Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FAST FREEZER, PREFERABLY FOR POLYMERIC PACKETS FILLED WITH BIOLOGICAL MEDICINAL SUBSTANCES (VARIANTS) AND COOLING DEVICE FOR A FAST FREEZER
Document Type and Number:
WIPO Patent Application WO/2012/018287
Kind Code:
A1
Abstract:
The group of inventions relates to the field of refrigeration or freezing technology and is intended for fast-freezing various products, for example a microbiological material prior to lyophilization, biological medicinal substances, for example blood plasma, and food products placed in polymeric packets. The technical result of the invention consists in increasing the rate at which products and solutions, in particular blood plasma, freeze. The fast freezer comprises a refrigeration unit with a closed hydraulic main, which is coupled to a pump via heat exchangers which are coupled parallel to this main and are in contact with one surface of thermoelectric modules, the second surface of which is in contact with heat-conducting plates which are in contact with the packet to be cooled, which is arranged between said plates, wherein the thermoelectric modules are equipped with a dedicated power supply unit, while temperature sensors are mounted on the heat-conducting plates, said temperature sensors being coupled to a control and monitoring system which is connected to a current polarity reversal switch which is connected to the power supply unit of the thermoelectric modules, wherein the power supply unit and the control and monitoring system are isolated from the heat-conducting plates with the packets to be cooled arranged between said plates by means of a thermally insulating wall, through which cables for supplying power to the thermoelectric modules and for monitoring are passed. For each packet, devices for moving the contents of the polymeric packet up to the time at which the biological medicinal substance freezes are introduced into the fast freezer according to the first variant, and the power supply sources of the thermoelectric modules are connected to a device for controlling the operating modes of the power supply source, said device being connected to a device for determining the temperature difference of the hot and cold junctions, with this latter device being introduced into each thermoelectric module and being connected to an autonomous power supply unit. A thermal shutoff is introduced into the fast freezer according to the second variant, said thermal shutoff adjoining the thermally insulating wall and being in the form of a radiator consisting of a material with a high thermal conductivity, wherein all of the cables are passed in grooves in said radiator, heat exchangers are mounted on one side of said radiator and the second side is in contact with the cold junction of the thermoelectric modules, wherein the thermal shutoff is coupled to an autonomous power supply source. In a cooling device comprising thermoelectric modules which are connected to a power supply source and are mounted, with gaps, in a technological cavity formed by a cooling surface and hot-junction heat exchangers, the free volume of the technological cavity is filled with liquid thermal insulation with a layer thickness which is less than the height of the thermoelectric modules, thereby eliminating heat transfer by thermal conductivity between the surfaces with a maximum temperature difference. In order to reduce the effect of heat transfer by means of radiation, a reflective coating is applied to the solidifying surface of the liquid thermal insulation.

Inventors:
REZVOV ANDREY VLADIMIROVICH (RU)
OGNEV GENNADY LEONIDOVICH (RU)
Application Number:
PCT/RU2011/000577
Publication Date:
February 09, 2012
Filing Date:
August 01, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REZVOV ANDREY VLADIMIROVICH (RU)
OGNEV GENNADY LEONIDOVICH (RU)
International Classes:
F25D11/04; F25B21/02; F25D13/00
Foreign References:
RU2310143C12007-11-10
RU2133920C11999-07-27
RU2269078C12006-01-27
JP2003042647A2003-02-13
JPH0375469A1991-03-29
RU2091679C11997-09-27
RU2125689C11999-01-27
Attorney, Agent or Firm:
PILISHKINA, Lyudmila Stanislavovna (RU)
ПИЛИШКИНА, Людмила Станиславовна (RU)
Download PDF:
Claims:
Формула изобретения

1. Быстрозамораживатель, преимущественно для заполненных биологическими медицинскими субстанциями полимерных пакетов, содержащий холодильный агрегат с замкнутой гидравлической магистралью, заполненной охлаждённой жидкостью, и подключённой к насосу через параллельно подключённые к этой магистрали теплообменники, контактирующие с одной поверхностью термоэлектрических модулей, вторая поверхность которых контактирует с теплопроводящими пластинами, контактирующими в свою очередь с размещённым между ними охлаждаемым пакетом, при этом термоэлектрические модули снабжены собственным блоком питания, а на теплопроводящих пластинах установлены датчики температуры, подключённые к системе управления и контроля, которая связана с коммутатором полярности тока, соединённым с блоком питания термоэлектрических модулей, при этом блок питания, система управления и контроля изолированы от теплопроводящих пластин с размещаемыми между ними охлаждаемыми пакетами теплоизолирующей стенкой, через которую проходят кабели питания термоэлектрических модулей и контроля, отличающийся тем, что в него введены для каждого пакета устройства перемешивания содержимого полимерного пакета до момента замерзания биологической медицинской субстанции, а источники питания термоэлектрических модулей соединены с устройством управления режимами источника питания, связанным с введённым в каждый термоэлектрический модуль устройством определения разности температур горячего и холодного спаев, которое связано с автономным блоком питания.

