Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXTRUSION METHOD FOR PRODUCING A FLAT FIBRE MADE FROM SYNTHETIC RAW MATERIAL
Document Type and Number:
WIPO Patent Application WO/2012/121624
Kind Code:
A2
Abstract:
The invention relates to polymer processing methods and, in particular, to methods for producing flat synthetic fibres with predetermined characteristics by means of polymer extrusion. The flat synthetic fibre produced using this method can be used for different purposes in many branches of industry. It can be used, for example, in the weaving industry and the food industry and as a packaging material, and can compare favourably with known fibres as a result of its high durability and resistance to the effects of petrol and moisture, as well as being reusable. Furthermore, the flat synthetic fibre can be used in radio electronics, the instrumentation industry and other branches of industry. The objective set by the designer of this novel extrusion method for producing flat fibres from synthetic raw material was to devise an extrusion method for producing flat fibres made from synthetic raw material which would make it possible to reduce the cost of manufacturing said flat fibres by using cheap or recycled material without drastically reducing the durability of the fibre or other properties necessary to specific types of fibres, thus making it possible to use the fibres produced using the novel method in the manufacture of products for different purposes. The technical result achieved in the process of solving the above problem is the possibility of forming layers with predetermined properties in a flat fibre made from synthetic raw material and produced using cheaper or recycled material. The essence of the invention is that the extrusion method for producing a flat fibre from synthetic raw material involves forming at least two melts with different properties, distributing these melts across at least three layers to form a synthetic film, cooling said film, cutting the film into strips, stretching the cut strips to form fibres and winding the resultant fibres onto cores. Furthermore, the essence of the invention is that synthetic raw material is used in the form of granules, powder or an agglomerate, and the resultant film is cooled in a water-filled bath, wherein after the film has been cooled, water is removed from the surface thereof. The inner layer is formed with a filler based on calcium carbonate in the amount of 0.1-50% of the mass of the main raw material of the inner layer, and one of the melts is formed using polypropylene with a melt flow rate of less than 2.8g/10.0 min. according to the Standard Test Method for Flow Rates of Thermoplastics by Extrusion Plastometer (ASTM 1238-90b).

Inventors:
DOKUKIN, Aleksey Nikolaevich (ul. Portovaya, 158 GRostov-na-Donu, 4, 344034, RU)
Application Number:
RU2012/000144
Publication Date:
September 13, 2012
Filing Date:
February 29, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOKUKIN, Aleksey Nikolaevich (ul. Portovaya, 158 GRostov-na-Donu, 4, 344034, RU)
International Classes:
B29C47/06
Attorney, Agent or Firm:
ZHURAVLEV, Igor Evgenievich (a/ya 0066, Rostov-na-Donu -002, 2, 344002, RU)
Download PDF:
Claims:
ФОРМУЛА ИЗОБРЕТЕНИЯ.

1. Экструзионный способ получения плоской нити из синтетического сырья, включающий формирование по меньшей мере, двух расплавов с различными свойствами, и распределение этих расплавов, по меньшей мере, по трем слоям для образования синтетической пленки, охлаждение этой пленки, резку ее на полосы, а также вытягивание нарезанных полос для образования нитей и намотку полученных таким образом нитей на сердечники, отличающийся тем, что синтетическое сырье используют в виде гранул, порошка или агломерата, а полученную пленку охлаждают в ванне с водой, причем после охлаждения пленки проводят удаление воды с ее поверхности, а внутренний слой формируют с наполнителем на основе карбоната кальция в количестве 0, 1-50% от массы основного сырья внутреннего слоя, причем один из расплавов формируют, используя полипропилен с показателем текучести раствора (ПТР) менее 2,8 г/10,0 мин. по Стандартному методу определения показателя текучести расплава термопластов с помощью экструзионного пластомера (ASTM 1238-90Ь).

2. Экструзионный способ получения плоской нити из синтетического сырья по п.1 , отличающийся тем, что охлаждение массы расплава проводят на охлаждающих валах.

3. Экструзионный способ получения плоской нити из синтетического сырья по п.1 , отличающийся тем, что внутренний слой формируют с наполнителем на основе органического карбоната кальция.

4. Экструзионный способ получения плоской нити из синтетического сырья по п.1, отличающийся тем, что один из расплавов формируют с красителем, причем распределяют его равномерно по наружным слоям.

5. Экструзионный способ получения плоской нити из 805 синтетического сырья по п.4, отличающийся тем, что красителя включают в количестве 0,1-15,0% от массы основного сырья наружного слоя.

6. Экструзионный способ получения плоской нити из синтетического сырья по п.1, отличающийся тем, что один из расплавов

810 формируют с армирующими добавками.

7. Экструзионный способ получения плоской нити из синтетического сырья по п.6, отличающийся тем, что один из расплавов формируют из полимера с более высокими разрывными характеристиками, чем полимер, использованный при изготовлении

815 других слоев.

8. Экструзионный способ получения плоской нити из синтетического сырья по п.1, отличающийся тем, что после резки пленки на полосы проводят их фибрилляцию.

9. Экструзионный способ получения плоской нити из 820 синтетического сырья по п.1, отличающийся тем, что после резки пленки на полосы проводят их фибрилляцию и в дальнейшем скручивание нити.

10. Экструзионный способ получения плоской нити из синтетического сырья по п.1 , отличающийся тем, что после резки пленки на полосы проводят их фибрилляцию и в дальнейшем замасливание нити.

825 1 1. Экструзионный способ получения плоской нити из синтетического сырья по п.1 , отличающийся тем, что вытяжку полос проводят в несколько этапов.

12. Экструзионный способ получения плоской нити из синтетического сырья по п.1 , отличающийся тем, что после вытяжки нить

830 подвергают принудительной усадке.

13. Экструзионный способ получения плоской нити из синтетического сырья по п.12, отличающийся тем, что принудительную усадку нити проводят в несколько этапов.

