Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXTERIOR WALL CONSTRUCTION
Document Type and Number:
WIPO Patent Application WO/2007/142974
Kind Code:
A2
Abstract:
Embodiments of the present invention relate to systems and methods of constructing concrete building, specifically through the use of insulated concrete forms. Current use of such forms, however, results in structural discontinuities in concrete and other construction deficiencies. The present invention provides a system for constructing exterior walls of a building, including two or more wall sections (402, 404, 406, 408, 410, 412, 414, 416, 418) configured in any length, width, height, and shape. Wall connectors (428, 430, 432, 434) maintain opposite wall sections in a desired position. Wall fasteners (442) secure adjacent walls. Anchor base plates (444, 446) attach the wall sections to a base structure. Concrete is poured into the wall system in a single event, creating one distinct monolithic unit and thus minimizes structural discontinuities of the concrete.

Inventors:
MARKER GUY L (US)
Application Number:
PCT/US2007/012749
Publication Date:
December 13, 2007
Filing Date:
May 30, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MARKER GUY L (US)
International Classes:
E04G9/00
Foreign References:
US4866891A
US4604843A
US6622452B2
US6935081B2
US5992114A
US6085476A
US20040040240A1
US6352237B1
Attorney, Agent or Firm:
SCHNEITER, Keely (P.O. Box 675Logan, UT, US)
Download PDF:
Claims:

CLAIMS We claim:

1. A system for constructing exterior walls, characterized by: two or more wall sections, each having an interior side and an exterior side, configured to be placed in an arrangement to create a wall system of any length and any height and any shape; wall fasteners configured to be placed on a top portion of the two or more wall sections to secure two or more wall sections placed adjacent each other; wall connectors, wherein the wall connectors attach to two of the two or more wall sections on the interior side of each of the two of the two or more wall sections, thus joining the two of the two or more wall sections; and two or more anchor base plates, the anchor base plates configured to attach a bottom portion of the two or more wall sections to a floor section; and a cavity on the interior of the two ore more wall sections where concrete is deposited.

2. The system as recited in claim 1, wherein the two or more wall sections are configured in an arrangement of wall sections having any height, length, width, and shape.

3. The system as recited in claim 1, wherein the top portion of the two or more wall sections includes one or more protrusions configured to engage one or more openings in the bottom portion of the two or more wall sections when a first of the two or more wall sections is placed on top of a second of the two or more wall sections.

4. The system as recited in claim 3, wherein the wall fasteners are configured with openings to engage the one or more protrusions of the top portion of the two or more wall sections.

5. The system as recited in claim 1, wherein the wall connectors are configured to attach to grooves located on the interior sides of the two or more wall sections.

6. The system as recited in claim 1, further comprising: rebar.

7. The system as recited in claim 6, wherein the rebar is positioned to rest in a scalloped center portion of the wall connectors.

8. The system as recited in claim 1, wherein the two or more wall sections are comprised of expanded polystyrene.

9. The system as recited in claim 1, wherein the wall fasteners are comprised of one or more of: plastic; polyvinyl chloride; acrylonitrile butadiene styrene; and, metal. "

10. The system as recited in claim 1, wherein the anchor base plates are comprised of one or more of: steel; galvanized steel; or, any other metal.

11. The system as recited in claim 1, wherein the wall connectors are comprised of one or more of: plastic; polyvinyl chloride; acrylonitrile butadiene styrene; and, metal.

12. The system as recited in claim 1, wherein the concrete is deposited to form a distinct monolithic unit.

13. A concrete form wall system for the exterior of a structure, characterized by: two or more wall sections configured to be positioned in an arrangement of wall sections having any length, any height, and any width, the two or more wall sections further configured to be placed adjacent to each other and on top of each other and opposite from each other to create the arrangement of wall sections having any width and any height, with each of the two or more wall sections further including an interior side, an exterior side, a top portion, and a bottom portion; wall connectors configured to attach to the interior side of the two or more wall sections, wherein the wall connectors join two of the two or more wall sections placed opposite each other by attaching to the interior side of each of the two of the two or more wall sections; wall fasteners configured to engage the top portion of two of the two or more wall sections placed adjacent each other; and anchor base plates positioned on a floor portion of the structure, the anchor base plates configured to engage the bottom portion of the two or more wall sections, the anchor base plates thereby attaching the two or more wall sections to the floor portion of the structure.