2. Быстрозамораживатель по п.1, отличающийся тем, что устройство определения разности температур горячего и холодного спаев выполнено в виде цепи из не менее двух последовательно соединенных полупроводниковых элементов, р- и п- типа, а контакты этой цепи, соединённой с автономным блоком питания, выведены на одну из сторон основания термоэлектрического модуля.

3. Быстрозамораживатель, преимущественно заполненных биологическими медицинскими субстанциями полимерных пакетов, содержащий холодильный агрегат с замкнутой гидравлической магистралью, заполненной охлаждённой жидкостью, и подключённой к насосу через параллельно подключённые к этой магистрали теплообменники, контактирующие с одной поверхностью термоэлектрических модулей, вторая поверхность которых контактирует с теплопроводящими пластинами, контактирующими в свою очередь с размещённым между ними охлаждаемым пакетом, при этом термоэлектрические модули снабжены собственным блоком питания, а на теплопроводящих пластинах установлены датчики температуры, подключённые к системе управления и контроля, которая связана с коммутатором полярности тока, соединённым с блоком питания термоэлектрических модулей, при этом блок питания, система управления и контроля изолированы от теплопроводящих пластин с размещаемыми между ними охлаждаемыми пакетами теплоизолирующей стенкой, через которую проходят кабели питания термоэлектрических модулей и контроля, отличающийся тем, что в него введён тепловой затвор, примыкающий к теплоизолирующей стенке и выполненный в виде радиатора из материала с высокой теплопроводностью, в пазах которого проходят все кабели, на одной стороне которого установлены теплообменники, а вторая сторона контактирует с холодным спаем термоэлектрических модулей, при этом тепловой затвор подключен к автономному источнику питания.

4. Устройство охлаждения, содержащее связанные с источником питания термоэлектрические модули, установленные с зазорами в технологической полости, образованной охлаждаемой поверхностью и теплообменниками горячего спая, отличающееся тем, что свободный объём технологической полости заполнен жидким керамическим теплоизоляционным покрытием, коэффициент теплопроводности которого не превышает 0,0011Вт/м*К и водопоглощение которого за 24 часа не превышает 2% по объему жидкого керамического теплоизоляционного покрытия, при этом толщина слоя меньше высоты термоэлектрических модулей.

5. Устройство по п. 4, отличающееся тем, что на поверхность слоя отвердевшего жидкого керамического теплоизоляционного покрытия нанесено отражающее покрытие.

Description:
БЫСТРОЗАМОРАЖИВАТЕЛЬ (ВАРИАНТЫ) И УСТРОЙСТВО ОХЛАЖДЕНИЯ ДЛЯ БЫСТРОЗАМОРАЖИВАТЕЛЯ

Область техники

Группа изобретений относится к области холодильной или морозильной техники и предназначено для быстрого замораживания различных растворов, в частности плазмы крови, помещенных в полимерные пакеты.

Уровень техники

Известны двухкаскадные компрессорные быстрозамораживатели PLASMAFROST, в которых пакеты с плазмой охлаждаются при непосредственном контакте с поверхностью полок, внутри которых по змеевикам циркулирует хладагент, а вторая сторона пакетов контактирует с прижимной плитой, выполненной из алюминия. Недостатки известного устройства состоят в активном охлаждении только одной стороны пакетов с плазмой, контактирующей с охлаждаемой полкой, в использовании сложной двухкаскадной холодильной машины с применением разных хладагентов R404A и R23 для каждого из каскадов охлаждения.

