Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FIXED CALIPER BODY FOR A DISC BRAKE DISC
Document Type and Number:
WIPO Patent Application WO/2019/162871
Kind Code:
A1
Abstract:
The present invention relates to a fixed brake caliper (1) for a disc brake disc (2), - said disc (2) comprising opposite braking surfaces (3, 4) and axial-symmetric disc body (5) adapted to rotate about a rotation axis (A-A) defining an axial direction (X-X), said disc body (5) develops radially along a radial direction (R-R) orthogonal to said axial direction (X-X), as well as along a circumferential direction (C-C) orthogonal both to said axial direction (X-X) and to said radial direction (R-R); said fixed caliper (1) comprising: a first half-body (6) comprising at least one first housing (7) for a first thrust device (8) to generate a first braking action; said first half-body (6) being adapted to face either directly or indirectly a first braking surface (3) of said braking surfaces (3, 4) of said disc (2); a second half-body (9) comprising at least one second housing (10) for a second thrust device (11) to generate a second braking action; said second half-body (9) being adapted to face either directly or indirectly a second braking surface (4) of said braking surfaces (3, 4) of said disc (2); at least one first bridge element (12) to connect and support said second half-body (9) to said first half-body (6); said at least one bridge element (12) comprising at least one first guiding and supporting bridge surface (13) oriented according to a first predetermined resting plane (14) and at least one second guiding and supporting bridge surface (15) oriented according to a second predetermined resting plane (16); wherein said first half-body (6) comprises at least one first protrusion (17) which protrudes in a cantilevered manner in axial direction (X-X) towards the opposite second half-body (9); said second half-body (9) comprises at least one second protrusion (18) which protrudes in a cantilevered manner in axial direction (X-X) towards the opposite first half-body (6); said first half-body (6), said second half-body (9) and said at least one bridge element (12) are three mutually separable components; and wherein said at least one first protrusion (17) delimits a first guiding and resting half- body surface (19) oriented according to said first predetermined resting plane (14) and parallel to said at least one first bridge surface (13) when said bridge element (12) is connected to said first half-caliper (6); said at least one second protrusion (18) delimits a second guiding and resting half-body surface (20) oriented according to said second predetermined resting plane (16) and parallel to said at least one second bridge surface (15) when said bridge element (12) is connected to said second half-caliper (9); said at least one bridge element (12) firmly rests said at least one first bridge surface (13) thereof against said first half- body surface (19) by connecting and orienting said at least one bridge element (12) to said first half-body (6), creating a rest for said at least one bridge element (12) in circumferential direction (C-C); said at least one bridge element (12) firmly rests said at least one second bridge surface (15) thereof against said second half-body surface (20) by connecting and orienting said at least one bridge element (12) to said second half-body (9) in circumferential direction (C-C).

Inventors:
BARALE, Pietro (Via Brembo 2, Curno Bergamo, I-24035, IT)
MILANESI, Andrea (Via Brembo 2, Curno Bergamo, I-24035, IT)
Application Number:
IB2019/051419
Publication Date:
August 29, 2019
Filing Date:
February 21, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRENI BREMBO S.P.A. (Via Brembo 25, Curno, I-24035, IT)
International Classes:
F16D65/00; F16D55/228; F16D65/18; F16D55/00; F16D65/78
Domestic Patent References:
WO2010077374A12010-07-08
WO2012059894A22012-05-10
WO2017021874A12017-02-09
Foreign References:
US20060231354A12006-10-19
US20130264155A12013-10-10
GB1160713A1969-08-06
EP1167804A12002-01-02
Attorney, Agent or Firm:
CRIPPA, Paolo Ernesto et al. (Via Senato 8, Milano, I-20121, IT)
Download PDF:
Claims:
CLAIMS

1. A caliper body, for example of fixed type (1), for a disc brake disc (2 ) ,

- said disc (2) comprising opposite braking surfaces (3, 4) and an axial-symmetric disc body (5) adapted to rotate about a rotation axis (A-A) defining an axial direction (X-X) , said disc body (5) develops radially along a radial direction (R-R) orthogonal to said axial direction (X-X) , as well as along a circumferential direction (C-C) orthogonal both to said axial direction (X-X) and to said radial direction (R-R) ;

said fixed caliper body (1) comprising:

- a first half-body (6) comprising at least a first housing (7) for a first thrust device (8) to generate a first braking action; said first half-body (6) being adapted to face either directly or indirectly a first braking surface (3) of said braking surfaces (3, 4) of said disc (2);

- a second half-body (9) comprising at least a second housing (10) for a second thrust device (11) to generate a second braking action; said second half-body (9) being adapted to face either directly or indirectly a second braking surface (4) of said braking surfaces (3, 4) of said disc (2);

- at least a first bridge element (12) to connect and support said second half-body (9) to said first half-body (6); said at least one bridge element (12) comprising at least a first guiding and supporting bridge surface (13) oriented according to a first predetermined resting plane (14) and at least a second guiding and supporting bridge surface (15) oriented according to a second predetermined resting plane (16);

wherein

- said first half-body (6) comprises at least a first protrusion

(17) which protrudes in a cantilevered manner in axial direction (X- X) towards the opposite second half-body (9);

- said second half-body (9) comprises at least a second protrusion

(18) which protrudes in a cantilevered manner in axial direction (X- X) towards the opposite first half-body (6);

- said first half-body (6), said second half-body (9) and said at least one bridge element (12) are three mutually separable components;

characterized in that

- said at least a first protrusion (17) delimits a first guiding and resting half-body surface (19) oriented according to said first predetermined resting plane (14) and parallel to said at least a first bridge surface (13) when said bridge element (12) is connected to said first half-caliper (6);

- said at least a second protrusion (18) delimits a second guiding and resting half-body surface (20) oriented according to said second predetermined resting plane (16) and parallel to said at least a second bridge surface (15) when said bridge element (12) is connected to said second half-caliper (9);

- said at least one bridge element (12) firmly rests said at least a first bridge surface (13) thereof against said first half-body surface (19) by connecting and orienting said at least one bridge element (12) to said first half-body (6), creating a rest for said at least one bridge element (12) in circumferential direction (C-C) ;

- said at least one bridge element (12) firmly rests said at least a second bridge surface (15) thereof against said second half-body surface (20) by connecting and orienting said at least one bridge element (12) to said second half-body (9) in circumferential direction (C-C) .

