Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXHAUST COLLECTION BAG FOR CRYOGENIC TREATMENT
Document Type and Number:
WIPO Patent Application WO/2017/062747
Kind Code:
A1
Abstract:
An exhaust collection bag for cryogenic treatment is described herein and may generally comprise a first layer and a second layer attached along a periphery and forming an enclosed volume. The periphery defines four radiused corners and an extension member. A tubing connector may be positioned along the first layer and extend through the first layer and may also be located along a centerline of the first layer and in proximity to a bottom edge of the first layer. A drain closure may also be positioned along the first layer and located away from the centerline and in proximity to the bottom edge.

Inventors:
SYLLIAASEN SCOTT (US)
COTE RIC (US)
MALECKI WILLIAM (US)
Application Number:
PCT/US2016/055956
Publication Date:
April 13, 2017
Filing Date:
October 07, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHANNEL MEDSYSTEMS INC (US)
International Classes:
A61B18/02
Foreign References:
US20050059952A12005-03-17
CN2232762Y1996-08-14
US20090030398A12009-01-29
CN203710364U2014-07-16
US201213361779A2012-01-30
US20120197245A12012-08-02
US201313900916A2013-05-23
US20130296837A12013-11-07
US201314019898A2013-09-06
US20140012156A12014-01-09
US201314019928A2013-09-06
US20140005648A12014-01-02
US201314020265A2013-09-06
US20140005649A12014-01-02
US201314020306A2013-09-06
US20140025055A12014-01-23
US201314020350A2013-09-06
US20140012244A12014-01-09
US201314020397A2013-09-06
US20140012243A12014-01-09
US201314020452A2013-09-06
US20140005650A12014-01-02
US201314086050A2013-11-21
US20140074081A12014-03-13
US201314086088A2013-11-21
US20140088579A12014-03-27
US201314029641A2013-09-17
US20150080869A12015-03-19
US201414265799A2014-04-30
US20150289920A12015-10-15
Other References:
See also references of EP 3359072A4
Attorney, Agent or Firm:
HAN, Johney U. et al. (US)
Download PDF:
Claims:
CLAI MS

What is claimed is:

1 . An exhaust collection apparatus, comprising:

a first layer and a second layer attached along a periphery and forming an enclosed volume, wherein the periphery defines radiused corners and an extension member;

a tubing connector positioned along the first layer and extending through the first layer in fluid communication w ith the enclosed volume, w herein the tubing connector is located along a ccnterlinc of the first layer and in proximity to a bottom edge of the first layer: and

a drain closure positioned along the first layer and extending through the first layer in fluid communication with the enclosed volume, w herein the drain closure is located aw ay from the centerline and in proximity to the bottom edge.

2. The apparatus of claim 1 w herein the first and second layers are comprised of a lubricious polyurethane having a thickness of 0.003 inches.

3. The apparatus of claim 1 w herein the extension defines an opening therethrough w hich is reinforced to support 2 lbs for at least 1 hour.

4. The apparatus of claim 1 w herein the first and second layers are configured to elongate up to 800%.

5. The apparatus of claim I w herein the apparatus has a burst pressure of at least greater than or equal to 3 psi.

6. The apparatus of claim 1 w herein the first and second layers are transparent.

7. The apparatus of claim I w herein the radiused corners have a radius of 1 1 .0 inches.

8. The apparatus of claim 1 w herein the periphery defines four radiused corners.

9. I he apparatus of claim 1 further comprising a support member fluidly coupled to the tubing connector and extending within an interior of the enclosed volume.

1 0. The apparatus of claim 9 w herein the support member has a contact surface and defines one or more openings in fluid communication with a channel defined in the support member and with the tubing connector.

1 1 . The apparatus of claim 1 0 w herein the support member further defines an opening along the contact surface.

1 2. The apparatus of claim 0 w herein the support member has a curv ed interface member.

1 3. The apparatus of claim 9 w herein the support member comprises one or more extensions forming one or more corresponding channels between the extensions.

1 4. The apparatus of claim 9 w herein the support member comprises a helical member forming a channel . 1 5. The apparatus of claim 9 wherein the support member comprises a flexible convoluted or perforated tube having a helically-shaped projection formed along an outer surface of the tube and further defining one or more openings through the surface of the tube. 1 6. The apparatus of claim 9 wherein the support member comprises a first set of projections formed to extend parallel to one another in a first direction over a surface of the support member and a second set of projections formed to extend parallel to one another in a second direction over the surface of the support member and extending at an angle relative to the first set of projections.

1 7. The apparatus of claim 1 further comprising an internal support mechanism configured to prev ent the first and second layers from col lapsing upon one another

1 5. The apparatus of claim 1 further comprising a self-coiling support member extending along a length of the exhaust collection apparatus.

1 °. An exhaust col lection apparatus, comprising:

a first layer and a second layer attached along a periphery and forming an enclosed v olume:

a tubing connector positioned along the first layer and extending through the first layer in fluid communication with the enclosed volume, w herein the tubing connector is located in proximity to a bottom edge of the first layer;

a drain closure positioned along the first layer and extending through the first layer in fluid communication with the enclosed volume. w herein the drain closure is located away from the centerl ine and in proximity to the bottom edge: and

a support member fluidly coupled to the tubing connector and extending within an interior of the enclosed volume, wherein the support member is configured to inhibit the first layer and second layer from adhering to one another.

20. The apparatus of claim 1 9 wherein the first and second layers are comprised of a lubricious poly m ethane hav ing a thickness of 0.003 inches.

2 1 . The apparatus of claim 1 9 wherein the first and second layers are configured to elongate up to 800%.

22. The apparatus of claim 1 9 wherein the apparatus has a burst pressure of at least greater than or equal to 3 psi.

23. The apparatus of claim 1 9 wherein the first and second layers are transparent.

24. The apparatus of claim 1 9 w herein the periphery defines radiused corners and an extension member

25. The apparatus of claim 24 w herein the radiused corners have a radius of I 1 .0 inches.

26. The apparatus of claim 24 wherein the e

therethrough which is reinforced to support 2 lbs for at least 1 hour.

27. The apparatus of claim !9 wherein the tubing connector is located along a centerline of the first layer,

28. The apparatus of claim 19 wherein the support member has a contact surface and defines one or more openings in fluid communication with a channel defined in the support member and with the tubing connector.

29. The apparatus of claim 19 wherein the support member further defines an opening along the contact surface.

30. The apparatus of claim 19 wherein the support member lias a curved interface member.

31. The apparatus of claim. 19 wherein the support member comprises one or .more extensions forming one or more corresponding channels between the extensions. 32, The apparatus of claim 19 wherein the support member compri ses a helical member forming a channel.

