Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FILLER-REINFORCED SOLID RESIN MULTILAYERED STRUCTURE
Document Type and Number:
WIPO Patent Application WO/2017/175067
Kind Code:
A1
Abstract:
Filler-reinforced solid resin multilayered structures and methods of making the same. A filler-reinforced solid resin multilayered structure includes a laminated layer stack. The laminated layer stack includes an inner structure including a first resin layer that is a filler-reinforced resin layer including a cured product of a filler and a resin. The inner structure also includes a second resin layer including a cured product of a resin. The second resin layer is different than the first resin layer. The laminated layer stack also includes a border structure including at least one edge of the second resin layer extending past a corresponding edge of the first resin layer. The border structure is free of the first resin layer.

Inventors:
CHOI JONG-MIN (KR)
AN NARONG (CN)
KIM DAEJUN (KR)
Application Number:
PCT/IB2017/000467
Publication Date:
October 12, 2017
Filing Date:
April 06, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SABIC GLOBAL TECHNOLOGIES BV (NL)
International Classes:
B32B3/02; B32B3/26; B32B7/022; B32B27/08; B32B27/20; B32B27/36
Domestic Patent References:
WO2009000600A12008-12-31
Foreign References:
US6447880B12002-09-10
EP2747979A22014-07-02
US20060135022A12006-06-22
DE102014201374B32015-04-23
Other References:
None
Attorney, Agent or Firm:
COLLINS, John (GB)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A filler-reinforced solid resin multilayered structure, the structure comprising:

a laminated layer stack comprising

an inner structure comprising

a first resin layer that is a filler-reinforced resin layer comprising a cured product of a filler and a resin, and

a second resin layer comprising a cured product of a resin, wherein the second resin layer is different than the first resin layer; and

a border structure comprising at least one edge of the second resin layer extending past a corresponding edge of the first resin layer, the border structure being free of the first resin layer. 2. The filler-reinforced solid resin multilayered structure of claim 1 , wherein the layer stack comprises

layer (al), the first resin layer; and

layer (bl), the second resin layer. 3. The filler-reinforced solid resin multilayered structure of claim 2, wherein the layer stack further comprises layer (a2), another first resin layer that is the same or different than layer (al) and is disposed on an opposite face of layer (bl) as layer (al). 4. The filler-reinforced solid resin multilayered structure of any one of claims 1-3, wherein the first resin layer is a filler-reinforced monoextruded resin layer.

5. The filler-reinforced solid resin multilayered structure of any one of claims 1-4, wherein the filler in the first resin layer comprises carbon fibers, glass beads, glass flakes, glass fibers, or a combination thereof.

6. The filler-reinforced solid resin multilayered structure of any one of claims 1-5, wherein the resin in the first resin layer is a thermoplastic resin.

7. The filler-reinforced solid resin multilayered structure of any one of claims 1-6, wherein the resin in the first resin layer and the filler in the first resin layer have refractive indexes that are within about 0.080.

8. The filler-reinforced solid resin multilayered structure of any one of claims 1-7, wherein about SO wt% to about 100 wt% of the filler in the first resin layer has a longest dimension oriented within about 45 degrees of the extrusion direction of the first resin layer.

9. The filler-reinforced solid resin multilayered structure of any one of claims 1-8, wherein the inner structure has a higher stiffness than the border structure. 10. The filler-reinforced solid resin multilayered structure of any one of claims 1-9, wherein the inner structure has a hardness of about 2B to about 9H.

11. The filler-reinforced solid resin multilayered structure of any one of claims 1-10, wherein an outer face of the border structure is substantially flush to an outer face of the inner structure.

12. The filler-reinforced solid resin multilayered structure of any one of claims 1-11, wherein the second resin layer is free of filler. 13. The filler-reinforced solid resin multilayered structure of any one of claims 1-12, wherein the layer stack comprises

layer (al), the first resin layer;

layer (bl), the second resin layer; and

layer (a2), another first resin layer comprising a resin and a filler;

wherein

an outer face of the border structure is substantially flush to an outer face of layer (al), and

an opposite outer face of the border structure is substantially flush to an outer face of layer (a2).

14. A method of forming the filler-reinforced solid resin multilayered structure of any one of claims 1-13, the method comprising:

forming a layer stack comprising the first resin layer and the second resin layer;

contacting the layer stack and a compression tool; and

compressing the layer stack with the compression tool, to laminate the layers of the layer stack and form the filler-reinforced solid resin multilayered structure.

15. A filler-reinforced solid resin multilayered structure, the structure comprising:

a laminated layer stack comprising

an inner structure comprising

layer (al), a first resin layer that is a filler-reinforced resin layer comprising a cured product of a filler and a resin,

layer (bl), a second resin layer comprising a cured product of a resin, wherein the second resin layer is different than the first resin layer, and

layer (a2), another first resin layer that is a filler- reinforced resin layer comprising a cured product of a filler and a resin; and a border structure comprising at least one edge of the layer (bl) extending past a corresponding edge of layer (al) and layer (a2), the border being free of the first resin layer;

wherein

an outer face of the border structure is substantially flush to an outer face of the inner structure,

an opposite outer face of the border structure is substantially flush to an opposite outer face of the inner structure,

the inner structure has a higher stiffness than the border structure, the border structure has a higher transmittance at 380-780 nm than the inner structure, and

the border structure has a lower haze at 380-780 nm than the inner structure.

Description:
FILLER-REINFORCED SOLID RESIN MULTILAYERED STRUCTURE CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of priority to U.S. Provisional

Patent Application Serial No. 62/318,984, filed April 6, 2016, and to U.S.

Provisional Patent Application Serial No. 62/395,469, filed September 16, 2016, the disclosures of which are incorporated herein in their entirety by reference.

BACKGROUND

[0002] Although woven or non-woven mats, felts, and fabrics can be used to form reinforced resins such as glass fiber- or carbon fiber-reinforced resins having good mechanical properties, the reinforced resins are difficult and expensive to manufacture, and can have poor optical properties. The types of resins that can be used to manufacture such reinforced resins are limited because the resins must be highly flowable to wet out the structure of the reinforcing material.

[0003] As display panel technology is moving from LCD to OLED, the enclosure design is changing toward highlighting the design characteristic of OLED which is thinner than LCD due to absence of a back light unit. One way to achieve this is through use of a glass plate as the back plate of OLED TV set by utilizing the properties of glass, such as transparency, and high stiffness. However, glass is heavy and brittle. Transparent plastic sheets, such a polycarbonate, generally lack the needed stiffness unless used in a thickness that results in higher weight and thicker design than desired. Although glass- reinforced film can be laminated on a transparent plastic sheet to enhance stiffness, such films have higher haze and glass-level transparency and glossiness around the border of the laminated structure can be very difficult.

SUMMARY OF THE INVENTION

[0004] In various embodiments, the present invention provides a filler- reinforced solid resin multilayered structure. The structure includes a laminated layer stack. The laminated layer stack includes an inner structure including a first resin layer mat is a filler-reinforced resin layer including a cured product of a filler and a resin. The inner structure also includes a second resin layer including a cured product of a resin. The second resin layer is different than the first resin layer. The laminated layer stack includes a border structure including at least one edge of the second resin layer extending past a corresponding edge of the first resin layer, the border structure being free of the first resin layer.

[0005] In various embodiments, the present invention provides a method of forming the filler-reinforced solid resin multilayered structure. The method includes forming a layer stack including the first resin layer and the second resin layer. The method includes contacting the layer stack and a compression tool. The method also includes compressing the layer stack with the compression tool, to laminate the layers of the layer stack and form the filler-reinforced solid resin multilayered structure.

[0006] In various embodiments, the present invention provides a filler- reinforced solid resin multilayered structure. The structure includes a laminated layer stack. The laminated layer stack includes an inner structure including layer (al), a first resin layer that is a filler-reinforced resin layer including a cured product of a filler and a resin. The inner structure also includes layer (bl), a second resin layer including a cured product of a resin, wherein the second resin layer is different than the first resin layer. The inner structure also includes layer (a2), another first resin layer mat is a filler-reinforced resin layer including a cured product of a filler and a resin. The laminated layer stack also includes a border structure including at least one edge of the layer (bl) extending past a corresponding edge of layer (al) and layer (a2), the border being free of the first resin layer. An outer face of the border structure is substantially flush to an outer face of the inner structure. An opposite outer face of the border structure is substantially flush to an opposite outer face of the inner structure. The inner structure has a higher stiffness man the border structure. The border structure has a higher transmittance at 380-780 nm than the inner structure. The border structure has a lower haze at 380-780 nm than the inner structure.

[0007] In various embodiments, the present invention provides a glass fiber-reinforced solid resin multilayered structure. The structure includes a laminated layer stack. The laminated layer stack includes an inner structure including layer (al), a first resin layer that is a monoextruded glass fiber- reinforced resin layer including a cured product of a filler and a thermoplastic resin, wherein layer (al) has a thickness of about 1 micron to about 500 microns. The inner structure includes layer (bl), a second resin layer including a cured product of a resin, wherein the second resin layer is different than the first resin layer, wherein layer (al) directly contacts layer (bl). The inner structure also includes layer (a2), another first resin layer that is a monoextruded glass fiber- reinforced resin layer including a cured product of a filler and a thermoplastic resin, wherein layer (a2) has a thickness of about 1 micron to about 500 microns, wherein layer (a2) directly contacts layer (bl). The laminated layer stack also includes a border structure including at least one edge of the layer (a2) extending past a corresponding edge of layer (al ) and layer (a2), the border being free of the first resin layer. An outer face of layer (bl) in the border structure is substantially flush to an outer face of layer (al). An opposite outer face of layer (bl) in the border structure is substantially flush to layer (a2). About SO wt% to about 100 wt% of the glass fibers in layers (al) and (a2) has a longest dimension oriented within about 45 degrees of the extrusion direction of the respective layer. A refractive index of the thermoplastic resin of layers (al) and (a2) and a refractive index of the glass fibers in layers (al) and (a2) independently is about 1.500 to about 1.600. The inner structure has a higher stiffness than the border structure. The border structure has a higher transmittance at 380-780 nm than the inner structure. The border structure has a lower haze at 380-780 nm than the inner structure.