2 . A caliper body (1) according to claim 1, wherein:

- said fixed caliper body (1) comprises at least a first bridge element (21) to connect and support said second half-body (9) to said first half-body (6); said at least one bridge element (21) comprises at least a third guiding and supporting bridge surface (22) oriented according to a third predetermined resting plane (23) and at least a fourth guiding and supporting bridge surface (24) oriented according to a fourth predetermined resting plane (25);

- said first half-body (6) comprises at least a third protrusion

(26) which protrudes in a cantilevered manner in axial direction (X- X) towards the opposite second half-body (9);

- said second half-body (9) comprises at least a fourth protrusion

(27) which protrudes in a cantilevered manner in axial direction (X- X) towards the opposite first half-body (6);

- said at least a third protrusion (26) delimits a third guiding and resting half-body surface (28) oriented according to said third predetermined resting plane (23) and parallel to said at least a third bridge surface (22) when said bridge element (21) is connected to said first half-caliper (6);

- said at least a fourth protrusion (27) delimits a fourth guiding and resting half-body surface (29) oriented according to said fourth predetermined resting plane (25) and parallel to said at least a fourth bridge surface (24) when said bridge element (21) is connected to said second half-caliper (9);

- said at least a second bridge element (21) firmly rests said at least a third bridge surface (22) thereof against said third half body surface (28) by connecting and orienting said at least one bridge element (21) to said first half-body (6), creating a rest for said at least one bridge element (21) in circumferential direction (C-C) ;

- said at least one bridge element (21) firmly rests said at least a fourth bridge surface (24) thereof against said fourth half-body surface (29) by connecting and orienting said at least one bridge element (21) to said second half-body (9), in circumferential direction (C-C) .

3 . A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said at least a first and/or second bridge element (12, 21) each comprise a first and a second guiding and radial resting bridge surface (30, 31) which, when said bridge element (12, 21) is connected to said first and second half-calipers (6, 9), are oriented according to radial (R-R) and circumferential (C-C) directions ;

- said first and second half-body (6, 9) comprise two first and two second guiding and radial resting half-body surfaces (32, 33);

- said at least a first and/or second bridge element (12, 21) firmly rests the first and second guiding and radial resting bridge surfaces (30, 31) thereof against said first and second guiding and radial resting half-body surfaces (32, 33) by connecting and orienting said at least a first and/or second bridge element (12, 21) to said first and second half-bodies (6, 9), creating a rest for said at least one bridge element (21) in axial direction (X-X) ; and/or wherein

- at least one of said protrusions (17, 18, 26, 27) comprises at least one pad supporting surface (34) adapted to be arranged transversely to said opposite braking surfaces (3, 4) to receive the resting of at least one brake pad (35) in circumferential direction (C-C) .

4 . A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said first and second half-bodies (6, 9) are made of a first material and said at least one bridge element (12, 21) is made of at least a second material, different from said first material; and/or wherein - said first material is aluminum; and/or wherein

- said second material is a fiber-reinforced composite material, e.g. materials with ceramic and/or polymeric matrix fiber-reinforced with carbon and/or glass and/or basalt and/or alumina and/or silicon carbide and/or silicon fibers; and/or wherein

- said first material has a greater density than said second material; and/or wherein

- said second material has a modulus of elasticity greater than the modulus of elasticity of the first material.

5 . A fixed caliper body (1) according to any one of the preceding claims, wherein:

- in each half-body (6, 9), said first and/or second guiding and resting half-body surface (19, 20) and said first and/or second guiding and radial resting half-body surface (32, 33) are flat surfaces; and/or wherein

- in each half-body (6, 9), said first guiding and resting half-body surface (19, 20) and said first guiding and radial resting half-body surface (32, 33) are mutually orthogonal surfaces; and/or wherein

- in each half-body (6, 9), said second guiding and resting half body surface (19, 20) and said second guiding and radial resting half-body surface (32, 33) are mutually orthogonal surfaces; and/or wherein

- in each half-body (6, 9), said first and/or second guiding and resting half-body surface (19, 20) and said first and/or second guiding and radial resting half-body surface (32, 33) are adjacent in pairs to form an edge; and/or wherein

- in each bridge element (12, 21), said first and/or second guiding and resting bridge surface (13, 15) and said first and/or second guiding and radial resting bridge surface (30, 31) are flat surfaces; and/or wherein

- in each bridge element (12, 21), said first guiding and resting bridge surface (13, 15) and said first guiding and radial resting bridge surface (30, 31) are mutually orthogonal surfaces; and/or

- in each bridge element (12, 21), said second guiding and resting bridge surface (13, 15) and said second guiding and radial resting bridge surface (30, 31) are mutually orthogonal surfaces; and/or wherein

- in each bridge element (12, 21), said first and/or second guiding and resting bridge surface (13, 15) and said first and/or second guiding and radial resting bridge surface (30, 31) are adjacent in pairs to form an edge; and/or wherein

- said at least one bridge element (12, 21) forms an inverted "U"- shaped bridge housing (39) adapted to be arranged straddling said brake disc (2); and/or wherein

- said bridge housing (39) is shielded in its portion facing the brake disc (2) by a heat-guard sheet (44) fixed to said at least one bridge element (12, 21); and/or wherein

said at least one bridge element (12, 21) comprises a first and a second bridge side wall (36, 37) which at least partially faces said first and second half-bodies (6, 9) and an arc-shaped connection portion of the bridge (38); and/or wherein

- said first and a second bridge side walls (36, 37) form a first and a second opposite guiding and radial resting bridge surface (30, 31); and/or wherein

- said first and second half-bodies (6, 9) comprise a half-body through hole (40); and wherein