33. The apparatus of claim 19 wherein the support member comprises a flexible convoluted or perforated tube having a helically-shaped projection formed along an outer surface of the tube and further defining one or more openings through the surface of the tube,

34. The apparatus of claim 19 wherein the support member comprises a first set of projections formed to extend parallel to one another in a first direction over a surface of the support member and a second set of projections formed to extend parallel to one another in a second direction over the surface of the support member and extending at an angle relative to the first set of projections.

35. The apparatus of claim 19 further compr

configured to prevent the first and second layers from collapsing upon one another.

36. The apparatus of claim 19 further comprising a self-coiling support member extending along a length of the exhaust collection apparatus.

Description:
EXHAUST COLLECTION BAG FOR CRYOGEN IC TREATM ENT

C ROSS-R F.FFR FNCF. TO R F.I .ATF.D APPLICATIONS

[0001] This application claims the benefit of priority to L ' .S. Provisional

Appl ication No. 62 239. 1 39 filed October 8. 201 5. which is incorporated herein by reference in its entirety.

F I ELD OF TH E IN V ENTION

[0002] The present inv ention relates to medical devices. In particular, the present invention relates to methods and apparatus for collecting exhaust gases generated from the cryoablative treatment of tissue regions.

BACKGROUND OF THE INVENTION

[0003] In the last few decades, therapeutic interv ention within a body cavity or lumen has dev eloped rapidly with respect to deliv ery of energy via radio!! equency ablation. While successful in several arenas, radiofrequency ablation has sev eral major downsides, including incomplete ablation, frequent lack of visualization during catheter insertion, potential for overlap during treatment ( with some areas receiving tw ice as much energy as other areas), charring of tissues and requirements for frequent debridement, frequent requirements for additional doses of energy after debridement, and potential perforation of the body cavity or lumen due to the rigidity of the RF electrodes.

[0004] The current state of the art w ould benefit from minimally inv asive dev ices and methods w hich del iver thermal energy to a desired area or extract energy from a desired area, in a consistent, controlled manner that does not char or inadvertently freeze certain tissues or create excessiv e risk of unwanted organ or lumen damage.

SUMMA RY OF THE INVENTION

[0005] Generally, dev ices for deliv ering controlled treatment may comprise an elongate probe having a distal tip and a flexible length, at least one infusion lumen positioned through or along the elongate probe, wherein the infusion lumen defines one or more openings along its length, a liner expandably enclosing the probe, an inflow reservoir or canister v alv e fhiidly coupled with a reserv oir or canister containing a cryoablativ e agent, a modulation control unit fluid coupled with the inflow reserv oir or canister valve and in fluid communication with the at least one infusion lumen, and a warming element thermally coupled with the reservoir or canister.

[0006] One method for uti lizing the treatment assembly for cryoablatively treating tissue, e.g.. uterine tissue, may general ly comprising monitoring a temperature or pressure of the reservoir or canister containing a cryoablative agent, maintaining the temperature of the reservoir or canister at a predetermined level, positioning an elongate probe into a body lumen to be treated, expanding a liner enclosing the probe into contact against the body lumen, and infusing a cryoablative agent through a delivery lumen such that the cryoablativ e agent passes into an infusion lumen, through one or more unobstructed openings, and into contact against an interior of the liner.

[0007] In controlling or modulating the flow of the cryoablative agent, the inflow reservoir or canister valve which is fluidly coupled with the reservoir or canister may be utilized. Such a valve may generally comprising a valve body, a reservoir interface extending from the valve body and configured for fluidly coupling with the reservoir or canister containing the cryoablative agent, a modulation control interface defined along the body and configured for fluidly coupling to a modulation control interface, a valve stem seated w ithin a valve stem channel defined within the valve body, an inflow lumen defined through the valve body and extending between the reservoir interface and the modulation control interface, w here the valve stem is mov able betw een a fu st position which obstructs the inflow lumen and a second position which opens the inflow lumen, a venting lumen defined through the valve body and extending between the reservoir interface and a vent opening, and a v ent piston which is mov able between a first position which obstructs the v enting lumen and a second position which opens the v enting lumen. A lternativ ely, the valve stem may be configured to include three positions including a first position which obstructs the inflow lumen, a second position w hich opens the inflow lumen, and a third optional position which opens the venting lumen.

[0008] To facilitate the liner expanding and conforming readily against the tissue walls of the uterus, the liner may be in flated w ith a gas or l iquid. Once the elongate shaft has been introduced through the cerv ix and into the uterus, the distal opening of the shaft may be positioned distal to the internal os and the liner may be deployed either from within the shaft or from an external sheath. The liner may be deployed and allow ed to unfurl or unwrap w ithin the uterus The cooling probe may be introduced through the shaft and into the liner interior. As the cryoablative agent (e.g.. cryoablativ e fluid ) is introduced into and distributed throughout the liner interior, the exhaust catheter may also define one or more openings to allow for the cryoablative fluid to vent or exhaust from the interior of the liner.

[000*>| A coolant reservoir, e.g.. nitrous oxide canister, may be tluidly coupled to the handle and or elongate shaft via a coolant \ alve which may be optionally control led by the microcontroller. The coolant reservoir may be in fluid communication with the cooling probe assembly and w ith the interior of the balloon. Additionally, an exhaust lumen in communication with the elongate probe and having a back pressure valve may also include a pressure sensor w here one or both of the back pressure sensor and or valve may also be in communication with the microcontrol ler.

[0010| The reservoir or canister may be inserted into the reservoir housing and into secure engagement with a reservoir or canister valve which may be coupled to the reservoir engagement control. The valve may be adjusted to open the reservoir or canister for treatment or for venting of the discharged cryoablative fluid during or after treatment. An inflow modulation control unit ( e.g.. an actuatable solenoid mechanism ) may be coupled directly to the reservoir or canister valve and the cryoablative fluid line may be coupled directly to the modulation control unit and through the sheath and into fluid communication w ithin the l iner.

[001 1 ] With the discharged cryoablativ e fluid in a completely gaseous state, the ev acuating exhaust line may be vented to the surrounding env ironment or optionally coupled to a scav enging system to collect the discharged gas to limit exposure. Such scavenging collection systems may incorporate features such as orifices or valves to prevent any vacuum applied by the scavenging unit from interfering with the backpressure w ithin the treatment device.

