Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
EXTRUSION OF PROFILES UTILISING OPPOSITE ROTATING DIES
Document Type and Number:
WIPO Patent Application WO/2017/007410
Kind Code:
A1
Abstract:
The invention relates to device and method enabling industrial continuous pressing, called extrusion of plastically / thermally mouldable substances (11) such as metal, composite metal, plastic, composite or rubber, which is pressed to the profile (12) by a process comprising tool fixed member (6) partially predefining the profile shape / cross-section before the profile finally defined to fixed or varied cross-section when the material passes rotating dies (2) which can be patterned or smooth and through the contact with each other (1) cancel out each main radial forces and the position of which in some embodiments of the invention may vary relative to other bearing surfaces (13, 17) or rotary bearing surfaces (4) of the tool with which they define the final shape of the profile.The invention enables the extrusion of pattern on the inside of hollow profiles and the extrusion of multiple profiles in one tool, because 80-98% of the radial bearing forces are eliminated, allowing the installation of rotary dies where not previously possible, and almost unlimited opportunities in increased profile width.

Inventors:
JANSSON KRAGH MARK (SE)
Application Number:
PCT/SE2016/050683
Publication Date:
January 12, 2017
Filing Date:
July 04, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARSIZIO AB (SE)
International Classes:
B21C23/02; B21C23/08; B21C25/00; B21C25/02; B21C25/08; B29C48/12; B29C48/30; B29C48/33; B29C48/35
Domestic Patent References:
WO2009069081A12009-06-04
WO1997012745A11997-04-10
WO2001060583A12001-08-23
Foreign References:
US4950151A1990-08-21
JP2004174563A2004-06-24
US1696983A1929-01-01
US20030011100A12003-01-16
CA1307889C1992-09-29
US4128369A1978-12-05
Other References:
See also references of EP 3317076A4
Attorney, Agent or Firm:
ZACCO SWEDEN AB (SE)
Download PDF:
Claims:
Claims

1. Device (100) for the extrusion of plastically /

thermally deformable material (11) to one or more profiles (12) of fixed or variable cross section comprising one or more static parts matrix (6) which in cooperation with multiple so-called rotary dies (2) which completely or partly defines the profile cross-section and variation characterized in that the rotating dies (2) are in contact with the surfaces (1) allowing the transfer of opposing radial forces. 2. Device according to claim 1, characterized in that the rotating dies (2) are in contact with the surfaces (1) which transmits the opposed radial forces to these largely cancel each other out and the power transmitting surfaces (1) are not

constituted by the shaping surface portions (3) on the rotating dies (2) .

Device according to claim 1 or claim 2,

characterized in that the rotating dies (2) are in contact with the surfaces (1) which transmits the opposed radial forces to these largely cancel each other out and that in the device (6) are outer rotary dies (4) acting as dies for the opposite side of the extruded profile (12) .

Device according to claim 1 or 2, characterized in that there are one or more movable bearing inserts (13) .

5. Device according to claim 4, characterized in that the device is constructed so that the bearing length (14a, 14b) increases as the profile thickness increases (15a, 15b), by bearing(18a, 18b) becomes an extension of the bearing when the movable bearing insert (13) is in its outer position by prehearing and bearing coming in line.

6. Device of claim 1 or 2, characterized in that the rotating dies (2) are located in a core portion (16a) enabling extrusion with rotating dies on the inside of the extruded hollow section (22) .

7. Device according to the claim 6, wherein the movable bearing inserts (13) in the static tool part (16b) which allows adjustment of the material thickness of the extruded hollow section, in that they can be raised or lowered

8. Device according to claim 6, characterized in that in the tool bore portion (16b) has outer rotary dies (4) .

9. Device according to claim 8 characterized in that the outer rotating dies (4) can be raised / lowered.

10. Device according to claim 9 wherein the height adjustable rotary dies (4a, 4b) are combined with variable height / adjustable pre bearing (18) .