Известны также быстрозамораживатели ΓΕΜΟΤΕΡΜ-Ζ, в которых высокая скорость замораживания пакетов с плазмой достигается использованием механической тележки с пакетами, совершающей движения с ускорением, периодически меняющимся по величине и направлению, что обеспечивает перемешивание содержимого пакетов, исключая образование корки льда, затрудняющей, из-за низкой теплопроводности, замораживание плазмы. Быстрозамораживатели ΓΕΜΟΤΕΡΜ-Ζ обеспечивают замораживание контейнеров с плазмой либо в потоке принудительно циркулирующего охлаждённого до температуры минус (40-50)°С воздуха, либо в среде жидкого теплоносителя (этилового спирта), предварительно охлаждённого до температуры минус (40-50)°С. Замораживание в низкотемпературной воздушной среде приводит к использованию сложных двухкаскадных холодильных машин, а малая теплоёмкость воздуха исключает эффективный отбор тепла от контейнеров с плазмой. Процесс замораживания в среде охлаждённого жидкого теплоносителя сокращает время замораживания, но увеличивает пожаро- взрывоопасность помещения, в которое попадает спирт, испарившийся с контейнеров после их извлечения, существует реальная опасность термического поражения обслуживающего персонала при контакте с холодным спиртом, над поверхностью холодного спирта при установке и извлечении контейнеров с плазмой образуется туман, затрудняющий работу персонала, а унос спирта с пакетами и попадание влаги воздуха в ёмкость со спиртом приводит к понижению концентрации спирта и необходимости периодически компенсировать его потери.

Наиболее близким по технической сущности и достигаемому результату является быстрозамораживатель, известный из патента RU 2310143 С1 15.02.2006 содержащий холодильную машину с замкнутой гидравлической магистралью, заполненной охлаждённой жидкостью и подключённой к насосу через параллельно подключённые к этой магистрали теплообменники, контактирующие с одной поверхностью термоэлектрических модулей, а вторая поверхность - контактирует с теплопроводящими пластинами, между которыми размещён контактирующий с ними охлаждаемый пакет, при этом термоэлектрические модули снабжены собственным блоком питания, а на теплопроводящих пластинах установлены датчики температуры, подключённые к системе управления и контроля, которая связана с коммутатором полярности тока, соединённым с блоком питания термоэлектрических модулей, при этом блок питания, система управления и контроля изолированы от теплопроводящих пластин с размещаемыми между ними охлаждаемыми пакетами, теплоизолирующей стенкой, через которую проходят кабели контроля и питания термоэлектрических модулей.

В связи с отсутствием регулировки источника питания термоэлектричесий модуль работает в постоянном режиме независимо от этапа заморозки

Недостатком быстрозамораживателя является отсутствие перемешивания при охлаждении содержимого пакета до температуры замерзания, в результате чего происходит образованию корки льда у поверхностей, контактирующих с теплопроводящими поверхностями, что приводит к резкому уменьшению скорости охлаждения жидкости, заключённой между образовавшимися пластинами льда, так как теплопроводность льда значительно меньше теплопроводности жидкости. В процессе замораживания увеличение толщины льда приводит к увеличению времени охлаждения всего объёма жидкого содержимого до температуры замерзания. Другим недостатком бастрозамораживателя является поступление большого количества тепла к охлаждающим теплопроводящим пластинам, на которых установлены термоэлектрические модули и датчики температуры, которые связаны медными проводами с источником питания термоэлектрических модулей и системой управления и контроля, размещённых вне зоны охлаждения. Большая теплопроводность меди и большое сечение проводов, определяемое значительными токами, потребляемыми термоэлектрическими модулями, приводит к увеличению тепловой нагрузки на них на несколько десятков ватт, что увеличивает время замораживания пакетов с плазмой. Кроме того, недостатком быстрозамораживателя является наличие исключающих непредусмотренные электрические контакты между термоэлектрическими модулями и облегчающих монтаж термоэлектрических модулей на охлаждаемую поверхность технологических зазоров, через которые происходит передача тепла от горячей поверхности термоэлектрических модулей к холодной поверхности. А так как воздух будет свободно проникать в эти зазоры и там конденсироваться на холодной поверхности, то передача тепла теплопроводностью будет существенна, так как теплопроводность воды примерно на два порядка больше теплопроводности воздуха. Из-за этого понижается эффективность работы устройства.

В связи с отсутствием регулировки источника питания термоэлектрических модулей, термоэлектричесий модуль работает в одном постоянном режиме независимо от процесса, проходящего в охлаждаемом пакете: охлаждение жидкости до температуры замерзания, превращение жидкости в лёд, глубокое охлаждение льда до требуемой температуры.

