Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FEMALE CONTACT WITH STAMPED BEAMS AND METHOD OF MANUFACTURE
Document Type and Number:
WIPO Patent Application WO/2021/005362
Kind Code:
A1
Abstract:
It is described a female electrical contact for an electrical connector, comprising: a conductive socket for a male electrical contact, comprising an opening, a peripheral wall and a bottom; and a stamped crown comprising a plurality of stamped conductive beams, the plurality of beams being substantially regularly located along the peripheral wall in the socket, each beam having a main direction of extension substantially from the opening to the bottom of the socket, and comprising a plurality of corrugations along the main direction of extension, the corrugations comprising summits towards inside the socket and valleys towards the peripheral wall, wherein each beam is configured to elastically deform when coming into contact with the male contact on relative displacement of the male contact towards the bottom of the socket, and to contact the male electrical contact on a plurality of the summits of the corrugations when the male electrical contact is inserted in the socket.

Inventors:
RÉTHO PATRICE (FR)
Application Number:
PCT/GB2020/051637
Publication Date:
January 14, 2021
Filing Date:
July 08, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HYPERTAC S A (FR)
VIENNE AYMERIC (GB)
International Classes:
H01R13/187
Foreign References:
US20090197482A12009-08-06
CN106654652A2017-05-10
CN202405473U2012-08-29
US5649837A1997-07-22
US4002400A1977-01-11
Attorney, Agent or Firm:
MATHYS & SQUIRE (GB)
Download PDF:
Claims:
CLAIMS

1. A female electrical contact for an electrical connector, comprising:

a conductive socket for a male electrical contact, comprising an opening, a peripheral wall and a bottom; and

a stamped crown comprising a plurality of stamped conductive beams, the plurality of beams being substantially regularly located along the peripheral wall in the socket,

each beam having a main direction of extension substantially from the opening to the bottom of the socket, and comprising a plurality of corrugations along the main direction of extension, the corrugations comprising summits towards inside the socket and valleys towards the peripheral wall,

wherein each beam is configured to elastically deform when coming into contact with the male contact on relative displacement of the male contact towards the bottom of the socket, and to contact the male electrical contact on a plurality of the summits of the corrugations when the male electrical contact is inserted in the socket.

2. The contact of claim 1 , wherein the crown is such that the plurality of conductive beams is comprised between 3 and 90 beams.

3. The contact of claim 1 or claim 2, wherein the valleys are in contact with the peripheral wall.

4. The contact of any one of claims 1 to 3, wherein the stamped crown further comprises a stamped base configured to link the plurality of beams together and to mechanically contact the socket at the opening of the socket for mounting of the stamped crown in the socket.

5. The contact of claim 4, wherein each beam defines a cantilever attached to the base at the opening of the socket.

6. The contact of claim 4, wherein each beam is attached to the base at the opening of the socket. 7. The contact of any one of the preceding claims, configured to sustain currents comprised between 1A and 1000A. 8. The contact of any one of the preceding claims, wherein the crown is made of material comprising: copper alloys, such as copper beryllium.

9. The contact of any one of the preceding claims, wherein the crown has dimensions such as: a diameter comprised between 5mm and 30mm, such as 12mm, and a height comprised between 5mm and 30mm, such as 13mm.

10. The contact of any one of the preceding claims, wherein each beam comprises a number N of corrugations such that:

2<N<10.

1 1. The contact of any one of the preceding claims, wherein such that a receiving space for the male contact within the plurality of beams is substantially constant from the opening to the bottom of the socket. 12. The contact of any one of the preceding claims, wherein the plurality of beams is substantially regularly located along the peripheral wall in the socket.

13. The contact of any one of the preceding claims, wherein the plurality of beams covers substantially a majority of a surface area of the peripheral wall.

14. The contact of any one of the preceding claims, wherein the beams have a width comprised between 0.3mm and 15mm, such as 1 mm.

15. A method comprising:

providing a conductive socket for a male electrical contact, the socket comprising an opening, a peripheral wall and a bottom;

stamping a conductive crown, the crown comprising a plurality of stamped conductive beams comprising a plurality of corrugations; and placing the stamped crown in the socket, such that

the plurality of beams are substantially regularly located along the peripheral wall in the socket,

each beam has a main direction of extension substantially from the opening to the bottom of the socket, and the plurality of corrugations extend along the main direction of extension, the corrugations comprising summits towards inside the socket and valleys towards the peripheral wall, and

each beam is configured to elastically deform when coming into contact with the male contact on relative displacement of the male contact towards the bottom of the socket, and to contact the male electrical contact on a plurality of the summits of the corrugations when the male electrical contact is inserted in the socket.

