Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FAST SETTING SHEET FED OFFSET INKS WITH NON AQUEOUS DISPERSION POLYMERS
Document Type and Number:
WIPO Patent Application WO/2009/155201
Kind Code:
A1
Abstract:
A non aqueous dispersion is disclosed containing: a shell polymer; a core polymer,- and a continuous phase solvent, wherein said shell polymer is soluble and said core polymer is insoluble in the continuous solvent. Also disclosed is a method for improving the setting properties of a sheet fed offset ink by adding to the ink the above non aqueous dispersion.

Inventors:
KRISHNAN RAMASAMY (US)
SCHNEIDER MARK (US)
BOLLARD JEROME (FR)
Application Number:
PCT/US2009/047059
Publication Date:
December 23, 2009
Filing Date:
June 11, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SUN CHEMICAL CORP (US)
KRISHNAN RAMASAMY (US)
SCHNEIDER MARK (US)
BOLLARD JEROME (FR)
International Classes:
C08F2/06; C08F265/06; C09D11/10
Domestic Patent References:
WO2007068102A22007-06-21
Foreign References:
GB2434371A2007-07-25
US20050244736A12005-11-03
DE19511476A11995-11-02
US4253397A1981-03-03
Other References:
DATABASE WPI Week 200747, Derwent World Patents Index; AN 2007-478347, XP002540852
Attorney, Agent or Firm:
ACHKAR, Charles et al. (1177 Avenue of the AmericasNew York, NY, US)
Download PDF:
Claims:

IS CLAIMED IS :

1. A non aqueous dispersion comprising s

(a) a shall polymer;

(b) a core polymer; and

(c) a continuous phase solvent, wherein said shell polymer is soluble and said core polymer is insoluble in the continuous solvent.

2. The dispersion of claim l, wherein said shell polymer is a latex polymer.

3. The dispersion of claim 1, wherein said latex polymer comprises a copolymer of isobutyl methacrylaee and dodecyl methacrylate ,

4. The dispersion of claim 3, wherein the ratio of the isobutyl methacrylate to dodecyl methacrylate iβ about 3:1.

5. The dispersion of claim 1, wherein said latex polymer comprises glycidylmβthacrylate.

6. The dispersion of claim 1, wherein said core polymer is a latex polymer.

7. The dispersion of claim 1, wherein said core polymer comprises methylmethacrylate and N-bueyl methacrylate.

θ. The dispersion of claim I, wherein said continuous phase solvent is a hydrocarbon solvent.

9

RECTIFIED SHEET (RULE 91) ISA/EP

9. The dispersion of claim 8, wherein said hydrocarbon solvent is Magiβ N-40 oil.

10. The dispersion of claim 1, wherein said polymers are prepared from monomers which comprise a functional group selected from the group consisting of carboxyl group, and hydroxyl group .

11. The dispersion of claim 10, wherein said carboxyl group containing monomers are selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid and maleic acid.

12. The dispersion of claim 10, wherein said hydroxyl group containing monomers are selected from the group consisting of 2-hydroxy ethyl acrylate, 2-hydroxy ethyl methacrylate, 2- hydroxy propyl acrylate and 2-hydroxy propyl methacrylate.

13. The dispersion of claim 1/ wherein said polymers are prepared from monomers which comprise a functional group containing vinyl monomer.

14. The dispersion of claim 13, wherein said vinyl monomer is selected from the group consisting of glycidyl acrylate, glycidal methacrylate, and dimethyl amino methacrylate.

15. A method of preparing a non aqueous dispersion comprising :

(a) forming a shell polymer in a continuous phase solvent; and

(b) forming a core polymer in the presence of tha formed shell polymer of step (a) .

10

RECTIFIED SHEET (RULE 91) ISA/EP

16. The method of claim 15, wherein said shell polymer is a latex polymer.

17. The method of claim 15, wherein said latex polymer comprises a copolymer of iaobutyl methacrylate and dodecyl methacrylate.

