßen Verdampfer 30 verdampft werden. Bezüglich der

Strömungsrichtung 62 stromabwärts ist in dieser Ausführungsform am

Verdampfungsabschnitt 31 und damit am gesamten Verdampfer 30 ein

Dampfauslass 42 angeordnet, durch den das dampfförmige Medium 61 in der Strömungsrichtung 62 aus dem Verdampfungsabschnitt 31 ausströmen kann.

Bevorzugt wiederum kann der Dampfauslass 42 als Wasserdampfauslass 43 zum Verbinden mit einem Dampfleitungsabschnitt 51 (nicht mit abgebildet) eines

Brennstoffzellensystems 100 ausgebildet sein, um Wasserdampf 26 für eine

Verwendung im Brennstoffzellensystem 100 bereitstellen zu können.

Für eine Verdampfung des flüssigen Mediums 60 zum dampfförmigen Medium 61 weist der Verdampfer 30 erfindungswesentlich zumindest zwei Wärmetauscherstufen 32, 35 auf, die bezüglich der Strömungsrichtung 62 nacheinander thermisch kontaktierend am Verdampfungsabschnitt 31 angeordnet sind. Durch die bevorzugte Ausführungsform der Wärmetauscherstufen 32, 35 dahin gehend, dass sie sowohl voneinander getrennt und bevorzugt auch gegeneinander isoliert ausgebildet sind, kann eine Verwendung von zwei verschiedenen Heizmedien 34, 37 ohne

gegenseitige Beeinflussung der Heizmedien 34, 37 in einem erfindungsgemäßen Verdampfer 30 besonders einfach bereitgestellt werden. Die einzelnen

Wärmetauscherstufen 32, 35 weisen insbesondere jeweils einen

Wärmetauscherabschnitt 33, 36 auf. Auch können für ein Einleiten von

verschiedenen Heizmedien 34, 37 die beiden Wärmetauscherabschnitte 33, 36 jeweils Vorrichtungen zum Verbinden mit entsprechenden Elementen des

Brennstoffzellensystems 100 aufweisen. So kann jeweils beispielsweise ein

Abluftanschlussabschnitt 44 zur Verwendung von Abluft 22, ein

Nutzabgasanschlussabschnitt 45 zur Verwendung von Nutzabgas 23 bzw. ein Brennerabgasanschlussabschnitt 46 zur Verwendung von Brennerabgas 24 als Heizmedium 34, 37 vorgesehen sein. Besonders bevorzugt kann dabei vorgesehen sein, dass sich die beiden Heizmedien 34, 37 unterscheiden, wobei insbesondere das erste Heizmedium 34 zumeist eine niedrigere Temperatur und damit eine geringere gespeicherte Wärmeenergie als das zweite Heizmedium 37 aufweist.

Darüber hinaus kann der Verdampfungsabschnitt 31 , wie gezeigt, ein

Wasserstoffanschlussabschnitt 47 zum Einleiten von Wasserstoff 27 in den

Verdampfungsabschnitt 31 aufweisen. Zusammen mit Wasser 25 als flüssiges Medium 60 kann unter Wärmeeinwirkung ein noch schnelleres Verdampfen des Wassers 25 zu Wasserdampf 26 im Verdampfungsabschnitt 31 ermöglicht werden. Durch eine katalytische Beschichtung des Verdampfungsabschnitts 31 , zumindest im Bereich des ersten Wärmetauscherabschnitts 33 und/oder des zweiten

Wärmetauscherabschnitts 36 kann dies weiter unterstützt werden.

Zusammenfassend kann durch einen erfindungsgemäßen Verdampfer 30 somit insbesondere eine Verwendung von verschiedenen Heizmedien 34, 37 bereitgestellt werden, wodurch ein Einsatz, insbesondere ein autarker Einsatz, eines derartigen Verdampfers 30 in einem Brennstoffzellensystem 100 unterstützt werden kann. Externe zusätzliche Aufheizvorrichtungen zum Verdampfen des flüssigen Mediums 60 zum dampfförmigen Medium 61 können durch einen erfindungsgemäßen

Verdampfer 30 vermieden werden. In Fig. 2 ist eine erste Ausführungsform eines erfindungsgemäßen

Brennstoffzellensystems 100 gezeigt, in dem ein erfindungsgemäßer Verdampfer 30 verbaut ist. Hauptkomponente eines erfindungsgemäßen Brennstoffzellensystems 100 ist ein Brennstoffzellenstapel 1 mit einer ersten Elektrode 2 und einer zweiten Elektrode 3. Je nach Betriebsart des Brennstoffzellensystems kann die erste