- said first and second bridge elements (12, 21) comprise a bridge threaded hole (41); and wherein

- said fixed caliper body (1) comprises at least one stud (42) accommodated in said half-body through hole (40) and screwed into said threaded housing of the bridge (41) firmly connecting said at least one bridge element (12, 21) to said half-body (6, 9); and/or wherein

- each of said first and second guiding and radial resting half-body surfaces (32, 33) of said first and second half-bodies (6, 9) comprise a half-body through hole (40); and wherein

- each of said first and second guiding and radial resting bridge surfaces (30, 31) of said first and second bridge elements (12, 21) comprise a threaded bridge housing (41); and wherein

- at least two studs (42) are accommodated in said half-body through holes (40) and screwed into said facing bridge threaded housings (41) firmly connecting said first and second bridge elements (12, 21) to said first and second half-bodies (6, 9); and/or wherein - said threaded bridge housing (41) comprises a bridge threaded bush (43) keyed into housings provided in the body of said first and/or second bridge elements (12, 21); and/or wherein

- said threaded bridge housing (41) comprises a threaded bridge bush (43) embedded in the body of said first and/or second bridge elements (12, 21); and/or wherein

- said threaded bridge housing (41) comprises a threaded bridge bush (43) co-molded with the body of said first and/or second bridge elements (12, 21); and/or wherein

- said half-body through hole (40) and said bridge threaded housing (41) are directed along said axial direction (X-X) and are adapted to face said braking surfaces (3, 4) of said brake disc (2) .

6. A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said first and second half-bodies (6, 9) are fluidically supplied to feed brake fluid to said at least first and second housings (7, 10) to apply a thrust action with said at least first and second thrust elements (8, 11) on brake pads (35) adapted to abut on said braking surfaces (3, 4) of said brake disc (2) to apply a braking action; and/or wherein

- said first half-body (6) is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies (6, 9) are mutually fluidically connected by means of brake fluid feeding pipe (45) which externally embraces said at least one bridge element (12 and/or 21); and/or wherein

- said first half-body (6) is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies (6, 9) are mutually fluidically connected by means of brake fluid feeding pipe (46) embedded, e.g. co-molded or co-fused, with said at least one bridge element (12 and/or 21); and/or wherein

- said first half-body (6) is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies (6, 9) are mutually fluidically connected by means of a working brake fluid feeding pipe (48) obtained by perforating at least one bridge element (12 and/or 21) .

7 . A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said first and second bridge elements (12, 21) are mutually connected by a bridge crossbar (49); and/or wherein

- said first and second bridge elements (12, 21) are mutually connected by a bridge crossbar (49) and said first and second bridge elements (12, 21) and said bridge crossbar (49) are in one piece; and/or wherein

- said bridge crossbar (49) faces a vehicle and is adapted to connect the fixed caliper body (1) to a hub-holder; and/or wherein

- said bridge crossbar (49) comprises bridge crossbar connecting housings (50) to a hub-holder, adapted to receive connecting screws of the fixed caliper body (1) to said hub-holder; and/or wherein - said bridge crossbar connection housings (50) comprise hub-holder connecting bushes (51), adapted to receive connecting screws of the fixed caliper body (1) to said hub-holder; and/or wherein

- said hub-holder connecting bushes (51) are keyed into the bridge crossbar connecting housings (50); and/or wherein

- said hub-holder connecting bushes (51) are embedded in said bridge crossbar (49); and/or wherein

- said hub-holder connecting bushes (51) are co-molded or co-fused in said bridge crossbar (49) .

8. A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said first and second bridge elements (12, 21) are mutually separate components and each connected to said first and second half-bodies (6, 9); and/or wherein

- said first half-body (6) faces a vehicle and comprises body connection extensions (52) forming body connection housings (53) adapted to receive screws for connecting the fixed caliper body (1) to a hub-holder.

9 . A fixed caliper body (1) according to any one of the preceding claims, wherein:

- said first and/or second half-body (6, 9) each comprises two first and/or second housings (7, 10) for accommodating at least two first and/or second thrust devices (8, 11) so as to apply multiple thrust actions to associated brake pads (35) on each opposite braking surfaces (3, 4) of the disc brake (2) .

10 . A brake caliper (54) comprising a caliper body as defined in any one of the claims from 1 to 9 and comprising at least two opposite thrust devices (8, 11) and at least two opposite brake pads (35) .

Description:
DESCRIPTION

"Fixed caliper body for a disc brake disc"

[0001] . Field of the invention

[0002] . The present invention relates to a disc brake caliper body, preferably of fixed caliper type, which can be used on vehicles and in particular, but not necessarily, intended for high- performance motor cars .

[0003] . The present invention further relates to a disc brake caliper and to a disc brake assembly having a caliper body of the type specified above.

[0004] . Background art

[0005] . In a disc brake, the brake caliper is generally arranged straddling the outer peripheral margin of a brake disc, adapted to rotate about a rotation axis (A-A) defining an axial direction (X- X) . In a disc brake, a radial direction (R-R) , arranged substantially orthogonal to said axial direction (X-X) , and a punctually tangential or altogether circumferential direction (C-C) , orthogonal to both said axial direction (X-X) and said radial direction (R-R) , is further defined.

[0006] . It is known that a caliper body of fixed caliper disc brake can be associated with a disc so as to maintain its distance from the disc unchanged. Said known caliper body comprises a first half-body, adapted to accommodate first means for generating a braking action, arranged facing a first braking surface of an outer side of said disc, as well as a second half-body, adapted to accommodate second means for generating the braking action, arranged facing a second braking surface of an inner side of said disc. Said first and second half-bodies are connected, by means of fixing means, to two bridge elements arranged straddling the disc.

[0007] . The expression "outer side" means the side of the disc brake assembly which faces towards the outside of the vehicle when it is fitted on the hub and stub axle, or hub-holder, of the wheel. Similarly, the expression "inner side" means the side of the assembly which faces towards the inside of the vehicle when it is fitted on the wheel hub.