14. The system as recited in claim 13, further comprising a cavity into which concrete is deposited.

15. The system as recited in claim 14, wherein the concrete is deposited into the cavity after the arrangement of the two or more wall sections, including positioning of wall connectors, wall fasteners, and anchor base plates, is completed.

16. The system as recited in claim 14, wherein the concrete is deposited to create a monolithic unit.

17. The system as recited in claim 13, wherein each of the two or more wall sections further includes a top portion and a bottom portion.

18. The system as recited in claim 17, wherein the top portion includes protrusions configured to engage openings of the bottom portion when a first of the one or more wall sections is positioned on top of a second of the one or more wall sections.

19. The system as recited in claim 13, wherein the two or more wall sections further include grooves located on the interior side of the two or more wall sections.

20. The system as recited in claim 19, wherein the wall connectors are configured to engage the grooves located on the interior side of the two or more wall sections.

21. The system as recited in claim 13, wherein the wall sections are substantially comprised of: pure foams; expanded polystyrene-cement composites; polystyrenes; polyurethanes; expanded polystyrene; or, extruded polystyrene.

22. The system as recited in claim 13, wherein the wall connectors are comprised of one or more of: plastic; polyvinyl chloride; acrylonitrile butadiene styrene; and, metal.

23. The system as recited in claim 13, wherein the wall connectors further include a scalloped center portion to engage rebar.

24. The system as recited in claim 13, wherein the wall fasteners are comprised of one or more of: plastic; polyvinyl chloride; acrylonitrile butadiene styrene; and, metal.

25. The system, as recited in claim 13, wherein the wall fasteners are configured to have a ninety-degree angle.

26. The system as recited in claim 13, wherein the wall fasteners are adjustable.

27. The system as recited in claim 13, wherein the wall fasteners are substantially straight.

28. The system as recited in claim 13, wherein the anchor base plates are comprised of one or more of: steel; galvanized steel; or, any other metal.

29. A method for constructing an exterior wall of a structure, characterized by: creating a wall form by: configuring two or more wall sections in an arrangement of wall sections having any height and any width, the two or more wall sections further configured to be placed adjacent to, on top of, and opposite from each other to create the arrangement of wall sections having any height and any width, with each of the two or more wall sections further comprising an interior side, an exterior side, a top portion, and a bottom portion; joining two of the two or more wall sections configured opposite from each other with a wall connector, wherein the wall connector attaches to the interior side of each of the two of the two or more wall sections; securing the top portions of two of the two or more wall sections placed adjacent to each other with a wall fastener; and attaching the bottom portions of two or more of the two or more wall sections to anchor base plates connected to a floor portion of the structure; and pouring concrete into the wall form, the concrete being poured into a cavity located between two or more of the wall sections such that the concrete contacts the interior sides of the two or more wall sections and the wall connectors attached to the interior sides of the two or more wall sections.

30. The method as recited in claim 29, wherein the pouring concrete into the wall form is a continuous pouring of concrete to fill the entire form.

Description:

Exterior Wall Construction

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application corresponds to a prior U.S. national application entitled, "Exterior Wall Construction," filed May 29, 2007, and having attorney docket number 1006.U02, which claims priority to U.S. Provisional Patent Application No. 60/809,596, filed May 30, 2006, entitled, "Exterior Wall System and Method," which is incorporated herein by reference. In addition, the present application is related to three co-pending PCT International Applications also filed May 30, 2007: "Interior wall Construction," attorney docket no. 1006.N03; "Column and Beam Construction," attorney docket no. 1006.N04; and "Floor and Roof Construction," attorney docket no. 1006.N05.

TECHNICAL FIELD

[0002] Embodiments of the present invention relate generally to construction materials. More particularly, embodiments of the present invention relate to construction using insulated concrete forms.