Elektrode 2 als Kathode und die zweite Elektrode 3 als Anode fungieren oder umgekehrt. Ein Luftzuführabschnitt 10 sowie ein Nutzgaszuführabschnitt 11 stellen Luft 20 bzw. Nutzgas 21 in den Elektroden 2, 3 des Brennstoffzellenstapel 1 zur Verfügung. Über einen Abluftabschnitt 12 bzw. einen Nutzabgasabschnitt 13 werden nach den Reaktionen im Brennstoffzellenstapel 1 entsprechend eine Abluft 22 und ein Nutzabgas 23 wieder vom Brennstoffzellenstapel 1 weggeführt. Dabei kann die Abluft 2 und das Nutzabgas 23 beispielsweise einem Abgasbrenner 4 zugeführt werden, in dem zumindest teilweise eine katalytische Verbrennung der Abluft 22 und des Nutzabgas 23 stattfindet. In der dargestellten Ausführungsform erfolgt dies hinsichtlich des Nutzabgases 23 insbesondere über einen ersten Nutzabgaszweig 15, der an einer Verzweigstelle 14 vom Nutzabgasabschnitt 13 abzweigt. Der zweite Nutzabgaszweig 16 ist direkt mit dem erfindungsgemäßen Verdampfer 30, und dort mit dessen zweiter Wärmetauscherstufe 35 verbunden. Brennerabgas 24 wird über einen Brennerabgasabschnitt 17 der ersten Wärmetauscherstufe 32 des

erfindungsgemäßen Verdampfers 30 zugeführt. Da sich in der abgebildeten

Ausführungsform eines erfindungsgemäßen Brennstoffzellensystems 100 im

Brennerabgasabschnitt 17 auch weitere Wärmetauscher 8 befinden, die zum

Übertragen von im Brennerabgas 24 gespeicherter Wärmeenergie auf Luft 20 bzw. Nutzgas 21 vorgesehen sind, weist das resultierende Brennerabgas 24 am

Verdampfer 30 nur noch eine geringere Temperatur auf, wodurch ein Einsatz des Brennerabgases 24 in der ersten Wärmetauscherstufe 32 als erstes Heizmedium 34 (nicht mit abgebildet) zum Aufheizen und/oder zumindest teilweisen Verdampfen des als flüssigen Mediums 60 (nicht mit abgebildet) verwendeten Wassers 25 möglich ist. Das heiße Nutzabgas 23 wird im Verdampfer 30 anschließend in der zweiten

Wärmetauscherstufe 35 als zweites Heizmedium 37 (nicht mit abgebildet) zum Verdampfen des Wassers 25 zu Wasserdampf 26 eingesetzt. Dementsprechend ist der Verdampfer 30 bzw. dessen Verdampfungsabschnitt 31 (nicht mit abgebildet) fluidkommunizierend mit einem Wasserzulauf 50 und einem Dampfleitungsabschnitt 51 des Brennstoffzellensystems 100 verbunden. Um eine Steuerung und/oder Regelung der Dampferzeugung im Verdampfer bereitstellen zu können sind im Nutzabgasabschnitt 13 und im Brennerabgasabschnitt 17 stromaufwärts vom

Verdampfer 30 Steuerungsventile 5 angeordnet. Eine Menge an Nutzabgas 23 und/oder Brennerabgas 24 und damit eine Menge der durch das jeweilige Fluid zugeführten Wärmeenergie, die jeweils dem Verdampfer 30 bereitgestellt wird, kann dadurch gesteuert und/oder geregelt eingestellt werden. Ferner ist in der

dargestellten Ausführungsform ein Wasserstoffzulauf 52 ebenfalls mit dem

Verdampfungsabschnitt 31 verbunden, um Wasserstoff 27 in den Verdampfer 30 einzuleiten und dort das Verdampfen des Wassers 25 zu Wasserdampf 26 weiter zu unterstützen. Nachgeschaltet an den erfindungsgemäßen Verdampfer 30 zweigt vom zweiten Nutzabgaszweig 16 ein Rezirkulationsabschnitt 18 zum Rezirkulieren von Nutzabgas 23 ab. Darüber hinaus kann das Nutzabgas 23 über den zweiten

Nutzabgaszweig 16 einer Kondensationsvorrichtung 9 zugeführt werden, um Wasser 25 bzw. Kondensatgas 28 abzuscheiden. Eine Kondensatnachbehandlung 70 reinigt das Kondensatgas 28 für ein nachfolgendes Speichern in einem Nutzgastank 71 , der neben Nutzgasquellen 72 zum Bereitstellen von Nutzgas 21 für den

Nutzgaszuführabschnitt 11 ausgebildet ist. Wasser 25 kann von der

Kondensationsvorrichtung 9 in einen Wassertank 73 geleitet werden, der ebenfalls aus weiteren Quellen mit Wasser 25 befüllt werden kann. Die für einen Betrieb des Brennstoffzellensystems 100 benötigte Luft 20 kann der Umgebung 101 entnommen werden. Weitere Ventilelemente 6 und Förderelemente 7 komplettieren das erfindungsgemäße Brennstoffzellensystem 100.