Известен также осушитель воздуха герметичных отсеков космических аппаратов из патента RU 2133920 С1, 27.07.1999, в котором свободный объём между термоэлектрическими модулями заполнен несмачиваемым электротеплоизолятором, например стеклотекстолитом, существенно уменьшающим передачу тепла от горячей поверхности к холодной, так как передача тепла теплопроводностью уменьшается в 3-4 раза (коэффициент теплопроводности стеклотекстолита в 3-4 меньше, чем у воды), а передача тепла излучением полностью исключается.

Недостатком заполнения стеклотекстолитом всего свободного объёма между термоэлектрическими модулями является то, что через стеклотекстолит происходит передача тепла от горячей поверхности к холодной, так как теплопроводность его достаточно велика (0,3 ΒΤ/Μ·Κ).

Сущность изобретения

Техническим результатом изобретения в части быстрозамораживающих устройств является сокращение времени замораживания продуктов и растворов, в частности плазмы крови, помещённых в полимерные пакеты.

Указанный технический результат достигается за счёт того, что в быстрозамораживатель, преимущественно заполненных биологическими медицинскими субстанциями полимерных пакетов, по первому варианту, содержащий холодильный агрегат с замкнутой гидравлической магистралью, заполненной охлаждённой жидкостью, и подключённой к насосу через параллельно подключённые к этой магистрали теплообменники, контактирующие с одной поверхностью термоэлектрических модулей, вторая поверхность которых контактирует с теплопроводящими пластинами, контактирующими в свою очередь с размещённым между ними охлаждаемым пакетом, при этом термоэлектрические модули снабжены собственным блоком питания, а на теплопроводящих пластинах установлены датчики температуры, подключённые к системе управления и контроля, которая связана с коммутатором полярности тока, соединённым с блоком питания термоэлектрических модулей, при этом блок питания, система управления и контроля изолированы от теплопроводящих пластин с размещаемыми между ними охлаждаемыми пакетами теплоизолирующей стенкой, через которую проходят кабели питания термоэлектрических модулей и контроля, в отличие от известного в него введены для каждого пакета устройства перемешивания содержимого полимерного пакета до момента замерзания биологической медицинской субстанции, а источники питания термоэлектрических модулей соединены с устройством управления режимами источника питания, связанным с введённым в каждый термоэлектрический модуль устройством определения разности температур горячего и холодного спаев, которое связано с автономным блоком питания.

Устройство определения разности температур горячего и холодного спаев предлагается выполнить в виде цепи из не менее двух последовательно соединенных полупроводниковых элементов, р- и п- типа, а контакты этой цепи, соединённой с автономным блоком питания, выведены на одну из сторон основания термоэлектрического модуля.

Задача быстрого замораживания решается тем, что для каждого пакета введены устройства перемешивания содержимого полимерного пакета до момента замерзания (превращения в лёд) биологической медицинской субстанции, а источники питания термоэлектрических модулей соединены с устройством управления режимами источника питания, которое связано с введённым в каждый термоэлектрический модуль устройством определения разности температур горячего и холодного спаев, связанным с автономным блоком питания. Сокращение времени замораживания содержимого пакета на каждом из перечисленных этапов охлаждения подразумевает работу термоэлектрических модулей при конкретных значениях токов и напряжений для обеспечения требуемых разностей температур горячего и холодного спаев, в зависимости от этапа охлаждения.

Указанный технический результат также достигается за счёт того, что в быстрозамораживатель, преимущественно заполненных биологическими медицинскими субстанциями полимерных пакетов, по второму варианту, содержащий холодильный агрегат с замкнутой гидравлической магистралью, заполненной охлаждённой жидкостью, и подключённой к насосу через параллельно подключённые к этой магистрали теплообменники, контактирующие с одной поверхностью термоэлектрических модулей, вторая поверхность которых контактирует с теплопроводящими пластинами, контактирующими в свою очередь с размещённым между ними охлаждаемым пакетом, при этом термоэлектрические модули снабжены собственным блоком питания, а на теплопроводящих пластинах установлены датчики температуры, подключённые к системе управления и контроля, которая связана с коммутатором полярности тока, соединённым с блоком питания термоэлектрических модулей, при этом блок питания, система управления и контроля изолированы от теплопроводящих пластин с размещаемыми между ними охлаждаемыми пакетами теплоизолирующей стенкой, через которую проходят кабели питания термоэлектрических модулей и контроля, в отличие от известного в него введён тепловой затвор, примыкающий к теплоизолирующей стенке и выполненный в виде радиатора из материала с высокой теплопроводностью, в пазах которого проходят все кабели, на одной стороне которого установлены теплообменники, а вторая сторона контактирует с холодным спаем термоэлектрических модулей, при этом тепловой затвор подключен к автономному источнику питания.