Description:
ЭКСТРУЗИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПЛОСКОЙ НИТИ ИЗ

СИНТЕТИЧЕСКОГО СЫРЬЯ

Изобретение относится к способам переработки полимеров, в частности, к способам получения из полимеров методом экструзии плоских синтетических нитей с заранее заданными характеристиками. Плоская синтетическая нить, полученная этим способом, может быть использована во многих отраслях промышленности по различному назначению. Например, в ткацком производстве, в пищевой промышленности, как упаковочный материал и может выгодно отличаться от известных нитей большей прочностью, стойкостью к воздействию бензина и влаги, а также обеспечивать возможность многократного использования. Кроме того, синтетическая плоская нить может найти применение в радиоэлектронной, приборостроительной и других отраслях промышленности.

Известны различные экструзионные способы получения плоской нити из синтетического сырья. Например, известен экструзионный способ получения 1 плоской нити из синтетического сырья (см. http://www.ligatek.ru/extmders/ic-fV-s.htm). Названный способ реализуют с помощью линии, описанной на сайте и которая включает в себя плоскощелевую головку и непрерывную систему фильтрации, которые и позволяют производить плоскую нить.

Эта линия производит пленку одинаковой толщины по всей ширине пленки. Нить после фибриляции используют для изготовления шпагатов, веревок, кабельных наполнителей, основы для ковровой подложки и искусственной зеленой травы. Ванночка с горячей водой, которая входит в состав линии, полностью изолирована в целях уменьшения тепловых потерь и энергопотребления. Печка с горячим воздухом полностью изолирована и оснащена двумя зонами автоматического контроля температуры и воздуховодом. Работает она на принципе конвекции, что обеспечивает постоянство температуры и надежное распределение тепла. Прокаливающая печка с горячим воздухом снижает внутреннее натяжение нити во время процесса, что увеличивает качество нити. В линию входит экструзионная установка. Шнек экструзионной установки обеспечивает необходимое качество расплавления, перемешивания и экструзии. Автоматический контроль температуры снижает энергопотребление и поддерживает постоянный уровень температуры с низким уровнем колебания (+/-1,0 С). Цилиндр экструзионной установки полностью изолирован и оборудован вентилятором охлаждения. Шестерёнчатый насос предназначен для последовательной экструзии расплавленного полимерного материала. Проверку давления производят до и после насоса. Для улучшения последовательности экструзии и качества волокна давление до шестеренного насоса контролируют. Закалочная водяная ванночка разработана для сглаживания водяного потока, поддержания постоянства температуры воды и устранения волнения на водной поверхности. Ванночку можно перемещать в горизонтальном и вертикальном направлениях. В линию входит также и нитепротяжное устройство. Экструзионный способ получения синтетических плоских нитей, который реализуют с помощью рекламируемой на сайте линии позволяет получать однослойные плоские нити для дальнейшего использования их, например, в ткацком производстве. Но такой экструзионный способ получения синтетических плоских нитей имеет недостатки. Основными недостатками этого экструзионного способа получения синтетических плоских нитей, как аналога, является высокая стоимость производимых этим способом плоских синтетических нитей, а также пониженные их прочностные свойства. Известен также способ получения плоской нити из синтетического сырья (см. http :// arti cles .pakkermash.m/sho w_ artphpVart^ 179). Названный способ реализуют с помощью линии, рекламируемой на сайте. В эту линию входит экструдер, который обеспечивает оптимальную гомогенизацию расплава и продвигает его в направлении плоскощелевой головки. Плоскощелевая головка обеспечивает минимальные отклонения толщины расплава и оптимальное распределение его массы по ширине. Другие конструктивные особенности экструдера - это возможность подачи сырья через втулку с канавками, а также защита от холодного пуска. В экструдере применены работающие на основе микропроцессора контроллеры, индикаторы температуры расплава и обратного давления, а также, если требуется, пневматически управляемое передвижение экструдера по рельсам. При необходимости смены фильтра расплава до щелевой головки в целях минимизации остановок линии, из-за некачественного сырья, в том числе при использовании вторичного сырья, некорректного регулирования характеристик расплава, после замены шнека или переходе на другой тип сырья применяют автоматическое устройство смены фильтра вместо ручного. Движение сетки контролируют таймером, а скорость - оператором. Посредством ручного или автоматического поворота колеса отработанный фильтр заменяют на другой непосредственно во время работы линии. В системе охлаждения через водяную ванну всасывающее устройство обеспечивает выход абсолютно сухой пленки даже при высоких скоростях. В поворотном устройстве продольного разрезания выходящую из головки и охлажденную плоскую пленку разрезают на полосы. Далее через прижимные валки и автоматические терморегуляторы полосы подают на систему воздушного ориентирования или двойную систему бесконтактного воздушного вытягивания и нагрева. После этого полосы поступают на комбинированный блок вытягивания и усадки, приводы которых независимы. На комбинированном блоке предотвращают усадку и снимают напряжение уже плоских нитей, поступающих на блок намотки. Блок намотки имеет три пары валков - горячих, нормальной температуры и холодных, работающих с переменной скоростью. При . производстве обычных плоских нитей предлагают комбинацию горячих, 95 нейтральных и холодных валков. Охлаждаемые водой валки обеспечивают постоянную температуру плоских нитей, поступающих на блок намотки. При изготовлении фибрилированных плоских нитей линию укомплектовывают фибрилятором, который расположен между воздушной печью ориентирования и комбинированным блоком

100 вытягивания и усадки. Игольчатый валок фибрилятора имеет независимый привод, а иглы выполнены с возможностью их регулирования в соответствии с желаемой структурой фибриляции. Модульная конструкция устройства позволяет изготавливать и фибрилированные и нефибрилированные ленты одновременно. Блок

105 намотки обеспечивает получение валов с намотанными плоскими нитями требуемого качества и цвета, а при автоматической технологии он обеспечивает автозамену намотанных валков на пустые. Экструзионный способ получения синтетических плоских нитей, который реализуется с помощью рекламируемой на данном сайте линии, позволяет получать

ПО однослойные плоские нити для дальнейшего использования их, например, в ткацком производстве. Но такой экструзионный способ получения синтетических плоских нитей имеет недостатки. Основными недостатками известного экструзионнбго способа получения синтетических плоских нитей, как аналога, является высокая стоимость

115 производимых этим способом плоских синтетических нитей, а также пониженные их прочностные свойства.