[0008] . As known, the discs for disc brakes comprise a bell, adapted to associate the disc with a vehicle hub, from which an annular portion, named braking band, intended to cooperate with pads of a caliper, extends.

[0009] . Said braking band is intended to cooperate with calipers for disc brake adapted to apply a braking action on the vehicle, whereby applying, by means of pads, friction on opposite surfaces of the two plates, named braking surfaces.

[0010] . It is known that during the operation of the brakes, the friction between the pads of the brake calipers and the braking surfaces of the braking band generates a high amount of heat which needs to be disposed of.

[0011] . Indeed, the generated heat determines the onset of many undesired phenomena, such as, for example, the deformation of the braking band, the formation of cracks on the braking surfaces or localized state transformations of the material constituting the braking band which, in turn, lead to the deterioration of the braking band itself.

[0012] . As mentioned above, during the braking of a vehicle, the significant and high forces which bias the caliper body are a clamping action and a braking action. These actions are produced by the means adapted to generate the braking action, e.g. at least one pair of cylinder and piston assemblies, accommodated in the half bodies, the pistons of which act by means of the pads on the opposite braking surfaces of the disc.

[0013] . The clamping action of the pads against the braking surfaces of the disc is directed axially and is balanced by the structure of the caliper body which is arranged straddling the disc. In particular, such action is contrasted by the bridge elements which, by embracing the disc, form closed force loops. This action biases the caliper body, determining a spreading of the bridge elements, or, in other words, a bending of the caliper body along the axes in tangential direction, or with concavity about radial axes .

[0014] . The braking action is instead directed tangentially and in particular in the rotation direction of the disc. This action is transmitted by the disc to the pads and contrasted by shoulders provided in the bridge elements, so as to be released onto the supporting means of the caliper body which are rigidly coupled, for example, to a stub axle or hub-carrier of a wheel of the vehicle. This action biases the bridge elements whereby also deforming portions thereof necessary to connect the half-bodies. Furthermore, the braking action is released onto the supporting means only on the side of the caliper body facing the inner side of the disc, whereby also determining a bending of the caliper body about the radial axes .

[0015] . The aforesaid actions are notoriously not uniformly distributed on the caliper body and are of a magnitude which is variable over time, whereby causing, in addition to deformations of the caliper body which are sometimes unacceptable for a correct operation of the disc brake, also vibrations and undesired screeching .

[0016] . Therefore, the need is strongly felt to suggest a caliper body of fixed caliper disc brake, which has such structural and functional characteristics as to overcome the aforesaid disadvantages described with reference to the prior art and in particular to lighten the caliper body but at the same time strengthen the bridge elements arranged straddling the disc brake and at the same time simplify the construction of the caliper body and especially the working of the thrust device housings, e.g. of the cylinders adapted to accommodate the thrust pistons adapted to bias the brake pads .

[0017] . In some prior art solutions, especially for medium-to-low- performance vehicles, it is known to use a disc brake of the floating caliper type, in which a caliper having a single piston or multiple pistons but all on the same side of the disc brake is supported in the condition that the brake caliper can be freely moved with respect to a supporting element, or bracket, which is fixed to a fixed part of a vehicle, e.g. to the hub-holder, to support the pair of brake pads and with a sliding constraint which allows the supporting element to float or move freely with respect to the disc. As mentioned, in the case of the aforesaid disc brake with floating caliper, the piston is arranged only on one side of the rotor, i.e. the piston is arranged only on the inner side, or vehicle side, of the disc.

[0018] . In the case of high-performance vehicles, opposed piston disc brakes have become common, because they can produce an excellent braking force, by virtue of their greater efficiency. In the disc brake of the opposed piston type, pistons are provided on both sides of a disc brake. During braking operations, a pair of pads is pushed against both opposite braking surfaces of the disc brake rotor by both opposite pistons. In this opposite piston disc brake, the rotor of the brake disc is interposed between the cylinders adapted to accommodate the pistons and the open sides of the cylinders are opposite to one another.

[0019] . Therefore, in these high-performance vehicles, the need is strongly felt for a caliper body of great stiffness able to maintain the orthogonality between the bridge elements and the half-bodies facing the braking surfaces of the brake disc.

[0020] . Document GB2214581 by Freni Brembo S.p.A. shows a single block brake caliper body solution with opposed pistons or fixed caliper body.

[0021] . Indeed, this single-block caliper body has a structure in which the elongated portions facing the disc brake have a plurality of cylinders integrated in a single body. However, the structure described in the aforesaid patent publication is disadvantageous in that it requires time and complex special methods for working the cylinders and assembling the disc brake of the opposed piston type made in a single block. Therefore, it is impossible to avoid an increase in production costs.

[0022] . In order to simplify the working of the cylinders, solutions are known in which the calipers are made in two halves and then joined.

[0023] . In this case, the body having a plurality of cylinders is divided into half-bodies having an attachment portion, or attachment half-body, to be connected to a stationary portion of a vehicle, e.g. a hub-holder, and also having a cylinder on the inner front side, and a portion or outer body having a cylinder on the outer front side. After both bodies have been worked to form the cylinders required in them, the half-bodies are connected and fixed to one another by bolts.

[0024] . Examples of these caliper bodies are known from GB936222 by DUNLOP RUBBER CO; US3261429 by Bendix Corp.; US5538105 by DAYTON WALTHER CORP and US5819886 by Robert Null.

[0025] . However, in the known structure mentioned above of the caliper in two parts, the bolts for attaching and fixing the inner body and the outer body to one another receive a braking torque which is given by the outer brake pad and biased by the pistons of the outer body, braking action generated by the friction caused between the outer side face of the rotor, or disc brake, and the outer pad in the braking process. It is therefore necessary for the bolts to withstand this braking torque. Therefore, the diameters of the bolts must be large in size, to the extent of increasing size and weight of the caliper body. The weight of the disc brake, which is supported in an end portion of the angle portion of a vehicle, or corner, becomes an unsprung weight, i.e. not suspended by elastic and/or damping elements. Accordingly, even when the weight of the disc brake increases only slightly, the running performance of a vehicle is also strongly biased by the increase of unsprung weight.

