Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FAN HEATER (HOT AIR BLOWER) WITH ELECTRIC HEATING NOZZLES OF A CONTINUOUS CYLINDRICAL SHAPE
Document Type and Number:
WIPO Patent Application WO/2017/007374
Kind Code:
A1
Abstract:
The invention relates to power engineering. A fan heater in which control and indication members are arranged on the external casing, and electric heating elements and the fan are arranged in the internal casing. The electric heating elements are in the form of a spiral of resistive wire wound in multiple layers onto the continuous cylindrical nozzle. Furthermore, the electric heating elements are uniformly arranged inside the housing of the heating diffuser and are oriented longitudinally to the air flow, the resistive wire is covered with a dedicated dielectric heat-conductive sheath, and the continuous cylindrical nozzle is covered with a layer of silica fabric. The invention makes it possible to provide a maximum heat yield and the transmission thereof into an external space.

Inventors:
VAIGANDT GENNADIY YAKOVLEVICH (RU)
Application Number:
PCT/RU2016/000400
Publication Date:
January 12, 2017
Filing Date:
June 29, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VAIGANDT GENNADIY YAKOVLEVICH (RU)
International Classes:
F24H3/04; H05B3/40
Foreign References:
RU2122689C11998-11-27
UA89499C22010-02-10
US20070033825A12007-02-15
Attorney, Agent or Firm:
MURZAKAEVA, Venera Zufarovna (RU)
Download PDF:
Claims:
Формула изобретения

ЬТепловентилятор, несущая ' конструкция которого включает изготовленные из листовой стали и имеющие цилиндрическую форму кожухи - наружный и внутренний, на наружном кожухе расположены 5 органы управления и индикации, а во внутреннем кожухе размещены электронагревательные элементы и вентилятор, отличающийся тем, что электронагревательные сопла (ЭНС) расположены внутри диффузора нагревателя равномерно и ориентированы продольно потоку воздуха, ЭНС выполнены в виде спирали резистивной проволоки, покрытой ю диэлектрической теплопроводной оболочкой и намотанной многослойно на сквозное цилиндрическое сопло, покрытое слоем кремнеземной ткани и изготовленное из тонкостенного листового металла.

2. Устройство по п.1, отличающееся тем, что применяется крепежная сборка, имеющая ячеистую структуру, для крепления и расположения 15 ЭНС.

ЗАМЕНЯЮЩИЙ ЛИСТ (ПРАВИЛО 26)

Description:
Название изобретения

Тепловентилятор (тепловая пушка) с электронагревательными

соплами сквозной цилиндрической формы

Область техники

Изобретение относится к электроприборам и предназначена для направленного обогрева помещений и просушки поверхностей с регулировкой угла наклона.

Предшествующий уровень техники

Известны тепловые пушки, в которых попавший в удлиненный корпус воздух прогоняется вентилятором сквозь тепловые трубчатые электронагревательные элементы (ТЭН), которые в стандартном исполнении представляют собой металлическую трубку, внутри которой находится резистивная проволока, непосредственно являющаяся источником нагрева. Между резистивной проволокой и оболочкой ТЭНа находится теплопроводная керамическая набивка.ТЭНы обычно исполняются в виде спирали или решетки. В качестве ближайшего аналога нами выбран тепловентилятор (тепловая пушка) фирмы Ballu (см. на сайте http://www.ballu.ru/catalog-ballu/4575.html), предназначенный для обогрева и просушки поверхностей и предметов в производственных, общественных и вспомогательных помещениях. Исполнение известного тепловентилятора - переносное, рабочее положение— установка на полу, условия эксплуатации - работа под надзором, режим работы - повторно- кратковременный. Несущая конструкция тепловентилятора состоит из кожухов наружного и внутреннего, изготовленных из листовой стали и имеющих цилиндрическую форму. Во внутреннем кожухе размещены вентилятор и трубчатые электронагревательные элементы (ТЭН). На наружном кожухе расположен корпус блока управления. Кожух наружный, закрытый, защищенный с торцов воздухозаборной и воздуховыпускной решетками, винтами устанавливается к ручке-подставке и имеет возможность поворота в вертикальной плоскости. Угол поворота фиксируется винтами. Вентилятор затягивает воздух через отверстия воздухозаборной решетки. Воздушный поток, втянутый вентилятором в корпус, проходя между петлями трубчатых электронагревательных элементов, нагревается и подается в помещение через отверстия воздуховыпускной решетки.