Вместе с тем, известен экструзионный способ получения плоской нити из синтетического сырья, реализуемый с помощью линии, описанной на сайте

id=324&Itemid=55 ) . В состав линии входит следующее основное технологическое оборудование. Это прежде всего, экструдер с загрузочным бункером, насосом, регулирующим давление, и с приводом. В состав линии входят также фильтр для расплава, плоскощелевая

125 головка, ванна с охлаждающей водой и приемные валы, которые установлены после ванны. Описываемая линия имеет также устройство для резки пленки на отдельные полосы. В линию также входят вытяжные валы, причём количество и степень вытягивания на каждом валу зависят от задаваемых функциональных свойств плоской нити. Линия содержит

130 также устройство отсоса и транспортировки кромчатых полос. В линию входит и камера для вытягивания в среде горячего воздуха, и приемно- намоточная машина. Особенностью этой линии является специальный адиабатический экструдер с регулируемым давлением на выходе. Экструзионная система состоит из экструдера с 90-мм шнеком длиной

135 27D, выполненного с особым геометрическим контуром, непрерывно работающего сетчатого фильтра в виде ленты и специального насоса, позволяющего в процессе экструзии регулировать давление. Экструдер обеспечивает равномерное плавление полимера с высокой степенью гомогенизации расплава. Насос создает требуемое давление, снабжая

140 плоскощелевую головку расплавом. Скорость вращения шнека соответствует заданному давлению до, и после настройки насоса. Ввиду постоянного давления насоса, которое поддерживают с помощью выбранного уровня скорости вращения шнека, остается также постоянным и давление расплава на плоскощелевую головку. С

145 увеличением производительности эта комбинация адиабатического экструдера с дозирующим насосом дает технические преимущества. Благодаря такому насосу экструдер продолжает эффективно работать и при очень высокой производительности до 500-550 кг/час при низком противодавлении расплава. Насос повышает давление с 50 бар на входе 150 до 200 бар на выходе к плоскощелевой фильере. Шнек экструдера выполнен специально для реализации высокопроизводительного процесса с учётом получения качественного и равномерно гомогенизированного расплава и работает при этом со скоростью до 280 об/мин. Температура расплава полимеров несмотря на высокую производительность и большое

155 число оборотов шнека, не превышает 220° С. Обычно при использовании экструдеров с другой геометрией шнека и без повышающего давление насоса температура расплава достигает 240 - 260° С. Благодаря более низкой температуре расплава, полимер сохраняет те качества, которые необходимы для получения высококачественной плоской нити, в

160 частности, из-за минимальной деструкции полимера, что позволяет достичь малой разнотолщинности пленки и лучшей растяжимости нарезаемых полос. Помимо основного технологического оборудования, перечисленного выше, с помощью следующих основных и дополнительных устройств комплектуют линию для производства

165 пленочных нитей требуемого ассортимента и качества: волюметрические и гравиметрические дозирующие устройства для четырёх и более компонентов, механизмы измерения толщины пленки, фибрилирование, Ионизирование, отсасывающая система, эжекторная или вакуумная. Различные области применения пленочных нитей диктуют столь же

170 разнообразную технологию последующих переработок, например на круглоткацких и плоскоткацких машинах, прядение, иглопрошивной процесс и плетение. Вид дальнейшей переработки и показатели нитей определяют требования к ее намотке. Характерными параметрами при этом являются размер готовой паковки и патрона, а также

175 технологические требования к торцам бобины, как впрочем, к натяжению и скорости намотки. Больше всего используются пленочные нити для переработки на круглоткацком оборудовании. Эта линия, кроме перечисленных имеет ещё ряд достоинств, среди которых можно отметить следующие. Прежде всего это высокий скоростной потенциал 180 до 450 м/мин, низкое потребление электроэнергии и низкая теплоотдача электродвигателей.

Но вышеописанный экструзионный способ получения синтетических плоских нитей имеет недостатки. Основными недостатками известного экструзионного способа получения синтетических плоских нитей, точно

185 также как предыдущего аналога, является высокая стоимость производимых этим способом плоских синтетических нитей, а также пониженные их прочностные свойства.

Вместе с тем, известен экструзионный способ получения плоской нити из синтетического сырья (см. патент Великобритании N° 1243512 от

190 09 августа 1968 г., МГЖ 9 D06M17/00). Данный экструзионный способ получения плоской нити из синтетического сырья является наиболее близким по технической сущности и достигаемому результату при его использовании к заявляемому (прототипом). Экструзионный способ- прототип получения плоской нити из синтетического сырья включает

195 формирование по меньшей мере, двух расплавов с различными свойствами, и распределение этих расплавов, по меньшей мере, по трём слоям для образования синтетической плёнки. Способ-прототип включает также охлаждение полученной плёнки, резку её на полосы, а также вытягивание нарезанных полос для образования нитей и намотку

200 полученных таким образом нитей на сердечники.

Но этот наиболее близкий аналог (прототип) имеет те же недостатки, что и другие вышеописанные аналоги. Недостатками описанного наиболее близкого экструзионного способа получения плоской нити из синтетического являются следующие. Поскольку синтетическое сырьё,

205 такое как, например, полипропилен или полиэтилен, значительно дороже таких материалов как карбонат кальция, стеарат кальция или тальк, то для удешевления стоимости нити в него, как правило, вводят добавки на основе карбоната кальция, стеарата кальция, талька и тому подобных. В последнее время в качестве добавки стали вводить и органический

210 карбонат кальция в виде перемолотых костей крупного рогатого скота, а также костей рыб, утилизируя их и, таким образом, удешевляя стоимость синтетической плоской нити. Но частицы, например, карбоната кальция (СаСоЗ), выходящие на поверхность полученной в общем технологическом процессе пленки, которую в дальнейшем режут на

215 плоские полосы и из которых потом получают нити, образуют шероховатую поверхность. Частички карбоната кальция (СаСоЗ), выходящие на поверхность уже готовой нити, обладают значительными абразивными свойствами. Это приводит к дополнительному износу частей оборудования, с которыми в дальнейшем соприкасается нить,

220 например рабочих частей ткацкого станка. А обусловлено это тем, что нить на ткацком станке активно соприкасается с механизмами станка, как минимум в пяти местах, в которых скапливаются частицы, например, карбоната или стеарата кальция. Вместе с тем, частицы карбоната или стеарата кальция способны в значительном количестве выбиваться из