[0026] . Therefore, the need is strongly felt also to reduce the overall weight of the fixed brake caliper.

[0027] . This need, combined with the contrasting one of stiffening the caliper body and further the contrasting need of simplifying the working of the thrust means housings, has led to some known solutions which however do not optimize these conflicting requirements .

[0028] . For instance, there is the solution of US6260670 by AKEBONO BRAKE IND of two-part caliper, the solution of EP1303708B1 by Freni Brembo S.p.A. of three-part caliper, the solution of US2009236187 of CONTINENTAL TEVES AG & Co OHG of three-part caliper, the solution of US2006231354 by WARREN, the solution of US2010170755 by Robert Biggs and the solution of WO201491423 by Franco Iorio.

[0029] . The solution of US5515948 by Gilliland also shows a caliper in multiple parts connected together by calibrated pins extending straddling the disc brake. This known solution, in order to allow to have the desired strength and mechanical rigidity, requires however calibrated pins and connections between the different parts of considerable diameter whereby causing considerable radial dimensions of the caliper as a whole, resulting in a solution which is not very suited to the current requirements of a large-size brake disc rotor adapted to increase the range of action of the braking action which leaves very little space between itself and the inner surface of the rim of the vehicle wheel. Furthermore, this known solution which requires large-size steel pins is not optimal for the need of reducing the overall weight of the brake caliper.

[0030] . Therefore, the need remains strongly felt to provide a fixed caliper body in separable parts but which ensures an accurate alignment of the bridges and of the elongated elements which ensures a perfect orthogonality between the components, which orthogonality does not create problems for pads, such as jamming and non-uniform wear thereof.

[0031] . Therefore, the need remains strongly felt to improve the accuracy with which the connection elements, or bridges, are connected to the half-bodies, in order to stiffen the parallelogram created by the half-bodies and the bridges. The further need is felt to provide a supporting surface of the bridge connection elements either parallel or perpendicular to the releasing plane of the braking action.

[0032] . The problem underlying the present invention is thus to provide a fixed caliper body and a caliper, which have structural and functional characteristics such as to satisfy the aforementioned requirements and at the same time solve the drawbacks mentioned with reference to the prior art.

[0033] . Solution

[0034] . It is the object of the present invention to provide a fixed caliper body, a brake caliper and a braking device in which the aforesaid mutually conflicting requirements are achieved and optimized .

[0035] . This and other objects and advantages are achieved by a caliper body according to claim 1 and by a brake caliper according to claim 10.

[0036] . Some advantageous embodiments are the subject of the dependent claims .

[0037] . The analysis of this solution shows that the suggested solution allows obtaining a caliper body which is light but at the same time able to support high braking actions without being excessively deformed and without exceeding in its overall dimensions .

[0038] . Furthermore, the suggested solution allows considerably simplifying the working operations of the half-bodies of the caliper .

[0039] . Furthermore, the suggested solution allows obtaining a braking comfort much higher than the solutions of the prior art, and consequently a reduction of the vibrations and in particular an absence of the vibrations which cause screeching.

[0040] . Figures

[0041] . Further features and advantages of the device and of the brake disc and of the method will be apparent from the following description of its preferred embodiments, by way of non-limiting examples, with reference to the accompanying figures, in which:

[0042] . - figure 1 is a vehicle side axonometric view of a fixed brake caliper according to the invention;

[0043] . - figure 2 shows an axonometric view from a different point of view, again on vehicle side, of the caliper in figure 1;

[0044] . - figure 3 is a wheel side axonometric view of the caliper in figure 1;

[0045] . - figure 4 shows a radial view of the caliper in figure 1 from the rotation axis of the disc outwards;

[0046] . - figure 5 is an axonometric view of the caliper in figure

1 with parts separated;

[0047] . - figure 6 shows a vehicle side axonometric view of a component of the caliper in figure 1, and in particular a first and second bridge element joined by a bridge crossbar;

[0048] . - figure 7 is a wheel side axonometric view of the component of the caliper in figure 6, and in particular a first and second bridge element joined by a bridge crossbar;

[0049] . - figure 8 shows a wheel side axonometric view of the component in figure 6 with parts separated with connection bushes of the elongated elements to the half-bodies and of the caliper body to the hub-holder;

[0050] . - figure 9 is a vehicle side axonometric view of a brake caliper according to a further embodiment;

[0051] . - figure 10 shows a vehicle side axonometric view of the caliper in figure 9 according to a different angle; [0052] . - figure 11 is a radial view of the caliper in figure 9 from the rotation axis of the disc outwards;

[0053] . - figure 12 shows an axonometric view of the caliper in figure 9 with parts separated;

[0054] . - figure 13 is an axonometric view of a bridge element in which the partially transparent view allows highlighting the bushes present in it;

[0055] . - figure 14 is an axonometric view taken along the circumferential direction of the element in figure 13;

[0056] . - figure 15 is an axonometric view with parts partially separated and from the brake disc side of a caliper according to a further embodiment in which heat-guard sheets are associated with the bridge elements to protect them from the heat generated by the friction of the brake pads against the opposite braking surfaces of the brake disc during a braking action;

[0057] . - figure 16 shows a wheel side axonometric view of a brake caliper according to a further embodiment in which the bridge elements are made of fiber-reinforced composite material and in which a half-body has connections to the hub-holder;

[0058] . - figure 17 shows a vehicle side axonometric view of a brake caliper according to a further embodiment in which the bridge elements are made of fiber-reinforced composite material and in which a connection crossbar of the bridge elements has connections to the hub-holder;

[0059] . - figure 18 shows a disc side axonometric view of a half body of a caliper body according to the invention; [0060] . - figure 19 is an axonometric view with separate parts of the half-body in figure 18 in which connecting screws of the half body to bridge elements are added with separate parts;

[0061] . - figure 20 shows an axonometric view of a bridge element with two bushes for the fixing of connection screws of the bridge element to the half-bodies side-by-side in separate parts;

[0062] . - figure 21 shows a vehicle side axonometric view according to a further embodiment in which the feeding pipe of the brake fluid from a semi-body to the opposite half-body is shown with a dashed line and in which the portion of pipe which crosses the bridge element is formed by a pipe co-molded with the bridge element ;

[0063] . - figure 22 shows a vehicle side axonometric view according to a further embodiment in which the feeding pipe of the brake fluid from a semi-body to the opposite half-body is shown with a dashed line and in which the portion of pipe which crosses the bridge element is formed by piercing the bridge element.