11. Device according to claim 3 characterized in that the outer rotating dies (4) can be raised / lowered .

12. Device according to claim 11, characterized in that the height adjustable outer rotating dies are combined with variable height / adjustable pre bearing (18) .

13. Device according to any preceding claim

characterized in that the rotating dies (2) have the bearings for the radial forces (10) built in.

14. Device according to any preceding claim

characterized in that the tool can contain 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 or more inner rotary dies (2) in pairs which substantially cancel out each other radial forces.

15. Device according to any preceding claim

characterized in that the rotary dies (2, 4) has surface having low adhesion coefficient between rotary dies and the extruded material.

16. Device according to any preceding claim

characterized in that the device vary the speed / volume per time unit with which the input amount of material feed extrusion / pultrusion tool in order to either allow such constant outlet speed as possible on the output profile, or decrease the outlet velocity, for avoid the risk of flaking / overheating of outgoing material, when the smaller profile area is run, by synchronizing the feed of material amount with variation in the outgoing cross-sectional area and thickness profile.

17. Method for the extrusion with device of any of the preceding claims characterized in that the rotary dies (2, 4) have a surface with low adhesion coefficient between rotating die / s and the

extruded material and that the start-up takes hold of and pull the outgoing profile within 30cm after being defined by the bearing surfaces and rotary dies and begins to pull it in the extrusion

direction .

18. Method for the extrusion of plastically /

thermally deformable material (11) to one or more profiles (12) of fixed or variable cross-section by a device comprising one or more static matrix elements (6), in collaboration with several so- called rotary dies (2) which completely or partly defines the profile cross-section and variation according to claim 1, characterized in that said method comprises the step of feeding the plastically / thermally deformable material (11) in contact with the rotary dies (2) which is in contact with

surfaces (1 ) that transmits the opposing radial forces so that these largely cancel each other out. 19. Method according to claim 18, characterized in that the method comprises the step of feeding the plastically / thermally deformable material (11) in contact with the rotary dies (2) which is in contact with surfaces (1) which transmits the opposing radial forces so that these largely cancel each other and that these surfaces are not constituted by the shaping surface portions (3) on the rotating dies ( 2 ) .

20. Method according to claim 18 or claim 19, characterized in that the method comprises the step of feeding the plastically / thermally deformable material (11) is in contact with the rotary dies (2) which in contact with surfaces (1) which transmits the opposing radial forces so that these largely cancel each other out and that the tool (6) are external rotating dies (4) that forms the opposite side of the extruded profile (12) .

21. Method according to claims 18 or 19,

characterized in that the material thickness of the extruded profile is varied by position of one or more movable bearing inserts (13) is varied.

22. Method according to claims 18-21 characterized by varying of the bearing length (14b, 14a) so that it as far as possible kept constant in relation to the profile thickness (15b, 15a), by allowing the variable bearing insert bearing surface form a longer bearing surface with pre bearing.

23. Method according to claims 18-22 for extrusion of hollow section characterized by the use of said rotary dies (2), located in a core portion (16a) together with rotating dies (2) shaping the inside of the extruded hollow section (22) .

24. Method according to claim 23 wherein varying the material thickness of the extruded hollow profile by varying the position of one or more movable bearing inserts (13) .

25. Method for the extrusion of hollow profile according to claim 23 wherein the outer rotary dies (4) acts as dies for the outside of the hollow profile.

26. Method for extrusion with rotating opposite

dies according to claim 25 wherein the thickness of the outgoing profile is varied by raising / lowering the outer dies (4) .

27. Method according to claim 25, wherein the

thickness and pattern can be controlled by raising / lowering the rotary dies (4a, 4b) and/or raising / lowering pre bearing (18) .

28. Method of claims 17-25, wherein the thickness and / or pattern varied by raising / lowering of the outer rotating dies (4) .