225 поверхностного слоя нити со всеми вытекающими отсюда последствиями. В первую очередь, выбитые из поверхностного слоя частицы карбоната кальция, образуют пыль, которая попадая во вращающиеся детали станков и механизмов, дополнительно увеличивает их износ. Эти частицы карбоната или стеарата кальция попадают, в том

230 числе в подшипники, преждевременно выводя их из строя. Вместе с тем, частицы карбоната кальция попадают в различные электрические устройства, находящиеся на ткацком станке, провоцируя короткие замыкания электрической цепи вплоть до остановки работы ткацкой линии. Кроме того, эта же пыль карбоната кальция, так называемая

235 «меловая пыль», смешиваясь с воздухом, с позиций охраны труда и техники безопасности обслуживающего персонала резко ухудшает санитарно-гигиенические условия труда. Для приведения к регламентируемым нормам условий труда обслуживающего персонала в первую очередь очистки воздуха требуется дополнительное оборудование

240 для его очистки, включая принудительную вытяжную вентиляцию. А это в свою очередь увеличивает себестоимость плоской синтетической нити. Необходимо также отметить, что белые частицы мела снижают насыщенность цветного пигмента, который, как правило, вводят для окрашивания плоской синтетической нити. В связи с этим приходится

245 увеличивать и количество цветного пигмента приблизительно в количественном отношении в три раза большем, чем в нити без карбоната кальция. Но цветной пигмент значительно дороже карбоната кальция и полимеров, что также влечёт увеличение себестоимости плоской синтетической нити. Кроме того, в ходе технологического процесса для

250 получения плёнки из экструзионного сплава его, как правило, охлаждают в ванне с водой. Но поскольку поверхность плёнки получается шероховатой, она способствует удержанию большого количества воды на поверхности пленки, а удаление этой воды технологически затруднено. В связи с этим в общем технологическом процессе требуются

255 дополнительные трудоёмкие операции по удалению воды, что ведёт к удорожанию технологического процесса и следовательно к удорожанию себестоимости плоской синтетической нити. Если же проводят охлаждение плёнки на охлаждающих валах, то в этом случае из-за - абразивных свойств частичек карбоната кальция, выходящих на

260 поверхность плёнки, увеличивается износ охлаждающих валов. Вместе с тем, необходимо особо подчеркнуть, что внесение карбоната кальция в синтетическое сырьё для производства плоской синтетической нити в любом случае предопределяет пониженные прочностные свойства самой плоской нити со всеми вытекающими отсюда последствиями. Из

265 сказанного видно, что основными недостатками известного экструзионного способа получения синтетических плоских нитей, как наиболее близкого аналога (прототипа), является высокая стоимость производимых этим способом плоских синтетических нитей и пониженные их прочностные свойства.

270 Задача, которую поставил перед собой разработчик нового экструзионного способа получения плоских нитей из синтетического сырья, состояла в создании такого экструзионного способа получения плоских нитей из синтетического сырья, который позволил бы уменьшить стоимость производства плоских нитей из синтетического сырья за счёт

275 использования дешёвого или утилизируемого материала, не снижая резко при этом прочностных и других, необходимых для конкретного вида нитей, свойств. Как следствие это позволит применять получаемые новым способом нити для изготовления различных по назначению изделий. Техническим результатом, достигнутым в процессе решения

280 поставленной перед разработчиками задачи, явилась возможность формировать слои в плоской нити из синтетического материала с заданными свойствами, используя при этом более дешёвые или же утилизируемые материалы.

Сущность изобретения состоит в том, что в экструзионном способе

285 получения плоской нити из синтетического сырья, включающем формирование по меньшей мере, двух расплавов с различными свойствами, и распределение этих расплавов, по меньшей мере, по трём слоям для образования синтетической плёнки, охлаждение этой плёнки, резку её на полосы, а также вытягивание нарезанных полос для

290 образования нитей и намотку полученных таким образом нитей на сердечники, синтетическое сырьё используют в виде гранул, порошка или агломерата, а полученную плёнку охлаждают в ванне с водой, причём после охлаждения плёнки проводят удаление воды с её поверхности, а внутренний слой формируют с наполнителем на основе карбоната

295 кальция в количестве 0,1 - 50% от массы основного сырья внутреннего слоя. Вместе с тем, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья охлаждение массы расплава проводят на охлаждающих валах.

300 Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья внутренний слой формируют с наполнителем на основе органического карбоната кальция.

Вместе с тем, сущность изобретения состоит и в том, что в

305 экструзионном способе получения плоской нити из синтетического сырья один из расплавов формируют с красителем, причём распределяют его равномерно по наружным слоям.

Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья

310 красителя включают в количестве 0, 1-15,0% от массы основного сырья наружного слоя.

Вместе с тем, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья один из расплавов формируют с армируюшими добавками.

315 Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья один из расплавов формируют из полимера с более высокими разрывными характеристиками, чем полимер, использованный при изготовлении других слоев.

320 Вместе с тем, сущность изобретения состоит и в том, что в экструзионном способе получени плоской нити из синтетического сырья один из расплавов формируют, используя полипропилен с показателем текучести раствора (ПТР) менее 2,8 г/10,0 мин. по Стандартному методу определения показателя текучести расплава термопластов с помощью

325 экструзионного пластомера (ASTM 1238-90Ь). Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья после резки плёнки на полосы проводят их фибрилляцию.

Вместе с тем, сущность изобретения состоит и в том, что в 330 экструзионном способе получения плоской нити из синтетического сырья после резки плёнки на полосы проводят их фибрилляцию и в дальнейшем скручивание нити.

Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья 335 после резки плёнки на полосы проводят их фибрилляцию и в дальнейшем замасливание нити.

Вместе с тем, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья вытяжку полос проводят в несколько этапов.

340 Кроме того, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья после вытяжки нить подвергают принудительной усадке.

Вместе с тем, сущность изобретения состоит и в том, что в экструзионном способе получения плоской нити из синтетического сырья 345 принудительную усадку нити проводят в несколько этапов.