[0064] . Description of some preferred embodiments

[0065] . According to a general embodiment, a fixed brake caliper 1 for a disc brake disc 2 is provided.

[0066] . Said disc 2 comprises opposite braking surfaces 3, 4 and an axial-symmetric disc body 5 adapted to rotate about a rotation axis A-A defining an axial direction X-X, said disc body 5 develops radially along a radial direction R-R orthogonal to said axial direction X-X, as well as along a circumferential direction C-C orthogonal both to said axial direction X-X and to said radial direction R-R.

[0067] . Said fixed caliper body 1 comprises a first half-body 6. Said first half-body 6 is adapted to face either directly or indirectly a first braking surface 3 of said braking surfaces 3, 4 of said disc 2.

[0068] . Said first half-body comprises at least one first housing 7 for a first biasing device 8 to generate a first braking action by applying a pressure on a brake pad 35 and make it abut against a first braking surface 3 of a brake disc 2.

[0069] . Said fixed caliper body 1 comprises a second half-body 9 comprising at least one second housing 10 for a second thrust device 11 to generate a second braking action.

[0070] . Said second half-body 9 is adapted to face either directly or indirectly a second braking surface 4 of said braking surfaces 3, 4 of said disc 2.

[0071] . Said fixed caliper body 1 comprises at least one second bridge element 12 to connect and support said second half-body 9 to said first half-body 6. Said at least one bridge element 12 comprises at least one first guiding and supporting bridge surface 13 oriented according to a first predetermined resting plane 14 and at least one second guiding and supporting bridge surface 15 oriented according to a second predetermined resting plane 16.

[0072] . Said first half-body 6 comprises at least one first protrusion 17 which protrudes in a cantilevered manner in axial direction X-X towards the opposite second half-body 9 or towards said brake disc 2 when the caliper is fitted on a vehicle. [0073] . Said second half-body 9 comprises at least one second protrusion 18 which protrudes in a cantilevered manner in axial direction X-X towards the opposite first half-body 6.

[0074] . Said first half-body 6, said second half-body 9 and said at least one bridge element 12 are three mutually separable components. By virtue of the modularity of the caliper with these half-bodies, it is possible to work the housings for the thrust devices fast and very accurately, whereby reducing construction tolerances, improving thrust accuracy and reducing the undesired asymmetrical deformations in the caliper body 1.

[0075] . Advantageously, said at least one first protrusion 17 delimits a first guiding and supporting semi-body surface 19 oriented, when said bridge element 12 is connected to said first half-caliper 6 and when the caliper is in working conditions, according to said first predetermined resting plane 14 parallel to said at least one first bridge surface 13.

[0076] . Said at least one second protrusion 18 delimits a second guiding and resting half-body surface 20 oriented according to said second predetermined resting plane 16 and parallel to said at least one second bridge surface 15 when said bridge element 12 is connected to said second half-caliper 9.

[0077] . Advantageously, said at least one bridge element 12 firmly rests said at least one first bridge surface 13 thereof against said first half-body surface 19 by connecting and orienting said at least one bridge element 12 to said first half-body 6, creating a rest for said at least one bridge element 12 in circumferential direction C- C.

[0078] . Advantageously, said at least one bridge element 12 firmly rests said at least one second bridge surface 15 thereof against said second half-body surface 20 by connecting and orienting said at least one bridge element 12 to said second half-body 9 in circumferential direction C-C.

[0079] . According to an embodiment, said fixed caliper body 1 comprises at least one first bridge element 21 to connect and support said second half-body 9 to said first half-body 6. Said at least one bridge element 21 comprises at least one third guiding and supporting bridge surface 22 oriented according to a third predetermined resting plane 23 and at least one fourth guiding and supporting bridge surface 24 oriented according to a fourth predetermined resting plane 25.

[0080] . Said first half-body 6 comprises at least one third protrusion 26 which protrudes in a cantilevered manner in axial direction X-X towards the opposite second half-body 9.

[0081] . Said second half-body 9 comprises at least one fourth protrusion 27 which protrudes in a cantilevered manner in axial direction X-X towards the opposite first half-body 6.

[0082] . Said at least one third protrusion 26 delimits a third guiding and resting half-body surface 28 oriented according to said third predetermined resting plane 23 and parallel to said at least one third bridge surface 22 when said bridge element 21 is connected to said first half-caliper 6.

[0083] . Said at least one fourth protrusion 27 delimits a fourth guiding and resting half-body surface 29 oriented according to said fourth predetermined resting plane 25 and parallel to said at least one fourth bridge surface 24 when said bridge element 21 is connected to said second half-caliper 9.

[0084] . Said at least one second bridge element 21 firmly rests said at least one third bridge surface 22 thereof against said third half-body surface 28 by connecting and orienting said at least one bridge element 21 to said first half-body 6, creating a rest for said at least one bridge element 21 in circumferential direction C- C.

[0085] . Said at least one bridge element 21 firmly rests said at least one fourth bridge surface 24 thereof against said fourth half body surface 29 by connecting and orienting said at least one bridge element 21 to said second half-body 9, in circumferential direction C-C.

[0086]. According to an embodiment, said at least one first and/or second bridge element 12, 21 each comprise a first and a second guiding and radial resting bridge surface 30, 31 which, when said bridge element 12, 21 is connected to said first and second half calipers 6, 9, are oriented according to radial R-R and circumferential C-C directions.