[0012] In one variation, an exhaust collection bag may be supported by a pole and connected to the exhaust line for col lecting the exhaust fluids or gases. The ev acuating exhaust line may be removably coupled to the collection bag via a tubing connector located near or at a bottom of the collection bag. The bag itself may be formed from two layers of a lubricious materials which are attached or welded (e.g.. RF dielectric welded ) around its periphery along its edges. Moreover, the collection bag may be configured to form an extension which projects from the bag and forms an opening for passing a hook through or to provide a point for attachment. The collection bag may be designed to hang, e.g.. from an IV pole as show n such that it is maintained off the floor to keep it clean should a user w ant to reuse it a number of times. [0013] The bay may be fabricated from. e.g.. a polyurethane tllm. selected for its lubricity, elasticity, clarity, low cost and ability to be RF dielectric w elded. The film may have a thickness of. e.g.. 0.003 inches. Because the bay inflates at relatively low pressures, the lubricity of the layers prev ents the layers of fi lm from sticking together and al lows the bag to readily inflate. Also, to accommodate potential volume increases associated with increased temperatures, the bag material also exhibits elasticity , e.g.. film elongation may be on the order of 800° o. The bag may be fabricated to have a burst pressure of at least greater than or equal to. e.g.. > 3 psi. The bag may also be fabricated so as to be at least partial ly transparent so that the clarity of the bag results in an object that visually occupies less space in the procedure room because objects can be seen through it.

[0014] The tubing connector may further incorporate one or more variations of a support member which may function as a tenting structure to prev ent the layers of the bag from collapsing upon itself and trapping any exhaust gases. Additionally and or optionally, the bag itself may incorporate features which enable the bag to col lapse upon itself to force exhaust gases out of the bag interior.

BR I EF DESCR I PTION OF TH E DRAWINGS

[0015] Fig. 1 A show s a side view of an integrated treatment assembly.

[0016] Fig. I B shows an example of the assembly advanced through the cervix and into the uterus where the sheath may be retracted via the handle assembly to deploy the balloon.

[0017] Fig. 1 C shows a perspectiv e view of a cryoablation assembly having a handle assembly which may integrate the electronics and pump assembly within the handle itsel f.

[0018] F ig. I D shows the handle assembly in a perspectiv e exploded view i l lustrating some of the components w hich may be integrated within the handle.

[0019] Fig. 1 E shows an example of the system operation during a pre-treatment puff up process.

[0020] Fig. I F shows an example of the system operation during a treatment process.

[0021] Fig. I Ci shows an example of the system operation during a thaw ing and v enting process. [0022 ] Figs. 2 A and 2 B show cross-sectional side views of yet another variation of a cooling probe which utilizes a single infusion line in combination with a translatable delivery line.

[0023] Figs. 3 A and 3 B show top and perspectiv e views of the expanded liner w ith four pairs of the open delivery ports exposed in apposed direction.

[0024] Figs. 4 A to 4C show side and assembly views of another variation of the treatment assembly.

[0025] Figs. 5A and 5B show examples of collection systems w hich can be used to collect the discharged l iquid or gas.

[0026| Fig. 6 show s another example of collection system utilizing a bag for collecting the discharged liquid or gas.

[0027] Figs. 7 A and 7B show respective front and detail view's of the collection bag in a flattened configuration.

[0028] Figs. 8 A and 8B show front and side views of the collection bag in an expanded configuration.

[0029] Fig.9 show s a side view of a support member having a gentle dome-shaped or curved structure defining one or more openings along its surface.

[0030] Figs. 10A and 10B show perspective and side views of another variation of the support member which has a dome-shaped feature formed in a hemi-spherical shape. 10031 1 Figs. 1 I A and 1 1 B show perspective and side view s of another variation of the support member having a curved interface member which extends beyond a periphery of the support member w here the one or more openings are defined.

[0032 ] Figs. 1 2A and 1 2B show perspective and side v iew s of yet another v ariation where the support member has a curved surface but also defines an opening or lumen extending through the member.

[0033] Figs. 1 3A and 1 3B show perspective and side v iew s of yet another v ariation w here the support member may be formed of a peripheral member hav ing one or more extensions formed around a periphery of the member and projecting away from the support member

|0034| Figs. 1 4A and 14B show side views of yet another support member formed as a helical member or spring forming a channel and extending away from the tubing connector. [0035] Figs. 1 5Λ and 1 5B show cross-sectional side views of yet another v ariation of a support member which is formed as a flexible convoluted or perforated tube having a helical ly-shaped projection formed along the outer surface of the tube.

[0036] Figs. 1 6Λ and 1 6B show perspectiv e and side v iews of yet another v ariation of a support member hav ing first set of projections and a second set of projections ov er the surface of the support member.

[0037] figs. 1 7Λ and 1 7B show perspectiv e and side v iew s of yet another v ariation in which the support member may have one or more projections with atraumatic ends forming a clearance channel betw een each of the projections.

[0038| Figs. 1 8A to 1 8C show detail side v iews of yet another v ariation of an internal support mechanism configured to maintain the bag in an expanded configuration to prevent the layers from collapsing upon one another.

[0039] Figs. 19A to 19C show top views of the bag correlating to Figs. I SA to I SC.

[0040] Figs. 20A to 20C show side views of a bag incorporating a self-coiling support member w hich may extend along the length of the bag.

DETAI LED DESCRI PTI ON OF THE INVENTION

[0041 ] The cooling probe 22 as well as the balloon assembly may be v ariously configured, for instance, in an integrated treatment assembly 10 as shown in the side view of Fig. 1 A. In this variation, the assembly 10 may integrate the elongate shaft 18 having the l iner or balloon 20 extending therefrom with the cool ing probe 22 positioned

translatably within the shaft 18 and liner 20. A separate translatable sheath 12 may be positioned ov er the elongate shaft 18 and both the elongate shaft 18 and sheath 12 may be attached to a handle assembly 14. The handle assembly 14 may further comprise an actuator 16 for controlling a translation of the sheath 12 for liner 20 delivery and deployment.

[0042] With the sheath 12 positioned over the elongate shaft 18 and liner 20, the assembly 10 may be adv anced through the cervix and into the uterus I T w here the sheath 12 may be retracted v ia the handle assembly 14 to deploy the liner 20. as shown in Fig. I B. As described abov e, once the liner 20 is initially deployed from the sheath 12. it may be expanded by an initial burst of a gas. e.g.. air, carbon dioxide, etc., or by the cryoablativ e fluid. In particular, the tapered portions of the liner 20 may be expanded to ensure contact with the uterine cornu. The handle assembly 14 may also be used to actuate and control a longitudinal position of the cool ing probe 22 relative to the elongate shaft 18 and l iner 20 as indicated by the arrows.