29. Method according to claim 17-25 wherein the

thickness and / or patterns is varied by external rotary dies raised / lowered combined with the & raising / lowering pre bearing (18) .

30. Method according to any preceding claim

characterized in that the device vary the speed / volume per time unit with which the input amount of material feed extrusion / pultrusion the tool with in order to either allow such constant outlet speed as possible on the outgoing profile, or decrease the outlet velocity, to avoid the risk of flaking / overheating of outgoing material, when the smaller profile area is run, by synchronizing the feed of material amount with variation in the outgoing cross-sectional area and thickness profile.

31. Method according to any preceding claim

characterized in that the device vary the speed and / or force with which the output profile is

stretched with to adapt to the variation in cross sectional area and initial speed of the outgoing material from the extrusion / pultrusion tool, so as to have such a constant tension force per cross- sectional area as possible on the outbound profile, by synchronizing the tensile force and / or speed variation of the outgoing cross-sectional area and the amount of material with which the volume of materials / unit time as the extrusion / pultrusion tool is feeded with.

Description:
Extrusion of profiles utilising opposite rotating dies.

Technical field

The invention relates to device and method enabling industrial continuous pressing, so called extrusion of plastically / thermally mouldable materials such as metal, composite metal, plastic, composite or rubber, which is pressed to the profile by a process comprising tool fixed part partly predefining the profile shape / cross-section before profile shape finally is defined to fixed or varied cross-section when the

material passes rotating dies which can be patterned or smooth and by the contact with each other cancel out each other main radial forces and the position of which in some embodiments of the invention may vary relative to other bearing surfaces (13) or rotary bearing surfaces in tool with which they define the profile's final form, whether rotating dies are patterned or not.

The invention enables the extrusion of pattern on the inside of hollow sections and eliminates 80-98% of the radial bearing forces, which reduces the cost of

manufacturing tools and opens up new possibilities when the radial forces do not limit the profile width.

Further, the invention solves the problem of varied output speeds and varied stretch and pull + pressure forces arising at extruded / pultruded profile for the production of profile with varied cross section. Technical background:

In continuous pressing of plastic deformable

materials, such as heated metals such as copper, titanium and aluminium, so-called extrusion, the blank passes an opening that defines the profile cross-section. Previous attempts have been made to extrude with rotary dies to provide some variation, however, this has been problematic inter alia due to high bearing loads.

Often you want to in different applications have beams and profiles with patterns, teeth, varied wall thickness, anti-slip surfaces, integrated logo etc. This is because a profile that has the same cross section and appearance all the way do not meet the requirements that satisfy customer's product and application requirements regarding design, function and performance in sectors such as construction, consumer goods, structural

applications, transportation, aerospace, automotive and design. The traditional methods first manufacturing profiles and then machining to get varied thickness / pattern usually requires large costs for processing and machining equipment. An alternative method for extruding first and then process the profile is the use of rotating patterned dies during extrusion, leaving a "negative impression" in the profile while its cross section is defined.

This has been described in Technical Papers (ex. Way "How to extrude embossed flexible profiles" by Pierre Hamel in Plastics Engineering belt 36, No. 6, June 1980 pp. 34- 35), which describes how to use the rotary dies (see engraving wheel Fig 1) extruding patterned plastic profiles .

Another method to obtain profiles with patterns described in the patent EP 1272330 Bl by the innovator D. Czekay which using a circulating "caterpillar tracks like" stamping body, whose relief-like embossing patterns moving in roughly the same pace as the extruded profile.

Another patent of the present inventor Mark Jansson describes extrusion with rotating dies are SE504300 (C2), which describes how to extrude steplike profiles.

However, it is generally not possible to proceed in accordance with the described patent if, for example will extrude materials requiring high pressure to achieve sufficient plasticity when the force that the rotating die is exposed to would be so large that it would be bent and the bearings that hold the same would break down. In the extrusion of aluminium, copper, magnesium, titanium, metal composites, etc. it may be required several

thousand kilograms of pressure per square centimetre, thus rendering the method described in SE 504 300 (C2) .