BACKGROUND ART

[0003] Polystyrene, a polymer discovered in the nineteenth century, is a highly useful material having a wide variety of applications that is manufactured for use in numerous commercial enterprises. One of the most common uses of polystyrene, however, is expanded polystyrene, which is used for making such products as packing material, craft and model materials, and take-away food cups and containers. [0004] In addition to these uses, expanded polystyrene is also used in making insulated panel building materials. These building materials, also referred to as insulated concrete forms or insulating concrete forms, are used to form molds for use in constructing walls of buildings. Most commonly, an insulated concrete form for a portion of wall is set in place and the concrete is then poured into the insulated concrete form. The form then remains in place, where it acts as insulation both for curing the concrete and as general insulation for the building or structure being constructed.

[0005] The utility of insulated concrete forms is further enhanced by the ease with which other building materials may be used in conjunction with insulated concrete

forms. For example, rebar and other concrete reinforcement materials may be placed within a mold created using insulated concrete forms to help reinforce the concrete that is poured into the mold. In addition, dry wall and other common finishing materials can be easily attached to the surface of the insulated concrete form thus enabling a wall or other structural member built using insulated concrete forms to be finished in the same way a wall built by other methods can be finished. [0006] Moreover, insulated concrete forms improve traditional building methods, such as wood or metal framing, by increasing the speed and efficiency with which a building may be constructed. Such advantages are often more pronounced in the construction of larger buildings, such as buildings used for commercial and/or industrial purposes. The insulated concrete form is assembled from large segments of expanded polystyrene and the concrete is then poured into the sections of the structure as created by expanded polystyrene segments — a method which improves in efficiency, practicality, and cost over traditional concrete forms and other building materials.

[0007] While insulated concrete forms can be useful in providing a way to construct concrete structures, numerous problems exist in relation to present systems and methods for the design, set-up, and use of insulated concrete forms. For example, the expanded polystyrene panels used in making insulated concrete forms are often lacking in stability and security. In addition, current methods for constructing buildings using insulated concrete forms provide for a relatively small section of the form for a building to be constructed and then for concrete to be added to that section. As additional adjacent sections are created, problems can occur when concrete poured to form an additional section of the structure rests against concrete poured at a different time to form another part of the structure. A structure thus formed thereby includes a structural discontinuity. Such structural discontinuities in buildings are points of weakness affecting the structural integrity of the entire edifice [0008] What is needed are systems and methods for using insulated concrete forms, made of expanded polystyrene, in forms that are strong, stable, and durable and that provide a way for a large amount of concrete to be poured at one time, thus minimizing structural discontinuities and enhancing structural integrity.

DISCLOSURE OF INVENTION

[0009] Embodiments of the present invention provide systems and methods for constructing buildings by creating an exterior wall system which acts like a form into which concrete can be poured. Wall sections, attached to anchor base plates, are configured in an arrangement having any height, length, and width. Wall sections are positioned on top of, adjacent to, and opposite each other. The stability and strength of the wall section arrangement is enhanced by wall fasteners, which engage adjacent wall sections, and wall connectors, configured to engage opposite wall sections. When the arrangement of the wall sections is configured in a desired arrangement and the exterior wall system is constructed, the exterior wall system acts as a form for concrete. The concrete becomes part of the exterior wall system and exterior walls of a building having minimal structural discontinuities, and enhanced structural integrity, are constructed. Thus, problems relating to constructing buildings with concrete are overcome by pouring concrete to create one distinct monolithic unit, rather than having multiple sections of concrete that create structural discontinuities associated with concrete seams. Moreover, embodiments of the present invention provide efficient, stable, and secure exterior wall systems into which concrete may be poured. [0010] These and other aspects of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF DRAWINGS

[0011] To further clarify the above and other aspects of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The drawings are not drawn to scale. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: [0012] Figure 1 shows sides and wall sections of an exterior wall system; [0013] Figure 2 shows wall connectors of an exterior wall system; [0014] Figure 3 shows wall fasteners of an exterior wall system; [0015] Figure 4 shows an arrangement of components of an exterior wall system; and [0016] Figure 5 shows a method for constructing an exterior wall system.