[0008] In various embodiments, the filler-reinforced solid resin multilayered structure can have certain advantages over other filler-reinforced resins, at least some of which are unexpected. For example, in various embodiments, the filler-reinforced solid resin multilayered structure can be made using a wider variety of resins, as compared to solid resins reinforced with carbon fiber or glass fiber woven or non-woven mats, felts, and fabrics, which often require resins having high flowability to wet out the filler. In various embodiments, the filler-reinforced solid resin multilayered structure of the present invention can include a thermoplastic resin, unlike many solid resins reinforced with carbon fiber or glass fiber woven or non-woven mats, felts, and fabrics. In various embodiments, by incorporating a thermoplastic resin, the filler-reinforced solid resin of the present invention can be more easily recyclable or reprocess able than other filler-reinforced solid resins. In various embodiments, by incorporating a thermoplastic resin, the filler-reinforced solid resin multilayered structure of the present invention can be more thermo- formable and can incorporate more thermo-formable features (e.g., ribs, gussets, hooks, and the like) than other filler-reinforced resins.

[0009] In various embodiments, the filler-reinforced solid resin multilayered structure of the present invention (e.g., the inner structure) can have a higher proportion of the filler aligned with one another or aligned in specific directions, as compared to other filler-reinforced resins. In various

embodiments, the filler-reinforced solid resin multilayered structure of the present invention can have equivalent or better mechanical properties than filler- reinforced injected molded or compression molded materials, such as higher tensile strength, higher impact strength, and a more ductile impact failure mode at a given impact energy. In various embodiments, the filler-reinforced solid resin multilayered structure can have a lower wt% loading of filler than other filler-reinforced solid resins but can have equivalent or better mechanical properties.

[0010] In various embodiments, the filler-reinforced solid resin multilayered structure of the present invention (e.g., the inner structure) can be more transparent than other filler-reinforced solid resins. In various embodiments, color effects can be added to the filler-reinforced solid resin multilayered structure of the present invention more easily and with more vivid effects, such as due to lower loading of filler, less colorful raw materials, and better refractive index matching between filler and resin (e.g., giving higher transparency of the inner structure), compared to other filler-reinforced resins. In various embodiments, the filler-reinforced solid resin multilayered structure of the present invention can be less expensive, and the method of making the multilayered structure can be easier and less expensive, as compared to other filler-reinforced solids resins and methods of making the same.

[0011] In various embodiments, the filler-reinforced solid resin multilayered structure of the present invention has a unique combination of properties as a result of the inner structure and the border structure. In various embodiments, due to the border structure having a lower haze, higher transmittance, or combination thereof, than the inner structure, creating a glossy and aesthetically pleasing edge on the filler-reinforced solid resin structure of the present invention can be much easier and more effective as compared to creating such an edge on a structure that is a filler-reinforced solid resin throughout, providing an overall more cosmetically appealing product In various embodiments, the filler-reinforced inner structure provides high stiffness and is lighter than glass, such as about 50% lighter than glass, but is less breakable as compared to glass or is not breakable. In various embodiments, the filler- reinforced solid resin structure can be less expensive than a glass structure that fulfills a similar purpose (e.g., TV back support plate or photomask).

[0012] Photomask boxes require high stiffness and transparency. During cutting of a photomask box, freedom from particulates formed during cutting is important to avoid contamination of the photomask pattern. However, filler- reinforced film layers generate particles during cutting due to the filler. In various embodiments, the filler-reinforced solid resin multilayered structure can be used to form a photomask box or part of a photomask box, wherein the multilayered structure can be cut along the border structure such that less or no particulate is formed during the cutting as compared to photomask box materials including other filler-reinforced films.

BRIEF DESCRIPTION OF THE FIGURES

[0013] The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.

[0014] FIG. 1 illustrates a typical OLED TV design 100 using a glass back plate.

[0015] FIG. 2A illustrates a front view of a multilayered structure, in accordance with various embodiments.

[0016] FIG. 2B illustrates a top view of the multilayered structure, in accordance with various embodiments.

[0017] FIGS. 3A-3D illustrate the inner structure of various multilayered structures, in accordance with various embodiments.

[0018] FIG. 4 illustrates a SEM image of a multilayered structure.

[0019] FIG. 5 illustrates a SEM image of a multilayered structure.

[0020] FIG. 6 illustrates a photograph of a ductile failure mode during impact testing of a structure, in accordance with various embodiments.

[0021] FIG. 7 illustrates a photograph of a brittle failure mode during impact testing of a structure, in accordance with various embodiments. [0022] FIG. 8A illustrates the temperature used during hot pressing, in accordance with various embodiments.

[0023] FIG. 8B illustrates the press pressure used during hot pressing, in accordance with various embodiments.

[0024] FIG. 8C illustrates the vacuum used during hot pressing, in accordance with various embodiments.

[0025] FIG. 9 is a photograph of a multilayered structure, in accordance with various embodiments.

[0026] FIG. 10 illustrates the roughness of the surface of a multilayered structure, in accordance with various embodiments.

DETAILED DESCRIPTION OF THE INVENTION

[0027] Throughout this document, values expressed in a range format should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a range of "about 0.1% to about 5%" or "about 0.1% to 5%" should be interpreted to include not just about 0.1% to about 5%, but also the individual values (e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.1% to 0.5%, 1.1% to 2.2%, 3.3% to 4.4%) within the indicated range. The statement "about X to Y" has the same meaning as "about X to about Y," unless indicated otherwise. Likewise, the statement "about X, Y, or about Z" has the same meaning as "about X, about Y, or about Z," unless indicated otherwise.

[0028] In this document, the terms "a," "an," or "the" are used to include one or more than one unless the context clearly dictates otherwise. The term "or" is used to refer to a nonexclusive "or" unless otherwise indicated. The statement "at least one of A and B" has the same meaning as "A, B, or A and B." In addition, it is to be understood that the phraseology or terminology employed herein, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.

[0029] The term "about" as used herein can allow for a degree of variability in a value or range, for example, within 10%, within 5%, or within 1% of a stated value or of a stated limit of a range, and includes the exact stated value or range. The term "substantially" as used herein refers to a majority of, or mostly, as in at least about 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99%, or at least about 99.999% or more, or 100%.

[0030] The term "cure" as used herein refers to exposing to radiation in any form, heating, or allowing to undergo a physical or chemical reaction that results in hardening or an increase in viscosity. A flowable thermoplastic material can be cured by cooling it such that the material hardens. A flowable thermoset material can be cured by heating or otherwise exposing to irradiation such that the material hardens.

[0031] As used herein, the term "polymer" refers to a molecule having at least one repeating unit and can include copolymers.

[0032] As used herein, the term "injection molding" refers to a process for producing a molded part or form by injecting a composition including one or more polymers that are thermoplastic, thermosetting, or a combination thereof, into a mold cavity, where the composition cools and hardens to the configuration of the cavity. Injection molding can include the use of heating via sources such as steam, induction, cartridge heater, or laser treatment to heat the mold prior to injection, and the use of cooling sources such as water to cool the mold after injection, allowing faster mold cycling and higher quality molded parts or forms. Filler-reinforced solid resin multilavered structure.

[0033] In various embodiments, the present invention provides a filler- reinforced solid resin multilayered structure. The filler-reinforced solid resin multilayered structure includes a laminated layer stack. The laminated layer stack can include an inner structure and an border structure. The inner structure can include a first resin layer that is a filler-reinforced resin layer including a cured product of a filler and a resin. The inner structure can include a second resin layer including a cured product of a resin. The second resin layer can be different than the first resin layer. The border structure can include at least one edge of the second resin layer extending past a corresponding edge of the first resin layer, the border structure being free of the first resin layer.

[0034] FIG. 1 illustrates a typical OLED TV design 100 using a glass back plate. The OLED TV 100 includes an OLED panel 101 , a glass back plate 102, a TV stand (e.g., base) 103, a glass side (e.g., edge) face 104, and a class A visible (e.g., cosmetic) area front view 10S.

[0035] FIG. 2A illustrates a front view of a multilayered structure 200, an embodiment of the present invention, which includes a plastic sheet 201 to replace the glass back plate, a class A area 202 that is not covered by the reinforced film 204 or 206 (shown in FIG. 2B), and an area 203 including the reinforced film 204 and 206. FIG. 2B illustrates a top view of the multilayered structure 200 viewed along line B-B in FIG 2A. Multilayered structure 200 includes laminated reinforced film layer 204, core layer 205, another laminated reinforced film layer 206, and side (e.g., edge) face 207 from which reinforced layers 204 and 206 are not visible.