Fig. 3 zeigt eine weitere alternative Ausführungsform eines erfindungsgemäßen Brennstoffzellensystems 100. Neben den bereits in Bezug auf Fig. 2 beschriebenen Komponenten, wie beispielsweise ein Brennstoffzellenstapel 1 mit erster Elektrode 2 und zweiter Elektrode 3, ein Abgasbrenner 4 sowie ein Rezirkulationsabschnitt 18, weist in dieser Ausführungsform das erfindungsgemäße Brennstoffzellensystem 100 insbesondere auch einen Startbrenner 80 auf, der über einen Startnutzgasabschnitt 81 und einen Startluftabschnitt 82 mit Luft 20 bzw. Nutzgas 21 (jeweils nicht mit abgebildet) versorgt werden kann. Ein Startvorgang des Brennstoffzellensystems 100 kann durch einen derartigen Startbrenner 80 beschleunigt werden. Auch ist ein zusätzlicher Luftbypass 83 vorgesehen, um der ersten Elektrode 2 des

Brennstoffzellenstapels 1 nicht aufgeheizte und damit kühlere Luft 20 zuführen zu können. Eine Kondensationsvorrichtung 9 und die daran angeschlossenen

Komponenten, wie sie in der in Fig. 1 dargestellten Ausführungsform eines erfindungsgemäßen Brennstoffzellensystems 100 vorgesehen sind, fehlen jedoch in der in Fig. 2 gezeigten Ausführungsform eines erfindungsgemäßen

Brennstoffzellensystems 100. Die weiteren dargestellten Elemente des

Brennstoffzellensystems 100 entsprechen im Wesentlichen denen bereits in Bezug auf Fig. 2 beschriebenen Elementen, insbesondere die verwendeten Ventilelemente 6, die Förderelemente 7 sowie die Wärmetauscher 8.

Wesentlicher Unterschied des in Fig. 3 gezeigten Brennstoffzellensystems 100 gegenüber dem in Fig. 2 gezeigten Brennstoffzellensystem 100 ist insbesondere, dass der Verdampfer 30 im Nutzgaszuführabschnitt 11 angeordnet ist. Somit wird als flüssiges Medium 60 bzw. dampfförmiges Medium 61 (jeweils nicht mit abgebildet) Nutzgas 21 verwendet. Auch die Fleizmedien 34, 37 (jeweils nicht mit abgebildet) unterscheiden sich zwischen den beiden in Fig. 2 und 3 gezeigten

Ausführungsformen eines erfindungsgemäßen Brennstoffzellensystems 100. So wird in der in Fig. 3 dargestellten Ausführungsform als erstes Fleizmedium 34 dem

Verdampfer 30 durch den Abluftabschnitt 12 eine Abluft 22 (nicht mit abgebildet) zugeführt. Als zweites Fleizmedium 37 (nicht mit abgebildet) wird 34 dem Verdampfer 30 durch einen Brennerabgasabschnitt 17 ein Brennerabgas 24 (nicht mit abgebildet) zugeführt. Ferner unterscheidet sich die dargestellte Ausführungsform des

erfindungsgemäßen Brennstoffzellensystems 100 von der in Fig. 2 gezeigten

Ausführungsform dadurch, dass die Steuerungsventile 5 stromabwärts vom

Verdampfer 30 angeordnet sind. Da die Fleizmedien 34, 37 nach einem Durchlaufen des Verdampfers 30 ihre Wärmeenergie, bevorzugt zu einem großen Teil, an das Nutzgas 21 abgegeben haben, zumindest im Wesentlichen abgegeben haben, können als Steuerungsventile 5 Ventile verwendet werden, die eine geringe

Anforderung hinsichtlich einer Flitzebeständigkeit aufweisen. Insbesondere bei einem mobilen Einsatz des in Fig. 3 dargestellten Brennstoffzellensystems 100 kann dies vorteilhaft sein.

Bezugszeichenliste

1 Brennstoffzellenstapel

2 erste Elektrode

3 zweite Elektrode

4 Abgasbrenner

5 Steuerungsventil

6 Ventilelement

7 Förderelement

8 Wärmetauscher

9 Kondensationsvorrichtung

10 Luftzuführabschnitt

11 Nutzgaszuführabschnitt

12 Abluftabschnitt

13 Nutzabgasabschnitt

14 Verzweigstelle

15 erster Nutzabgaszweig

16 zweiter Nutzabgaszweig

17 Brennerabgasabschnitt

18 Rezirkulationsabschnitt

20 Luft

21 Nutzgas

22 Abluft

23 Nutzabgas

24 Brennerabgas

25 Wasser

26 Wasserdampf

27 Wasserstoff

28 Kondensatgas

30 Verdampfer

31 Verdampfungsabschnitt

32 erste Wärmetauscherstufe

33 erster Wärmetauscherabschnitt

34 erstes Heizmedium

35 zweite Wärmetauscherstufe

36 zweiter Wärmetauscherabschnitt zweites Heizmedium

Flüssigkeitseinlass

Wasseranschlussabschnitt

Dampfauslass

Wasserdampfauslass

Abluftanschlussabschnitt

Nutzabgasanschlussabschnitt

Brennerabgasanschlussabschnitt

Wasserstoffanschlussabschnitt

Wasserzulauf

Dampfleitungsabschnitt

Wasserstoffzulauf

flüssiges Medium

dampfförmiges Medium

Strömungsrichtung

Kondensatnachbehandlung

Nutzgastank

Nutzgasquelle

Wassertank

Startbrenner

Startnutzgasabschnitt

Startluftabschnitt

Luftbypass

Brennstoffzellensystem

Umgebung