Доказательства возможности осуществления заявляемого экструзионного способа получения синтетических плоских нитей с реализацией указанного назначения приводятся ниже на конкретных примерах экструзионного способа получения синтетических плоских 350 нитей. Эти характерные примеры конкретных экструзионных способов получения синтетических плоских нитей согласно предлагаемому изобретению ни в коей мере не ограничивают объем правовой защиты изобретения. В этих конкретных примерах дана лишь иллюстрация нового экструзионного способа получения синтетических плоских нитей. 355 Приведённые в качестве конкретных примеров изобретения экструзионные способы получения плоской нити из синтетического сырья поясняются графически, где:

на фиг. 1 показан вид поперечно-разрезанной трехслойной плоской нити из синтетического сырья, содержащей карбонат кальция (СаСоЗ) во 360 внутреннем слое и цветной суперконцентрат во внешних слоях, получаемой предлагаемым способом;

на фиг. 2 показан вид поперечно разрезанной пятислойной плоской нити из синтетического сырья, получаемой предлагаемым способом;

на фиг. 3 показана линия для производства трехслойной плоской нити из 365 синтетического сырья по предлагаемому способу;

на фиг. 4 показана линия для производства пятислойной плоской нити из синтетического сырья по предлагаемому способу.

Вид поперечно разрезанной плоской трехслойной нити из синтетического сырья показан на фиг. 1, где:

370 1- внутренний слой

2- внешний слой

3- полимер

4- частицы карбоната кальция (СаСОЗ)

5- частицы цветного пигмента

375 Линия для реализации нового экструзионного способа получения трёхслойной плоской нити из синтетического сырья представляет собой ряд последовательно-параллельно установленных единиц оборудования (см. фиг.З). В начале линии установлен миксер 6, имеющий емкость цилиндрической формы с расположенными внутри лопатками для

380 «сухого» смешивания компонентов. Вращение лопаток обеспечивает асинхронный двигатель через планетарный редуктор (на чертеже не показаны). Лоток миксера 6 для выгрузки смешанных компонентов расположен над металлическим ящиком7. Ящик 7 предназначен для приёма готовой смеси сырья из миксера 6. Ящик 7 соединен с вакуумным 385 загрузчиком 8 гибким трубопроводом 9. Под вакуумным загрузчиком 8 расположен бункер 10 который установлен на загрузочную часть шнеко- цилиндровой части экструдера 11. Экструдер 1 1 представляет собой материальный цилиндр со шнеком внутри. Шнек соединён с асинхронным электродвигателем с возможностью управления

390 инвертором через редуктор. Поверх материального цилиндра расположены нагревательные элементы управляемые термоконтроллерами, которые обеспечивают нагрев материального цилиндра, шнека и, как следствие, поступившего в экструдер сырья. На выходной части цилиндра экструдера расположен блок фильтра 12,

395 предназначенный для фильтрации расплава через расположенную внутри блока мелкоячеистую металлическую сетку. Блок фильтра 12 через переходник 13 соединен с адаптером-распределителем 14. Адаптер- ч

распределитель 14 представляет собой устройство с каналами для подачи и распределения расплавов по слоям в трехслойной плоскощелевой

400 головке 15. Аналогично и параллельно описанным выше узлам, расположены следующие узлы: миксер 16, ящик 17, трубопровод 18, вакуумный загрузчик 19, бункер 20, шнеко-цилиндровая часть 21 , блок фильтра 22, переходник 23. Переходник 23 аналогично переходнику 13 соединен с адаптером-распределителем 14. Адаптер-распределитель 14

405 соединен с трехслойной плоскощелевой головкой 15, в которой выполнены каналы для распределения и совмещения слоев расплава по всей длине головки. Под головкой установлена ванна охлаждения 24, представляющая собой прямоугольную металлическую емкость с двумя, расположенными внутри металлическими невращающимися валами 25 и

410 системой водоснабжения и её циркуляции. Ванна охлаждения 24, наполненная водой, предназначена для охлаждения расплава с целью образования пленки. Над ванной расположен блок водоотжимных валов 26, состоящий из двух валов с резиновым покрытием, предназначенных для удаления воды с поверхности пленки, а также пневмосистемы для 415 прижима валов. Блок водоотжимных валов 26 соединен с асинхронным электродвигателем, управляемым инвертором через редуктор. Над блоком водоотжимных валов 26 расположены трубы влагоотбора 27, предназначенные для отбора остаточной влаги с поверхности пленки. Трубы влагоотбора 27 имеют прорези для захвата влаги и соединены

420 гибкими шлангами с аспираторным вентилятором. Над трубами влагоотбора 27, расположен обводной валик 28, служащий для направления пленки к блоку резки 29. Блок резки 29 расположен над обводными валиками 30 и представляет собой металлический вал с резьбой и гайкой, на который надеты металлические или пластиковые

425 кольца. Между кольцами расположены режущие элементы. Кольца на валу сжаты гайкой. Вал блока резки 29 расположен поперечно пленке, причём режущие элементы блока резки 29 расположены с возможностью резки пленки на ленты. Следом за обводными валиками 30 установлен блок приемных валов 31, представляющий собой станину с

430 установленными на ней металлическими валами. Эти валы связаны с асинхронным электродвигателем, управляемым инвертором через редуктор. Вытяжная печь 32 представляет собой негерметичный металлический короб с открывающейся крышкой, внутри которого расположены нагревательные элементы, управляемые

435 термоконтроллерами, и асинхронный электродвигатель с лопастями на оси ротора. Между крышкой и коробом предусмотрено пространство для прохода лент. Следом за вытяжной печью 32 установлен блок валов 33, состоящий из групп вытяжных валов 34 и усадочных валов 35 и 36. Причем валы 35 снабжены системой нагрева поверхности валов до

440 определенной температуры, а валы 36 снабжены системой охлаждения.

Следом установлена намоточная станция 37, которая представляет собой станину, на которой расположены собственно намотчики 38. Количество намотчиков зависит от количества получаемых нитей. Намотчики 38 представляют собой плиту с установленными на ней роликами для прохождения нити, осью для фиксации сердечника и нитеукладчика. Каждый из намотчиков 38 связан с асинхронным электродвигателем.

Работает линия для реализации нового экструзионного способа получения трёхслойной плоской нити из синтетического сырья следующим образом.