[0036] As shown in FIGS. 2A-2B, the filler-reinforced solid resin multilayered structure can include not more than one inner structure and not more than one border structure, the inner structure can be rectangular, the border structure can be a border on each edge of the inner structure such that the border structure is a rectangular border. Embodiments of the present invention are not limited to the embodiment shown in FIG. 2A and 2B. The inner structure and border structure can have any suitable arrangement with respect to one another. While the border structure always forms a border around some percentage of the perimeter of the inner structure (e.g., along one edge, two edges, three edges, four edges, all edges, or along about 10% to about 100% of the perimeter of the inner structure), various embodiments of the multilayered structure can include inner structures having any suitable shape (e.g., polygonal shapes, circle, oval, or any suitable shape or pattern), multiple inner structures (e.g., 2, 3, 4, S, or more), multiple border structures (e.g., 2, 3, 4, 5, or more), or a combination thereof.

[0037] An outer face (e.g., an external major face, such as the face viewed in FIG. 2A) of the border structure can be substantially flush to an outer face of the inner structure. In embodiments wherein the first resin layer is the outer face of the inner structure, an outer face of the border structure can be substantially flush to an outer face of the first resin layer. For example, a distance between a plane corresponding to the outer face of the border structure and plane corresponding to the outer face of the border structure can be about 1 nm to about 1 mm, about 1 micron to about 20 microns, or about 1 mm or more, or about 900 microns, 800, 700, 600, 500, 400, 300, 200, 100, 75, 50, 40, 30, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 microns, 900 nm, 800, 700, 600, 500, 400, 300, 200, 100, 75, 50, 40, 30, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 nm, or about 1 nm or less.

[0038] In some embodiments, the first resin layer (e.g., at least one first layer, in embodiments having multiple first resin layers) can be adjacent to (e.g., fully contacting on one side thereof) the second layer (e.g., at least one second layer, in embodiments having multiple second resin layers). In some embodiments, the first layer (e.g., at least one first layer, in embodiments having multiple first resin layers) can be separated from the second layer (e.g., at least one second layer, in embodiments having multiple second resin layers) by at one or more layers (e.g., the first layer and the second layer can sandwich the one or more separating layers).

[0039] The laminated layer stack can include any suitable arrangement of layers. The laminated layer stack can include first resin layers and second resin layers in alternating or repeating arrangements. For example, the laminated layer stack can include layer (al), the first resin layer. The laminated layer stack can further include layer (bl), the second resin layer, wherein layer (al) is fully in contact with layer (bl) (e.g., substantially all of one major side of layer (al) contacts layer (bl). In some embodiments, layer (al) and layer (bl) are the only layers of the laminated layer stack, or any other suitable one or more layers can be included. Layer (bl) is different than layer (al).

[0040] In some embodiments, the laminated layer stack (e.g., layer (al) and (bl)) can further include layer (a2), another first resin layer that is the same or different than layer (al), wherein layer (al) is fully in contact with layer (bl), such that layers (al) and (a2) sandwich (bl). In some embodiments, layers (al), (al), and (bl) are the only layers of the layer stack, or any other suitable one or more layers can be included. In some embodiments, multiple (al) or (al) layers are included in the laminated layer stack.

[0041] FIGS. 3 A-3D illustrate the inner structure of various filler- reinforced solid resin multilayered structures, in accordance with various embodiments. Laminated layer stack 310 includes second resin layer 311 and first resin layer 312, wherein layers 311 and 312 are fully in contact with one another. Laminated layer stack 320 includes second resin layer 321, first resin layer 322, and second resin layer 323, wherein layer 321 is fully in contact with layer 322 and layer 322 is fully in contact with layer 323. Laminated layer stack 330 includes first resin layer 331, second resin layer 332, and first resin layer 333, wherein layer 331 is fully in contact with layer 332, and layer 332 is fully in contact with layer 333. Laminated layer stack 340 includes first resin layer 341, first resin layer 342, second resin layer 343, first resin layer 344, and first resin layer 345, wherein layer 341 is fully in contact with layer 342, layer 342 is fully in contact with layer 343, layer 343 is fully in contact with layer 344, and layer 344 is fully in contact with layer 345.

[0042] In various embodiments, the laminated layer stack includes layer (al), the first resin layer; layer (bl), the second resin layer; and layer (a2), another first resin layer including a resin and a filler. An outer face of the border structure can be substantially flush to an outer face of layer (al). The opposite outer face of the border structure can be substantially flush to the outer face of layer (a2).

[0043] The laminated layer stack (e.g., the inner structure) includes a first resin layer that is a cured product of a filler and a resin. The inner structure can include one first resin layer, or more than one first resin layer (e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more first resin layers). The first resin layer can be formed in any suitable way. In some embodiments, the first resin layer can be a monoextruded (e.g., extruded alone without any other layers) filler-reinforced resin layer. Each first resin layer independently includes a resin and a filler; the resin in two first resin layers can be the same or different, and the filler in two first resin layers can be the same or different. Each first resin layer can have an independently selected thickness of about 1 micron to less than about 1 mm, about 10 microns to about 500 microns, or about 1 micron or less, or less than, equal to, or greater than about 2 microns, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 300, 350, 400, 450, 500, 600, 700, 800, 900 microns, or about 1 mm or more. A first resin layer can have a substantially uniform thickness throughout

[0044] The first resin layer includes a filler. The first resin layer can include one filler or more than one filler. The one or more fillers can form any suitable proportion of the first resin layer (e.g., in a cured state, an uncured state, in the layer stack, or in the filler-reinforced solid resin multilayered structure), such as about 0.001 wt% to about SO wt%, S wt% to about 40 wt%, about 0.001 wt% or less, or less than, equal to, or greater than about 0.01 wt%, 0.1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 45, or about SO wt% or more. The filler can be homogeneously distributed in the first resin layer.

[0045] The filler can be fibrous or particulate. The filler can be glass fibers, aluminum silicate (mullite), synthetic calcium silicate, zirconium silicate, fused silica, crystalline silica graphite, natural silica sand, or the like; boron powders such as boron-nitride powder, boron-silicate powders, or the like; oxides such as TiCfe, aluminum oxide, magnesium oxide, zinc oxide, or the like; calcium sulfate (as its anhydride, dehydrate or trihydrate); calcium carbonates such as chalk, limestone, marble, synthetic precipitated calcium carbonates, or the like; talc, including fibrous, modular, needle shaped, lamellar talc, or the like; wollastonite; surface-treated wollastonite; glass spheres such as hollow and solid glass spheres, silicate spheres, cenospheres, aluminosilicate (armospheres), or the like; kaolin, including hard kaolin, soft kaolin, calcined kaolin, kaolin including various coatings known in the art to facilitate compatibility with the polymeric matrix resin, or the like; single crystal fibers or "whiskers" such as silicon carbide, alumina, boron carbide, iron, nickel, copper, or the like; fibers (including continuous and chopped fibers) such as asbestos, carbon fibers; sulfides such as molybdenum sulfide, zinc sulfide, or the like; barium compounds such as barium titanate, barium ferrite, barium sulfate, heavy spar, or the like; metals (e.g., metal mesh, metal plate) and metal oxides such as particulate or fibrous aluminum, bronze, zinc, copper and nickel, or the like; flaked fillers such as glass flakes, flaked silicon carbide, aluminum diboride, aluminum flakes, steel flakes or the like; fibrous fillers, for example short inorganic fibers such as those derived from blends including at least one of aluminum silicates, aluminum oxides, magnesium oxides, and calcium sulfate hemihydrate or the like; natural fillers and reinforcements, such as wood flour obtained by pulverizing wood, fibrous products such as kenaf, cellulose, cotton, sisal, jute, flax, starch, corn flour, lignin, ramie, rattan, agave, bamboo, hemp, ground nut shells, corn, coconut (coir), rice grain husks or the like; organic fillers such as polytetrafluoroethylene, reinforcing organic fibrous fillers formed from organic polymers capable of forming fibers such as poly(ether ketone), polyimide, polybenzoxazole, poly(phenylene sulfide), polyesters, polyethylene, aromatic polyamides, aromatic polyimides, polyetherimides,

polytetrafluoroethylene, acrylic resins, poly(vinyl alcohol) or the like; as well as fillers such as mica, clay, feldspar, flue dust, fillite, quartz, quartzite, perlite, Tripoli, diatomaceous earth, carbon black, or the like, or combinations including at least one of the foregoing fillers. The filler can be coated with a layer of metallic material to facilitate conductivity, or surface treated with silanes, siloxanes, or a combination of silanes and siloxanes to improved adhesion and dispersion with the resin. The filler can be carbon fibers, glass beads, glass flakes, glass fibers, or a combination thereof. The filler can be glass fibers (e.g., soda-lime glass, fused silica glass, borosilicate glass, lead-oxide glass, aluminosilicate glass, oxide glass, glass with high zirconia content, or a combination thereof).

[0046] Glass fibers can have any suitable dimensions. The glass fibers can have a length of about 0.1 mm to about 500 mm, about 0.1 mm to about 100 mm, about 0.S mm to about SO mm, about 1 mm to about S mm, or about 0.1 mm or less, or less than, equal to, or greater than about 0.2 mm, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, or about 500 mm or more.

[0047] Glass fibers can have a diameter of about 0.1 microns to about 10 mm in diameter, about 0.001 mm to about 1 mm in diameter, or about 0.1 microns or less, or less than, equal to, or greater than about 1 micron, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90 microns, 0.1 mm, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9 mm, or about 10 mm or more.