[0043] In another variation of the treatment assembly. l ig. 1 C shows a perspective view of a cryoablation assembly having a handle assembly 24 w hich may integrate the electronics and pump assembly 28 within the handle itself. An exhaust tube 26 may also be seen attached to the handle assembly 24 for evacuating exhausted or excess cryoablative fluid or gas from the l iner 20. .Any of the cryoablative fluids or gases described herein may be utilized, e.g.. compressed liquid-to-gas phase change of a compressed gas such as nitrous oxide ( N;0 ). carbon dioxide (CO; ). Argon, etc. 1 he cooling probe 22 may be seen extending from sheath 12 w hile surrounded or enclosed by the liner or balloon 20. Hence, the handle assembly 24 with coupled cooling probe 22 and liner 20 may provide for a single device w hich may provide for pre-tieatmenl puff-up or in flation of the liner 20. active cryoablation treatment, and or post-treatment thaw cycles.

[0044] The handle assembly 24 may also optional ly incorporate a display for providing any number of indicators and or alerts to the user. I or instance, an LCD display may be provided on the handle assembly 24 ( or to a separate control unit connected to the handle assembly 24) where the display counts down the treatment time in seconds as the ablation is occurring. The display may also be used to provide measured pressure or temperature readings as w ell as any number of other indicators, symbols, or text. etc.. for alerts, instructions, or other indications. Moreover, the display may be con figured to have multiple color-coded outputs, e.g., green, yellow , and red. When the assembly is w orking through the ideal use case, the I.ED may be displayed as a solid green color. W hen the device requires user input ( e.g. w hen paused and needing the user to press the button to restart treatment) the LL ; D may flash or display yellow . Additionally, when the device has faulted and treatment is stopped, the LF.D may flash or display a solid red color.

[0045] Fig. I D show s the handle assembly 24 in a perspective exploded view to il lustrate some of the components w hich may be integrated w ithin the handle 24. As shown , the liner 20 and sheath 12 may be coupled to a sheath bearing assembly 32 and slider base block assembly 34 for controlling the amount of exposed treatment length along the cool ing probe 22 (and as described in further detai l below). An actuatable sheath control 36 may be attached to the sl ider base block assembly 34 for manually controlling the treatment length of the cooling probe 22 as wel l . Along w ith the electronics and pump assembly 28 ( w hich may optionally incorporate a programmable processor or control ler in electrical communication w ith any of the mechanisms with in the handle 24 ), an exhaust v alve 30 ( e.g.. actuated via a solenoid ) may be coupled to the exhaust l ine 26 for controlling not only the outflow of the exhausted cryoablation fluid or gas but also for creating or increasing a backpressure during treatment, as described in further detail below .

[0046] In one example of how the handle assembly 24 may prov ide for treatment, Figs. 1 E to 1 G illustrate schematic side view s of how the components may be integrated and utilized w ith one another. As described herein, once the sheath 12 and or liner 20 has been advanced and initial ly introduced into the uterus, the liner 20 may be expanded or inflated in a pre-treatment puff up to expand the liner 20 into contact against the uterine tissue sui faces in preparation for a cryoablation treatment. As illustrated in the side view of Fig. I E. a pump 38 integrated within the handle assembly 24 may be actuated and a valve 42 ( e.g.. actuatable or passive ) fluidly coupled to the pump 38 may be opened ( as indicated schematically by an "O " over both the pump 38 and v alv e 42 ) such that ambient air may be drawn in through, e.g., an air filter 40 integrated along the handle 24. and passed through an air l ine 44 w ithin the handle and to an exhaust block 46. The exhaust block 46 and air line 44 may be fluidly coupled to the tubular exhaust channel which extends from the handle 24 which is further attached to the cooling probe 22. As the air is introduced into the interior of the l iner 20 ( indicated by the arrows ), the liner 20 may be expanded into contact against the surrounding uterine tissue surface.

[0047] A cryoablative fluid line 48 also extending into and integrated within the handle assemblv24 may be fluidly coupled to an actuatable valve 50. e.g.. actuated v ia a solenoid, w hich may be manually closed or automatically closed (as indicated

schematically by an "X " ov er the v alv e 50) by a controller to prev ent the introduction of the cryoablative fluid or gas into the liner 20 during the pre-treatment liner expansion. An infusion line 52 may be fluidly coupled to the valve 50 and may also be coupled along the length of the sheath 12 and probe 22. as described in further detail below. The exhaust v alve 30 coupled to the exhaust l ine 26 may also be closed (as indicated schematically by an "X " ov er the valve 30) manually or automatically by the controller to prevent the escape of the air from the exhaust block 46.

[0048] During this initial liner expansion, the liner 20 may be expanded in a gradual and control led manner to minimize any pain which may be experienced by the patient in opening the uterine cav ity. I lence, the liner 20 may be expanded gradually by metering in small amounts of air Optionally, the pump 38 may be programmed and controlled by a processor or microcontrol ler to expand the liner 20 according to an algorithm ( e.g., e.g. ramp-up pressure quickly to 1 0 mm I tg and then slow-down the ramp- up as the pressure increases to 85 mm Hg ) w hich may be stopped or paused by the user. Moreover, the liner 20 may be expanded to a volume which is just sufficient to take up space w ithin the uterine cavity. After the initial increase in pressure, the pressure within the liner 20 may be optionally increased in bursts or pulses. Moreover, visual ization ( e.g.. via a hystcroscope or abdominal ultrasound ) may be optionally used during the controlled gradual expansion to determine when the uterine cavity is fully open and requires no further pressurization. I n yet another v ariation, the liner 20 may be cycl ically inflated and deflated to fully expand the liner. The inflations and deflations may be partial or full depending upon the desired expansion.

[0049] In yet another alternative variation, the system could also use an amount of air pumped into the liner 20 as a mechanism for detecting whether the dev ice is in a false passage of the body rather than the uterine cavity to be treated. The system could use the amount of time that the pump 38 is on to track how much air has been pushed into the liner 20. I f the pump 38 fai ls to t each certain pressure lev els within a predetermined period of time, then the controller may indicate that the device is positioned within a false passage. There could also be a limit to the amount of air allowed to be pushed into the liner 20 as a way to detect whether the probe 22 has been pushed, e.g.. out into the peritoneal cavity. I f too much ait is pushed into the liner 20 (e.g.. the volume of air tracked by the controller exceeds a predetermined lev el ) before reaching certain pressures, then the control ler may indicate the presence of a leak or that the l iner 20 is not fully constrained by the uterine cavity. The liner 20 may also incorporate a release feature which is configured to rupture if the liner 20 is not constrained such that if the system attempts to pump up the liner 20 to treatment pressure (e.g.. 140 mniHg). the release feature will rupture before reaching that pressure.