Полипропилен и цветной краситель в виде гранул суперконцентрата мерной емкостью засыпают в смеситель 6, где производят «сухое» смешивание. Время смешивания задают таймером. Приготовленную смесь ссыпают в ящик 7. С помощью вакуумного загрузчика 8 по трубопроводу 9 постоянно забирают смесь компонентов из ящика 7 и подают ее в бункер 10. В бункере 10, оснащенном системой осушки сырья и магнитной ловушкой металлических включений, смесь доводят до необходимой влажности и удаляют случайно попавшие металлические включения. Из бункера 10 смесь синтетического сырья подают в шнеко- цилиндровую зону 1 1 экструдера для уплотнения и разогрева. Далее, разогретое синтетическое сырьё превращают в расплав для формирования внешних слоев трехслойной плёнки. Полученный расплав под давлением из шнеко-цилиндровой зоны 1 1 подают в блок фильтра 12, где из расплава отфильтровывают нежелательные включения. Фильтрованный расплав из блока фильтра 12 через переходник 13 поступает в соответствующий внешним слоям канал адаптера-распределителя 14. Из канала внешних слоев адаптера-распределителя 14 расплав поступает в каналы формирования внешних слоев трехслойной головки 15. Аналогично полипропилен и добавку на основе карбоната кальция (СаСОЗ) в виде гранул мерной емкостью засыпают в миксер 16, где производят «сухое» смешивание. Приготовленную смесь ссыпают в ящик 17. С помощью вакуумного загрузчика 19 по трубопроводу 18 постоянно забирают смесь компонентов из ящика 17 и подают ее в бункер 20. В бункере 20, оснащенном системой осушки сырья и магнитной ловушкой металлических включений, смесь доводят до необходимой влажности и 475 удаляют случайно попавшие металлические включения. Из бункера 20 смесь синтетического сырья подают в шнеко-цилиндровую зону 21 экструдера для уплотнения и разогрева. Далее, разогретое синтетическое сырьё превращают в расплав для формирования внутреннего слоя трехслойной плёнки. Полученный расплав под давлением из шнеко-

480 цилиндровой зоны 21 подают в блок фильтра 22, где из расплава отфильтровывают нежелательные включения. Фильтрованный расплав из блока фильтра 22 через переходник 23 поступает в соответствующий внутреннему слою канал адаптера-распределителя 14. Из канала внутреннего слоя адаптера-распределителя 14 расплав поступает в канал

485 формирования внутреннего слоя трехслойной головки 15. Из фильерной части трехслойной головки 15 все три слоя расплава выходят одновременно, не смешиваясь, но соединенные между собой. Расплавы будут распределены следующим образом: внешний слой - внутренний слой - внешний слой. Полученный таким образом расплав подают для

490 охлаждения в наполненную водой ванну 24, где происходит его охлаждение. Остывший расплав образует трехслойную пленку, которую удерживают ближе к донной части ванны 24 неподвижными валами 25 для увеличения пути прохождения и, в связи с этим, качественного охлаждения пленки. Далее полученную пленку проводят через блок

495 водоотжимных валов 26 с резиновым покрытием, который удаляет воду с поверхности пленки. Остаточную влагу с поверхности пленки удаляют на трубах влагоотбора 27. Через обводной валик 28, а затем обводные валики 30 пленку подают на группу приемных валов 31. Так как пленка натянута между валами 26 и 31, то с помощью лезвий блока резки 29

500 легко режут пленку на ленты заданной ширины и поэтому на приемные валы 31 поступают трехслойные плоские ленты. Далее плоские ленты подвергают процессу многократной вытяжки. С приемных валов 31 ленты через вытяжную печь 32 направляют на группу вытяжных валов 34 блока валов 33. Скорость вращения группы вытяжных валов 34 в 505 несколько раз выше скорости приемных валов 31 , поэтому в среде горячего воздуха вытяжной печи 32 происходит вытяжка лент с увеличением длины и уменьшением толщины в зависимости от кратности вытяжки. Воздух внутри печи разогревают с помощью нагревательных элементов и подают в пространство прохождения лент. Вращаясь,

510 лопасти печи заставляют циркулировать воздух из области нагрева в пространство для прохода лент и обратно. Таким образом, ленты превращают в нити, у которых молекулярные цепи ориентированы в продольном направлении, что придает им дополнительную прочность. Полученные в процессе вытяжки нити имеют внутренние напряжения

515 молекулярной структуры, которые снимают процессом усадки. Поэтому с группы вытяжных валов 34 нити подают на группу горячих валов 35 и далее на группу холодных валов 36. Скорость вращения группы горячих валов 35 равна скорости вращения группы вытяжных валов 34. А скорость вращения группы холодных валов 36 на 5% меньше скорости

520 вращения группы горячих валов 35. При соприкосновении с поверхностью группы горячих валов нить нагревается, при этом разность скоростей валов 35 и 36 способствует процессу снятия внутренних напряжений молекулярной структуры нити. Таким образом происходит процесс усадки нити, нить уменьшается по длине на 5%. При

525 соприкосновении с поверхностью группы холодных валов 36 нить охлаждается, тем самым окончательно стабилизируют молекулярную структуру нити. Готовые нити подают на намоточную станцию 37, где с помощью намотчиков 38 проводят намотку нитей на сердечники. Таким образом, получают трехслойные плоские нити, намотанные на

530 сердечники.

Вид поперечно-разрезанной плоской пятислойной нити из синтетического сырья показан на фиг. 2, где:

1 - внутренний слой;

2 - внешние слои; 3 - полимер;

4- частицы карбоната кальция (СаСОЗ);

5 - частицы цветного пигмента;

39 - средние слои;

