Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLAME-RETARDANT POLYAMIDE COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2014/135256
Kind Code:
A1
Abstract:
The invention relates to a flame-retardant polyamide composition, containing as component A 1 to 96% by weight of one or more thermoplastic polyamides, as component B 2 to 25% by weight of dialkylphosphinic salt of the formula (I) and/or a diphosphinic salt of the formula (II) and/or the polymers thereof, wherein R1, R2 are the same or different C1-C6 alkyl, linear or branched or H: R3 C1-C10 alkylene, linear or branched, C6-C10 arylene, C7-C20 alkylarylene or C7-C20 arylalkylene; M Mg, Ca, AI, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K and/or a protonized nitrogen base; m is 1 to 4; n is 1 to 4; x is 1 to 4, as component C 1 to 20% by weight salt of the phosphorous acid, as component D 1 to 50% by weight of filler or reinforcing material, as component E 0 to 2% by weight of a carboxyl ester amide, as component F 0 to 1% of a phosphonite or a mixture of a phosphonite and a phosphate, and as component G 0 to 1% by weight of an ester or salt of long-chain aliphatic carboxylic acids (fatty acids), which typically have chain lengths of C14 to C 40, wherein the sum of the components is always 100% by weight.

Inventors:
HÖROLD SEBASTIAN (DE)
BAUER HARALD (DE)
SICKEN MARTIN (DE)
Application Number:
PCT/EP2014/000515
Publication Date:
September 12, 2014
Filing Date:
February 27, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CLARIANT INT LTD (CH)
International Classes:
C08K5/5313; C08K3/00; C08K3/32; C08K7/14; C08K13/02; C08K13/04; C08L77/06; C08K5/098; C08K5/101; C08K5/20; C08L77/00; C08L77/02
Domestic Patent References:
WO2012045414A12012-04-12
WO2003035732A12003-05-01
WO2013083251A12013-06-13
Foreign References:
EP1454948A22004-09-08
Other References:
See also references of EP 2964698A1
Attorney, Agent or Firm:
JACOBI, Carola et al. (DE)
Download PDF:
Claims:
Patentansprüche

1. Flammhemmende Polyamidzusammensetzung, enthaltend

als Komponente A 1 bis 96 Gew.-% eines oder mehrere thermoplastische

Polyamide, als Komponente B 2 bis 25 Gew.-% eines Dialkylphosphinsäuresalzes der Formel (I) und/oder eines Diphosphinsäuresalzes der Formel (II) und/oder deren Polymere,

worin

R1, R2 gleich oder verschieden sind und C-i-C-6-Alkyl, linear oder verzweigt oder H:

R3 Ci-Cio-Alkylen, linear oder verzweigt, C6-C-|0-Arylen, C7-C2o-Alkylarylen oder C7-C2o-Arylalkylen;

M Mg, Ca, AI, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K und/oder eine protonierte Stickstoff base;

m 1 bis 4;

n 1 bis 4;

x 1 bis 4

bedeuten,

als Komponente C 1 bis 20 Gew.-% eines Salzes der phosphorigen Säure als Komponente D 1 bis 50 Gew.-% Füll- oder Verstärkungsstoff,

als Komponente E 0 bis 2 Gew.-% eines Carboxylesteramids, als Komponente F 0 bis 1 Gew.-% eines Phosphonits oder einer Mischung aus einem Phosphonit und einem Phosphit und

als Komponente G 0 bis 1 Gew.-% eines Esters oder Salzes von langkettigen aliphatischen Carbonsäuren (Fettsäuren), die typischerweise Kettenlängen von C14 bis C40 aufweisen, wobei die Summe der Komponenten immer 100 Gew.-% beträgt.

2. Flammhemmende Polyamidzusammensetzung nach Anspruch 1 , enthaltend

15 bis 91 ,9 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

1 bis 50 Gew.-% Komponente D

0 bis 2 Gew.-% Komponente E,

0 bis 2 Gew.-% Komponente F und

0,1 bis 1 Gew.-% Komponente G.

3. Flammhemmende Polyamidzusammensetzung nach Anspruch 1 oder 2, enthaltend

16 bis 91 ,8 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

1 bis 50 Gew.-% Komponente D

0 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G.

4. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 3, enthaltend

16 bis 82,7 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

10 bis 50 Gew.-% Komponente D 0,1 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G. 5. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 4, enthaltend

26 bis 72,7 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

20 bis 40 Gew.-% Komponente D

0,1 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G. 6. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie einen Comparative Tracking Index aufweist gemessen nach der International Electrotechnical Commission Standard IEC-60112/3 von größer als 550 Volt aufweist. 7. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie eine Bewertung von V0 nach UL-94 von 3.2 mm bis 0,4 mm Dicke erreicht.

8. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie einen Glow Wire

Flammability Index nach IEC-60695-2-12 von 960°C bei 0,75 - 3 mm Dicke aufweist.

9. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Polyamid (PA) ausgewählt ist aus der Gruppe bestehend aus PA 6, PA 6,6, PA 4,6, PA 12, PA 6,10, PA 6T/66, PA 6T/6, PA 4T, PA 9T, PA 10T, Polyamid-Copolymere,

Polyamid-Blends sowie Kombinationen davon.

10. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es sich bei Komponente A um Polyamid 66 oder Copolymere oder Polymer Blends aus Polyamid 66 und Polyamid 6 handelt.

11. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Komponente A zu mindestens 75 Gew.-% aus Polyamid 66 und höchstens 25 Gew.-% aus

Polyamid 6 besteht.

12. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass es sich um einen Blend aus Polyamid 66 und einem amorphen, teilaromatischen Polyamid handelt.

13. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass bei der Komponente B R1, R2 gleich oder verschieden sind und Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl bedeuten.

14. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 13 , dadurch gekennzeichnet, dass bei der Komponente B R3 Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen oder n-Dodecylen; Phenylen oder Naphthylen; Methyl-phenylen, Ethyl- phenylen, tert.-Butylphenylen, Methyl-naphthylen, Ethyl-naphthylen oder

tert.-Butylnaphthylen; Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen oder Phenyl-butylen bedeutet.

15. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Salz der phosphorigen

Säure (Komponente C) der allgemeinen Formel (III)

[HP(=0)O2]2" M (III) entspricht, worin M Mg, Ca, AI, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na und/oder K bedeutet. 16. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass es sich bei dem Salz der phosphorigen Säure (Komponente C) um Aluminiumphosphit [AI(H2PO3)3], sekundäres Aluminiumphosphit [AI2(HPO3)3], basisches Aluminiumphosphit

[AI(OH)(H2PO3)2*2aq], Aluminiumphosphittetrahydrat [AI2(HP03)3*4aq],

Aluminiumphosphonat, AI7(HP03)9(OH)6(1 ,6-Hexandiamin)i,5*12H2O,

AI2(HP03)3*xAI203*nH2O mit x = 2,27 - 1 und/oder AI4H6Pi6Oi8 handelt.

17. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass es sich bei dem bei dem Salz der phosphorigen Säure um Aluminiumphosphit der Formeln (I), (II) und/oder (III) handelt, wobei

Formel (I) AI2(HP03)3x (H20)q umfasst und q 0 bis 4 bedeutet,

Formel (II) AI2,ooMz(HP03)y(OH)v x (H2O)w umfasst und M Alkalimetallionen, z 0,01 bis 1 ,5 und y 2,63 bis 3,5 und v 0 bis 2 und w 0 bis 4 bedeutet;

Formel (III) AI2,00(HPO3)u(H2PO3)t x (H20)s umfasst und u 2 bis 2,99 und 2 bis 0,01 und s 0 bis 4 bedeutet

und/oder es sich um Mischungen von Aluminiumphosphit der Formel (I) mit schwerlöslichen Aluminiumsalzen und stickstofffreien Fremdionen, um

Mischungen von Aluminiumphosphit der Formel (III) mit Aluminiumsalzen, um Aluminiumphosphit

[AI(H2PO3)3], um sekundäres Aluminiumphosphit [AI2(HPO3)3], um basisches Aluminiumphosphit [AI(OH)(H2P03)2*2aq], um Aluminiumphosphittetrahydrat

[AI2(HP03)3*4aq], um Aluminiumphosphonat, um AI7(HP03)9(OH)6(1 ,6- Hexandiamin)1 ,5*12H2O, um AI2(HPO3)3*xAI2O3*nH20 mit x = 2,27 - 1 und/oder AI H6Pi60i8 handelt.

18. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Komponente C eine mittlere Teilchengröße von 0,2 bis 100 pm aufweist.

19. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass es sich bei dem

verstärkenden Füllstoff um Glasfasern handelt.

20. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass es sich bei der

Komponente E um ein Derivat eines aromatischen Di- oder Tri- carboxyl(ester)amids handelt.

21. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass es sich bei Komponente E um N,N'-bis-piperdinyl-1 ,3-benzoldicarboxamid und/oder N,N'-bis(2, 2,6,6- tetramethyl-4-piperdinyl)-1 ,3-benzoldicarboxamid handelt.

22. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 21 , dadurch gekennzeichnet, dass es sich bei den

Phosphoniten (Komponente F) um solche der allgemeinen Struktur -[P(ORi)2]m (IV) handelt, wobei

R ein ein- oder mehrwertiger aliphatischer, aromatischer oder heteroaromatischer organischer Rest ist und

Ri eine Verbindung der

ist oder die beiden Reste R-i eine verbrückende Gruppe der Struktur (VI) bilden

mit

A direkter Bindung, O, S, Ci-Ci8-Alkylen (linear oder verzweigt), C-I-C-IS- Alkyliden (linear oder verzweigt),

in denen

R2 unabhängig voneinander Ci-Ci2-Alkyl (linear oder verzweigt), C1-C12- Alkoxy,

C5-Ci2-Cycloalkyl bedeuten und n 0 bis 5 sowie m 1 bis 4 bedeutet.

23. Flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass es sich bei der

Komponente G um Alkali-, Erdalkali-, Aluminium- und/oder Zinksalze von langkettigen Fettsäuren mit 14 bis 40 C-Atomen und/oder um

Umsetzungsprodukte von langkettigen Fettsäuren mit 14 bis 40 C-Atomen mit mehrwertigen Alkoholen, wie Ethylenglykol, Glycerin, Trimethylolpropan und/oder Pentaerythrit handelt

24. Ein dreidimensionaler Artikel umfassend die Zusammensetzung nach einem oder mehreren der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass es sich hierbei Formkörper, Spritzgussteile, Extrusionsmassen und -teile handelt

Description:
Beschreibung

Flammhemmende Polyamidzusammensetzung Die vorliegende Erfindung betrifft eine flammhemmende

Polyamidzusammensetzung sowie Formkörper, die diese flammhemmende Polyamidzusammensetzung enthalten.

Aufgrund ihrer chemischen Zusammensetzung sind viele Kunststoffe leicht brennbar. Um die von Kunststoffverarbeitern und teilweise vom Gesetzgeber geforderten hohen Flammschutzanforderungen erreichen zu können, müssen Kunststoffe in der Regel mit Flammschutzmitteln ausgerüstet werden. Hierzu sind eine Vielzahl unterschiedlicher Flammschutzmittel und

Flammschutzmittelsynergisten bekannt und auch kommerziell erhältlich. Aufgrund der vorteilhafteren Brandnebenerscheinungen bezüglich Rauchgasdichte und Rauchgaszusammensetzung sowie aus ökologischen Gründen werden nicht- halogenierte Flammschutzmittelsysteme seit einiger Zeit bevorzugt eingesetzt.

Unter den nicht-halogenierten Flammschutzmitteln haben sich insbesondere für thermoplastische Polymere die Salze von Phosphinsäuren (Phosphinate) als besonders wirksam erwiesen (DE-A-2 252 258 und DE-A-2 447 727. Dabei werden einige Derivate dieser Flammschutzmittelklasse insbesondere aufgrund ihres geringen negativen Einflusses auf die mechanischen Eigenschaften der thermoplastischen Formmassen geschätzt.

Darüber hinaus wurden synergistische Kombinationen von Phosphinaten mit bestimmten stickstoffhaltigen Verbindungen, insbesondere mit Melaminderivaten, gefunden, die in einer ganzen Reihe von Polymeren als Flammschutzmittel effektiver wirken, als die Phosphinate allein (WO-A-2002/28953, WO-A-97/01664 sowie DE-A-197 34 437 und DE-A-197 37 727).