This is due to both forces material flow conditions.

The patent SE514815 (C2) shows one of the current inventors invented method giving a more realistic version to extrusion by means of rotary dies, this patent has very strong similarities with Pierre Hamel Technical

Paper of 1980.

In SE Patent 531 821 of the current candidates is shown how to avoid problems at startup, using the profile stretching device that pulls and steer the profile immediately in startup. It is also shown how to work with rotary dies that are raised and lowered in order to facilitate start up of the extrusion.

Both the patent SE504300 (C2) and the patent

SE514815 (C2) can be said to describe the procedure for extrusion with rotating dies acc. Pierre Hamel 's

instructions .

SE514815 (C2) is in practice very limited in the possibilities when it comes to extrude profiles with varied thickness and varied tread depth, because, that there are problems with the adhesion between the thin weak wall profile at startup due. engagement adhesion and adhesion between the surface of the rotating die and the extruded material.

The same applies when making profiles with large tread depth relative to thickness, the profile will tend to "follow" the rotating die around at startup and billet changes, which means very high risk for process stop and tool failure.

Furthermore, one can in proceeding pursuant SE514815 (C2) and other writings not extrude hollow sections with patterns on the inside and wrestle constantly with very high radial loads on rotating die, shafts and bearings, causing expensive tools and limitations in profile width, the imprint depth and problems with large tools.

The large bearing forces has meant that one has been forced to have bearings beside the rotating dies, as it has not been possible to integrate bearings strong enough in the rotating dies.

This has in practice resulted in that it from a technical and / or economic reasons have been almost impossible to extrude more than one metal profiles in one tool simultaneously due to the large forces previously required large bearings at the rotating die shaft ends - something that there is limited space for in tools, and that weakens the tools, as this requiring the removal of large quantities of material from which tools to insert bearings .

Furthermore, the possibilities were previously limited for variation of the cross sectional area in practice by the cyclical process that the rotating die perimeter and variation constitutes.

Summary of the invention The present invention enables a variation of the thickness and tread depth in reality through

consideration of factors such as variation of the

pressure drop and exit speed, both of which vary when varying the outlet area / cross section of the profile:

A reduced outlet area = increased pressure drop and at constant speed on the material feeding side into the extrusion / pultrusion die will result in a higher outlet speed and potentially big problems with increased

temperatures and erratic outcoming profile: for example, giving a halved outlet area double the outlet velocity at continuous feeding of extrusions material, which more or less is an adjunct leading to large procesproblem with varying quality on the basis profile and is likely to process breakdown. This is because the outbound profile must rapidly accelerate and deceleration resulting in very large varied loads between back pressure and tension loads of outgoing material directly on the tools' outlet, bearings, where the material is at its warmest and softest and most dependent on a continuous stretch / control - resulting in the profile easily lose control and come with rotating die and plugs the tools outlet, - the process of breakdown is a fact. Another aspect is the dependence between the maximum extrusion and cross- sectional area of a profile and the thickness of the profile extruded / pultruded, which is particularly sensitive in billet feed extrusion lines, the so-called extrusion ratio is very crucial (extrusion ratio = input material area from ingots in relation to the outgoing profile area)_. A high extrusion ratio reduces the maximum outlet rate of extruded / pultruded profile due to, among other things heat buildup and flaking. Flaking is a phenomenon that occurs when you try to extrude / pultrude in high speed and output profile has been difficult to hold together, due to the forces of friction between the outgoing profile and bearing

surfaces and area reduction, exceeding or approaching outgoing materials maximum speed and cracks which

generally goes across extrusion / pultrusion direction_. An increased area reduction results in other words, an increase in the risk of scaling, while speed is increased on the outgoing profile, if one does not take this into account, in other words, would a feed of into the

extrusion / pultrusion tool result in the profile goes faster when there is a reduced cross sectionsectional area (as it would be wise to rather have a reduced outlet speed of not getting flaking and / or overheating of outgoing material. This object is solved, according to the present invention, by varying the speed / volume per unit time that material feeding extrusion / pultrusion tool in in order to either allow such constant outlet speed as possible on the outgoing profile, or decreases outlet rate, to avoid risk of flaking / overheating of outgoing material, when the smaller profile area is run.