16. The method of claim 15, for manufacturing the contact of any one of claims 2 to 14.

17. The method of claim 15 or 16, further comprising a step of placing the stamped crown at the opening of the socket by blocking the crown with a ring on top of the crown or a thin wall designed in the socket and folded on top of the crown. 18. The method of claim 17, wherein the ring is placed in force and/or glued into a barrel forming part of connector in which the contact is placed.

Description:
FEMALE CONTACT WITH STAMPED BEAMS

AND METHOD OF MANUFACTURE

FIELD OF INVENTION

The invention relates, but is not limited to, a female electrical contact for an electrical connector, comprising a conductive socket for a male electrical contact. The invention also relates to a method of manufacture of such a contact.

BACKGROUND

An electrical connector usually comprises at least one contact fitted in an insulator. The at least one contact may comprise a female contact (e.g. comprising a socket) configured to be mated with a male contact (e.g. a pin) and/or may comprise a male contact (e.g. a pin) configured to be mated with a female contact (e.g. comprising a socket).

An electrical plug usually comprises a mobile connector. The electrical plug may comprise male contacts (e.g. comprising pins) and/or female contacts (e.g. comprising sockets). An electrical receptacle usually comprises a fixed connector (e.g. fixed in a wall). The electrical receptacle may comprise male contacts (e.g. comprising pins) and/or female contacts (e.g. comprising sockets). The electrical plug may be mated with the electrical receptacle.

SUMMARY

Aspects and embodiments of the invention are set out in the appended claims. These and other aspects and embodiments of the invention are also described herein.

BRIEF PRESENTATION OF DRAWINGS

Aspects of the disclosure will now be described, by way of example, with reference to the accompanying drawings in which: Figure 1A is an elevation scattered view, in perspective, which schematically illustrates an example female contact comprising a first example stamped crown;

Figure 1 B is an elevation view, in perspective, which schematically illustrates the example female contact of Figure 1A; Figure 2A is an elevation view, in perspective, which schematically illustrates a second example stamped crown; and

Figure 2B is a side view which schematically illustrates the example crown of Figure 2A; and

Figure 3 schematically illustrate example steps of a method of manufacture of a contact of any one of the aspects of the disclosure.

In the drawings, similar elements bear identical numerical references. SPECIFIC DESCRIPTION

Overview

The disclosure relates but is not limited to a female electrical contact for an electrical connector. The female contact comprises a stamped conductive crown comprising stamped conductive beams. The beams are located in a socket of the female electrical contact. The beams comprise a plurality of corrugations, to contact a tip of a male electrical contact inserted in the socket.

The disclosure also relates to a method of manufacture of the socket.

The plurality of conductive beams and the plurality of corrugations provide a plurality of electrical contacts and ensure a reliable electrical connection with the male contact. The plurality of beams are substantially regularly located along a peripheral wall in the socket and may cover substantially a majority of a surface area of the peripheral wall (for example more than 50%, e.g. more than 75%, and for instance more than 90% of the surface area of the peripheral wall). As will be apparent from the disclosure, in some examples the layout of the beams in the socket tends to maximize a surface area of the peripheral wall covered by the beams. The plurality of beams and the plurality of corrugations ensure an enhanced reliable electrical connection with the male contact.

The crown and the conductive beams are stamped and are easy to manufacture, at a low cost. In some examples the crown may be located at an opening of the socket and the female contact is easy to assemble.

Detailed description of example embodiments

Figures 1A and 1 B schematically illustrate a female electrical contact 1 for an electrical connector (not shown on the Figures). The contact 1 comprises a conductive socket 2 for a male electrical contact (not shown on the Figures). In the figures, the socket 2 has a general shape of a cylinder of revolution, but other shapes are envisaged, and cylinders which are not of revolution are also envisaged.

The socket 2 comprises an opening 3 for insertion of the male contact in the female contact, a peripheral wall 4 and bottom 5. Both the peripheral wall 4 and the bottom 5 are conductive. In some examples the bottom 5 is substantially flat.

The female electrical contact 1 further comprises a stamped crown 6 comprising a plurality of stamped conductive beams 7.

As illustrated in Figures 1A and 1 B, the plurality of beams 7 is substantially regularly located along the peripheral wall 4 in the socket 2. The plurality of beams 7 may cover substantially a majority of a surface area of the peripheral wall 4 (for example more than 50%, e.g. more than 75%, and for instance more than 90% of the surface area of the peripheral wall). In some examples the layout of the beams in the socket tends to maximize a surface area of the peripheral wall covered by the beams. The plurality of beams and the plurality of corrugations ensure an enhanced reliable electrical connection with the male contact.