[0050] Once the liner 20 has been expanded sufficiently into contact against the uterine tissue surface, the cryoablation treatment may be initiated. As shown in the side v iew of Fig. I F. the air pump 38 may be turned off and the v alv e 42 may be closed (as indicated schematical ly by an '"X " ov er the pump 38 and v alv e 42 ) to prev ent any further infusion of air into the liner 20 With the cryoablative fluid or gas pressurized within the line 48, valv e 50 may be opened (as indicated schematical ly by an "Ό " ov er the v alv e 50 ) to al low for the flow of the cryoablativ e fluid or gas to flow through the infusion line 52 coupled to the v alv e 50. Infusion l ine 52 may be routed through or along the sheath 12 and along the probe 22 w here it may introduce the cryoablativ e fluid or gas within the interior of liner 20 for infusion against the l iner 20 contacted against the surrounding tissue surface. [0051] During treatment or afterwards, the exhaust s alve 30 may also be opened ( as indicated schematically by an " O " over the valve 30 ) to allow for the discharged fluid or gas to exit or be drawn from the liner interior and proximal ly through the cooling probe 22, such as through the distal tip opening. I he fluid or gas may exit from the l iner 20 due to a pressure differential between the liner interior and the exhaust exit and or the fluid or gas may be activ ely drawn out from the liner interior, as described in further detai l herein. The spent fluid or gas may then be withdrawn proximally through the probe 22 and through the lumen surrounded by the sheath 12. exhaust block 46, and the exhaust tube 26 where the spent fluid or gas may be v ented. With the treatment fluid or gas thus introduced through infusion l ine 52 within the liner 20 and then w ithdrawn, the cryoablative treatment may be applied uninterrupted.

[0052 ] Once a treatment has been completed, the tissue of the uterine cav ity may be permitted to thaw . During this process, the cryoablative fluid delivery is halted through the infusion l ine 52 by closing the v alv e 50 ( as indicated schematically by an " X " ov er the v alve 50 ) while continuing to exhaust for any remaining cryoablative fluid or gas remaining within the liner 20 through probe 22. through the lumen surrounded by sheath 12. and exhaust line 26. as shown in Fig. I G. Optionally, the pump 38 and v alv e 42 may be cycled on and off and the exhaust v alve 30 may also be cycled on and off to push ambient air into the liner 20 to facilitate the thawing of the liner 20 to the uterine cav ity. Optional ly, warmed or room temperature air or fluid (e.g.. saline ) may also be pumped into the liner 20 to further facilitate thaw ing of the tissue region.

[0053] As the spent cryoablativ e fluid or gas is removed from the liner 20. a drip prev ention system may be optional ly incorporated into the handle. For instance, a passive system incorporating a v ented trap may be integrated into the handle w hich allow s exhaust gas to escape but captures any v ented liquid. The exhaust line 26 may be elongated to allow for any v ented liquid to ev aporate or the exhaust line 26 may be convoluted to increase the surface area of the exhaust gas tube to promote ev aporation.

[0054] Alternatively, an active system may be integrated into the handle or coupled to the handle 24 where a heat sink may be connected to a temperature sensor and electrical circuit which is controlled by a processor or microcontrol ler. The heat sink may promote heat transfer and causes any liquid exhaust to ev aporate. When the temperature of the heat sink reaches the boiling temperature of, e.g.. nitrous oxide (around -86 °C), the handle may be configured to slow or stop the delivery of the cryoablativ e fluid or gas to the uterine cavity. [0055] I he pi e-treatment infusion of air as well as the methods for treatment and thawing may be utilized w ith any of the liner, probe, or apparatus variations described herein. Moreover, the pre-treatment, treatment, or post-treatment procedures may be uti lized altogether in a single procedure or di fferent aspects of such procedures may be used in varying combinations depending upon the desired results.

[0056] Additionally and or optionally, the handle 24 may incorporate an orientation sensor to facilitate maintaining the handle 24 in a desirable orientation for treatment. One variation may incorporate a ball hav ing a specific weight covering the exhaust line 26 such that when the handle 24 is held in the desirable upright orientation, the treatment may proceed uninterrupted. However, if the handle 24 moved out of its desired orientation, the ball may be configured to rol l out of position and trigger a visual and or auditory alarm to alert the user. In another variation, an electronic gyroscopic sensor may be used to maintain the handle 24 in the desired orientation for treatment.

[0057] Figs. 2.Λ and 2 B show cross-sectional side views of yet another variation of a cooling probe which uti lizes a single infusion l ine in combination with a translatable delivery line. To accommodate various sizes and shapes of uterine cavities, the cooling probe may have a sliding adjustment that may be set, e.g., according to the measured length of the patient ' s uterine cav ity. The adjustment may move along the sheath along the exhaust tube as well as the delivery line within the in fusion line. The sheath may constrain the liner 20 and also control its deployment within the cavity.

[0058] In this variation, an infusion line 52 (as described abov e ) may pass from the handle assembly and along or within the sheath and into the interior of liner 20. The infusion line 52 may be al igned along the probe 22 such that the infusion line 52 is parallel with a longitudinal axis of the probe 22 and extends towards the distal tip 66 of the probe 22. Moreov er, the infusion line 52 may be positioned along the probe 22 such that the line 52 remains exposed to the cornet s of the liner 20 w hich extend towards the cornua. With the infusion line 52 positioned accordingly, the length of the line 52 w ithin the liner 20 may have multiple openings formed along its length w hich act as deliv ery ports for the infused cryoablative fluid or gas. A separate translating delivery line 64, e g , formed of a Nitinol tube defining an infusion lumen therethrough, may be slidablv positioned through the length of the infusion line 52 such that the del iv ery l ine 64 may be mov ed (as indicated by the arrows in l ig 2A ) relative to the infusion line 52 which remains stationary relativ e to the probe 22. [0059] The openings along the length of the infusion l ine 52 may be positioned such that the openings are exposed to the sides of the interior of the liner 20. e.g.. cross- drilled. As the cryoablative fluid or gas is introduced through the delivery line 64, the in fused cryoablativ e fluid or gas 68 may pass through the infusion line 52 and then out through the openings defined along the infusion line 52. By adjusting the translational position of the delivery line 64, the deliv ery line 64 may also cover a selected number of the openings resulting in a number of open del iv ery ports 60 as well as closed del iv ery ports 62 w hich are obstructed by the deliv ery line 64 position relative to the infusion line 52. as show n in the top v iew of Fig. 2 B.

[0060] By translating the deliv ery line 64 accordingly, the number of open delivery ports 60 and closed delivery ports 62 may be adjusted depending on the desired treatment length and further ensures that only desired regions of the uterine tissue are exposed to the infused cryoablative fluid or gas 68. Once the number of open deliv ery ports 60 has been suitably selected, the infused cryoablative fluid or gas 68 may bypass the closed deliv ery ports 62 obstructed by the delivery line 64 and the fluid or gas may then be forced out through the open delivery ports 60 in a transverse direction as indicated by the infusion spray direction 70. The terminal end of the infusion line 52 may be obstructed to prev ent the distal release of the infused fluid or gas 68 from its distal end. Although in other v ariations, the terminal end of the in fusion line 52 may be left unobstructed and opened.