Недостатки известного тепловентилятора состоят в том, что:

1. В этих тепловентиляторах, как и в других, использующих стандартные трубчатые электронагреватели (ТЭНы), присутствуют значительные тепловые потери прежде всего за счет конструкции самих ТЭНов: резистивная проволока, непосредственно являющаяся источником нагрева, находится внутри металлической трубки, являющейся одновременно и корпусом (оболочкой) нагревательного элемента (ТЭНа), и теплоизлучателем. Между резистивной проволокой и оболочкой ТЭНа находится теплопроводная керамическая набивка, на нагрев массы которой также расходуется значительное количество тепла. Применение принудительного обдува ТЭНов направленным воздушным потоком, как, например, это делается в классических тепловых пушках, приводит к резкому охлаждению поверхности ТЭНа, которое происходит намного быстрее, чем процесс компенсации данной потери температуры от внутреннего источника тепла (резистивной проволоки) ввиду относительно высокой тепловой инерции конструкции ТЭНа из-за присутствия в нем вышеописанных тепловых потерь. Тем самым создается определенное ограничение максимального уровня температуры поверхности ТЭНа (и, соответственно, ограничивается и общая мощность тепловой энергии, снимаемой и отдаваемой наружу при обдуве ТЭНа вентилятором), которая потенциально могла бы быть существенно выше при отсутствии вышеуказанных тепловых потерь. 2. Низкая пространственная концентрация тепловыделяющих центров (спиралей и витков резистивной проволоки ТЭНа) и, как следствие, низкая аккумуляция тепловой энергии за счет особенностей трубчатой конструкции ТЭНа: обычно геометрия нагревательных элементов, выполненных на базе ТЭНов, представляет собой либо простую спиралевидную форму, либо её различные производные - решетки, дуги, рамки, и т.п. Данные особенности конструкции ТЭНа, в которой резистивная проволока, являющаяся источником тепла, находится внутри металлической оболочки (трубки), набитой теплопроводным керамическим электроизоляционным материалом, не позволяют производить намотку витков нагревателя вплотную друг к другу, и тем более выполнять многослойную намотку, что существенно ограничивает возможности повышения поверхностной температуры ТЭНа и аккумуляцию его тепловой энергии.

3. Вышеописанная инерционность передачи тепла от источника (резистивной проволоки) до теплоизлучающей поверхности ТЭНа приводит к повышенной тепловой нагрузке на резистивную проволоку за счет её нахождения в теплопроводной керамической набивке, которая одновременно частично является и тепловым экраном для резистивной проволоки. В результате этого, особенно в случае отсутствия принудительного обдува ТЭНа воздушным потоком, происходит преждевременное разрушение материала резистивного элемента (перегорание ТЭНа).

Таким образом, другим существенным недостатком тепловых пушек, использующих стандартные ТЭНы, является сокращение их срока службы- эксплуатации в применении в условиях спокойного воздуха.

Для увеличения общей тепловой мощности в тепловых пушках, использующих стандартные ТЭНы, компенсацию тепловых потерь производят либо методом увеличения количества ТЭНов, либо увеличением з мощности самих ТЭНов, либо и того, и другого. Данные методы увеличения тепловой мощности приводят одновременно к двум негативным последствиям: увеличению размеров и массы устройств, и существенному 90 увеличению потребляемой электрической энергии и, как следствие, дополнительным экономическим потерям для пользователя.

Раскрытие изобретения

Технический результат заявляемого изобретения - достижение максимального теплосъема и передачи тепла за счёт того, что:

95 1) Используются элек трические нагреватели в виде спирали трубчатой формы, состоящей из витков резистивной проволоки, содержащей, по меньшей мере, два слоя витков резистивной проволоки, при этом резистивная проволока снабжена собственной диэлектрической теплопроводной оболочкой, исключающей необходимость применения

100 какой-либо другой дополнительной электроизоляции между витками и слоями спирали.