[0048] A glass filler can have any suitable refractive index. The refractive index of the glass filler can be about 1.450 to about 1.800, or about 1.500 to about 1.600, about 1.508 to about 1.585, about 1.540 to about 1.570, or about 1.450 or less, or less than, equal to, or greater than about 1.455, 1.460, 1.465, 1.470, 1.475, 1.480, 1.485, 1.490, 1.495, 1.500, 1.505, 1.510, 1.515, 1.520, 1.525, 1.530, 1.535, 1.540, 1.545, 1.550, 1.555, 1.560, 1.565, 1.570, 1.575, 1.580, 1.585, 1.590, 1.595, 1.600, 1.605, 1.610, 1.615, 1.620, 1.625, 1.630, 1.635, 1.640, 1.645, 1.650, 1.660, 1.670, 1.680, 1.690, 1.700, 1.710, 1.720, 1.730, 1.740, 1.750, 1.760, 1.770, 1.780, 1.790, or about 1.800 or more. [0049] The first resin layer includes a resin. The first resin layer can include one resin or more than one resin. The resin in the first resin layer can be cured, uncured, or a combination thereof. The resin in the first resin layer in the laminated layer stack can be flowable, hardened, or in any suitable state therebetween. In some embodiments, the resin is a thermoplastic resin that is cured (e.g., has been heated during extrusion and is then cooled). In some embodiments, the resin is a thermoset resin that has been at least partially cured. The one or more resins in the first resin layer can form any suitable proportion of the first resin layer (e.g., in the layer stack or in the filler-reinforced solid resin multilayered structure), such as about 50 wt% to about 99.999 wt% of the first resin layer, about 60 wt% to about 95 wt%, or about 50 wt% or less, or less than, equal to, or greater than about 52 wt%, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 99.9, 99.99, or about 99.999 wt% or more.

[0050] The resin can be any suitable resin. The resin can be a thermoplastic resin, a thermoset resin, or any combination thereof. The resin can be an acrylonitrile butadiene styrene (ABS) polymer, an acrylic polymer, a celluloid polymer, a cellulose acetate polymer, a cycloolefin copolymer (COC), an ethylene- vinyl acetate (EVA) polymer, an ethylene vinyl alcohol (EVOH) polymer, a fluoroplastic, an ionomer, an acrylic/P VC alloy, a liquid crystal polymer (LCP), a polyacetal polymer (POM or acetal), a polyacrylate polymer, a polymethylmethacrylate polymer (PMMA), a polyacrylonitrile polymer (PAN or acrylonitrile), a polyamide polymer (PA, such as nylon), a polyamide-imide polymer (PAT), a polyaryletherketone polymer (PAEK), a polybutadiene polymer (PBD), a polybutylene polymer (PB), a polybutylene terephthalate polymer (PBT), a polycaprolactone polymer (PCL), a

polychlorotrifluoroethylene polymer (PCTFE), a polytetrafluoroethylene polymer (PTFE), a polyethylene terephthalate polymer (PET), a

polycyclohexylene dimethylene terephthalate polymer (PCT), a

poly(cyclohexylenedimethyiene terephthalate-co-ethylene glycol) (PCTG), a Tritan™ copolyester, a polycarbonate polymer (PC), poly(l,4-cyclohexylidene cyclohexane-l,4-dicarboxylate) (PCCD), a polyhydroxyalkanoate polymer (PHA), a polyketone polymer (PK), a polyester polymer, a polyethylene polymer (PE), a polyetheretherketone polymer (PEEK), a polyetherketoneketone polymer (PEKK), a polyetherketone polymer (PEK), a polyetherimide polymer (PET), a polyethersulfone polymer (PES), a polyethylenechlorinate polymer (PEC), a polyimide polymer (PI), a polylactic acid polymer (PLA), a polymethylpentene polymer (PMP), a polyphenylene oxide polymer (PPO), a polyphenylene sulfide polymer (PPS), a polyphthalamide polymer (PPA), a polypropylene polymer, a polystyrene polymer (PS), apolysulfone polymer (PSU), a polytrimethylene terephthalate polymer (PTT), a polyurethane polymer (PU), a polyvinyl acetate polymer (PVA), a polyvinyl chloride polymer (PVC), a polyvinylidene chloride polymer (PVDC), a polyamideimide polymer (PAI), a polyarylate polymer, a polyoxymethylene polymer (POM), a styrene-acrylonitrile polymer (SAN), or a combination thereof.

[0051] The resin can be a combination of an aromatic polycarbonate and poly(l,4-cyclohexylidene cyclohexane-l ,4-dicarboxylate). The aromatic polycarbonate can be any suitable aromatic polycarbonate, such as a polycarbonate derived from a bisphenol (e.g., a compound containing two hydroxyphenyl functionalities). The bisphenol can be chosen from bisphenol A (2,2-bis(4-hydroxyphenyl)propane), bisphenol AP (l,l-bis(4-hydroxyphenyl)-l- phenyl-ethane), bisphenol AF (2,2-bis(4-hydroxyphenyl)hexafluoropropane), bisphenol B (2,2-bis(4-hydroxyphenyl)butane), bisphenol BP (bis-(4- hydroxyphenyl)diphenylmethane), bisphenol C (2,2-bis(3-methyl-4- hydroxyphenyl)propane), bisphenol E (l,l-bis(4-hydroxyphenyl)ethane), bisphenol F (bis(4-hydroxydiphenyl)methane), bisphenol G (2,2-bis(4-hydroxy- 3-isopropyl-phenyl)propane), bisphenol PH (5,5'-(l -methylethyliden)-bis[l,r- (bisphenyl)-2-ol]propane), bisphenol TMC (l,l-bis(4-hydroyphenyl)-3,3,5- trimethyl-cyclohexane), bisphenol Z (l,l-bis(4-hydroxyphenyl)-cyclohexane), and combinations thereof. The bisphenol can be bisphenol A (2,2-bis(4- hydroxyphenyl)propane). The aromatic polycarbonate can be a bisphenol A- based polycarbonate (e.g., a polycarbonate derived from reaction of bisphenol A and phosgene, such as a poly(oxycarbonyloxy-l,4-phenyiene(l- methylethyiidene)-l ,4-phenylene)). The resin can include a bisphenol A-based polycarbonate and poly(l,4-cyclohexylidene cyclohexane-l,4-dicarboxylate). The weight ratio of the aromatic polycarbonate to the poly(l,4-cyclohexyiidene cyclohexane-1 ,4-dicarboxylate) in the resin can be any suitable weight ratio, such as about 5:95 to about 95:5, about 30:70 to about 90:10, about 70:30 to about 60:40, or about 5:95 or less, or less than, equal to, or greater than about 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, or about 95:5 or more. The refractive index of the aromatic polycarbonate (e.g. of a cured product thereof) can be within 0.100 of the refractive index of the poly(l,4-cyclohexylidene cyclohexane-1 ,4-dicarboxylate) (e.g., of a cured product thereof), or the difference can be greater man, equal to, or less than about 0.100, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.58, 0.56, 0.54, 0.52, 0.5, 0.48, 0.46, 0.44, 0.42, 0.4, 0.38, 0.36, 0.34, 0.32, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01 , 0.005, or about 0.001 or less.

[0052] The resin (e.g., the resin in a cured state) can have any suitable refractive index. In some embodiments, the resin in first resin layer (e.g. only the cured resin, not including the glass filler or other components therein) can have about the same refractive index as the resin in an uncured state. In other embodiments, the refractive index of the resin can change upon curing. The refractive index of the resin can be about 1.450 to about 1.800, or about 1.500 to about 1.600, about 1.508 to about 1.585, about 1.540 to about 1.570, or about 1.450 or less, or less than, equal to, or greater than about 1.455, 1.460, 1.465, 1.470, 1.475, 1.480, 1.485, 1.490, 1.495, 1.500, 1.505, 1.510, 1.515, 1.520, 1.525, 1.530, 1.535, 1.540, 1.545, 1.550, 1.555, 1.560, 1.565, 1.570, 1.575, 1.580, 1.585, 1.590, 1.595, 1.600, 1.605, 1.610, 1.615, 1.620, 1.625, 1.630, 1.635, 1.640, 1.645, 1.650, 1.660, 1.670, 1.680, 1.690, 1.700, 1.710, 1.720, 1.730, 1.740, 1.750, 1.760, 1.770, 1.780, 1.790, or about 1.800 or more.

[0053] The filler in the first resin layer can be aligned in a similar direction. The alignment can be provided via any suitable means. For example, the monoextruding the first resin layer (e.g., extruding the layer alone as a thin layer with no other layer coextruded therewith) can generate shear within the first resin layer that can orient filler therein having a longest dimension, such as fibrous filler, such as glass fibers, in the extrusion direction of the monoextruded layer. For fibers that are not straight, the orientation of the fiber can be considered the average orientation of the fiber. The orientation of filler in the extrusion direction resulting from monoextruding a thin layer can be greater than any orientation of filler that can occur from extruding a thick layer, or that can occur from coextruding several layers together. The alignment of the filler in the first resin layer, such as in the extrusion direction of an extruded layer, can result in advantageous mechanical properties of the inner structure of the resulting filler-reinforced solid resin multilayered structure, such as greater tensile strength or impact strength for a given loading of filler, and a more ductile impact mode at a given impact energy. For a filler-reinforced solid resin multilayered structure that contains multiple monoextruded first resin layers, the monoextruded first resin layers can be arranged in the multilayered structure such that the extrusion direction of the layers are parallel to one another, perpendicular to one another, or any angle therebetween (e.g., less than, equal to, or greater man 10 degrees, 20, 30, 40, 50, 60, 70, 80, or about 90 degrees). About SO wr% to about 100 wt% of the filler in the first resin layer can have a longest dimension oriented within about 45 degrees of the extrusion direction of the first resin layer (e.g., or within less than, equal to, or greater than about 40 degrees, 35, 30, 25, 20, 15, 10, 5, or about 0 degrees), or about 90 wt% to about 100 wt% of the filler, or about 50 wt% or less, or less than, equal to, or greater than about 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.9, or about 99.999 wt% or more.