[0061] Figs. 3 A and 3 B show top and perspectiv e views of the expanded l iner 20 w ith four pairs of the open delivery ports 60 exposed in apposed direction. Because the infused fluid or gas 68 may be injected into the liner 20. e.g.. as a liquid, under relativ ely high pressure, the injected cryoablative liquid may be sprayed through the open deliv ery ports 60 in a transverse or perpendicular direction relative to the cooling probe 22. The laterally infused cryoablativ e fluid 70 may spray against the interior of the l iner 20 ( w hich is contacted against the surrounding tissue surface) such that the cryoablative liquid 70 coats the interior w alls of the liner 20 due to turbulent flow causing heavy mixing. As the cryoablativ e liquid 70 coats the l iner surface, the sprayed liquid 70 may absorb heat from the tissue w alls causing rapid cooling of the tissue while also evaporating the liquid cryogen to a gas form that flows out through the cooling probe 22. This rapid cooling and ev aporation of the cryoablative liquid 70 faci litates the creation of a fast and deep ablation ov er the tissue. During treatment, the temperature w ithin the cavity typical ly drops, e.g.. - 86° C. w ithin 2-3 seconds after the procedure has started. Whi le the interior w alls of the liner 20 are first coated with the cryoablative liquid 70. a portion of the cryoablative liquid 70 may no longer change phase as the procedure progresses.

[0062] While four pairs of the open delivery ports 60 are shown, the number of exposed openings may be adjusted to few er than four pairs or more than four pairs depending on the positioning of the delivery line 64 and also the number of openings defined along the infusion line 52 as well as the spacing between the openings. Moreover, the positioning of the openings may also be adjusted such that the sprayed liquid 70 may spray in alternative directions rather than laterally as shown. Additionally and or alternatively, additional openings may be defined along other regions of the infusion line 52.

[0063] Further v ariations of the treatment assembly features and methods w hich may be utilized in combination w ith any of the features and methods described herein may be found in the following patent applications:

US Pat. App.13361.779 filed January 30.2012 (US Pub.20120197245);

US Pat. App. 13900.916 filed May 23, 2013 (US Pub.2013.0296837);

US Pat. App.14019.898 filed September 6, 2013 (US Pub.20140012156);

US Pat. App.14019.928 tiled September 6, 2013 (US Pub.2014005648);

US Pat. App.14020.265 filed September 6, 2013 (US Pub.20140005649);

US Pat. App.14020.306 filed September 6, 2013 (US Pub.20140025055);

US Pat. App. 14020.350 filed September 6.2013 (US Pub.20140012244);

US Pat. App.14020.397 filed September 6, 2013 (US Pub.20140012243);

US Pat. App.14020.452 filed September 6, 2013 (US Pub.20140005650);

US Pat. App. 14086.050 filed November 21.2013 (US Pub.2014/0074081 );

US Pat. App.14086.088 filed November 21.2013 (US Pub.20140088579);

US Pat. App. 14029.641 filed September 17.2013 (US Pub.20150080869); and

US Pat. App. 14265.799 filed April 30.2014 (US Pub.20150289920).

[0064] Fach of the patent applications abov e is incorporated herein by reference in its entirety and for any purpose herein.

[0065] Yet another v ariation of the treatment assembly 80 is show n in the side and partial cross-sectional side v iew s of Figs.4Λ and 4B w hich illustrate a housing 82 hav ing a handle 84 and a reservoir housing 88 extending from and attached directly to the handle 84. Fig.4C further illustrates a perspective assembly v ievv of the treatment assembly 80 and some of its components contained internally. [0066] The sheath 12 having the l iner 20 may extend from the housing 82 whi le an actuator 86 may be located, for instance, along the handle 84 to enable the operator to initiate the cryoablative treatment. A reservoir or canister 92 fully containing the cryoablativ e agent ( as described herein ) may be inserted and retained w ithin the reservoir housing 88. The reservoir housing 88 and or the handle 84 may further incorporate a reserv oir engagement control 90 which may be actuated, e.g., by rotating the control 90 relativ e to the handle 84, to initially open fluid communication w ith the reserv oir or canister 92 to charge the system for treatment.

[0067] The reservoir or canister 92 may be inserted into the reservoir housing 88 and into secure engagement with a reservoir or canister v alv e 94 which may be coupled to the reservoir engagement control 90. The v alv e 94 may be adjusted to open the reserv oir or canister 92 for treatment or for v enting of the discharged cryoablativ e agent during or after treatment. An inflow modulation control unit 96 (e.g.. an actuatable solenoid mechanism ) may be coupled directly to the reserv oir or canister v alv e 94 and the cryoablative fluid l ine 48 may be coupled directly to the modulation control unit 96 and through the sheath 12 and into fluid communication within the liner 20, as described herein.

[0068] During or after treatment, the discharged cryoablative fluid may be ev acuated through the exhaust block 46 contained within the housing and then through the exhaust line 98 coupled to the exhaust block 46. The exhaust line 98 may extend through the handle 84 and the reserv oir housing 88 and terminate at an exhaust line opening 100 which may be attached to another exhaust collection line.

[0069] With the discharged cryoablativ e agent in a completely gaseous state, the ev acuating exhaust line 140 may be v ented to the surrounding env ironment or optional ly coupled to a scav enging system to collect the discharged gas to limit exposure. Figs. 5A and 5B show assembly v iews of examples of collection bags which may be optionally used with the treatment assembly. Scav enging systems may incorporate features such as orifices or v alv es to prev ent any v acuum applied by the scav enging unit from interfering with the backpressure within the treatment dev ice

100701 Fig. 5A shows an in flating col lection bag 150 which is expandable in width coupled to the ev acuating exhaust line 140 v ia a disconnect v alv e 152 (e.g., unidirectional v alv e). The collection bag 150. w hich may be reusable or disposable, may be supported v ia a pole 156 and may also incorporate a release plug 154 which may al low for the v enting of the collected gas during or after a treatment procedure is completed. [0071] Simi larly, Fig. 5 B shows an accordion-type collector 160 also supported via a pole 156 and a connector 166 attached to the collector 160. The evacuating exhaust line 140 may be removably coupled to the collector 160 via a disconnect valve 162 (e.g..

unidirectional valve) and may also incorporate a release plug 164 for venting any collected gas during or after a treatment procedure. The vertically-expanding collector 160 may define a hollow passageway through the center of the vertical bellow s w hich allow s for the connector 166 (e.g., rigid rod or flexible cord) to pass through and support the base of the collector 160. The connector 166 also prevents the collector 160 from fal ling over to a side w hen inflating. As the gas enters through the bottom of the col lector 160, the bellow may inflate upw ard.