Ferner wurde gefunden, dass die Flammschutzwirkung der verschiedenen Phosphinate in thermoplastischen Polymeren auch durch Zusätze kleiner Mengen anorganischer bzw. mineralischer Verbindungen, die keinen Stickstoff enthalten, deutlich verbessert werden kann und dass die genannten Zusätze auch die Flammschutzwirkung von Phosphinaten in Kombination mit stickstoffhaltigen Synergisten verbessern können (EP-A-0 024 167, WO-A-2004/016684)).

Bei der Verwendung von phosphinathaltigen Flammschutzmittelsystemen kam es insbesondere bei Verarbeitungstemperaturen oberhalb 300°C anfänglich zu partiellem Polymerabbau, zu Verfärbungen des Polymers und zur

Qualmentwicklung bei der Verarbeitung. Diese Schwierigkeiten ließen sich jedoch durch Zusatz von basischen oder amphoteren Oxiden, Hydroxiden, Carbonaten, Silikaten, Boraten oder Stannaten eindämmen (WO-A-2004/022640).

Die Verarbeitung von thermoplastischen Kunststoffen erfolgt überwiegend in der Schmelze. Die damit verbundenen Struktur- und Zustandsänderungen übersteht kaum ein Kunststoff, ohne sich in seiner chemischen Struktur zu verändern.

Vernetzungen, Oxidation, Molekulargewichtsänderungen und damit auch

Änderungen der physikalischen und technischen Eigenschaften können die Folge sein. Um die Belastung der Polymere während der Verarbeitung zu reduzieren, setzt man je nach Kunststoff unterschiedliche Additive ein.

Oft werden unterschiedlicher Additive gleichzeitig verwendet, von denen jedes eine bestimmte Aufgabe übernimmt. So werden Antioxidantien und Stabilisatoren eingesetzt, damit der Kunststoff ohne chemische Schädigung die Verarbeitung übersteht und anschließend lange Zeit gegen äußere Einflüsse wie Hitze,

UV-Licht, Witterung und Sauerstoff (Luft) stabil ist. Neben der Verbesserung des Fließverhaltens verhindern Gleitmittel ein zu starkes Kleben der

Kunststoffschmelze an heißen Maschinenteilen und wirken als Dispergiermittel für Pigmente, Füll- und Verstärkungsstoffe. Durch die Verwendung von Flammschutzmitteln kann die Stabilität von

Kunststoffen bei der Verarbeitung in der Schmelze beeinflusst werden.

Flammschutzmittel müssen häufig in hohen Dosierungen zugesetzt werden, um eine ausreichende Flammwidrigkeit des Kunststoffs nach internationalen Normen sicherzustellen. Aufgrund ihrer chemischen Reaktivität, die für die Flammschutzwirkung bei hohen Temperaturen erforderlich ist, können

Flammschutzmittel die Verarbeitungsstabilität von Kunststoffen beeinträchtigen. Es kann beispielsweise zu verstärktem Polymerabbau, zu Vernetzungsreaktionen, zu Ausgasungen oder Verfärbungen kommen.

Polyamide werden z. B. durch kleine Mengen von Kupferhalogeniden sowie aromatischen Aminen und sterisch gehinderten Phenole stabilisiert, wobei die Erzielung einer langfristigen Stabilität bei hohen Dauergebrauchstemperaturen im Vordergrund steht (H. Zweifel (Ed.): "Plastics Additives Handbook", 5 th Edition, Carl Hanser Verlag, München, 2000, Seiten 80 bis 84).

Insbesondere bei der Verwendung phosphorhaltiger Flammschutzmittel in

Polyamiden erwies sich die Wirkung der bisher beschriebenen Stabilisatoren als unzureichend, speziell um die bei der Verarbeitung auftretenden Effekte wie Verfärbung und Molekulargewichtsabbau, zu unterdrücken.