MODES FOR CARRYING OUT THE INVENTION

[0017] Embodiments of the present invention include systems and methods for constructing exterior walls of buildings and other structures. A system for constructing exterior walls includes constructing a form for walls for a building using multiple wall sections and a system of fasteners and connectors to join the wall sections together in any desirable arrangement, thus creating a form for walls having any height, width, or shape. When the form is completed, concrete is added to the form such that one distinct monolithic unit is created. Thus, embodiments of the present invention provide not only an efficient building system, but also an exterior wall system with minimal structural discontinuities and enhanced structural integrity. [0018J With attention now to Figure 1, sides of an exterior wall system 100 shown. Side 102 includes wall portions 104 and 106. Similarly, side 108 includes wall portions 110, 112, and 114. Wall portions may be configured of any material, such as, for example, expanded polystyrene (EPS). Moreover, wall portions 104; 106, 110, 112, and 114 may have any height, length, and width. For example, wall portion 106, as shown in Figure 1, has a height A, a length B, and a width C. [0019] Moreover, wall portions 104, 106, 110, 112, and 114 may be configured in any arrangement. In one embodiment of the invention, wall portions 104, 106, 110, 112, and 114 are configured to be adjacent to, opposite, and on top of other wall portions. For example, in one embodiment of the invention wall portion 106 is configured to be adjacent to wall portion 104 and opposite wall portion 110. Also, wall portion 114 is configured to be on top of wall portions 110 and 112. [0020] In addition to being configured in any arrangement, each of wall portions 104, 106, 110, 112, and 114 further includes a top portion and a bottom portion. For example, wall portion 110 includes top portion 116 and bottom portion 118. In one embodiment of the invention top portion 116 includes protrusions 120. Protrusions 120 may be of any size or shape, such as, for example, a substantially cubical shape as shown in Figure 1. Moreover, in one embodiment of the invention bottom portion 118 further includes openings (not shown) that may have a shape corresponding to the shape of protrusions 120.

[0021] Further, each of wall sections 104, 106, 110, 112, and 114 has an interior side and an exterior side, as shown by interior side 122 and exterior side 124 of wall section 112. In addition, each of the interior sides of wall section 104, 106, 110, 112,

and 114 may also include openings, such as grooves 126 configured on interior side 122 of wall section 112. Grooves 126 extend a certain distance toward a bottom portion of wall section 112 (not shown) from top portion 128 of wall section 112. [0022] In operation, sides 102 and 108 are configured from any number of wall sections, such as wall section 104, 106, 110, 112, and 114. As noted above, wall sections 104, 106, 110, 112, and 114 may be placed on top of, adjacent to, and opposite each other creating sides 102 and 108 having any height, width, or shape. Protrusions 120 located on top portion 116 engage openings (not shown) located on the bottom portion (not shown) of wall section 114 when wall section 114 is placed on top of wall section 110. The configuration and arrangement of sides 102 and 108 is shown in further detail below with reference to Figure 4.

[0023] While wall sections 104, 106, 110, 112, and 114 may be placed together in any arrangement, wall sections 104, 106, 110, 112, and 114 may also be used in conjunction with other components of an exterior wall. Figure 2 shows wall connectors 200 used in conjunction with wall sections, as shown in Figure 1, to form an exterior wall. In one embodiment of the invention, wall connectors 200 have a substantially rectangular shape. Ih other embodiments of the invention, wall connectors 200 may have any suitable shape, such as, for example, a square shape. Moreover, in one embodiment of the invention wall connectors 200 are made of steel. Finally, wall connectors 200 may be configured of any size, meaning length, width, and height, depending on the design needs of the exterior wall being constructed. [0024] Wall connector 202 shows one embodiment of a wall connector. Wall connector 202 includes a first end 204 and a second end 206. In addition, in one embodiment of the invention wall connector 202 includes scalloped center portion 208. Rebar (not shown) may be positioned to rest in scalloped center portion 208. m operation, wall connector 202 engages the interior sides of two wall sections that are placed opposite each other. First end 204 of wall connector 202 is placed in a groove positioned in the interior side of a first wall section (as shown in Figure 1) while second end 206 is placed in a groove positioned in the interior side of a second wall section, the second wall section being positioned opposite the first wall section. Finally, rebar (not shown) may be positioned in scalloped center portion 208 of wall connector 202.