Naturally, this includes synchronizing puller that holds the profile tensioned.

The implementation of the present invention is applicable in all types of extrusion lines, with minimal or no need for adaptation of the plant, including the hydraulic metal extrusion plants, screw extruders to rubber _ plastic and conform extrusion lines etc.

The purpose of the present invention is to enable

repeatable industrial production of one or more profiles can exhibit patterns and / or varying cross section and solves problems with large bearing forces, which makes it possible to: 1. make hollow sections with patterns on the inside 2. fit more rotary dies and thrit bearings in the tool which allows one to make tools that extrudes multiple profiles simultaneously (a necessity for

efficient production of smaller profiles) 3. make the tools cheaper, less complex and more compact.

The invention further enables variation of profile cross-section of the desired cycle without limitation to the cycle corresponding to the circumference of the rotating die.

The ability to vary the thickness and / or varying + eliminate tread depth can minimize adhesion between extruded profile at start up and billet changes, while enabling thicker profile walls in these moments, to further stabilize the process and eliminate these

problems so far has obstructed successful commercial extrusion with rotating dies.

Unlike the prior art, use is made of two rotary dies that are in contact with each other and cancel out each other radial forces, which virtually eliminates the radial forces and thereby reduces the need and problems with large bulky radial bearing. Explanations of context, nomenclature and in patent used words:

Extrusion :

Procedure in which a material under pressure is pressed through a profile shaping tool (also called die) with hole(s) that defines the outgoing materials cross-section and appearance.

Dynamic extrusion: A method wherein a material under pressure is pressed through a shaping tool that provides the profile a diverse cross-section and circumference of or shape in the form of example patterns on one or more surfaces and dimensional changes in cross sectional area and or goods thicknesses .

Die: Generally, the name used by professionals for profile production tools.

Rotating die:

Rotating profile-shaping member / organ in die.

Pressure drop:

Reduction of pressure by the tool is a result of area- reduction, plastic exemplary work and friction. At metal extrusion converted large amounts of energy to heat, as a result of pressure. By "pressure drop balancing"—making adjustments to the pressure drop in the tool, the

outgoing material get the same speed in all parts.

Flow imbalance:

Imbalance means that the outgoing material will or want to come out with higher or lower speed at certain parts of the profile cross-section. A profile extruded in a tool with the imbalance may be less resistant (due to internal tensions), tend to dent or bend and at the extrusion with rotating dies result is often the process breakdown.

Bearing Surface:

The surface of an extrusion die in the smallest cross section that the extruded material is forced through under pressure and thus constitutes the surface to finally define the profile cross-section and appearance. Static Bearing Surface:

A bearing surface the extruded material is forced to pass at a relative speed of outgoing profile speed, because it is static, so that means there is a speed difference between the static bearing surface and the extruded material, resulting in a lot of friction and heat. By regulating the length of the bearing surfaces can

regulate the total amount friction and thus the pressure and speed of the outgoing material.

Rotating Bearing surface:

A rotating bearing surface is a surface of the rotating die/member that defines the profile cross-section, making patterns possible as well as wall-thickness variation. A rotating bearing surface in general generates much less resistance/ friction against the flowing material than a static bearing surface, which previously has created major problems with the imbalance between the different parts of the profile cross-section, which is defined by the rotating bearing surfaces and the parts that are defined by static bearing surfaces.