18. The method of claim 15, wherein the ratio of the isobutyl methacrylate to dodecyl methacrylate is about 3:1.

19. The method of claim 15, wherein said latex polymer comprises glyσidylmethacrylate.

20. The method of claim 19, wherein the formation of the shell polymer takes place in the presence of acetic acid.

21. The method of claim 15, wherein aaid core polymer is a latex polymer.

22. The method of claim 15, wherein said core polymer comprises methylmethacrylate and N-butyl methacrylate.

23. The method of claim 15, wherein said continuous phase solvent is a hydrocarbon solvent .

24. The method of claim 22, wherein said hydrocarbon solvent is Magie N-40 oil.

25. The method of claim 15, wherein said polymers are prepared from monomers which comprise a functional group

II

RECTIFIED SHEET (RULE 91) ISA/EP

selected from the group consisting of carboxyl group, and hydroxyl group .

26. The method of claim 25, wherein said carboxyl group containing monomers are selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid and maleic acid.

27. The method of claim 25, wherein said hydroxyl group containing monomers are selected from the group consisting of 2 -hydroxy ethyl acrylate, 2 -hydroxy ethyl methacrylate, 2- hydroxy propyl acrylate and 2 -hydroxy propyl methacrylate.

28. The method of claim 15, wherein aaid polymera are prepared from monomers which comprise a functional group containing vinyl monomer.

29. The method of claim 28, wherein said vinyl monomer is selected from the group consisting of glycidyl acrylate, glycidal methacrylate, and dimethyl amino methacrylate.

30. A method for improving the setting properties of a sheet fed offset ink comprising adding to said ink a non aqueous dispersion comprising:

(a) a shell polymer;

(b) a core polymer; and

(c) a continuous phase solvent, wherein said shell polymer is soluble and said core polymer is insoluble in the continuous solvent.

31. The method of claim 30, wherein said shell polymer is a latex polymer.

12

RECTIFIED SHEET (RULE 91) ISA/EP

32. The method of claim 30, wherein said latex polymer comprises a copolymer of iaobutyl methacrylate and dodecyl methacrylate.

33. The method of claim 32, wherein the ratio of the isobutyl methacrylate to dodecyl methacrylate ia about 3;1.

34. The method of claim 30, wherein said latex polymer comprises glycidylmethacrylate.

35. The method of claim 30, wherein said core polymer ia a latex polymer.

36. The method of claim 30, wherein said core polymer comprises methylmethacrylate and N-bυtyl methacrylate.

37. The method of claim 30, wherein said continuous phase solvent is a hydrocarbon solvent.

3θ. The method of claim 37, wherein said hydrocarbon solvent is Magie N-4Q oil.

39. The method of claim 30, wherein said polymers are prepared from monomers which comprise a functional group selected/ from the group consisting of σarboxyl group, and hydroxy1 group.

40. The method of claim 30, wherein said carboxyl group containing monomers are selected from the group consisting of acrylic acid, methacrylic acid, itaconiσ acid and maleic acid.

13

RECTIFIED SHEET (RULE 91) ISA/EP

41. The method of claim 30, wherein said hydroxyl group containing monomers are selected from the group consisting of 2 -hydroxy ethyl acrylate, 2 -hydroxy ethyl methacrylate, 2- hydroxy propyl acrylate and 2 -hydroxy propyl methacrylate.

42. The method of claim 20, wherein aaid polymers are prepared from monomers which comprise a functional group containing vinyl monomer.

43. The method of claim 42, wherein said vinyl monomer is selected from the group consisting of glyσidyl acrylate, glycidal methacrylate, and dimethyl amino methacrylate.

44. A sheet fed offset ink comprising the non aqueous dispersion of claim 1.

14

RECTIFIED SHEET (RULE 91) ISA/EP

Description:

Fast Setting Sheet Fed Offset Inks With Non Aqueous dispersion Polymers

FIELD OF THE INVENTION

[00001] The invention relates to non aqueous dispersions containing latex core and shell polymers in an organic solvent and to methods of using said non aqueous dispersions to improve the setting properties of sheet fed offset inks.

BACKGROUND OF THE INVENTION

[00002] Sheet fed offset inks generally contain a vehicle prepared by dissolving an alkyd resin, petroleum resin, phenolic resin or modified resin thereof in a drying oil such as linseed oil or dehydrated castor oil or in a petroleum derived solvent boiling at a higher temperature.