Задача быстрого замораживания решается тем, что все кабели питания термоэлектрических модулей, системы управления и контроля охлаждаются в тепловом затворе, уменьшая тепловую нагрузку на термоэлектрические модули, замораживающие полимерные пакеты.

Техническим результатом настоящего изобретения в части устройства для охлаждения является повышение эффективности работы устройств, в которых применяются термоэлектрические модули.

Технический результат достигается тем, что в устройстве охлаждения для использования в быстрозамораживателе, содержащем связанные с источником питания термоэлектрические модули, установленные с зазорами в технологической полости, образованной охлаждаемой поверхностью и теплообменниками горячего спая, в отличие от известного, свободный объём технологической полости заполнен жидким керамическим теплоизоляционным покрытием, коэффициент теплопроводности которого не превышает 0,0011Вт/м * К и водопоглощение которого за 24 часа не превышает 2% по объему жидкого керамического теплоизоляционного покрытия, при этом толщина слоя меньше высоты термоэлектрических модулей. На поверхность слоя отвердевшего жидкого керамического теплоизоляционного покрытия нанесено отражающее покрытие.

Суть изобретения заключается в том, что нанесение теплозащитного покрытия слоем, толщина которого меньше, чем высота термоэлектрических модулей исключает передачу тепла от горячей поверхности к холодной за счёт теплопроводности, а так как коэффициент теплопроводности жидкой теплоизоляции не превышает 0,0011Вт/М'К, то слой толщиной меньшей, чем высота термоэлектрических модулей обеспечивает лучшую теплозащиту охлаждаемой поверхности, при том, что водопоглощение жидкого керамического теплоизоляционного покрытия меньше, чем у стеклотекстолита, так как оно (водопоглощение) за 24 часа не превышает 2% по объему жидкого керамического теплоизоляционного покрытия (ГОСТ11529-86), при больших значениях указанного показателя количиство влаги, поглощаемой указанным покрытием, будет увеличивать теплопроводность покрытия, т.е. ухудшать его свойства.

Указанный технический результат достигается за счёт того, что в устройстве охлаждения, содержащем связанные с источником питания термоэлектрические модули, установленные с зазорами в технологической полости, образованной охлаждаемой поверхностью и теплообменниками горячего спая свободный объём технологической полости заполнен жидкой теплоизоляцией, толщина слоя которой меньше высоты термоэлектрических модулей, исключая тем самым, теплопередачу теплопроводностью между поверхностями, с максимальной разностью температур. Для уменьшения влияния теплопереноса излучением на отвердевшую поверхность жидкой теплоизоляции нанесено отражающее покрытие.

Перечень чертежей

Сущность изобретения поясняется чертежами. На фиг. 1 где схематично представлен быстрозамораживатель по первому варианту, обеспечивающий охлаждение одного пакета. На фиг. 2 схематично представлен быстрозамораживатель по второму варианту, обеспечивающий охлаждение одного пакета. На фиг. 3 схематично представлено устройство охлаждения.

Примеры предпочтительного выполнения изобретений

Охлаждение любого необходимого количества пакетов осуществляется стыковкой предлагаемого устройства к замкнутой гидравлической магистрали любым способом, любыми разъёмами дополнительного количества гидравлических трактов теплообменников, обеспечивающих охлаждение горячих спаев термоэлектрических модулей, между которыми через теплопроводящие пластины охлаждают необходимое количество полимерных пакетов. Это позволяет размещать либо все полимерные пакеты для быстрого замораживания в отдельном корпусе морозильника, либо по частям в отдельных термостатах, через которые прокачивается по трактам охлаждённый теплоноситель и объединённых замкнутой гидравлической магистралью с небольшим количеством полимерных пакетов, например, по пять- шесть штук.