[0025] In addition to wall connector 202, Figure 2 also shows wall connectors 210 and 212. Wall connector 210 is configured to have a substantially square shape, while wall connector 212 has an elongated rectangular shape. Each of wall connectors 210 and 212 include a scalloped center portion 214 for receiving rebar. In other embodiments of the invention scalloped center portion 214 may also be a notch or any other structure capable of engaging rebar. In operation, wall connectors 210 and 212 function similarly to wall connector 202. A first end 216 of wall connector 210 is positioned in a groove on the interior side of a first wall section while a second end 218 of wall connector 210 is positioned in a groove on the interior side of a second wall section. Thus, a first and a second wall section are maintained in a position opposite each other separated by a distance determined by the size of wall connector 210.

[0026] Likewise, wall connector 212 includes a first end 220 and a second end 222. First end 220 is positioned in a groove on the interior side of a first wall section while a second end 222 of wall connector 212 is placed in a groove on the interior side of a second wall section. The first and second wall sections are thereby secured in a position opposite each other and separated by a distance determined by the size of wall connector 212. By engaging wall sections of the exterior wall system in this way wall connectors 200 stabilize and secure wall sections configured in an arrangement to form an exterior wall of a structure. What is more, wall connectors 200 configured of steel, and the rebar which rests in the scalloped center portions of the wall connectors 200, further enhance the integrity of the exterior wall structure by reinforcing the concrete added to the wall form created using wall sections and connectors 200. Embodiments of the exterior wall system, including the operation of wall connectors 200, is shown in further detail below with reference to Figure 4. [0027] With attention now to Figure 3, wall fasteners 300 used in embodiments of the present invention are shown. In one embodiment of the invention, wall fasteners 300 are configured of plastic, acrylonitrile butadiene (ABS), polyvinyl chloride (PVC), metal (including steel), or any other suitable material. In addition, wall fasteners 300 may be configured of any shape according to the design needs of the exterior wall system and the configuration of wall sections used in forming the exterior wall.

[0028] Wall fastener 302 shows one embodiment of a wall fastener 300. Wall fastener 302 is configured to be substantially straight and includes openings 304. Wall fastener 302 has a length 306 and a width 308. In one embodiment of the invention the length 306 of wall fastener 302 is greater than the width 308. Ih another embodiment of the invention wall fastener 302 has a length greater than the length of a wall portion.

[0029] In operation, when two or more wall portions are positioned adjacent to each other wall fastener 302 is placed on the top portions of the two or more wall sections, with openings 304 of wall fastener 302 engaging the protrusions positioned on the top portions of the wall sections. In one embodiment of the invention the width 308 of wall fastener 302 corresponds to a width of the two or more wall section on which wall fastener 302 is positioned.

[0030] While wall fastener 302 is configured to engage two or more wall sections positioned adjacent to each other in a substantially straight line, wall fastener 310 is configured to engage two or more wall sections positioned adjacent to each other at a 90° angle. More particularly, openings 312 of first end 314 of wall fastener 310 engage protrusions located on top portions of two or more wall sections located on a first side of an exterior wall. Similarly, openings 316 of second end 318 of wall fastener 310 engage protrusions located on top portions of two or more wall sections located on a second side of an exterior wall, the second side being positioned adjacent to the first side at a 90° angle. Thus, wall fastener 310 enhances the stability, ease of construction, and structural integrity of adjacent wall portions positioned at a 90° angle relative to each other.

[0031] Finally, Figure 3 shows adjustable wall fastener 320 configured to engage two or more wall sections positioned adjacent to each other at an angle greater or less than 90°. More particularly, openings 322 of first end 324 of wall fastener 320 engage protrusions located on top portions of two or more wall sections located on a first side of an exterior wall. When a second side of an exterior wall is positioned adjacent to a first side at an angle less than 90°, openings 326 of second end 328 of wall fastener 320 engage protrusions located on the top portion of the second side of the exterior wall. Dashed lines 330 indicate an alternative position of second end 328 showing an embodiment of the invention where two or more wall sections are positioned adjacent each other at an angle greater than 90°. By securing wall sections

positioned adjacent each other at angles greater than or less than 90°, wall fastener 320 enhances the stability, ease of construction, and structural integrity of an exterior wall system. Embodiments of wall fasteners 300, particularly with relation to other components of an exterior wall system, are shown in greater detail below with reference to Figure 4.