[00003] Because the mechanism of drying is oxidation whose kinetics is relatively slow, it has not been possible so far to obtain an instant drying sheets similar to those obtained in Xerography which can be further processed such as cutting and binding.

St)MMARY OF THE INVENTION

[00004] The present invention provides a non aqueous dispersion comprising:

(a) a shell polymer;

(b) a core polymer; and

(c) a continuous phase solvent,

wherein said shell polymer is soluble and said core polymer is insoluble in the continuous solvent.

[00005] The present invention also provides a method for improving the setting properties of a sheet fed offset ink comprising adding to said ink a non aqueous dispersion comprising:

(a) a shell polymer;

(b) a core polymer; and

(c) a continuous phase solvent, wherein said shell polymer is soluble and said core polymer is insoluble in the continuous solvent .

[00006] Other objects and advantages of the present invention will become apparent from the following description and appended claims.

DETAILED DESCRIPTION OF THE INVENTION

[00007] It has now been discovered that incorporation of non aqueous dispersions (NADs) of acrylic polymers in a sheet fed ink results in inks that dry dramatically faster than conventional inks.

[00008] Non aqueous dispersions (NADs) are comprised of insoluble latexes dispersed in some organic medium. They are attractive additives for ink due to their controlled size, incompatibility, and dispersibility. They have been used successfully in paint to control body, encapsulate pigment, and to provide emulsion-like dispersions in water- free environments .

[00009] Previous work focused on generating non aqueous dispersions (NAD) through the use of a solvent control technique. In each case, vinyl monomers (primarily methyl methacrylate, MMA) were polymerized in a good solvent. The solvent chosen was either one in which the monomer was soluble and the resulting polymer was not, or one in which both monomer and polymer were soluble necessitating a solvent switch in order to form dispersion. In either case, the rapid kinetics of the MMA reaction often led to an over gelled, non dispersible product. Also, though many approaches were attempted, a stable, homogeneous NAD product was never obtained.

[000010] Given the repeated failure of the solvent-switch mechanism, the current work utilizes a different approach to NAD formation. Here, the NAD is formed by generating a core-shell polymer where the shell is soluble in the continuous phase solvent while the core is insoluble in the solvent yet soluble in the shell polymer. This structure is obtained through a two step polymerization where the shell is formed first and then the core polymer is "filled in", generating a dispersion.

[000011] In the preparation of the NAD, the monomers used to make the polymers may comprise a functional group selected from the group consisting of carboxyl group, and hydroxy1 group.

[000012] Preferably, the carboxyl group containing monomers are selected from the group consisting of acrylic acid, 'methacrylic acid, itaσonic acid and maleic acid. Also preferably, the hydroxyl group containing monomers are

selected from the group consisting of 2 -hydroxy ethyl acrylate, 2-hydroxy ethyl methacrylate, 2 -hydroxy propyl acrylate and 2 -hydroxy propyl methacrylate.

[000013] The NAD polymers may also be prepared from monomers which comprise a functional group containing vinyl monomer. Preferably, the vinyl monomer is selected from the group consisting of glycidyl acrylate, glycidal methacrylate, and dimethyl amino methacrylate.

[000014] Preferably the amount of NAD present in the sheet fed offset ink is at least from about 1% to about 15%, more preferably about 5% and most preferably about 10%. The inclusion of NAD leads to improved drying and processability as indicated by guillotine test.

NAD formation

[000015] The continuous phase used is preferably a common hydrocarbon solvent (such for example Magie #47 oil or Magie N-40 oil) . Preferably, the shell polymer is made up of a copolymer of isobutyl methacrylate and dodecyl methacrylate in a ratio of approximately 3:1. The long hydrocarbon chains on these monomers make the resulting polymer readily soluble in Magie oil. Also preferably, approximately 2% of acetic acid is added to aid in efficient polymer formation. In addition, a small amount of glycidylmethacrylate may be added because the epoxy groups in this monomer increase the attraction between the shell and core polymers. Most preferably, the core polymer is primarily methylmethacrylate with 10% N-butyl methacrylate .