[0072 ] In yet another variation. Fig. 6 show s an exhaust collection bag 170 w hich may also be supported by the pole 156. The ev acuating exhaust line 140 may be remov ably coupled to the collection bag 170 via a tubing connector 172 located near or at a bottom of the collection bag 170. The bag 170 itsel f may be formed from tw o layers of a lubric ious materials w hich are attached or welded (e.g.. RF dielectric w elded ) around its periphery along its edges 178. Moreover, the collection bag 170 may be configured to form an extension 174 w hich projects from the bag 170 and forms an opening 176 for passing a hook through or to provide a point for attachment. This opening may be reinforced to support, e.g.. 2 lbs for at least 1 hour. The collection bag 170 may be designed to hang, e.g. , from an IV pole as show n such that it is maintained off the floor to keep it clean should a user want to reuse it a number of times.

[0073] The bag 170 may be fabricated from, e.g., a polyurethane film, selected for its lubricity, elasticity, clarity, low cost and ability to be R F dielectric w elded Such polyurethane fi lms may be commercially av ailable from API Corporation ( DT 200 1 -I ' M). The film may hav e a thickness of, e.g.. 0.003 inches. Because the bag 170 inflates at relativ ely low pressures, the lubricity of the layers prev ents the layers of film from sticking together and allow s the bag to readily inflate. Also, to accommodate potential volume increases associated w ith increased temperatures, the bag 1 70 material also exhibits elasticity, e g , film elongation may be on the order of 800° o The bag may be fabricated to have a burst pressure of at least greater than or equal to. e.g.. > 3 psi. The bag 170 may also be fabricated so as to be at least partially transparent so that the clarity of the bag results in an object that visually occupies less space in the procedure room because objects can be seen throimh it. [0074] Fig. 7Λ shows a collection bag 170 when flattened ( e.g., w hen deflated prior to use) for illustrativ e purposes and Fig. 7B show s a detail v iew of the extension 174. As shown, bag 170 may be formed to include tubing connector 172 which may be positioned near or at a bottom of the bag 170 when hanging during use. The bag 170 may be formed with rounded or curved corners having a radius Rl . e.g.. 1 1 .0 inches, around all four of its corners so as to facilitate exhaust gas infusion and removal from the bag interior v olume.

[0075] When flattened, the bag 170 may measure in one v ariation, e.g., 25 inches in width and 45.5 inches in length. The tubing connector 172 may be located along a centerline C ' L of the bag 170 which may also incorporate a drain closure 180 which may be opened to facilitate the remov al of any collected exhaust gases within the bag 170 after the conclusion of a treatment procedure. The tubing connector 172 may be located, e.g.. 7.0 inches from the bottom of the bag 170, while the drain closure 180 may be located, e.g., 3. 1 inches from the bottom and 3.0 inches from the centerline CL. While the connector 172 and drain closure 180 are located on the same side of the bag 170. they may also be located on opposite sides or along the sides of the bag 170, if so desired. Moreover, the tubing connector 172 may incorporate a valve and also be configured as a quick disconnect fitting which allows the user to connect the exhaust line 140 during a procedure to collect the exhaust gas and to also prev ent the outflow of gas when disconnected from the bag 170 at the end of the treatment.

[0074] Additionally and or optionally, the collection bag 170 may be con figured with tw o v ent ports to enable it to be vented either manually or v ia wall suction. To facilitate wal l suction, an extra quick disconnect adapter may be provided and stored in pouch 182 at the top of the bag 170. The user may simply push the quick disconnect onto the suction tubing ( connected on the other end to w all suction ) and then connect the quick disconnect fitting into the tubing connector 172 on the collection bag. The manual vent port may simply comprise the drain closure 180 that can be pulled-out by the user. The drain closure 180 may be positioned near or at the bottom of the bag 170 to reduce the user ' s exposure to N;0 whi le emptying the bag 170. Locating the drain closure 180 at the bottom of the bag 170 also enables the user to roll the bag from top down to empty it- [0076] The extension 176. shown in the detai l view of Fig. 7B. may be formed w ith an optional pouch 182 and may also form a radius R2. e.g.. 1 .0 inches, between the bag 170 and extension 176 and a radius R3. e.g.. 1 .5 inches, around the extension 176 itself

[0078] Figs. SA and SB show respectiv e front and side views of the bag 170 in its inflated state. When filled with the exhaust gas. bag 170 may expand such its width and length reduces, e.g., 2 1 0 inches in width and 4 1 .5 inches in length. Moreover, the layers of material forming the bag 170 may also separate from one another forming a height of thickness of. e.g., 10.0 inches, when fully expanded.

[0079] Making the bag 170 over-sized lengthwise further allows the volume to be distributed in such a w ay that it is less intrusive in the procedure room. A shorter, w ider collection bag occupies more space where people and other equipment are often located. The size and shape of the bag 170 make it easier to manual ly transport and. if necessary, to open and vent the bag 170 outside.

[0080] Aside from the bag 170 itself, the tubing connector 172 may also

incorporate a number of features to facilitate emptying of the bag 170. As the bag 170 is e\ acuated via an external suction source, a first side 192Λ of the bag 170. e.g.. the layer of the bag 170 where the tubing connector 172 is positioned, and a second side 192B of the bag 170. e.g., the layer of the bag 170 opposite to the first side 192A. may collapse upon itsel f and adhere to one another particularly around the area of the bag w here the tubing connector 172 is positioned thereby trapping exhaust gas in the remainder of the bag 170 and preventing it from evacuating.

[0081 ] One example of an apparatus for facilitating evacuation is shown in the side view of Fig. 9 which illustrates assembly 190. The tubing connector 172 may incorporate a support member 194 having a contact surface which has a gentle dome-shaped or curved structure defining one or more openings 196 along its surface, e.g.. around a periphery of the member 194. The member 194 may extend from the tubing connector 172 and into the interior of the bag 170. The interior of the member 194 may allow for fluid

communication through the openings 196 and a channel 200 defined through the member 194. In use. as the layers 192A. 192B collapse, the member 194 may function as a tenting structure w hich prevents the layers 192A. 192B from fully adhering to one another and thereby maintaining formed channels 198 around the member 194. These channels 198 allow for the trapped gas to pass through the openings 196. into the channel 200. and out the tubing connector 172. The support member 194 may be fabricated from any number of structurally robust materials, e g , plastics, polymers, metals, etc

[0082] This support member or any of the support members described herein may be used in any number of combinations with any of the other features described herein.