[0032] Moving now to Figure 4, Figure 4 shows one embodiment of exterior wall system 400, including components of various embodiments of the invention as described above with reference to Figures 1, 2, and 3. Figure 4 shows multiple wall sections, such as wall sections 402, 404, 406, 408, 410, 412, 414, and 416. Each of wall sections 402, 404, 406, 408, 410, 412, 414, and 416 includes an interior side, an exterior side, a top portion and a bottom portion, as shown for example by interior side 418, exterior side 420, top portion 422, and bottom portion 424 of wall section 416. Top portion 422 further includes protrusions 426, while bottom portion 424 includes openings (not shown). Openings are configured to be of a shape and size suitable for engaging protrusions 426.

[0033] In addition to multiple wall sections, exterior wall system 400 further includes wall connectors 428, 430, 432, and 434. Each of wall connectors 428, 430, 432, and 434 is configured to engage rebar. In one embodiment of the invention shown in Figure 4, wall connectors 432 and 434 engage rebar 436 and 438. [0034] Figure 4 also includes wall fasteners 440 and 442. Wall fastener 440 is substantially straight while wall fastener 442 is configured to form a 90° angle. In one embodiment of the invention, not shown, a wall fastener may also be adjustable to fit an angle greater than or less than 90°. Finally, Figure 4 also includes anchor base plates 444 and 446 configured to engage multiple wall portions of exterior wall system 400. In one embodiment of the invention, anchor base plates 444 and 446 are configured of steel.

[0035] In operation, anchor base plates 444 and 446 are positioned on and attached to a floor portion of a structure. In one embodiment of the invention, anchor base plates 444 and 446 stabilize and secure wall sections of exterior wall system 400. As shown in Figure 4, anchor base plates 444 and 446 engage wall sections of exterior wall system 400. For example, anchor base plates 446 engage wall sections 402, 404, 406, and 414.

[0036] Wall sections of exterior wall system 400 may be configured in any arrangement depending on the design needs and building requirements. For example, wall section of exterior wall system 400 may be configured to be positioned on top of, adjacent to, and opposite other wall sections. For example, wall section 402 is positioned opposite wall section 414 and adjacent wall section 404. In addition, wall section 408 is positioned on top of wall sections 404 and 406.

[0037] When a wall section is placed on top of another wall section, the protrusions on the top portion of the first wall section engage openings on the bottom of the second wall section. For example, when wall section 416 is positioned on top of wall section 414, openings (not shown) located on bottom portion 424 of wall section 416 engage protrusions 448 located on top portion 450 of wall section 414. [0038] As noted above, wall sections may also be positioned adjacent each other. For example, wall section 402 is adjacent wall section 404. In one embodiment of the invention shown in Figure 4, wall fastener 440 is positioned on top portions 452 and 454 of wall sections 402 and 404, with the openings of wall fastener 440 engaging protrusions 456 of wall sections 402 and 404. In this way, wall fastener 440 enhances the strength and stability of adjacent wall sections 402 and 404. [0039] Similarly, wall fastener 442 enhances the strength and stability of adjacent wall sections 410 and 412, having top portions 458 and 460, respectively. Wall section 410 is positioned adjacent to wall section 412 at a 90° angle. Wall fastener 442, likewise configured having a 90° angle, is positioned on top portions 458 and 460, with openings of wall fastener 442 engaging protrusions 462 of wall sections 410 and 412. Thus, wall fastener 442 enhances the strength and stability of wall sections 410 and 412 positioned adjacent each other at a 90° angle.