Es war daher Aufgabe der vorliegenden Erfindung, halogenfreie,

flammgeschützte, thermoplastische Polyamidzusammensetzungen (Formmassen) auf Basis phosphinathaltiger Flammschutzsysteme zur Verfügung zu stellen, die eine hohe thermische Stabilität aufweisen und keine Migrationseffekte zeigen bei gleichzeitig guter Fließfähigkeit und hohen elektrischen Werten (CTI > 550V) und gutem Flammschutz (UL94 VO bis 0.4 mm). Es wurde nun überraschend gefunden, dass die thermische Stabilität in

phosphinathaltigen flammgeschützten thermoplastischen Polyamiden deutlich verbessert und die Migrationsneigung verringert werden kann, wenn die

Formmasse zusätzlich zu den Phosphinaten (Komponente B) ein Salz der phosphorigen Säure (auch als Phosphonsäure bezeichnet) als Komponente C enthält. Bei dieser speziellen Kombination bleibt auch das ausgeglichene

Eigenschaftsprofil der Polyamide hinsichtlich elektrischer und mechanischer Eigenschaften erhalten. Darüber hinaus enthält die Polyamid-Zusammensetzung (Formmasse) als Komponente D Füll- und/oder Verstärkungsstoffe. Zudem kann die erfindungsgemäße Polyamidzusammensetzung als Komponente E

Carboxyl(ester)amide enthalten.

Weiterhin kann die erfindungsgemäße Polyamidzusammensetzung als

Komponente F ein Phosphonit oder ein Phosphonit/Phosphit-Gemisch und als Komponente G einen Ester oder ein Salz von langkettigen aliphatischen

Carbonsäuren (Fettsäuren), die typischerweise Kettenlängen von C14 bis C 40 aufweisen, enthalten.

Gegenstand der Erfindung ist daher eine flammhemmende

Polyamidzusammensetzung, enthaltend

als Komponente A 1 bis 96 Gew.-% eines oder mehrere thermoplastische

Polyamide, als Komponente B 2 bis 25 Gew.-% eines Dialkylphosphinsäuresalzes der Formel (I) und/oder eines Diphosphinsäuresalzes der Formel (II) und/oder deren Polymere,

worin

R 1 , R 2 gleich oder verschieden sind und CrC 6 -Alkyl, linear oder verzweigt oder H:

R 3 Ci-C 10 -Alkylen, linear oder verzweigt, C 6 -Ci 0 -Arylen, C 7 -C 2 o -Alkylarylen oder C 7 -C 2 o -Arylalkylen;

M Mg, Ca, AI, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K und/oder eine protonierte Stickstoff base; m 1 bis 4;

n 1 bis 4;

x 1 bis 4

bedeuten

als Komponente C 1 bis 20 Gew.-% Salz der phosphorigen Säure

als Komponente D 1 bis 50 Gew.-% Füll- oder Verstärkungsstoff,

als Komponente E 0 bis 2 Gew.-% eines Carboxylesteramids,

als Komponente F 0 bis 1 Gew.-% eines Phosphonits oder einer Mischung aus einem Phosphonit und einem Phosphit und

als Komponente G 0 bis 1 Gew.-% eines Esters oder Salzes von langkettigen aliphatischen Carbonsäuren (Fettsäuren), die typischerweise Kettenlängen von C bis C 4 o aufweisen, wobei die Summe der Komponenten immer 100 Gew.-% beträgt. Bevorzugt enthält die flammhemmende Polyamidzusammensetzung

15 bis 91 ,9 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

1 bis 50 Gew.-% Komponente D

0 bis 2 Gew.-% Komponente E,

0 bis 2 Gew.-% Komponente F und

0,1 bis 1 Gew.-% Komponente G.

Besonders bevorzugt enthält die flammhemmende Polyamidzusammensetzung 16 bis 91 ,8 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

1 bis 50 Gew.-% Komponente D

0 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G.

Insbesondere bevorzugt enthält die flammhemmende Polyamidzusammensetzung 16 bis 82,7 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

10 bis 50 Gew.-% Komponente D

0,1 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G.