2) Данные спирали трубчатой формы исполнены на жестком каркасе сквозной цилиндрической формы (электронагревательное сопло - ЭНС), и расположены равномерно по внутреннему периметру внутреннего кожуха

105 тепловентилятора (тепловой пушки) продольно направлению движения потока воздуха. Многослойность и плотное прилегание друг к другу витков и слоев резистивной проволоки позволяют обеспечить минимальные тепловые потери и минимальную тепловую инерционность ЭНС, тем самым значительно увеличивая номинальную рабочую температуру как но внутренней, так и наружной поверхностей ЭНС, в том числе и при принудительном обдуве ЭНС воздухом, по сравнению с известными стандартными тепловыми пушками, использующими ТЭНы сопоставимой электрической мощности. Указанный технический результат достигается тем, что заявляется 115 тепловентилятор, несущая конструкция которого включает изготовленные из листовой стали и имеющие цилиндрическую форму кожухи - наружный и внутренний. На наружном кожухе расположены органы управления и индикации, а во внутреннем кожухе размещены электронагревательные элементы и вентилятор. Электронагревательный элемент выполнен в виде 120 спирали резистивной проволоки, покрытой собственной диэлектрической теплопроводной оболочкой и намотанной многослойно с плотным прилеганием витков и обмоток друг к другу на сквозное цилиндрическое сопло, покрытое слоем кремнеземной ткани и изготовленное из тонкостенного листового металла с высокой теплопроводностью. 125 Электронагревательные элементы, выполненные в виде электронагревательных сопел (ЭНС), имеющих форму сквозных цилиндров, расположены внутри диффузора нагревателя равномерно по внутреннему периметру корпуса диффузора и ориентированы продольно потоку воздуха.

Резистивная проволока покрыта электроизоляционной 130 теплопроводной оболочкой (оплеткой), исполненной с применением высокотемпературной диэлектрической нити, причем толщина данной оболочки крайне мала и определяется лишь толщиной нити.

Для крепления и расположения электронагревательных сопел ЭНС применяется крепежная сборка, имеющая ячеистую структуру.

135 Краткое описание чертежей

Изобретение поясняется иллюстрациями.

На Фиг.1 представлена конструкция тепловентилятора с ЭНС в разрезе, где: 1 - наружный основной кожух, 2 - наружный примыкающий кожух, 3 - 140 диффузор вентилятора, 4 - вентилятор, 5 - диффузоры нагревателей, 6 - ЭНС, 7 - крепежная сборка, 9 - индикатор питания, 1 1 - воздуховыпускная решетка, 12 - воздухозаборная решетка, 16 - ручка.

На Фиг.2 представлена конструкция тепловентилятора с ЭНС, перспектива спереди, где: 9 - лампочка лампочка индикации питания, 10 - 145 лампочка индикации работы вентилятора, 1 1 - воздуховыпускная решетка, 13 - подставка, 14 - винт крепления подставки, 16 - ручка, 17 - кабель.

На Фиг.З представлена конструкция тепловентилятора с ЭНС, перспектива сзади, где: 4 - вентилятор, 8 - ручка переключателей режимов вентилятора и нагревателей, 12 - воздухозаборная решетка, 13 - подставка, 150 14 - винт крепления подставки, 16 - ручка, 17 - кабель.

На Фиг.4, продольный разрез, показан нагревательный элемент — электронагревательное сопло (ЭНС), имеющее сквозную цилиндрическую форму, где: 18 - резистивная проволока, 19 - диэлектрическая теплопроводная оболочка (оплетка резистивной проволоки), 20 - слой 155 кремнеземной ткани, 21 - сквозное цилиндрическое сопло (внутренняя гильза), 22 - сквозное цилиндрическое сопло (внешняя гильза), 23(1 ,2) - высокотемпературный цилиндрический керамический изолятор, состоящий из двух частей, 24 - контактная группа, 25 - клепальная гайка.

На Фиг.5, перспективный вид, показан нагревательный элемент - 160 электронагревательное сопло (ЭНС), имеющее сквозную цилиндрическую форму, где: 21 - сквозное цилиндрическое сопло (внутренняя гильза), 22 - сквозное цилиндрическое сопло (внешняя гильза), 23 - высокотемпературный цилиндрический керамический изолятор, 24 - контактная группа, 25 - клепальная гайка, 26 - винт, обеспечивающий 165 жесткую механическую фиксацию всей сборки изолятора.