[0054] In addition to filler-reinforcement, the first resin layer can be enhanced in thermal or electrical conductivity to enhance heat dispersal or for another purpose, can have enhanced anti-static properties, can have enhanced thermal expansion properties (e.g., less change in size with heat), or a combination thereof.

[0055] The laminated layer stack includes a second resin layer. The laminated layer stack can include one or more second resin layers (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more) that are different than the first resin layer (e.g., different composition). The laminated layer stack can include one second resin layer. The laminated layer stack can include more than one second resin layer. The second resin layer includes a cured product of a resin. The second resin layer can be free of filler, free of glass filler, or can include a different one or more fillers than the first resin layer, such as any one or more fillers described herein as suitable for the first resin layer in any wt% described as suitable for the first resin layer. The second resin layer can include any suitable one or more resins, such as any one or more resins describe herein as suitable for the first resin layer in any wt% described as suitable for the first resin layer.

[0056] The second resin layer can be formed in any suitable way. The second resin layer can be extruded (e.g., monoextruded or coextruded with another layer). The second resin layer can be injection molded, laminated, hot formed, or pressed (e.g., any suitable method that can apply heat and pressure, such as belt pressed or hot roll pressed). In some embodiments, the second resin layer can be more than one layer that have been laminated or otherwise fused together; in some embodiments, the second resin layer originates from a single layer.

[0057] The second resin layer can have any suitable thickness. The second resin layer can have a substantially uniform thickness throughout. The second layer can have a thickness of about 1 micron to about 100 mm, about 10 microns to about 10 mm, or about 1 micron or less, or less than, equal to, or greater than about 2 microns, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 160, 170, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 275, 300, 350, 400, 450, 500, 600, 700, 800, 900 microns, 1 mm, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, or about 100 mm or more.

[0058] The resin in the second resin layer can have any suitable refractive index (e.g., the resin in the second resin layer in a cured state, not including any fillers therein), such as about 1.450 to about 1.800, or about 1.500 to about 1.600, about 1.508 to about 1.585, about 1.540 to about 1.570, or about 1.450 or less, or less than, equal to, or greater than about 1.455, 1.460, 1.465, 1.470, 1.475, 1.480, 1.485, 1.490, 1.495, 1.500, 1.505, 1.510, 1.515, 1.520, 1.525, 1.530, 1.535, 1.540, 1.545, 1.550, 1.555, 1.560, 1.565, 1.570, 1.575, 1.580, 1.585, 1.590, 1.595, 1.600, 1.605, 1.610, 1.615, 1.620, 1.625, 1.630, 1.635, 1.640, 1.645, 1.650, 1.660, 1.670, 1.680, 1.690, 1.700, 1.710, 1.720, 1.730, 1.740, 1.750, 1.760, 1.770, 1.780, 1.790, or about 1.800 or more.

[0059] The resin in the second resin layer, the resin in the first resin layer, the filler in the first resin layer, and any filler in the second resin layer, can be selected such that the refractive index of the components have a difference that is greater than, equal to, or less than about 0.100, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.58, 0.56, 0.54, 0.52, 0.5, 0.48, 0.46, 0.44, 0.42, 0.4, 0.38, 0.36, 0.34, 0.32, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01, 0.005, or about 0.001 or less. By closely matching the refractive index, the resulting filler- reinforced solid resin multilayered structure can have a high degree of optical clarity, such as high transmittance and low haze. Any two or more of the resin in the first resin layer, the filler in the first resin layer, the resin in the second resin layer, and filler in the second layer (if present) can have refractive indexes that have a difference therebetween of greater than, equal to, or less than about 0.100, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.58, 0.56, 0.54, 0.52, 0.5, 0.48, 0.46, 0.44, 0.42, 0.4, 0.38, 0.36, 0.34, 0.32, 0.3, 0.28, 0.26, 0.24, 0.22, 0.2, 0.18, 0.16, 0.14, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01, 0.005, or about 0.001 or less.

[0060] The filler-reinforced solid resin multilayered structure can have any suitable properties consistent with the structure described herein. The inner structure and border structure can have any suitable stiffness. The inner structure can have a higher stiffness than the border structure. The inner structure can have a stiffness at 2.0 mm thickness of about 0.1 GPa-mm 4 to about 40 GPa-mm 4 , or about 1 GPa-mm 4 to about 10 GPa-mm 4 , or about 0.1 GPa-mm 4 or less, or about 0.2 GPa-mm 4 , 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or about 40 GPa-mm 4 or more. The border structure can have a stiffness at 2.0 mm thickness of about 0.1 GPa-mm 4 to about 40 GPa-mm 4 , about 0.2 GPa-mm 4 to about 5 GPa-mm 4 , or about 0.1 GPa-mm 4 or less, or about 0.2 GPa-mm 4 , 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, or about 40 GPa- mm 4 or more.

[0061] The inner structure and border structure can have any suitable transmittance. The border structure can have a higher transmittance at 380-780 nm than the inner structure. For example, the inner structure or border structure can have a transmittance at 380-780 nm at 2.0 mm thickness of about 60% to about 95 %, about 85% to about 95 %, or about 60% or less, or about 62%, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, or about 95% or more.

[0062] The inner structure and the border structure can have any suitable haze. For example, the inner structure can have a haze at 380-780 nm at 2.0 mm thickness of about 0.2% to about 20%, about 1% to about 10%, or about 0.2% or less, or about 0.4%, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, or about 20% or more. Hie border structure can have a lower haze at 380-780 nm than the inner structure. The border structure can have a haze at 380-780 nm at 2.0 mm thickness of about 0.1% to about 20%, or about 0.1% to about 5%, or about 0.1% or less, or about 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, or about 20% or more.

[0063] The inner and border structure can have any suitable hardness, such as a hardness of about 2B to about 9H, or about F to about 3H, or about 2B, or less hard than, equal to, or softer than about B, HB, F, H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, or about 9H or harder.

[0064] The surface of the filler-reinforced solid resin multilayered structure (e.g., the surface of the inner structure, the surface of the border structure, or a combination thereof) can have any suitable degree of roughness (e.g., with the surface being free of surface roughness higher than the maximum surface roughness specified), such as equal to or smoother than B3 in USA SPI standard, equal to or smoother man A3 in USA SPI standard, or less smooth than, equally smooth to, or more polished than about B2, Bl, A3, A2, or about Al or more. The filler-reinforced solid resin multilayered structure can have a surface roughness of about 2 microns or less, about 1 nm to about 50 micron, about 1 nm to about 10 microns, about 0.1 nm to about 50 nm, about 1 nm to about 10 nm, or greater than, equal to, or less than about 50 microns, 40, 30, 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 microns, 100 nm, 90 nm, 80, 70, 60, 50, 40, 35, 30, 25, 20, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 nm, or about 0.1 nm or less. The filler- reinforced solid resin multilayered structure can have a surface roughness VDI 3400 of about 26 or less, such as less then, equal to, or greater than about 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0.1, 0.01, or about 0.001 or less. The filler-reinforced solid resin multilayered structure can have any kind of texture for decoration or other effects.

Method of making the filler-reinforced solid resin multilayered structure.

[0065] Various embodiments of the present invention provide a method of making a filler-reinforced solid resin multilayered structure. The method can be any suitable method that forms an embodiment of the filler-reinforced solid resin multilayered structure described herein. The method can include forming a layer stack including the first resin layer and the second resin layer. The method can include contacting the layer stack and a compression tool. The method can also include compressing the layer stack with the compression tool, to laminate the layers of the layer stack and form the filler-reinforced solid resin

multilayered structure. In some embodiments, the compressing of the layer stack with the compression tool can include hot pressing.

[0066] The method can include forming a layer stack. The forming can occur in any suitable manner. In some embodiments, forming the layer stack includes contacting together the layers of the layer stack. Forming the layer stack can include obtaining or extruding the extruded layers of the stack, such as monoextruding (e.g., extruding the layer alone with no other layer coextruded therewith) each monoextruded filler-reinforced resin layer. The forming can include obtaining, extruding, injection molding, pressing, or otherwise forming the other layers of the layer stack, such as the one or more second resin layers. For layer stacks with multiple monoextruded layers, each monoextruded layer can be independently extruded simultaneously (e.g., in separate extruders) or in series (e.g., in the same or separate extruders). In some embodiments, each layer can be made substantially simultaneously, or in series, or a combination thereof, prior to forming the layer stack.

[0067] The method can include contacting the layer stack and a compression tool. The compression tool can be any suitable compression tool, such as a roller or a press. The compression tool can be a vertical or horizontal press. The compression tool can be a roll press or a double belt press. The method can include compressing the layer stack with the compression tool (e.g., pressing from the top and bottom of the stack) to laminate the layers of the layer stack and form the filler-reinforced solid resin multilayered structure. The compressing of the layer stack can include heating the layer stack, such as to melt thermoplastic resins in the layer stack (e.g., which can be cured by cooling and solidifying) or to cure thermoset resins in the layer stack The compressing can include adequate pressure such that substantially no air bubbles or gaps occur between layers, and such that the layers are in intimate contact. The compressing can occur for any suitable amount of time, such as about 0.1 s to about 10 h, about 1 s to about 5 h, or about 5 s to about 1 min, or about 0.1 s or less, or about 0.5 s, 1, 2, 3, 4, 5, 10, 20, 30, 45 s, 1 min, 2, 3, 4, 5, 10, 15, 20, 30, 45 min, 1 h, 2, 3, 4, or about 5 h or more.