In some examples, each beam 7 may have a main direction of extension substantially from the opening 3 to the bottom 5 of the socket 2.

As illustrated in the Figures, each beam 7 may comprise a plurality of corrugations 8 along the main direction of extension of the beam 7.

The corrugations 8 comprise summits 81 towards inside the socket 2 and valleys 82 towards the peripheral wall 4. In the examples of the Figures, each beam comprises three corrugations. Other numbers of corrugations may be envisaged. As a non-limiting example, each beam 7 may comprise a number N of corrugations such that:

2<N<10. Each beam 7 is configured to elastically deform when coming into contact with the male contact on relative displacement of the male contact towards the bottom 5 of the socket 2. Each beam 7 is configured to contact the male electrical contact on a plurality of the summits 81 of the corrugations 8 when the male electrical contact is inserted in the socket 2. The plurality of corrugations 8 and the plurality of summits 81 provide a plurality of electrical contacts and ensure a reliable electrical connection with the male contact.

In the example illustrated in Figures 1A and 1 B, the crown 6 comprises six beams 7. In the example illustrated in Figures 2A and 2B, the crown 6 comprises twenty-four beams 7. Other number of beams may be envisaged. The number of beams 7 may be such that the plurality of conductive beams 7 is comprised between 3 and 90 beams, as non limiting examples. In some examples, each beam 7 may be in contact with the peripheral wall 4. In some examples, the valleys 82 are in contact with the peripheral wall 4.

In some examples, a receiving space for the male contact within the plurality of beams is substantially constant from the opening 3 to the bottom 5 of the socket 2. The receiving space 9 ensures an enhanced reliable electrical connection with the male contact.

As illustrated in the Figures, the stamped crown 6 further comprises a stamped base 10 configured to link the plurality of beams 7 together, and to mechanically contact the socket 2 at the opening 3 of the socket 2 for mounting of the stamped crown in the socket 2. As illustrated in Figure 1A, the stamped base 10 may come into contact with a shoulder 1 1 in the peripheral wall 4 and may be covered by a fixation ring 12. Other methods may be envisaged, such as by folding a thin wall of the socket on the ring.

As illustrated in the Figures, each beam 7 may define a cantilever attached to the base 10 at the opening 3 of the socket 2. In some examples, the beams are not in contact with the bottom 5 of the socket 2 and enable enhanced elastic deformation of the beams 7 when in contact with the male contact.

In some examples, the beam may be attached to the base at the opening of the socket and may contact the bottom of the socket.

The female contact 1 may be configured to sustain currents comprised between 1A and 1000A, as non-limiting examples.

The crown 6 may be made of material comprising: copper alloys, such as copper beryllium, as non-limiting examples.

The crown 6 may have dimensions such as: a diameter may be comprised between 5mm and 30mm, such as 12mm, and a height may be comprised between 5mm and 30mm, such as 13mm. The beams may have a width comprised between 0.3mm and 15mm, such as 1 mm as non-limiting examples.

The disclosure also relates to a method 100 of manufacture of the socket.

As illustrated in Figure 3, the method 100 comprises:

providing, at S1 , a conductive socket for a male electrical contact, the socket comprising an opening, a peripheral wall and a bottom;

stamping, at S2, a conductive crown, the crown comprising a plurality of stamped conductive beams comprising a plurality of corrugations; and

placing, at S3, the stamped crown in the socket, such that

the plurality of beams are substantially regularly located along the peripheral wall in the socket,

each beam has a main direction of extension substantially from the opening to the bottom of the socket, and the plurality of corrugations extend along the main direction of extension, the corrugations comprising summits towards inside the socket and valleys towards the peripheral wall, and

each beam is configured to elastically deform when coming into contact with the male contact on relative displacement of the male contact towards the bottom of the socket, and to contact the male electrical contact on a plurality of the summits of the corrugations when the male electrical contact is inserted in the socket. The contact manufactured by the method 100 may be the contact according to any of the aspects of the disclosure.

As illustrated in Figure 1A, in some example S3 may comprise a step of placing the stamped crown 6 at the opening 3 of the socket 2 by blocking the crown 6 with the ring 12 on top of the base 10 or with a thin wall designed in the socket and folded on top of the crown. The ring 12 may be placed in force into a barrel 14 forming part of the connector in which the contact is placed, but other methods, such as gluing, are envisaged.

The crown may also be used in combination with other means to enhance electrical contact with a male contact.