Осуществление изобретения

б Несущая конструкция тепловентилятора (Фиг.1-3) состоит из цилиндрических кожухов: наружного и внутреннего. Наружный кожух состоит из двух частей - наружного основного кожуха 1 и наружного

170 примыкающего кожуха 2, изготовленных из листовой стали и покрытых порошково-полимерной краской. Внутренний кожух состоит из диффузора вентилятора 3 и одного или нескольких цилиндрических диффузоров нагревателей 5 с электронагревательными соплами (ЭНС) 6, имеющими форму полых сквозных цилиндров. Внутри диффузора вентилятора 3

175 расположен вентилятор 4. Для достижения максимального теплосъема и передачи тепла, ЭНС 6 расположены равномерно по внутреннему периметру корпуса диффузора нагревателя с применением специальной крепежной сборки 7, имеющей ячеистую структуру, и ориентированы продольно потоку воздуха. Сквозная конструкция цилиндрических

180 нагревателей позволяет осуществлять теплосъем проходящим через них воздушным потоком как с внутренней, так и с наружной поверхностей ЭНС 6. На наружном примыкающем кожухе 2 расположен переключатель блока управления 8 и лампочки индикации питания 9 и работы вентилятора 10. Наружный основной кожух 1 и наружный примыкающий кожух 2 закрыты

185 воздуховыпускной 1 1 и воздухозаборной 12 решетками, соответственно.

Наружный основной кожух крепится к подставке 13 осевыми винтами 14, позволяющими регулировать угол наклона тепловентилятора в вертикальной плоскости с фиксацией винтами 15, 16 - ручки для переноски, 17 - кабель.

190 На Фиг.4-5 показан нагревательный элемент - электронагревательное сопло (ЭНС), имеющее сквозную цилиндрическую форму. ЭНС выполнен в виде спирали методом плотной намотки резистивной проволоки 18 с количеством слоев два и более на внутреннюю гильзу сквозного цилиндрического сопла 21, покрытую слоем кремнеземной ткани 20 и

195 изготовленного из тонкостенного листового металла с высокой теплопроводностью, обеспечивающей максимальную передачу тепла с витков спирали резистивной проволоки внутрь полости ЭНС с минимальными тепловыми потерями. Соответственно, передача тепла с витков спирали резистивной проволоки 18 наружу ЭНС происходит через

200 внешнюю гильзу 22. Межвитковая и межобмоточная электроизоляции активных обмоток обеспечиваются за счет покрытия резистивной проволоки 18 (активного нагревателя) специальной диэлектрической теплопроводной оболочкой (оплеткой) 19, исполненной с применением высокотемпературной диэлектрической нити (вместо порошковой

205 керамической набивки, применяемой в ТЭНах). Данное решение исключает необходимость применения какой-либо другой дополнительной электроизоляции между витками и слоями резистивной спирали. Плотное прилегание каждого витка друг к другу и плотное наложение друг на друга слоев обмоток резистивной проволоки минимизируют пространство между

210 витками и обмотками, ограниченное малой толщиной диэлектрической нити, тем самым обеспечивая минимизацию тепловых потерь, улучшенную теплопередачу и существенное (в разы) увеличение относительной тепломассы всего нагревательного элемента ЭНС. Таким образом, чем большее количество витков и обмоток исполнено на внутренней гильзе

215 сквозного цилиндрического сопла 21 , тем выше тепловая мощность ЭНС и тем меньше его удельные тепловые потери (выше коэффициент тепловой отдачи) за счет увеличения полезного соотношения массы непосредственно обмотки нагревателя к массе металлических оболочек (внутренней и внешней гильз) ЭНС, которая (масса металлических оболочек ЭНС)

220 остается в данном случае практически неизменной. Более высокая поверхностная температура ЭНС, достигаемая за счет улучшенной теплопередачи и малой тепловой инерционности конструкции ЭНС, позволяют существенно расширить область применения тепловентиляторов (тепловых пушек), использующих ЭНС, по сравнению со стандартными

225 трубчатыми ТЭНами, вплоть до использования в качестве альтернативы тепловым пушкам, работающим на жидком и газообразном топливе и имеющим высокую температуру на выходе. Многослойность и плотное прилегание друг к другу витков и обмоток нагревателя (спирали резистивной проволоки) ЭНС позволяют существенно увеличить длину и