Предложенный быстрозамораживательпо первому варианту

(фиг.1) содержит: холодильную машину 1, с замкнутой гидравлической магистралью 2, заполненной охлаждающей жидкостью, которая прокачивается насосом 3 через теплообменники 4, которые контактируют с одной из сторон термоэлектрических модулей 5. Другая сторона термоэлектрических модулей 5 контактирует с теплопроводящими пластинами 6, между которыми размещён контактирующий с ними охлаждаемый полимерный пакет 7, заполненный, например, плазмой крови. Термоэлектрические модули 5 снабжены собственным блоком питания 8, а на теплопроводящих пластинах 6 установлены датчики температуры 9, которые подключены к системе управления и контроля 10, связанной с коммутатором полярности тока 11 , соединённым с блоком питания 8 термоэлектрических модулей 5. Блок питания 8, система управления и контроля 10 изолированы от теплопроводящих пластин 6 с размещаемыми между ними охлаждаемыми пакетами 7 теплоизолирующей стенкой 12, через которую проходят кабели питания термоэлектрических модулей и контроля, а каждый пакет 7 связан с устройством перемешивания 13 содержимого пакета 7 до момента замерзания биологической медицинской субстанции. Источник питания 8 термоэлектрических модулей 5 соединён с устройством 14 управления режимами источника питания 8, которое связано с устройством определения разности температур 15 горячего и холодного спаев, введённых в каждый термоэлектрический модуль 5 и связанных с автономным блоком питания 16.

Предложенное устройство работает следующим образом. Запускают в работу холодильный агрегат 1. Включают насос 3, обеспечивающий циркуляцию теплоносителя в замкнутом гидравлическом контуре 2, и охлаждённого в холодильном агрегате 1 до необходимой минусовой температуры, например, до минус 5°C. Подключают к сети электропитания блок питания термоэлектрических модулей 8, благодаря чему электро-энергия через коммутатор полярности тока 11 поступает в термоэлектрические модули 5, устройство измерения и контроля температуры 10, устройство перемешивания 13 содержимого полимерного пакета 7. Поверхности термоэлектрических модулей 5, контактирующие с теплообменниками 4, начинают выделять тепло, которое сбрасывается через теплообменники 4 в теплоноситель замкнутой гидравлической магистрали 2 и поступает в холодильный агрегат 1. Поверхности термоэлектрических модулей 5, контактирующие с теплопроводящими пластинами 6, начинают охлаждать верхнюю и нижнюю поверхности полимерного пакета 7, что приводит к ускоренному охлаждению. Охлажденный теплоноситель проходит по теплообменникам 4 и отводит тепло от горячих поверхностей термоэлектрических модулей 5, поддерживая температуру этих поверхностей стабильной и более низкой, чем температура окружающей среды. При прохождении тока от блока питания 8 через термоэлектрические модули 5 с охлаждаемыми тепловыделяющими поверхностями, температура их противоположной поверхности понижается до необходимого, наперёд заданного для каждого этапа значения.. Так как охлаждение пакета 7 происходит по двум поверхностям равномерно, замораживание до заданной температуры происходит за время, не превышающее 30 мин. По датчикам температуры 9 устройство измерения и контроля температуры 10 выдает сигнал о конце процесса замораживания, по которому происходит отключение термоэлектрических модулей 5 от блока питания 8. Быстрозамораживатель переходит в режим хранения полимерного пакета 7 при заданной температуре. Режим хранения, зависящий от теплоизолирующих стенок 12 морозильника или термостата, представляет собой процесс периодического включения (подачи питания) термоэлектрических модулей 5 по сигналам, поступающим из устройства измерения и контроля температуры 10 при снижении минусовой температуры, например, на один градус. Разность температур холодной и горячей поверхностей термоэлектрического модуля 5 измеряется устройством управления режимами 14 блока питания по сигналам устройства 15 определения разности температур горячего и холодного спаев. Установка типовых датчиков температуры в термоэлектрические модули требует особой технологии и оснастки, которые не применялись при выпуске термоэлектрических модулей без датчиков температуры. При этом система управления и контроля должна будет обработать информацию от каждого датчика и вычислить разность температур.

Предлагается определять разность температур горячего и холодного спаев термоэлектрического модуля, установив на холодной и горячей поверхностях миниатюрные датчики температуры, например NTC- термисторы EPCOS для температурных измерений, длина и ширина которых не превышает 0,6 мм и 0,3 мм соответственно.

В термоэлектрический модуль между холодной и горячей поверхностями дополнительно устанавливают несколько последовательно соединенных полупроводниковых элементов р- и п- типа из материалов, используемых в модуле, но не включают их в цепь, ток в которой обеспечивает появление разности температур холодной и горячей поверхностей, а выводы от крайних дополнительно введенных элементов р- и п- типа, размещают на одной из сторон термоэлектрического модуля, выполнив их по известной технологии. Напряжение между этими выводами пропорционально количеству последовательно соединенных полупроводниковых элементов р- и п- типа в данной цепи и разности температур холодной и горячей поверхностей термоэлектрического модуля.