[0040] While wall fasteners 440 and 442 enhance the strength and stability of adjacent wall sections, wall connectors 432 and 434 enhance the strength and stability of wall sections 402 and 414, arranged opposite each other. Wall connectors 432 and 434 are positioned within grooves 464 and 466 located on the interior side 468 of wall section 414. Corresponding grooves are located on the interior side of wall section 402 (not shown). As wall connectors 432 and 434 are positioned within grooves 464 and 466, and corresponding grooves on wall section- 402, wall sections 402 and 414 become connected through wall connectors 432 and 434. Not only is the stability of wall sections 402 and 414 enhanced, the wall connectors 432 and 434 reinforce

concrete that will be poured into exterior wall system 400. Finally, rebar 436 and 438 may be configured to engage wall connectors 432 and 434, as shown in Figure 4. Rebar 436 and 438 further reinforce the concrete that will be poured into exterior wall system 400.

[0041] When components of exterior wall system 400 are configured and arranged concrete may be poured into the form created by the components. Concrete is poured into the form in a cavity created between the interior sides of the wall sections. In other words, the cavity into which the concrete is poured is the area between opposite wall sections, the area within which the wall connectors and rebar have been positioned. The.concrete will thus substantially cover wall connectors 428, 430, 432, and 434, as well as rebar 436 and 438. The concrete may be poured into the entire exterior wall system at a single time, with the expansion or spread of the concrete limited by the confines of the form created by exterior wall system 400. Thus, the concrete creates one distinct monolithic unit. Moreover, in one embodiment of the invention exterior wall system 400 represents the entire exterior wall system ' for a building, with concrete being poured into the form created by exterior wall system 400 at one time, thereby minimizing structural discontinuities and enhancing the structural integrity of the building.

[0042] While exterior wall system 400 creates a system for building exterior walls of structures, it is to be appreciated that exterior wall system 400 may be used in conjunction with other construction systems to create structures using concrete. For example, exterior wall system 400 may be combined with construction systems for other aspects of buildings, such as interior walls, columns, beams, floors, and roofs, to construct buildings using systems that allow concrete to be deposited into the systems to form one distinct monolithic unit having minimal structural discontinuities. [0043] With attention now to Figure 5, a method 500 for constructing an exterior wall system of a building is shown. An exterior wall system is created by configuring wall sections in an arrangement, as shown at stage 502. Wall sections may be configured in any arrangement. For example, in one embodiment of the invention wall section are configured such that wall sections are positioned on top of, adjacent to, and opposite each other. Next, construction of the exterior wall includes attaching the bottom portion of wall sections to anchor base plates, as shown at stage 504. At stage 506, the construction of the wall system continues by joining opposite wall

sections with a wall connector. Stage 508 shows an additional step of construction — engaging top portions of wall sections with wall fasteners. Finally, at stage 510, construction of the exterior wall system is completed by pouring concrete into the wall form created using wall sections, wall connectors, wall fasteners, and anchor base plates, and other components and materials. Thus, method 500 for creating an exterior wall system provides a unique system for creating a concrete form, providing enhanced stability and strength of the form and reinforcement of the concrete, as well as providing a system that assembles with ease. Moreover, method 500 provides an efficient way for constructing buildings that minimizes structural discontinuities and enhances the structural integrity of buildings.

[0044] The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. AU changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

INDUSTRIAL APPLICABILITY

[0045] Embodiments of the present invention are capable of exploitation in the industry by the way in which concrete structures can be built using modes of the present invention. The construction systems as described in the present invention allow forms for a large section, such as an entire floor of a large building, to be assembled at one time. Concrete then can be poured for the entire floor at one time. Not only do embodiments of the present invention provide a way for efficiently setting up concrete forms and building a concrete structure in a relatively short amount of time, embodiments of the invention also provide a way to enhance the structural integrity of the concrete structure by pouring concrete to create one distinct monolithic unit. Thus, embodiments of the present invention minimize structural discontinuities in buildings. Further, concrete structures built using systems of the present invention contain the many advantages of using foam forms in building construction. For example, foam forms used in modes of the present invention create insulating layers built into the wall system that minimize sound, retard fire, and insulate not only to increase energy efficiency. Moreover, foam forms also insulate freshly poured concrete thereby improving the quality of the concrete by providing an environment in which the concrete can properly cure.