230 соответственно массу резистивного материала (спирали резистивной проволоки), и тем самым в разы (по сравнению со стандартными трубчатыми нагревателями - ТЭНами) уменьшить токовую поверхностную нагрузку на материал резистивной проволоки, что многократно увеличивает и срок службы ЭНС по сравнению со стандартными трубчатыми

235 исполнениями (ТЭНами). Уменьшение токовой поверхностной нагрузки резистивного материала (резистивной проволоки) позволяет сквозным цилиндрическим ЭНС работать устойчиво как в подвижном, так и в спокойном воздухе, в отличие от тепловых пушек, использующих ТЭНы, предназначенные в данном случае для подвижного воздуха, которые

240 выходят быстро из строя (перегорают) без принудительного охлаждения.

Высокотемпературные керамические изоляторы 23 конструктивно состоят из двух частей 23( 1 ) и 23 (2) и служат для: (а) электрической изоляции выводов спирали резистивной проволоки и тепло/электро изоляции контактной группы 24; (б) для позиционирования и фиксации

245 основания контактной группы 24 в теле изолятора 23(2) и механической фиксации всего изолятора (сборки) 23 в корпусе ЭНС таким образом, что стенка ЭНС, на которой крепится изолятор, остается между плотно прижатыми к ней элементами сборки 23(1 ) и 23(2) при помощи винта 26, обеспечивая жесткую механическую фиксацию всей сборки изолятора

250 23(Фиг. 4-5).

Устройство работает следующим образом. Воздушный поток, втянутый вентилятором 4 в диффузор 3, проходя через внутреннюю и наружную поверхности сквозных ЭНС 6, нагревается и подается в помещение через полости воздуховыпускной решетки 1 1. Для переноски 255 тепловентилятора используются ручки 16, защищенные от перегрева теплоизоляционными концами крепления к корпусу прибора (Фиг.1-3).

Сквозная конструкция ЭНС позволяет осуществлять теплосъем проходящим через них воздушным потоком как с внутренней, так и с наружной поверхностей (гильз) сопла.

260 Равномерное расположение сквозных цилиндрических нагревательных сопел ЭНС внутри по периметру цилиндрического диффузора (внутреннего кожуха) тепловентилятора (тепловой пушки) и их продольная ориентация относительно оси корпуса прибора позволяют достичь полный обдув нагнетаемым вентилятором воздухом как

265 внутренней, так и внешней поверхностей (гильз) нагревательных сопел, тем самым обеспечивая максимальный съем тепла и его передачу в наружное пространство.

Совокупность вышеуказанных конструктивных особенностей разработанных тепловых пушек и применяемых в них

270 электронагревательных сопел ЭНС, включая сквозную конструкцию электронагревательных сопел ЭНС, их оптимальную цилиндрическую геометрию и продольное равномерное расположение внутри цилиндрических диффузоров с обеспечением минимизации тепловых потерь, в том числе за счет высокой плотности и многослойности

275 исполнения обмоток резистивной проволоки, позволяют достичь существенное увеличение температуры нагретого воздуха, выходящего через воздуховыпускную решетку, по сравнению со стандартными трубчатыми электронагревателями (ТЭНами) с аналогичной потребляемой электрической мощностью (см. сравнительные Таблицы 1, 3).

280 Более того, данный эффект позволяет существенно расширить область применения ЭНС по сравнению со стандартными трубчатыми ТЭНами, вплоть до использования в качестве альтернативы тепловым пушкам, работающим на жидком и газообразном топливе (см. Таблицу 2), а также в проточных и стационарных нагревателях (термосах) жидкообразных 285 носителей, и др.

Таблица 1: Сравнение основных средних значений характеристик и параметров электрических тепловых пушек с применением полых нагревательных сопел и стандартных ТЭНов (использованы данные на изделия марок Ballu).

Таблица 2: Сравнение основных средних значений характеристик и параметров электрических тепловых пушек с применением сквозных нагревательных сопел и газовых (пропановых) нагревателей.

Объем воздушного потока 820 м ~ 7час 330 м /час

Средняя разность 210 220-280

(увеличение) температур

между входом и выходом

при 20°С

Объем обогрева, M J 450 450

Таблица 3: Сравнительные значения параметров электронагревательных элементов, исполненных в виде сквозных цилиндрических сопел ЭНС, и стандартных трубчатых ТЭНов в подвижном воздухе.