Pre-Bearing/Pre-Bearing Surface:

The surface area that the extruded material passes just before it comes to the rotating die/forming member and its rotating bearing. The pre-bearing brings down the material cross section so much so that the subsequent rotating die won't have to take up unnecessarily large forces from the extruded material. Pre-bearing has in combination with preceding shape in the die upstream a central role for control and/or redulation of material flows through the die.

Puller/Profile Puller:

At the extrusion of metal profiles, it is customary that when one has squeezed out enough profile to reach the ordinary puller (usually 3-7 meters from the die) to stop extrusion, grip profile and then pull the profile and then re-start the extrusion. With extrusion of plastically thermally deformable material with rotating shaping dies i units means

pressing of example, metal, rubber, plastics, metal composites, ceramics and plastic composites through extrusion tool, also called die, which has one or more so-called rotating dies integrated in the static die and where the cross section at some extent is, as in Pierre Hamel Technical Paper, defined before the extruded material in pressurized zone reaches the rotating die and whose outer radius possible, pattern is called a rotating bearing surface defining the profile appearance and cross section in cooperation with other bearing surfaces.

These objects are achieved by the invention as

hereinafter will be described in different embodiments:

The dies can be patterned as well as smooth, or

combinations out of both.

The outer rotating dies can be raised and lowered

independently of other cycles in the process. This also applies to the movable bearing inserts and height

adjustable bearings.

The variable outer dies, bearing inserts and

forbaringarna enables variation of the thickness and pattern of any length cycle. They also make it possible to facilitate the start-up and billet changes, by

ensuring start up of tools with thickest profile and minimal imprint of the outer rotating dies, all to get the maximum profile stability, while reducing the risk of adhesion between the rotating dies and extruded

materials .

The rotating dies should be cooled to maintain a

temperature difference between the extruded material and rotating dies, to avoid overheating of the rotating dies and profiles which will otherwise stick together.

Brief Description of the Drawings

The present invention will now be described with

reference to the accompanying drawings which of example illustrate preferred embodiments of the invention, the invention is not limited to those in the drawings

exemplary embodiments, but may be of ordinary skill performed in several combinations of the various variants and with more rotating dies.

Fig. 1 shows a first embodiment of the invention, extruding the two smooth profiles.

Fig. 2 shows a second embodiment of the invention, extruding the two profiles with pattern on one side.

Fig. 3 shows the side view and the outlet of the second embodiment of the invention.

Fig. 4 shows the cross section from the side and from outlet of the second embodiment of the invention.

FIG. 5 shows the inlet side and the outlet of the second embodiment of the invention, to make patterns on both sides of the two profiles.

Fig. 6 shows the cross section of the second

embodiment in which to make patterns on both sides of the two profiles.

Fig. 7 shows how the different Axial and radial bearings can be configured in the tool according to the second embodiment

Fig. 8 shows a third embodiment of the invention where varying the material thickness of the exiting profiles, by varying the bearings position and length.

Fig. 9a and 9b show how the relationship between the bearings length and thickness profile is kept reasonably constant at varied thickness - which is important to balance the flow and stable process.

Fig. 10 shows the inlet, side and utloppsvy of the invention in a fourth embodiment to extrusion of hollow section with varied thickness.

Fig. 11 shows the outlet and side views of the invention in Fig. 10.

Fig. 12 shows a fifth embodiment of the invention enabling extrusion of hollow sections with patterns on both the inside and outside.

Fig. 13 shows the two static head portions separated and the cross section of the fifth embodiment.

Figs. 14 and 15 show a sixth embodiment of the invention, which enables extrusion of hollow profiles with pattern on the inside and outside while one can vary the thickness and pattern on the outside.

Fig. 16 shows a seventh embodiment of the invention comprising an adjustable le pre bearing that provides additional possibilities of varying the thickness and pattern.

Fig. 17 shows how patterns can vary by varying the position of the rotating dies.

Fig. 18 shows how to vary the thickness and patterns by varying the position of the rotating dies and adjustable bearings.