[0083] l- ig. 10A shows a perspective view of another variation of the support member 210 which has a dome-shaped feature 212 formed in a hemi-spherical shape. The one or more openings 214 may be formed around a periphery of the member 2 10 with the channel 216 fluidly in communication through the member 2 10. Fig. I OB shows a side view of the support member 210 attached to the tubing connector 172 w ithin the bag interior and the formed channels 198 around the periphery of the member 210.

[0084] Fig. 1 1 Λ shows a perspective view of another variation of the support member 220 having a curved interface member 222 which extends beyond a periphery of the support member 220 where the one or more openings 224 are defined. Fig. 1 1 B shows a side view of the support member 220 and i l lustrates how the curved interface member 222 maintains the formed channel 198 for evacuating the gas through the openings 224 and through the channel 226.

[0085| Fig. 12A shows a perspective view of yet another variation where the support member 230 has a curved surface 232 but also defines an opening or lumen 234 extending through the member 230. The side v iew of Fig. 1 2B illustrates how the opening or lumen 234 may help to pull the second layer 192B into the opening to help pull and or retain the layer material to maintain the openings 236 unobstructed for evacuating the exhaust gas through the openings 236 and channel 238.

[0086] F ig. 13Λ shows a perspectiv e view of yet another v ariation where the support member 240 may be formed of a peripheral member having one or more extensions 242 formed around a periphery of the member and projecting aw ay from the support member 240 to form one or more corresponding channels 244 between the extensions 242. The side v iew of Fig. 1 3B shows the support member 240 attached to the tubing connector 172 such that the one or more extensions 242 extend away from the member 240 and into the interior of the bag. The one or more extensions 242 functions to tent the material of the bag such that the exhaust gas may exit through the channels 244 and out through the channel 246.

[0087] Fig. 1 4Λ show s a side v iew of yet another support member 250 formed as a helical member or spring forming a channel 254 and extending away from the tubing connector 172. The distal tip 252 of the member 250 may be formed to be atraumatic so that as the layer 192B col lapses onto the member 250. the distal tip 252 is inhibited from piercing through the bag 170, as shown in the side view of Fig. 14B The channel 254 may remain clear of the layer material thereby allowing the exhaust gas from exiting through the channel 254 and out the tubing connector 172.

[0088] Fig. 15Λ shows a cross-sectional side view of yet another variation of a support member 260 which is formed as a flexible convol uted or perforated tube 262 having a helically-shaped projection 264 formed along the outer surface of the tube 262. The tube 262 may also define one or more openings 266 through the surface of the tube 262 so that the openings 266 extend into the channel 268 formed through the length of the tube 262. Fig. 1 513 shows how the projection 264 may prevent the layer material 192B from sealing around the outer surface of the tube 262 so that the exhaust gas may flow into and through the openings 266. through the channel 268. and out through tubing 172. The flexibility of the tube 262 may also allow for the support member 260 to bend and flex further al low ing for tenting of the bag material and the maintenance of the channels 198 around the support member 260.

[0089] Fig. 16Λ shows a perspective view of yet another variation of a support member 270 having first set of projections 272 formed to extend parallel to one another in a first direction over the surface of the support member 270 and a second set of projections 274 formed to extend parallel to one another in a second direction over the surface of the support member 270 and extending at an angle (or transverse ) relative to the first set of projections 272. The resulting construct may form a waffled or unev en surface to help maintain clearance of the layer 192B. One or more openings 276 may be defined through the support member in fluid communication with the channel 278. l ig. 16B shows a side view illustrating how the support member 270 may maintain clearance of the openings 276 due to the uneven surface presented to the layer 192B to help clear the exhaust gas.

[0090] Fig. Ι 7Λ shows a perspective \ iew of yet another \ ariation in which the support member 280 may have one or more projections 282 with atraumatic ends forming a clearance channel 284 between each of the projections 282. Fig. 1 7B show s a side view il lustrating how the projections 282 may tent the layer 192B to maintain the clearance channel 284 to allow for the exhaust gas to flow through the channel 286 and out of the tubing 172. The number of projections 282 and spacing between may be varied depending upon the amount of clearance to be maintained.

[0091] Figs. 1 8A to 1 8C show detail side views of yet another variation of an internal support mechanism configured to maintain the bag 170 in an expanded

configuration to prevent the layers 192Λ. 192B from collapsing upon one another. The support mechanism may be comprised in this variation of a first member 290A and apposed second member 290B connected to one another via a hinged, pivoting, or otherwise collapsible connector 292. An additional scaffold member formed of a first scaffold 294A and apposed second scaffold 294B connected to another via connector 296 may extend between the first and second members 290A. 290B. Once the bag 1 70 has been evacuated, the expanded bag may be collapsed, e.g., for storage or disposal, by urging the first and second members 290A. 290B towards one another via connector 292. as shown in Figs. I SB and 1 8C. The first and second scafYold 294A. 294B are omitted from the figures for clarity but are show n in the top v iew s of Figs. 19Λ to 19C which correlate to the collapse of Figs. I SA to I SC ' . Si milarly, the first and second scaffold 294Λ. 294B may be collapsed tow ards one another via the hinge or pivot 296 so that the bag may be reconfigured from its expanded configuration into its fully ( or partially) collapsed configuration, as show n.

[0092 ] In yet another variation. Figs. 20A to 20C show side views of a bag 170 incorporating a self-coil ing support member 300 which may extend along the length of the bag 170. The support member 300 may form a structural spine formed integrally along, e.g.. second layer I 92B of the bag 170. or attached separately to either the bag interior or exterior or between layers of the bag 170 (if formed v ia multiple layers). The support member 300 may be formed of a coiling structure (e.g., plastics, metals, alloys, etc.) which imparts a col lapsing force upon the bag 170. When inflated w ith the exhaust gas, as shown in J ig. 20A. the bag 170 may maintain is expanded configuration but as the gas is remov ed from the bag, a first portion 302 of the support member 300 may begin to collapse by coil ing. As the first portion 302 of member 300 begins to coil, the first (or upper) portion 304 of the bag 170 may be urged to collapse further forcing any exhaust gas into the second (or lower) portion 306 of the bag 170, as show n in Fig. 20B. As additional exhaust gas is removed from the bag 170. the first portion 302 of support member 300 may fully coil or collapse thereby accelerating the venting of the gas also from the second portion 304 of the bag 170, as show n in Fig. 20C.

[0093] This col lapsing support member described herein may be used in any number of combinations with any of the other support members described or w ith any of the other features described herein.

[0094] While illustrativ e examples are described abov e, it w ill be apparent to one ski lled in the art that v arious changes and modifications may be made therein. Moreov er, v arious apparatus or procedures described above are also intended to be uti l ized in combination with one another, as practicable. The appended claims are intended to cover all such changes and modi fications that fall within the true spirit and scope of the invention.