Устройство управления режимами 14 блока питания меняет выходные параметры блока питания 8, который обеспечивает работу термоэлектрических модулей 5 в режимах максимальной холодопроизводительности при малых значениях разности температур холодной и горячей поверхности или в режиме максимальной разности температур холодной и горячей поверхностей, достигая требуемого значения температуры содержимого пакета 7 за минимальное время.

Для реализации предлагаемого технического решения могут быть использованы: в качестве термоэлектрических модулей 5- термоэлектрические модули PM-127-14-11-72-L фирмы ООО «Кристалл», в качестве установленных на теплопроводящих пластинах 6 датчиков температуры 9 - датчики измерения температуры DS 18В20, которые подключены к системе управления и контроля 10, например, к контроллеру PIC 12С508А или PIC 12СЕ674 фирмы Microchip или к микроконтроллеру AT91 SAM7S фирмы Atmel. Устройство 14 управления режимами источника питания может выполнено, например, на микроконверторах ADu812 фирмы ANALOG DEVICES.

Расчёты показывают, что управление режимами блока питания, обеспечивающего работу термоэлектрических модулей при оптимальных для каждого этапа охлаждения значениях разности температур холодного и горячего спаев, позволяет заморозить содержимое пакета ёмкостью 0,3 литра за время, не превышающее 13 минут.

Предложенный быстрозамораживатель по второму варианту

(фиг. 2) содержит: холодильную машину 1, с замкнутой гидравлической магистралью 2, заполненной охлаждающей жидкостью, которая прокачивается насосом 3 через теплообменники 4, которые контактируют с одной из сторон термоэлектрических модулей 5. Другая сторона термоэлектрических модулей 5 контактирует с геплопроводящими пластинами 6, между которыми размещён контактирующий с ними охлаждаемый полимерный пакет 7, заполненный, например, плазмой крови. Термоэлектрические модули 5 снабжены собственным блоком питания 8, а на теплопроводящих пластинах 6 установлены датчики температуры 9, которые подключены к системе управления и контроля 10, связанной с коммутатором полярности тока 1 1, соединённым с блоком питания 8 термоэлектрических модулей 5. Блок питания 8, система управления и контроля 10 изолированы от теплопроводящих пластин 6 с размещаемыми между ними охлаждаемыми пакетами 7 теплоизолирующей стенкой 12, к которой примыкает тепловой затвор 17, питаемый от автономного источника 18, через который проходят кабели питания термоэлектрических модулей 5 и контроля выполненный в виде радиатора из материала с высокой теплопроводностью, например, алюминия марки АМЦ, в пазах которого проходят все кабели, на одной стороне которого установлены теплообменники, через которые тепло отводится в холодильную машину, а вторая сторона контактирует с холодным спаем термоэлектрических модулей 5, при этом тепловой затвор 17 подключен к автономному источнику питания 18.

Устройство работает следующим образом. Запускают в работу холодильный агрегат 1. Включают насос 3, обеспечивающий циркуляцию теплоносителя в замкнутом гидравлическом контуре 2, и охлаждённого в холодильном агрегате 1 до необходимой минусовой температуры, например, до минус 5 °С. Подключают к сети электропитания блок питания термоэлектрических модулей 8, благодаря чему электроэнергия через коммутатор полярности тока 1 1 поступает в термоэлектрические модули 5, устройство измерения и контроля температуры 10, автономный источник питания термоэлектрических модулей теплового затвора 17. Поверхности термоэлектрических модулей 5, контактирующие с теплообменниками 4, начинают выделять тепло, которое сбрасывается через теплообменники 4 в теплоноситель замкнутой гидравлической магистрали 2 и поступает в холодильный агрегат 1. Поверхности термоэлектрических модулей 5, контактирующие с теплопроводящими пластинами 6, начинают охлаждать верхнюю и нижнюю 7 поверхности полимерного пакета 7, что приводит к ускоренному охлаждению. Охлажденный теплоноситель проходит по теплообменникам 4 и отводит тепло от горячих поверхностей термоэлектрических модулей 5, поддерживая температуру этих поверхностей стабильной и более низкой, чем температура окружающей среды. При прохождении тока от блока питания 8 через термоэлектрические модули 5 с охлаждаемыми тепловыделяющими поверхностями, температура их противоположной поверхности понижается до необходимого, наперёд заданного для каждого этапа значения. Так как охлаждение пакета 7 происходит по двум поверхностям равномерно, замораживание до заданной температуры происходит за время, не превышающее 30 мин. По датчикам температуры 9 устройство измерения и контроля температуры 10 выдает сигнал о конце процесса замораживания, по которому происходит отключение термоэлектрических модулей 5 от блока питания 8. Скорость охлаждения полимерного пакета 7 зависит от теплоизолирующих стенок 12 морозильника или термостата и количества тепла, поступающего по кабелям. При прохождении через тепловой затвор 17 кабели охлаждаются, уменьшая тепловую нагрузку на термоэлектрические модули 5, сокращая время достижения заданной температуры в полимерном пакете 7.