Detailed Description of exemplifying embodiments In Fig. 1 shows schematically a first embodiment of the invention consisting of the fixed tool part (6) with static bearing surfaces and two integrated rotating dies (2) which in cooperation form the incoming material (11) to two extruded smooth profiles. The two rotating (2) dies are in contact with each other (1) and the opposing force resultants from the plastic work take out each other. The device according to example embodiments is here generally indicated by reference numeral 100.

Fig. 2 shows a second embodiment of the invention, extruding the two profiles with pattern on one side. In this embodiment it has been to outer rotating dies (4) that designs oponentsidorna to the inner rotating dies (2) to teeth rack pattern is achieved. The inner rotating dies here is built in such a way that the shaping

surfaces (3) is not the same as the surfaces (1) which transmit and even out opposing force resultants from plastic work.

Fig. 3 shows the side and outlet of the second embodiment of the invention, and clarifies that only need small holes (5) next to the rotating dies in the fixed tool part (6), resulting in strong cheap tools, with plenty of room for more rotating dies , which in turn makes it possible to make relative to simple tools extruding multiple profiles at once.

Fig. 4 shows the cross section from the side and from outlet of the second embodiment of the invention showing how the rotary die the axes (7) are integrated.

Fig. 5 shows the inlet (8), and the outlet side of the second embodiment of the invention, to make patterns on both sides of the two profiles (12) .

Fig. 6 shows the cross section of the second

embodiment in which to make patterns on both sides of the two profiles.

Fig. 7 shows how to manage to take up radial forces with needle and plain bearing (10) that are integrated into the rotating dies and how to thrust needle bearing means (10) fixes the rotating dies axial positions in a tool . Fig. 8 shows a third embodiment of the invention where varying material thickness of the exiting profiles, by varying the bearings (13) position.

Fig. 9a and 9b show how the relationship between the bearings length (14a, 14b) and profile thickness (15a,

15b) are kept reasonably constant at varied thickness, by allowing static bearing surface in fixed die member cooperate with variation of the bearings bearing length - which is important to get balance in the flow and stable process.

Fig. 10 shows the inlet, side and outlet of the invention in a fourth embodiment to extrusion of hollow profiles with varied thickness.

Fig. 11 shows the outlet and sectional views of the invention in Fig. 10. In this FIG., One can also see how the inner rotating dies are arranged in the tool core portion (16a) .

Figs. 12 and 13 show a fifth embodiment of the invention enabling extrusion of hollow sections (22) with pattern on both the inside and outside. The inner

rotating dies (2) in this embodiment has smooth portions (1) which transmit and even out opposing force resultants from plastic work, so that the radial bearings and shafts need only take up less forces.

Fig. 13 shows the two main parts static core portion

(16a) and the bore portion (16b) separated and cross section of the fifth embodiment.

Figs. 14 and 15 show a sixth embodiment of the invention, by raising (4b) and reduction (4a) of rotating dies enabling extrusion of hollow profiles with pattern on the inside and outside while one can vary the

thickness and pattern on the outside. This embodiment of the invention can also be performed to extrusion of two or more separate profiles of varying thickness and varying tread depth.

Fig. 16 shows a seventh embodiment of the invention comprising an adjustable pre bearing (18) that provides additional possibilities of varying the thickness and pattern. One can also see how the combination of half- lowered pre bearing (18b) and completely raised rotating die (4b) resulting in a hollow profiles with patterned inside and smooth outer surface (22c) thereof 18b + 4b = 22c

Fig. 17 shows how patterns can vary by varying the position of the rotating dies (4a, 4b) relative to the adjustable pre bearing (18b) .

Fig. 18 shows how to vary the thickness and pattern (22a, 22b, 22c) during extrusion of the hollow profiles with (22) by varying the position of rotating dies (4a, 4b, 4c) and adjustable bearings (18a, 18b) . This can of course also be carried out during extrusion of non hollow sections .