[0068] The method can include heating the compression tool. The heating can be performed in any suitable way, such as by induction heating, cartridge heating, conductive film heating, by passing a heated material through conduits in the compression tool (e.g., hot air heating, hot water heating, steam heating, compressed hot water heating, oil heating), or a combination thereof. The heating can be performed prior to contacting the compression tool and the layer stack, such that the compression tool is preheated to a preheat temperature at the time of contacting of the compression tool and the layer stack. The heating can be performed before the compressing of the layer stack, during the compressing of the layer stack, after the compressing of the layer stack, or a combination thereof. The heating can be performed to any suitable temperature, such that the method can be performed as described herein, such as at or above the melting point of one or more resins in the layer stack, at or above the glass transition temperature of one or more resins in the layer stack, at or above the heat deflection temperature of one or more resins in the layer stack, or any combination thereof.

[0069] At the time of insertion in the compression tool, the layer stack can have any suitable temperature. In some embodiments, the layer stack can have a temperature near room temperature (e.g., about 15 °C to 28 °C). In some embodiments, the layer stack can be preheated at the time of insertion into the compression tool, such as to a temperature at or below the melting point of one or more resins in the layer stack, at or below the glass transition temperature of one or more resins in the layer stack, at or below the heat deflection temperature of one or more resins in the layer stack, or any combination thereof.

[0070] The method can include curing the resin the first and second layers to the form the filler-reinforced solid resin multilayered structure. For thermoplastic resins, curing can include allowing the thermoplastic resin to cool to the point of solidification, which can occur during the compressing or after the compressing. For thermoset resins, curing can include heating or otherwise irradiating the thermoset resin to induce crosslinking or other chemical reactions to provide a solidified and cured thermoset resin. For a layer stack including both thermoset and thermoplastic resins, curing can include bom of the curing mechanisms described in this paragraph.

[0071] The method can include cooling the compression tool during or after the compressing and before removing the filler-reinforced solid resin muiltilayered structure from the compression tool. The cooling can be performed in any suitable manner, such as by passing a cooling fluid through conduits in the compression tool. The cooling can be to any suitable temperature, such as to below the solidification temperature of a thermoplastic resin in the layer stack, or to any other suitable temperature.

[0072] The portions of the compression tool that contact the layer stack during the compressing can have a minimal degree of smoothness to impart smoothness to the resulting filler-reinforced solid resin multilayered structure, which can result in improved optical properties (e.g., high transmittance, lower haze). The portions of the compression tool that contact the layer stack during the compressing can have any suitable degree of roughness (e.g., with the surface that contacts the layer stack during the compressing being free of surface roughness higher man the maximum surface roughness specified), such as equal to or smoother than B3 in USA SPI standard, equal to or smoother than A3 in USA SPI standard, or less smooth than, equally smooth to, or more smooth than about B2, Bl , A3, A2, or about Al or more. The portions of the compression tool that contact the layer stack can have a surface roughness of about 2 microns or less, about 1 nm to about SO micron, about 1 nm to about 10 microns, about 0.1 nm to about SO nm, about 1 nm to about 10 nm, or greater than, equal to, or less than about 50 microns, 40, 30, 20, 18, 16, 14, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 microns, 100 nm, 90 nm, 80, 70, 60, 50, 40, 35, 30, 25, 20, 18, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5 nm, or about 0.1 nm or less. The portions of the compression tool that contact the layer stack can have a surface roughness VDI 3400 of about 26 or less, such as less then, equal to, or greater man about 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0.1, 0.01, or about 0.001 or less.

Examples

[0073] The glass fiber-filled film used was an extruded or injection molded 65:35 by weight mixture of bisphenol-A based polycarbonate having a refractive index of 1.586 and poly(l,4-cyclohexylidene cyclohexane-1,4- dicarboxylate) having a refractive index of 1.510, which included 20 wt% chopped glass fibers from Nippon Electric Glass Co., Ltd., (NEG) that were about 3 mm in length and about 13 microns in diameter, having a refractive index of 1.S67. The extruded glass fiber filled film had a thickness of 100 microns, 12S microns, or 250 microns, and had a refractive index of about 1.55 to about 1.57.

[0074] The transmittance measured was total transmittance. The transmittance and haze were measured by a Haze Gard from BYK-Gardner with illuminant CIE-C using a Halogen D65 (CIE standard) light source at 380 nm to 780 nm. The flexural modulus, stiffness, and increment rate were measured using a 3-point flexural test with Universal Test machine from MTS Systems Corporation, using a speed of 10 mm/s and a specimen of 30 mm width, 2 mm thickness, and a span of 50 mm Dynatup impact testing was performed using a Dynatup ® machine from Instron ® , with 30 cm height and 4.78 kg tub loading.

[0075] Pencil hardness was measured using ASTM D3363, using 1 kg load. The hardness test included five repeated measurements by the pencil hardness test procedure, with the pencil hardness being the hardness of the pencil used for the test when none of the measurements result in scratches or other disturbances to the appearance. For example, if a 3H pencil is used for five test procedures and no appearance disturbances occur, then the pencil hardness of the material is at least 3H. Pencil hardness is measured on the scale of 9B (softest), 8B, 7B, 6B, 5B, 4B, 3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H (hardest).

Part I. Multilavered structure.

[00761 The pressed glass fiber-free film used was SABIC Xylex™

X7509HP, having a thickness of 2 mm, which had a refractive index of about 1.55 to about 1.57, was formed by preheating a tool to 70 °C, placing the film in the tool and heating the tool to 160 °C, then pressing in the tool at 160 °C for 5 seconds, and then cooling by injecting 40 °C water into cooling channels in the press.

[0077] The press used herein had polished surfaces that contacted and pressed the layer stack on the level of A3 smoothness under the USA SPI (society of plastic industry) standard. The press used herein was preheated to the designated temperature before being contacted to the uncured layer stack. Example 1.1. Interface quality.

[0078] Two extruded 120 micron-thick glass fiber-filled films were placed on the top and bottom of a pressed glass fiber-free film such that the extrusion direction of each extruded film was in parallel. The press was preheated to 160 °C. The stack was pressed from the top and bottom sides using the press at 160 °C for 5 seconds, followed by cooling by injecting 40 °C water into cooling channels in the press. FIG. 4 illustrates a scanning electron microscope (SEM) image of the laminated structure formed. No interface was visible between the layers of the laminated structure formed.

[0079] Three extruded 120 micron-thick glass fiber-filled films were placed together such that the extrusion direction of each extruded film was in parallel. The press was preheated to 160 °C. The stack was pressed from the top and bottom sides using the press at 160 °C for 5 seconds, followed by cooling by injecting 40 °C water into cooling channels in the press. FIG. 5 illustrates a SEM image of the laminated structure formed. No interface was visible between the layers of the laminated structure formed.

[0080] The lack of a visible interface between the layers indicated strong adhesion between the layers and no void issues.

Example 1.2 A. Optical quality and flexural modulus.

[0081] On top on a pressed glass fiber-free film was laid 0, 1 , 2, or 3 layers of extruded 120 micron-thick glass fiber-filled film such that the extrusion direction of each extruded film was in parallel. The press was preheated to 160 °C. The stacks were pressed from the top and bottom sides using the press at 160 °C for 5 seconds, followed by cooling by injecting 40 °C water into cooling channels in the press. The transmittance and haze of the resulting structures were measured and are given in Table 1.

[0082] Table 1.

[0083] The flexural modulus and increment rate of the structures measured and are given in Table 2.

[0084] Table 2.

Example 1.2B. Optical quality, flexural modulus, and impact strength.

[0085] On top on a pressed glass fiber-free film was laid 0 or 1 layer of extruded 120 micron- or 2S0 micron-thick glass fiber-filled film. The press was preheated to 160 °C. The stacks were pressed from the top and bottom sides using the press at 160 °C for S seconds, followed by cooling by injecting 40 °C water into cooling channels in the press. The transmittance and haze of the resulting laminated structures were measured and are given in Table 3.

[0086] Table 3.

[0087] The flexural modulus and increment rate of the structures were measured and are given in Table 4.

[0088] Table 4.

[0089] The impact energy and retention rate of the structures were measured using a Dynatup impact test and are given in Table 5, with a 2 mm- thick injection molded glass fiber-filled film formed from Sample 1.2B, measured as a comparative sample.

[0090] Table 5.

FIG. 6 illustrates a photograph of the ductile failure mode observed in the Dynatup impact testing of the Sample including the 120 micron Xylex™ X7509HP layer.

[0092] FIG. 7 illustrates a photograph of the brittle failure mode observed in the Dynatup impact testing of the injection molded Sample 1.2B. Example 1.3. Surface hardness.

[0093] On top on a pressed glass fiber-free film was laid 0 or 1 layer of extruded 120 micron-thick glass fiber-filled film. The press was preheated to 160 °C. The stacks were pressed from the top and bottom sides using the press at 160 °C for 5 seconds, followed by cooling by injecting 40 °C water into cooling channels in the press. A 2 mm-thick injection molded film formed from Sample 1.3, which was a polycarbonate and polyester blend that included 15 wt% chopped glass fibers, was used as a comparative sample. The pencil hardness of the resulting structures was measured and is given in Table 6.

[0094] Table 6.

Example 2.1. Manufacture of Sample 2.1.