Для реализации предлагаемого технического решения могут быть использованы: в качестве термоэлектрических модулей 5 и охлаждающих устройств в тепловом затворе 17 термоэлектрические модули РМ-127-14- 1 1-72-L фирмы ООО «Кристалл», в качестве установленных на теплопроводящих пластинах 6 датчиков температуры 9 - датчики измерения температуры DS18B20, которые подключены к системе управления и контроля 10, например, к контроллеру PIC 12С508А или PIC 12СЕ674 фирмы Microchip или к микроконтроллеру AT91 SAM7S фирмы Atmel.

Расчёты показывают, что компенсация в тепловом затворе теплопритоков по кабелям для быстрозамораживателя на шесть пакетов с плазмой позволяет сократить время замораживания содержимого пакета ёмкостью 0,3 литра на 120 сек при неизменных термоэлектрических

модулях и сохранении алгоритма замораживания.

Устройство охлаждения для использования в быстрозамораживателях выполнено следующим образом. С охлаждаемой поверхностью 19 контактирует холодная сторона термоэлектрических модулей 20, связанных с источником питания 21 , а вторая сторона термоэлектрических модулей 20 контактирует с теплообменниками 22 горячей стороны термоэлектрических модулей 20. Свободный объём технологической полости между охлаждаемой поверхностью 19 и теплообменниками 22 горячей стороны заполнен жидкой теплоизоляцией 23 толщиной слоя меньшей, чем высота термоэлектрических модулей 20. Поверх слоя жидкой теплоизоляции 23 нанесено отражающее покрытие 24.

Предложенное устройство охлаждения работает следующим образом. Включают источник питания 21 термоэлектрических модулей 20, в которых при протекании через них тока, на холодных спаях происходит выделение холода, который передаётся за счёт хорошего теплового контакта на охлаждаемую поверхность 19. Тепло, выделяемое на горячих спаях термоэлектрических модулей 20, отводится теплообменниками 22. Так как толщина слоя жидкой теплоизоляции 23 меньше, чем высота термоэлектрических модулей 20, то отсутствует перенос теплопроводностью тепла от горячей поверхности термоэлектрических модулей 20 к их холодным поверхностям, а отражающее покрытие 24 исключает подвод тепла излучением от горячей поверхности теплообменников 22 горячей стороны термоэлектрических модулей.

При меньшем теплопритоке, температура на охлаждаемой поверхности 19 будет ниже и, следовательно, эффективность работы охлаждающего устройства будет выше, что потребует подводить к термоэлектрическим модулям меньшую мощность по сравнению с известными устройствами.

Таким образом, совокупность новых признаков, отсутствующих в известных технических решениях, позволяет достигнуть нового технического результата - повысить эффективность работы охлаждающего устройства за счёт повышения холодильного коэффициента (отношения производимого «холода» к потребляемой мощности).

Для реализации предлагаемого технического решения могут быть использованы: в качестве термоэлектрических модулей 16 термоэлектрические модули PM-127-14-11-72-L фирмы ООО «Кристалл», в качестве жидкой теплоизоляции 19 может быть использована жидкая теплоизоляция Альфатек фирмы «Фасад Термопроект» или жидкое керамическое теплоизоляционное покрытие Астратек ООО «ТЕРМАЛКОМ» ТУ 5768-002-02068060- 2005, в качестве отражающего покрытия 20 может быть использована плёнка ЭВТИ фирмы ОАО «РКК «Энергия».

Промышленная применимость

Предлагаемый быстрозамораживатель, преимущественно полимерных пакетов, заполненных биологическими медицинскими субстанциями, например плазмой крови, превосходят по скорости замораживания все аналогичные устройства, отличается простотой эксплуатации и большой надёжностью в работе.