[0087] . Said first and second half-body 6, 9 comprise two first and two second guiding and radial resting half-body surfaces 32, 33.

[0088] . Said at least one first and/or second bridge element 12, 21 firmly rests its first and second guiding and radial resting bridge surfaces 30, 31 against said first and second guiding and radial resting half-body surfaces 32, 33 by connecting and orienting said at least one first and/or second bridge element 12, 21 to said first and second half-bodies 6, 9, creating a rest for said at least one bridge element 21 in axial direction X-X.

[0089] . According to an embodiment, at least one of said protrusions 17, 18, 26, 27 comprises at least one pad supporting surface 34 adapted to be arranged transversely to said opposite braking surfaces 3, 4 to receive the resting of at least one brake pad 35 in circumferential direction C-C .

[0090] . According to an embodiment, said first and second half bodies 6, 9 are made of a first material and said at least one bridge element 12, 21 is made of at least one second material, different from said first material.

[0091] . For example, said first material is aluminum.

[0092] . According to a further embodiment, said second material is a fiber-reinforced composite material.

[0093] . According to an embodiment, the matrix may be ceramic and/or polymeric fiber-reinforced with carbon and/or glass and/or basalt and/or alumina and/or silicon carbide and/or silicon fibers. According to an embodiment, the matrix may be reinforced with inserts made with high-rigidity ceramic preforms, inserted in the matrix e.g. of molten aluminum, e.g. by co-fusing.

[0094] . According to an embodiment, said first material has a higher density than said second material.

[0095] . According to an embodiment, said second material has a modulus of elasticity greater than the modulus of elasticity of the first material.

[0096] . According to an embodiment, in each half-body 6, 9, said first and/or second guiding and resting semi-body surfaces 19, 20 and said first and/or second guiding and radial resting semi-body surfaces 32, 33 are flat surfaces.

[0097] . According to an embodiment, in each half-body 6, 9, said first guiding and resting semi-body surfaces 19, 20 and said first guiding and radial resting semi-body surfaces 32, 33 are mutually orthogonal surfaces.

[0098] . According to an embodiment, in each half-body 6, 9, said second guiding and resting semi-body surfaces 19, 20 and said second guiding and radial resting semi-body surfaces 32, 33 are mutually orthogonal surfaces.

[0099] . According to an embodiment, in each half-body 6, 9, said first and/or second guiding and resting semi-body surface 19, 20 and said first and/or second guiding and radial resting semi-body surface 32, 33 are adjacent in pairs to form an edge.

[00100] . According to an embodiment, said first and/or second guiding and supporting half-body surface 19, 20 and said first and/or second radial guiding and supporting half-body surface 32, 33 are surfaces adjacent in pairs to form a centering system of the bridge element 12, 21 against the half-bodies 6, 9, whereby forming a parallelogram structure having particularly rigid characteristics and at the same time very small dimensions in radial direction R-R.

[00101] . According to an embodiment, in each bridge element 12, 21, said first and/or second guiding and resting bridge surfaces 13, 15 and said first and/or second guiding and radial resting bridge surfaces 30, 31 are flat surfaces.

[00102] . According to an embodiment, in each bridge element 12, 21, said first guiding and resting bridge surfaces 13, 15 and said first guiding and radial resting bridge surfaces 30, 31 are mutually orthogonal surfaces.

[00103] . According to an embodiment, in each bridge element 12, 21, said second guiding and resting bridge surface 13, 15 and said second guiding and radial resting bridge surface 30, 31 are mutually orthogonal surfaces.

[00104] . According to an embodiment, in each bridge element 12, 21, said first and/or second guiding and resting bridge surface 13, 15 and said first and/or second guiding and radial resting bridge surface 30, 31 are adjacent in pairs to form an edge. According to an embodiment, said first and/or second guiding and supporting bridge surface 13, 15 and said first and/or second radial guiding and supporting bridge surface 30, 31 can be flat surfaces, but also of other shapes, such as for example cylindrical or tapered to facilitate the centering of the bridge elements 12, 21 on said first and second half-body 6, 9.

[00105] . According to an embodiment, said first and/or second guiding and supporting bridge surfaces 13, 15 and said first and/or second radial guiding and supporting bridge surfaces 30, 31 are surfaces adjacent in pairs to form a centering system of the bridge element 12, 21 against the half-bodies 6, 9, whereby forming a parallelogram structure having particularly rigid characteristics and at the same time very small dimensions in radial direction R-R.

[00106] . According to an embodiment, said at least one bridge element 12, 21 forms an inverted "U"-shaped bridge housing 39 adapted to be arranged straddling said brake disc 2.

[00107] . According to an embodiment, said bridge housing 39 is shielded in its portion facing the brake disc 2 by a heat-guard sheet 44 fixed to said at least one bridge element 12, 21, e.g. by means of fixing screws. For example, a solution of heat-guard sheet is known from WO 2017/021874 A1 by the applicant.

[00108] . According to an embodiment, said at least one bridge element 12, 21 comprises a first and a second bridge side wall 36,

37 which at least partially faces said first and second half-body 6, 9 and an arc-shaped connection portion of the bridge 38.

[00109] . According to an embodiment, said first and one second bridge side walls 36, 37 form a first and a second opposite guiding and radial resting bridge surface 30, 31.

[00110] . According to an embodiment, said first and second half bodies 6, 9 comprise a half-body through hole 40.

[00111] . According to an embodiment, said first and second bridge elements 12, 21 comprise a threaded bridge housing 41.

[00112] . According to an embodiment, said fixed caliper body 1 comprises at least one stud 42 accommodated in said half-body through hole 40 and screwed into said threaded housing of the bridge 41 firmly connecting said at least one bridge element 12, 21 to said half-body 6, 9.

[00113] . According to an embodiment, each of said first and second guiding and radial resting semi-body surfaces 32, 33 of said first and second half-bodies 6, 9 comprise a through hole of the half-body

40.