[0095] An extruded glass fiber-filled sheet having a thickness of 100 microns, a width of 142 mm, and a length of 200 m, was formed using a Randcasde extruder using a processing temperature of 304 °C, a pressure of 580 bar, a roller temperature of 250 °C, a line speed of 2.1 m/min, with the screw at 52 RPM. A section of the extruded glass fiber-filled sheet was hot pressed on each side of a SABIC Lexan™ 9030 sheet (polycarbonate) having a thickness of 2 mm using a Lauffer RMV 12S lamination system having a vacuum chamber, fully automated loading, a 700 X 610 mm plate, a maximum temperature of 200 °C, and a 300 N/cm 2 pressure. The glass fiber-filled sheets were rectangular, had the same size, and fit within the perimeter of the Lexan 9030 sheet to leave a border around the edges that was free of the glass fiber-filled sheets. On each side, the press included, from outside to inside, a hot plate that is fluid-heated and cooled, a metal plate between the hot plate and stainless steel plate, a pressure pad, a stainless steel plate polished to #400 grit (B2 smoothness under USA SPI standard), and an anti-sticking film. The press was preheated to the designated temperature before being contacted to the uncured layer stack. FIGS. 8A, 8B, and 8C illustrate the temperature, press pressure, and vacuum used during the hot pressing, respectively, wherein USL means upper specification limit and LSL means lower specification limit. Sample 2.1 had a final thickness of 2.0 mm.

Example 2.2. Characterization of Sample 2.1.

[0096] FIG. 9 is a photograph of Sample 2.1 from Example 2.1 , in which is visible the inner structure including the glass fiber-filled sheet, and the border structure that is free of the glass fiber-filled sheet. Table 7 illustrates the transmittance, haze, and stiffness of the inner structure and the border structure of Sample 2.1.

[0097] Table 7.

[0098] FIG. 10 illustrates the roughness of the surface of Sample 2.1 as measured using a Bruker ContourGT-13D profiler from the inner structure to the border structure, showing that the maximum step between the inner structure and the border structure is about 5000 nm.

[0099] The terms and expressions that have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the embodiments of the present invention. Thus, it should be understood that although the present invention has been specifically disclosed by specific embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those of ordinary skill in the art, and that such modifications and variations are considered to be within the scope of embodiments of the present invention. Additional Embodiments.

[00100] The following exemplary embodiments are provided, the numbering of which is not to be construed as designating levels of importance:

[00101] Embodiment 1 provides a filler-reinforced solid resin multilayered structure, the structure comprising: a laminated layer stack comprising an inner structure comprising a first resin layer that is a filler- reinforced resin layer comprising a cured product of a filler and a resin, and a second resin layer comprising a cured product of a resin, wherein the second resin layer is different than the first resin layer; and a border structure comprising at least one edge of the second resin layer extending past a corresponding edge of the first resin layer, the border structure being free of the first resin layer.

[00102] Embodiment 2 provides the filler-reinforced solid resin multilayered structure of Embodiment 1, wherein the first resin layer is adjacent to the second layer in the layer stack.

[00103] Embodiment 3 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-2, wherein in the layer stack the first resin layer is separated from the second layer by one or more other layers.

[00104] Embodiment 4 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-3, wherein the layer stack comprises more than one first resin layer.

[00105] Embodiment S provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-4, wherein the layer stack comprises

layer (al), the first resin layer; and

layer (bl), the second resin layer. [00106] Embodiment 6 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-5, wherein layer (al) is fully in contact with layer (bl).

[00107] Embodiment 7 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-6, wherein the layer stack further comprises layer (a2), another first resin layer that is the same or different than layer (al) and is disposed on an opposite face of layer (bl) as layer (al).

[00108] Embodiment 8 provides the filler-reinforced solid resin multilayered structure of Embodiment 7, wherein the layer (a2) is fully in contact with layer (bl ).

[00109] Embodiment 9 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 7-8, wherein the layer (a2) comprises a filler and a resin.

[00110] Embodiment 10 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 7-9, wherein the layer (a2) is the same as layer (al).

[00111] Embodiment 11 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-10, wherein the layer stack comprises more than one second resin layer.

[00112] Embodiment 12 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-11, wherein the inner structure is rectangular.

[00113] Embodiment 13 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-12, wherein the first resin layer is a filler-reinforced monoextruded resin layer.

[00114] Embodiment 14 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-13, wherein the first resin layer has a thickness of about 1 micron to less than about 1 mm.

[00115] Embodiment 15 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-14, wherein the first resin layer has a thickness of about 10 microns to about 500 microns.

[00116] Embodiment 16 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-15, wherein the filler in the first resin layer is about 0.001 wt% to about 50 wt% of the first resin layer. [00117] Embodiment 17 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-16, wherein the filler in the first resin layer is about 5 wt% to about 40 wt% of the first resin layer.

[00118] Embodiment 18 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-17, wherein the filler in the first resin layer comprises carbon fibers, glass beads, glass flakes, glass fibers, or a combination thereof.

[00119] Embodiment 19 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-18, wherein the filler in the first resin layer is glass fibers.

[00120] Embodiment 20 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-19, wherein the filler in the first resin layer is glass, wherein the filler has a refractive index of about 1.450 to about 1.800.

[00121] Embodiment 21 provides the filler-reinforced solid resin multilayered structure of Embodiment 20, wherein the filler in the first resin layer has a refractive index of about 1.500 to about 1.600.

[00122] Embodiment 22 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-21, wherein the resin in the first resin layer is about 50 wt% to about 99.999 wt% of the first resin layer.

[00123] Embodiment 23 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-22, wherein the resin in the first resin layer is about 60 wt% to about 95 wt% of the first resin layer.

[00124] Embodiment 24 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-23, wherein the resin in the first resin layer is a thermoplastic resin.

[00125] Embodiment 25 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-24, wherein the resin in the first resin layer comprises an acrylonitrile butadiene styrene (ABS) polymer, an acrylic polymer, a celluloid polymer, a cellulose acetate polymer, a cycloolefin copolymer (COC), an ethylene- vinyl acetate (EVA) polymer, an ethylene vinyl alcohol (EVOH) polymer, a fluoroplastic, an ionomer, an acrylic/PVC alloy, a liquid crystal polymer (LCP), a polyacetal polymer (POM or acetal), a polyacrylate polymer, a polymethylmethacrylate polymer (PMMA), a polyacrylonitrile polymer (PAN or acrylonitrile), a polyamide polymer (PA, such as nylon), a polyamide-imide polymer (PAI), a polyaryletherketone polymer (PAEK), a polybutadiene polymer (PBD), a polybutylene polymer (PB), a polybutylene terephthalate polymer (PBT), a polycaprolactone polymer (PCL), a polychlorotrifluoroethylene polymer (PCTFE), a

polytetrafluoroethylene polymer (PTFE), a polyethylene terephthalate polymer (PET), a polycyclohexylene dimethylene terephthalate polymer (PCT), a poly(cyclohexylenedimethylene terephthalate-co-ethylene glycol) (PCTG), a Tritan™ copolyester, a polycarbonate polymer (PC), poly(l,4-cyclohexylidene cyclohexane-1 ,4-dicarboxylate) (PCCD), a polyhydroxyalkanoate polymer

(PHA), a polyketone polymer (PK), a polyester polymer, a polyethylene polymer (PE), apolyetheretherketone polymer (PEEK), a polyetherketoneketone polymer (PEKK), a polyetherketone polymer (PEK), a polyetherimide polymer (PEI), a polyethersulfone polymer (PES), a polyethylenechlorinate polymer (PEC), a polyimide polymer (PI), a polylactic acid polymer (PLA), a polymethylpentene polymer (PMP), a polyphenylene oxide polymer (PPO), a polyphenylene sulfide polymer (PPS), a polyphthalamide polymer (PPA), a polypropylene polymer, a polystyrene polymer (PS), a polysulfone polymer (PSU), a polytrimethylene terephthalate polymer (PTT), a polyurethane polymer (PU), a polyvinyl acetate polymer (PVA), a rxjlyvinyl chloride polymer (PVC), a polyvinylidene chloride polymer (PVDC), a polyamideimide polymer (PAI), a polyarylate polymer, a polyoxymethylene polymer (POM), a styrene-acrylonitrile polymer (SAN), or a combination thereof.

[00126] Embodiment 26 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-25, wherein the resin in the first resin layer comprises an aromatic polycarbonate and poly(l,4- cyclohexylidene cyclohexane- 1 ,4-dicarboxyiate).

[00127] Embodiment 27 provides the filler-reinforced solid resin multilayered structure of Embodiment 26, wherein the resin in the first resin layer has a weight ratio of the aromatic polycarbonate to the poly(l ,4- cyclohexylidene cyclohexane- 1,4-dicarboxylate) of about 70:30 to about 60:40.

[00128] Embodiment 28 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-27, wherein the resin in the first resin layer comprises a bisphenol A-based polycarbonate and poly(l,4- cyclohexylidene cyclohexane- 1 ,4-dicarboxylate).

[00129] Embodiment 29 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-28, wherein the resin in the first resin layer has a refractive index of about 1.450 to about 1.800.

[00130] Embodiment 30 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-29, wherein the resin in the first resin layer has a refractive index of about 1.500 to about 1.600.

[00131] Embodiment 31 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-30, wherein the resin in the first resin layer and the filler in the first resin layer have refractive indexes that are within about 0.080.

[00132] Embodiment 32 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-31, wherein the resin in the first resin layer and the filler in the first resin layer have refractive indexes that are within 0.030.

[00133] Embodiment 33 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-32, wherein the filler in the first resin layer is oriented in the extrusion direction of the first resin layer.

[00134] Embodiment 34 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-33, wherein about 50 wt% to about 100 wt% of the filler in the first resin layer has a longest dimension oriented within about 45 degrees of the extrusion direction of the first resin layer.