Линия для реализации нового экструзионного способа получения пятислойной плоской нити из синтетического сырья представляет собой ряд последовательно-параллельно установленных единиц оборудования (см. фиг.4). Вначале линии установлен миксер 6, имеющий емкость цилиндрической формы с расположенными внутри лопатками для «сухого» смешивания компонентов. Вращение лопаток обеспечивает асинхронный двигатель через планетарный редуктор. Время смешивания задают таймером. Лоток миксера 6 для выгрузки смешанных компонентов расположен над металлическим ящиком 7. Ящик 7 предназначен для приёма готовой смеси сырья из миксера 6. Ящик 7 соединен с вакуумным загрузчиком 8 гибким трубопроводом 9. Под вакуумным загрузчиком 8 расположен бункер 10, который установлен на загрузочную часть шнеко-цилиндровой части экструдера 1 1. Экструдер 1 1 представляет собой материальный цилиндр со шнеком внутри. Шнек соединён с асинхронным электродвигателем с возможностью управления инвертором через редуктор. Поверх материального цилиндра расположены нагревательные элементы управляемые термоконтроллерами, которые обеспечивают нагрев материального цилиндра, шнека и, как следствие, поступившего в экструдер сырья. На выходной части цилиндра экструдера расположен блок фильтра 12 для фильтрации расплава через расположенную внутри блока мелкоячеистую металлическую сетку. Блок фильтра 12 через переходник 13 соединен с адаптером-распределителем 14. Адаптер-распределитель 14 представляет собой устройство с каналами для подачи и распределения расплавов по слоям в пятислойной головке 15. Аналогично и параллельно описанным выше узлам, расположены следующие: миксер 16, ящик 17, трубопровод 18, вакуумный загрузчик 19, бункер 20, шнеко-цилиндровая часть 21 , блок фильтрации 22, переходник 23. Переходник 23 аналогично переходнику 13 соединен с адаптером-распределителем 14. Также, аналогично и параллельно описанным выше узлам, расположены следующие узлы: миксер 40, ящик 41, трубопровод 42, вакуумный загрузчик 43, бункер 44, шнеко-цилиндровая часть 45, блок фильтрации 46, переходник 47. Переходник 47 аналогично переходнику 13 соединен с адаптером-распределителем 14. Адаптер-распределитель 14 соединен с пятислойной плоскощелевой головкой 15, в которой выполнены каналы для распределения и совмещения пяти слоев расплава по всей длине головки. Под головкой установлена ванна охлаждения 24, представляющая собой прямоугольную металлическую емкость с двумя, расположенными внутри металлическими невращающимися валами 25 и системой водоснабжения для её циркуляции. Ванна охлаждения 24, наполненная водой, обеспечивает охлаждение расплава для образования пленки. Над ванной расположен блок водоотжимных валов 26, состоящий из двух валов с резиновым покрытием, предназначенных для удаления воды с поверхности пленки, а также пневмосистемы для прижима валов. Блок водоотжимных валов 26 соединен с асинхронным электродвигателем, управляемым инвертором через редуктор. Над блоком водоотжимных валов 26 расположены трубы влагоотбора 27, предназначенные для отбора остаточной влаги с поверхности пленки. Трубы влагоотбора 27 имеют прорези для захвата влаги и соединены гибкими шлангами с аспираторным вентилятором. Над трубами влагоотбора 27, расположен обводной валик 28, служащий для направления пленки к блоку резки 29. Блок резки 29 расположен над обводными валиками 30 и представляет собой металлический вал с резьбой и гайкой, на который надеты металлические или пластиковые кольца. Между кольцами расположены режущие элементы. Кольца на валу сжаты гайкой. Вал блока резки расположен поперечно пленке, 595 причём режущие элементы блока резки 29 расположены с возможностью резки пленки на ленты. Следом за обводными валиками 30 установлен блок приемных валов 31, представляющий собой станину с установленными на ней металлическими валами. Эти валы связаны с асинхронным электродвигателем, управляемым инвертором через

600 редуктор. Вытяжная печь 32 представляет собой негерметичный металлический короб с открывающейся крышкой, внутри которого расположены нагревательные элементы, управляемые термоконтроллерами, и асинхронный электродвигатель с лопастями на оси ротора. Между крышкой и коробом предусмотрено пространство для

605 прохода лент. Следом за вытяжной печью 32 установлен блок валов 33, состоящий из групп вытяжных валов 34 и усадочных валов 35 и 36. Причем валы 35 снабжены системой нагрева поверхности валов, а валы 36 снабжены системой охлаждения. Следом установлена намоточная станция 37, которая представляет собой станину, на которой

610 расположены собственно намотчики 38, количество намотчиков зависит от количества получаемых нитей. Принципиально намотчики 38 представляют собой плиту с установленными на ней роликами для прохождения нити, осью для фиксации сердечника и нитеукладчика. Каждый из намотчиков 38 связан с асинхронным электродвигателем.

615 Работает линия для реализации нового экструзионного способа получения пятислойной плоской нити из синтетического сырья следующим образом.

Полипропилен и цветной в виде гранул суперконцентрат мерной емкостью засыпают в миксер 6, где производят «сухое» смешивание. 620 Приготовленную смесь ссыпают в ящик 7. С помощью вакуумного загрузчика 8 по трубопроводу 9 постоянно забирают смесь компонентов из ящика 7 и подают ее в бункер 10. В бункере 10, оснащенном системой осушки сырья и магнитной ловушкой металлических включений, смесь доводят до необходимой влажности и удаляют случайно попавшие 625 металлические включения. Из бункера 10 смесь синтетического сырья подают в шнеко-цилиндровую зону 1 1 экструдера для уплотнения и разогрева. Далее, разогретое синтетическое сырьё превращают в расплав для формирования внешних слоев пятислойной плёнки. Полученный расплав под давлением из шнеко-цилиндровой зоны 1 1 подают в блок

630 фильтра 12, где из расплава отфильтровываются нежелательные включения. Фильтрованный расплав из блока фильтра 12 через переходник 13 поступает в соответствующий внешним слоям канал адаптера-распределителя 14. Из канала внешних слоев адаптера- распределителя 14 расплав поступает в каналы формирования внешних

635 слоев пятислойной головки 15. Аналогично полипропилен и добавку на основе карбоната кальция (СаСОЗ) в виде гранул мерной емкостью засыпают в миксер 16, где производят «сухое» смешивание. Приготовленную смесь ссыпают в ящик 17. С помощью вакуумного загрузчика 19 по трубопроводу 18 постоянно забирают смесь

640 компонентов из ящика 17 и подают ее в бункер 20. В бункере 20, оснащенном системой осушки сырья и магнитной ловушкой металлических включений, смесь доводят до необходимой влажности и удаляют случайно попавшие металлические включения. Из бункера 20 смесь синтетического сырья подают в шнеко-цилиндровую зону 21

645 экструдера для уплотнения и разогрева. Далее, разогретое синтетическое сырьё превращают в расплав для формирования средних слоев пятислойной плёнки. Полученный расплав под давлением из шнеко- цилиндровой зоны 21 подают в блок фильтра 22, где из расплава отфильтровываются нежелательные включения. Фильтрованный расплав