[00114] . According to an embodiment, each of said first and second guiding and radial resting bridge surfaces 30, 31 of said first and second bridge elements 12, 21 comprise a threaded bridge housing 41.

[00115] . According to an embodiment, at least two studs 42 are accommodated in said half-body through holes 40 and screwed into said facing bridge threaded housings 41 firmly connecting said first and second bridge elements 12, 21 to said first and second half bodies 6, 9.

[00116] . According to an embodiment, said threaded bridge housing 41 comprises a bridge threaded bush 43 keyed into housings provided in the body of said first and/or second bridge elements 12, 21.

[00117] . According to an embodiment, said threaded bridge housing 41 comprises a threaded bridge bush 43 embedded in the body of said first and/or second bridge elements 12, 21.

[00118] . According to an embodiment, said threaded bridge housing 41 comprises a threaded bridge bush 43 co-molded with the body of said first and/or second bridge elements 12, 21.

[00119] . According to an embodiment, said half-body through hole 40 and said bridge threaded housing 41 are directed along said axial direction X-X and are adapted to face said braking surfaces 3, 4 of said brake disc 2.

[00120] . According to an embodiment, said first and second half bodies 6, 9 are fluidically supplied to feed brake fluid to said at least first and second housing 7, 10 to apply a thrust action with said at least first and second thrust element 8, 11 on brake pads 35 adapted to abut on said braking surfaces 3, 4 of said brake disc 2 to apply a braking action.

[00121] . According to an embodiment, said first half-body 6 is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies 6, 9 are mutually fluidically connected by means of brake fluid feeding pipe 45 which externally embraces said at least one bridge element 12 and/or 21.

[00122] . According to an embodiment, said first half-body 6 is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies 6, 9 are mutually fluidically connected by means of brake fluid feeding pipe 46 embedded, e.g. co-molded or co-fused, with said at least one bridge element 12 and/or 21.

[00123] . According to an embodiment, said first half-body 6 is arranged facing a vehicle and fluidically connected to the braking system; said first and second half-bodies 6, 9 are mutually fluidically connected by means of a working brake fluid feeding pipe 48 obtained by perforating at least one bridge element 12 and/or 21.

[00124] . According to an embodiment, said first and second bridge elements 12, 21 are mutually connected by a bridge crossbar 49.

[00125] . According to an embodiment, said first and second bridge elements 12, 21 are mutually connected by a bridge crossbar 49 and said first and second bridge elements 12, 21 and said bridge crossbar 49 are in one piece. [00126] . According to an embodiment, said bridge crossbar 49 faces a vehicle and is adapted to connect the fixed caliper body 1 to a hub-holder .

[00127] . According to an embodiment, said bridge crossbar 49 comprises bridge crossbar connection housings 50 to a hub-holder, adapted to receive connecting screws of the fixed caliper body 1 to said hub-holder.

[00128] . According to an embodiment, said bridge crossbar connection housings 50 comprise hub-holder connection bushes 51, adapted to receive connecting screws of the fixed caliper body 1 to said hub-holder.

[00129] . According to an embodiment, said hub-holder connection bushes 51 are keyed into bridge crossbar connection housings 50.

[00130] . According to an embodiment, said hub-holder connection bushes 51 are embedded in said bridge crossbar 49.

[00131] . According to an embodiment, said hub-holder connection bushes 51 are co-molded or co-fused in said bridge crossbar 49.

[00132] . According to an embodiment, said first and second bridge elements 12, 21 are mutually separate components and each connected to said first and second half-bodies 6, 9.

[00133] . According to an embodiment, said first half-body 6 faces a vehicle and comprises body connection extensions 52 forming body connection housings 53 adapted to receive screws for connecting the fixed caliper body 1 to a hub-holder.

[00134] . According to an embodiment, said first and/or second half bodies 6, 9 each comprise two first and/or second housings 7, 10 for accommodating at least two first and/or second thrust devices 8, 11 so as to apply multiple thrust actions to associated brake pads 35 on each opposite braking surfaces 3, 4 of the disc brake 2.

[00135] . The present invention further relates to a brake caliper 54 comprising a caliper body as defined in any one of the embodiments above and comprising at least two opposite thrust devices 8, 11 and at least two opposite brake pads 35.

[00136] . Those skilled in the art may make many changes and adaptations to the embodiments described above or may replace elements with others which are functionally equivalent in order to meet contingent needs without however departing from the scope of the appended claims .

LIST OF REFERENCES

1 fixed caliper body

2 disc brake disc

3 opposite braking surfaces

4 opposite braking surfaces

5 disc body

6 first half-body

7 first housing

8 first thrust device

9 second half-body

10 second housing

11 second thrust device

12 first bridge element

13 first guiding and supporting bridge surface

14 first predetermined resting plane

15 second guiding and supporting bridge surface

16 second predetermined resting plane

17 first protrusion

18 second protrusion

19 first guiding and supporting half-body surface

20 second guiding and supporting half-body surface

21 second bridge element

22 third guiding and supporting bridge surface

23 third predetermined resting plane

24 fourth guiding and supporting bridge surface

25 fourth predetermined resting plane

26 third protrusion

27 fourth protrusion

28 third guiding and supporting half-body surface

29 fourth guiding and supporting half-body surface

30 first radial guiding and supporting bridge surface

31 second radial guiding and supporting bridge surface

32 first radial guiding and supporting half-body surface 33 second radial guiding and supporting half-body surface

34 pad resting surface

35 brake pad

36 first side bridge side wall

37 second bridge side wall

38 bridge connection portion

39 bridge housing

40 half-body through hole

41 bridge threaded housing

42 stud

43 bridge threaded bush

44 heat-guard sheet

45 outer brake fluid feeding pipe

46 inner brake fluid feeding pipe

47 inner brake fluid feeding pipe

48 working brake fluid feeding pipe

49 bridge crossbar

50 bridge crossbar connection housings

51 hub-holder connection bushes

52 body connection extensions

53 body connection housings

54 brake caliper

A-A direction axial and rotation axis

X-X axial direction

R-R radial direction

C-C circumferential direction