Example 1: MAD Synthesis

[000016] A shell polymer was synthesized containing the ingredients in Table 1 as follows:

Table 1 - Shell polymer ingredients and synthesis

Formulation

Charge Actual % (g) Actual %

A Magie N-40 ink oil 34.05 157 157.4 34.05 lsobutyl

B methacrylate 39.58 182.5 182,5 39.48

Dodecyl

C methacrylate 13.56 62.5 63.4 13.71

MP D Arcylic acid 1.08 5 5 1.08

E Magie N-40 ink oil 10.84 50 49.9 10.79

F t-butyl peroctoate 0.43 2 2 0.43 t-butyl

CP G peroxybenzoate 0.11 0.5 - 0.5 0.11

Glycidylmethacrylat

H e 0.33 1.5 1.5 0.32

I Triphenylphosphine 0.02 0.075 0.077 0.02

J p-Methoxyphenol 0.00 0.0075 0.014 0.00

TOTAL 100 461.082 462.291 100

[000017] Briefly, ingredient A was charged to a reactor and heated to 120 0 C and held in nitrogen gas. Ingredients B, C and D were pre-mixed (Monomer premixture ; MP) as well as ingredients E, F and G (Catalyst premixture; CP) . Thereafter, premixtures MP and CP were separately charged to the reactor for 4 hours and held at 120 0 C for 4 hours. Then, the nitrogen gas was changed to air and ingredients H, I and J were charged and the temperature was again held at 120 0 C for 4 hours. The air was then vacuumed for 30 minutes and the temperature cooled to 100 0 C followed by discharging the resulting product (shell polymer) .

[000018] The formation of the core polymer and NAD was carried out as described in Table 2 and as follows:

Table 2 ~ NAD ingredients and synthesis :

Formulation

Charge Actual

% (g) Actual %

A Magie #N-40 ink oii 32.69 140 140.1 32.64 Shell B polymer 31.75 136 135.1 31.47

C Methylmethacrylate 13.31 57 57.1 13.30

D N-butyl methacrylate 5.37 23 23 5.36

MP E N-butyl acrylate 6.28 26.9 28.2 6.57

F Magie #N-40 ink oil 5.19 22.23 22.5 5.24

CP1 G t-buty! peroctoate 0.26 1.11 1.1 0.26

H t-butyl peroctoate 0.13 0.56 0.6 0.14

I Methylmethacrylate 2.57 11 11 2.56

J t-butyl peroctoate 0.12 0.5 0.54 0.13

CP3 K Magie #N-40 ink oil 2.33 10 10 2.33

TOTAL 100.00 428.3 429.24 100.00

[000019] Ingredients A and B were charged to a reactor and heated to 85°C and held in nitrogen gas. Ingredients C and D and E were pre-mixed (Monomer premixture; MP) as well as ingredients F and G (Catalyst premixture 1; CPl) and ingredients J and K (Catalyst premixture 1; CP3) . Thereafter, prernixtures MP and CPl were separately charged to the reactor for 4 hours and held at 85°C for 3 hours. Then, ingredient I was charged followed by premixture CP3 drip wise and the mixture was held for 3 hours . The presence of residual monomers was checked with Gas Chromatography and the resultant product (NAD) was brought to room temperature and discharged.

Example 2: Preparation of Sheet Fed Inks and testing Thereof

[000020] A 4 color set of sheet fed inks were prepared containing the NAD prepared in Example 1 and as described in Table 3 :

Table 3 - Ingredients of 4 color set of sheet fed inks

[000021] The above inks were tested on a Heidelberg MO sheet fed press versus a standard set that did not contain any NAD. The paper used was Magnostar (115 gm basis weight) . The optical densities of the various colors were: (B=I, 90; C=I, 45; M=I, 50; Y=I, 30) as well as for the fountain solution (50/50 tap water/de- ionized water with 3% Sunfount 410) .

[000022] The rub resistance was done using an industry standard Sutherland rub tester. The guillotine test

consisted of cutting a pile of 5000 sheets and seeing if any ink residue is left on the blades .

[000023] Fast rub resistance and guillotine test were significantly improved in all inks tested. In addition, the experimental inks were processable after 15 minutes vs almost lhr for standard set .

[000024] The invention has been described in terms of preferred embodiments thereof, but is more broadly applicable as will be understood by those skilled in the art. The scope of the invention is only limited by the ' following claims.