[00135] Embodiment 35 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-34, wherein about 90 wt% to about 100 wt% of the filler in the first resin layer has a longest dimension oriented within about 45 degrees of the extrusion direction of the first resin layer.

[00136] Embodiment 36 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-35, wherein the inner structure has a higher stiffness than the border structure.

[00137] Embodiment 37 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-36, wherein the inner structure has a stiffness at 2.0 mm thickness of about 0.1 GPa-mm 4 to about 40 GPa-mm 4 . Embodiment 38 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-37, wherein the inner structure has a stiffness at 2.0 mm thickness of about 1 GPa-mm 4 to about 10 GPa-mm 4 .

[00138] Embodiment 39 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-38, wherein the inner structure has a transmittance at 380-780 nm at 2.0 mm thickness of about 60% to about 95%.

[00139] Embodiment 40 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-39, wherein the inner structure has a transmittance at 380-780 nm at 2.0 mm thickness of about 85% to about 95%.

[00140] Embodiment 41 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-40, wherein the inner structure has a haze at 380-780 nm at 2.0 mm thickness of about 0.2% to about 20%.

[00141] Embodiment 42 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-41, wherein the inner structure has a haze at 380-780 nm at 2.0 mm thickness of about 1 % to about 10%.

[00142] Embodiment 43 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-42, wherein the inner structure has a hardness of about 2B to about 9H.

[00143] Embodiment 44 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-43, wherein the inner structure has a hardness of about F to about 3H.

[00144] Embodiment 45 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-44, wherein the border structure is a border on each edge of the inner structure.

[00145] Embodiment 46 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-45, wherein the border structure is a rectangular border. [00146] Embodiment 47 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-46, wherein an outer face of the border structure is substantially flush to an outer face of the inner structure.

[00147] Embodiment 48 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-47, wherein an outer face of the border structure is substantially flush to an outer face of the first resin layer.

[00148] Embodiment 49 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-48, wherein a distance between a plane corresponding to the outer face of the border structure and a plane corresponding to the outer face of the border structure is about 1 nm to about 1 mm.

[00149] Embodiment SO provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1 -49, wherein a distance between a plane corresponding to the outer face of the border structure and a plane corresponding to the outer face of the border structure is about 1 micron to about 20 microns.

[00150] Embodiment SI provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-50, wherein the second layer is an extruded layer.

[00151] Embodiment 52 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-51, wherein the second layer is an injection molded layer.

[00152] Embodiment S3 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-S2, wherein the second resin layer is free of filler.

[00153] Embodiment 54 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-S3, wherein the second resin layer has a thickness of about 1 micron to about 100 mm.

[00154] Embodiment SS provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-S4, wherein the second resin layer has a thickness of about 10 microns to about 10 mm

[00155] Embodiment 56 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-55, wherein the resin in the second resin layer comprises an acrylonitrile butadiene styrene (ABS) polymer, an acrylic polymer, a celluloid polymer, a cellulose acetate polymer, a cycloolefin copolymer (COC), an ethylene- vinyl acetate (EVA) polymer, an ethylene vinyl alcohol (EVOH) polymer, a fluoroplastic, an ionomer, an acrylic/PVC alloy, a liquid crystal polymer (LCP), a polyacetal polymer (POM or acetal), a polyacrylate polymer, a polymethylmethacrylate polymer (PMMA), a polyacrylonitrile polymer (PAN or acrylonitrile), a polyamide polymer (PA, such as nylon), a polyamide-imide polymer (PAI), a polyaryletherketone polymer (PAEK), a polybutadiene polymer (PBD), a polybutylene polymer (PB), a polybutylene terephthalate polymer (PBT), a polycaprolactone polymer (PCL), a polychlorotrifluoroethylene polymer (PCTFE), a

polytetrafluoroethylene polymer (PTFE), a polyethylene terephthalate polymer (PET), a polycyclohexylene dimethylene terephthalate polymer (PCT), a poly(cyclohexylenedimethylene terephthalate-co-ethylene glycol) (PCTG), a Tritan™ copolyester, a polycarbonate polymer (PC), poly(l,4-cyclohexylidene cyclohexane-1 ,4-dicarboxylate) (PCCD), a polyhydroxyalkanoate polymer

(PHA), a polyketone polymer (PK), a polyester polymer, a polyethylene polymer (PE), a polyetheretherketone polymer (PEEK), a polyetherketoneketone polymer (PEKK), a polyetherketone polymer (PEK), a polyetherimide polymer (PEI), a polyethersulfone polymer (PES), a polyethylenechlorinate polymer (PEC), a polyimide polymer (PI), a polylactic acid polymer (PLA), a polymethylpentene polymer (PMP), a polyphenylene oxide polymer (PPO), a polyphenylene sulfide polymer (PPS), a polyphthalamide polymer (PPA), a polypropylene polymer, a polystyrene polymer (PS), a polysulfone polymer (PSU), a polytrimethylene terephthalate polymer (PTT), a polyurethane polymer (PU), a polyvinyl acetate polymer (PVA), a polyvinyl chloride polymer (PVC), a polyvinylidene chloride polymer (PVDC), a polyamideimide polymer (PAI), a polyarylate polymer, a polyoxymethylene polymer (POM), a styrene-acrylonitrile polymer (SAN), or a combination thereof.

[00156] Embodiment 57 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-56, wherein the resin in the second resin layer has a refractive index of 1.450 to about 1.800.

[00157] Embodiment 58 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-57, wherein the resin in the second resin layer has a refractive index of 1.500 to about 1.600. [00158] Embodiment 59 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-S8, wherein the layer stack comprises layer (al ), the first resin layer; layer (bl), the second resin layer; and layer (a2), another first resin layer comprising a resin and a filler; wherein an outer face of the border structure is substantially flush to an outer face of layer (al), and an opposite outer face of the border structure is substantially flush to an outer face of layer (a2).

[00159] Embodiment 60 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-S9, wherein the border structure has a stiffness at 2.0 mm thickness of about 0.1 GPa- mm 4 to about 40 GPa-mm 4 .

[00160] Embodiment 61 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1 -60, wherein the border structure has a stiffness at 2.0 mm thickness of about 0.2 GPa-mm 4 to about S GPa-mm 4 .

[00161] Embodiment 62 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-61 , wherein the border structure has a higher transmittance at 380-780 nm than the inner structure.

[00162] Embodiment 63 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1 -62, wherein the border structure has a transmittance at 380-780 nm at 2.0 mm thickness of about 60% to about 95%.

[00163] Embodiment 64 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-63, wherein the border structure has a transmittance at 380-780 nm at 2.0 mm thickness of about 85% to about 95%.

[00164] Embodiment 65 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-64, wherein the border structure has a lower haze at 380-780 nm man the inner structure.

[00165] Embodiment 66 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-65, wherein the border structure has a haze at 380-780 nm at 2.0 mm thickness of about 0.1% to about 20%. [00166] Embodiment 67 provides the filler-reinforced solid resin multilayered structure of any one of Embodiments 1-66, wherein the border structure has a haze at 380-780 nm at 2.0 mm thickness of about 0.1 % to about 5%.

[00167] Embodiment 68 provides a method of forming the filler- reinforced solid resin multilayered structure of any one of Embodiments 1 -67, the method comprising: forming a layer stack comprising the first resin layer and the second resin layer; contacting the layer stack and a compression tool; and compressing the layer stack with the compression tool, to laminate the layers of the layer stack and form the filler-reinforced solid resin multilayered structure.

[00168] Embodiment 69 provides the method of claim 68, wherein the compressing of the layer stack with the compression tool comprises hot pressing.

[00169] Embodiment 70 provides the method of any one of Embodiments 68-69, further comprising heating the layer stack before the compressing of the layer stack, during the compressing of the layer stack, after the compressing of the layer stack, or a combination thereof.

[00170] Embodiment 71 provides the method of any one of Embodiments 68-70, further comprising cooling the layer stack during the compressing of the layer stack, after the compressing of the layer stack, or a combination thereof.

[00171] Embodiment 72 provides the method of any one of Embodiments 68-71, wherein the compression tool comprises a press or a roller.

[00172] Embodiment 73 provides the method of any one of Embodiments 68-72, further comprising preheating the compression tool prior to the compressing of the layer stack.

[00173] Embodiment 74 provides the method of Embodiment 73, wherein the preheating comprises preheating to equal to or greater than a melting point or glass transition temperature of the resin in each of the layers in the layer stack.

[00174] Embodiment 75 provides the method of any one of Embodiments 68-74, further comprising curing the resin in the first and second layers to form the filler-reinforced solid resin multilayered structure.

[00175] Embodiment 76 provides the method of Embodiment 75, wherein the curing occurs during the compressing.

[00176] Embodiment 77 provides the method of any one of Embodiments 68-76, further comprising cooling the compression tool during or after the compressing and before removing the filler-reinforced solid resin multilayered structure from the compression tool.

[00177] Embodiment 78 provides the method of any one of Embodiments 68-77, further comprising extruding the first resin layer.

[00178] Embodiment 79 provides the method of any one of Embodiments 68-78, wherein the portions of the compression tool that contact the layer stack have a roughness equal to or smoother than B3 in USA SPI standard.

[00179] Embodiment 80 provides the method of any one of Embodiments 68-79, wherein the portions of the compression tool that contact the layer stack have a roughness equal to or smoother than A3 in USA SPI standard.

[00180] Embodiment 81 provides the filler-reinforced solid resin multilayered structure or method of any one or any combination of

Embodiments 1-80 optionally configured such that all elements or options recited are available to use or select from.