650 из блока фильтра 22 через переходник 23 поступает в соответствующий средним слоям канал адаптера-распределителя 14. Из канала средних слоев адаптера-распределителя 14 расплав поступает в каналы формирования средних слоев пятислойной головки 15. Аналогично полипропилен одной или нескольких марок в виде гранул мерной емкостью засыпают в миксер 40, где производят «сухое» смешивание. Приготовленную смесь ссыпают в ящик 41. С помощью вакуумного загрузчика 43 по трубопроводу 42 постоянно забирают смесь компонентов из ящика 41 и подают ее в бункер 44. В бункере 44, оснащенном системой осушки сырья и магнитной ловушкой металлических включений, смесь доводят до необходимой влажности и удаляют случайно попавшие металлические включения. Из бункера 44 смесь синтетического сырья подают в шнеко-цилиндровую зону 45 экструдера для уплотнения и разогрева. Далее, разогретое синтетическое сырьё превращают в расплав для формирования армирующего слоя пятислойной плёнки. Полученный расплав под давлением из шнеко- цилиндровой зоны 45 подают в блок фильтра 46, где из расплава отфильтровываются нежелательные включения. Фильтрованный расплав из блока фильтра 46 через переходник 47 поступает в соответствующий армирующему слою канал адаптера-распределителя 14. Из канала армирующего слоя адаптера-распределителя 14 расплав поступает в каналы формирования армирующего слоя пятислойной головки 15.

Из фильерной части пятислойной головки 15 все пять слоев расплава выходят одновременно, не смешиваясь, но соединенные между собой. Расплавы распределены как внешний слой - средний слой - армирующий слой - средний слой - внешний слой. Полученный таким образом расплав подают для охлаждения в наполненную водой ванну 24. Остывший расплав в виде пленки удерживают ближе к донной части ванны 24 неподвижными валами 25 для увеличения пути прохождения и в связи с этим качественного охлаждения пленки. Далее пленку проводят через блок водоотжимных валов с резиновым покрытием 26, который удаляет воду с поверхности пленки. Остаточную влагу с поверхности пленки удаляют на трубах влагоотбора 27. Через обводной валик 28, а затем обводные валики 30 пленку подают на группу приемных валов 31. Так как пленка натянута между валами 26 и 31 лезвия блока резки 29 легко 685 режут пленку на ленты заданной ширины и поэтому на приемные валы 31 поступают пятислойные плоские ленты. Далее плоские ленты подвергают процессу многократной вытяжки. С приемных валов 31 ленты через вытяжную печь 32 направляют на группу вытяжных валов 34 блока валов 33. Воздух внутри печи 32 с помощью нагревательных элементов

690 разогревают и подают в пространство прохождения лент. Вращаясь, лопасти заставляют циркулировать воздух из области нагрева в пространство для прохода лент и обратно. Скорость вращения группы вытяжных валов 34 в несколько раз выше скорости приемных валов 31 , поэтому в среде горячего воздуха вытяжной печи 32 происходит вытяжка

695 лент с увеличением длины и уменьшением толщины в зависимости от кратности вытяжки. Таким образом, ленты становятся нитями, у которых молекулярные цепи ориентированы в продольном направлении, что придает им дополнительную прочность. Полученные в процессе вытяжки нити имеют внутренние напряжения молекулярной структуры, которые

700 снимают процессом усадки. Поэтому с группы вытяжных валов 34 нити подают на группу горячих валов 35 и далее на группу холодных валов 36. Скорость вращения группы горячих валов 35 равна скорости вращения группы вытяжных валов 34, а скорость вращения группы холодных валов 36 на 5% меньше скорости вращения группы горячих валов 35. При

705 соприкосновений с поверхностью группы горячих валов нить нагревается, при этом разность скоростей валов 35 и 36 способствует процессу снятия внутренних напряжений молекулярной структуры нити. Таким образом происходит процесс усадки нити, нить уменьшается по длине на 5%. При соприкосновении с поверхностью группы холодных

710 валов 36 нить охлаждается, тем самым окончательно стабилизируют молекулярную структуру нити. Готовые нити подают на намоточную станцию 37, где с помощью намотчиков 38 проводят намотку нитей на сердечники. Таким образом, получают пятислойные плоские нити, намотанные на сердечники. 715 Применение нового экструзионного способа получения плоской нити из синтетического сырья в промышленности и в других отраслях позволит резко снизить стоимость производимых этим способом плоских синтетических нитей, не снижая при этом их прочностных свойств. Преимущества производства и применения плоских многослойных

720 синтетических нитей полученных по новому экструзионному способу состоят в следующем. Частицы карбоната кальция (СаСоЗ) или других добавок, например талька, отсутствуют на глянцевой поверхности пленки, что препятствует удержанию воды, так как добавка, например, карбоната кальция (СаСоЗ) в нашем случае введена во внутренний слой,

725 защищенный внешними слоями. Нить, получаемая данным способом, не обладает значительными абразивными свойствами, как в известных способах и которые приводили к дополнительному износу частей оборудования, с которыми в дальнейшем соприкасается нить, например рабочих частей ткацкого станка. При применении нового способа

730 производства синтетических плоских нитей повысится также надёжность ткацкой линии за счёт исключения выхода из строя электрооборудования. Отсутствие так называемой меловой пыли улучшит санитарно- гигиенические условия труда работников и также в целом уменьшит износ оборудования. Возможен ввод большего количества различных

735 добавок, например карбоната кальция (СаСоЗ) для экономии более дорогого полимера. Возможно применение меньшего количества дорогостоящего цветного суперконцентрата за счет ввода его только во внешние слои. При этом каждый из внешних слоев может быть существенно тоньше внутреннего слоя. Необходимо также отметить, что

740 данным способом можно изготавливать нити с различными в зависимости от необходимости свойствами, делая их многослойными, каждый слой которого будет обладать уникальными свойствами. А это делает ещё более актуальным новый способ получения плоских синтетических нитей, так как заданные свойства получаемых нитей будут определёнными в зависимости от необходимости, ведь на практике не всегда требуются, например, чрезвычайно высокая прочность нити.