Eine weitere bevorzugte flammhemmende Polyamidzusammensetzung enthält 26 bis 72,7 Gew.-% Komponente A,

5 bis 20 Gew.-% Komponente B,

2 bis 10 Gew.-% Komponente C,

20 bis 40 Gew.-% Komponente D

0,1 bis 2 Gew.-% Komponente E,

0,1 bis 1 Gew.-% Komponente F und

0,1 bis 1 Gew.% Komponente G.

Bevorzugt ist die flammhemmende Polyamidzusammensetzung dadurch gekennzeichnet, dass sie einen Comparative Tracking Index aufweist gemessen nach der International Electrotechnical Commission Standard IEC-60112/3 von größer als 550 Volt aufweist.

Die flammhemmende Polyamidzusammensetzung ist auch dadurch

gekennzeichnet, dass sie eine Bewertung von V0 nach UL-94 von 3.2 mm bis 0.4 mm Dicke erreicht.

Bevorzugt weist die flammhemmende Polyamidzusammensetzung einen Glow Wire Flammability Index nach IEC-60695-2-12 von 960°C bei 0,75 - 3 mm Dicke auf.

Bevorzugt ist das Polyamid (PA) ausgewählt aus der Gruppe PA 6, PA 6,6, PA 4,6, PA 12, PA 6,10, PA 6T/66, PA 6T/6, PA 4T, PA 9T, PA 10T, Polyamid- Copolymere, Polyamid-Blends sowie Kombinationen davon. Bevorzugt handelt es sich bei Komponente A um Polyamid 66 oder Copolymere oder Polymer Blends aus Polyamid 66 und Polyamid 6. Bevorzugt besteht die Komponente A zu mindestens 75 Gew.-% aus Polyamid 66 und höchstens 25 Gew.-% aus Polyamid 6.

Bevorzugt handelt es sich auch um einen Blend aus Polyamid 66 und einem amorphen, teilaromatischen Polyamid.

Bevorzugt sind bei der Komponente B R 1 , R 2 gleich oder verschieden und bedeuten Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, tert.-Butyl, n-Pentyl und/oder Phenyl. Bevorzugt bedeutet bei der Komponente B R 3 Methylen, Ethylen, n-Propylen, iso-Propylen, n-Butylen, tert.-Butylen, n-Pentylen, n-Octylen oder n-Dodecylen; Phenylen oder Naphthylen; Methyl-phenylen, Ethyl-phenylen, tert.-Butylphenylen, Methyl-naphthylen, Ethyl-naphthylen oder tert.-Butylnaphthylen; Phenyl-methylen, Phenyl-ethylen, Phenyl-propylen oder Phenyl-butylen.

Bevorzugt entspricht das Salz der phosphorigen Säure (Komponente C) der allgemeinen Formel (III)

[HP(=O)0 2 ] 2" M m+ (III) entspricht, worin M Mg, Ca, AI, Sb, Sn, Ge, Ti, Zn, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na und/oder K bedeutet.

Bevorzugt handelt es sich bei dem Salz der phosphorigen Säure (Komponente C) um Aluminiumphosphit [AI(H2P0 3 ) 3 ], sekundäres Aluminiumphosphit [AI 2 (HPO3)3_ , basisches Aluminiumphosphit [AI(OH)(H 2 P0 3 ) 2 * 2aq],

Aluminiumphosphittetrahydrat [AI 2 (HPO3)3*4aq], Aluminiumphosphonat, AI 7 (HP0 3 )9(OH) 6 (1 ,6-Hexandiamin) 1 ,5*12H 2 O, ΑΙ 2 (ΗΡθ3) 3 *χΑΐ2θ3 * ηΗ 2 Ο mit x = 2,27 - 1 und/oder AI H 6 Pi 6 0 18 .

Bei dem Salz der phosphorigen Säure (Komponente C) handelt es sich bevorzugt auch um Aluminiumphosphite der Formeln (I), (II) und/oder (III), wobei

Formel (I) AI 2 (HPO 3 ) 3 (H 2 0) q umfasst und q 0 bis 4 bedeutet,

Formel (II) AI 2 ,ooM z (HP0 3 )y(OH)v x (H 2 O) w umfasst und

M Alkalimetallionen, z 0,01 bis 1 ,5 und y2,63 bis 3,5 und v 0 bis 2 und w 0 bis 4 bedeutet;

Formel (III) AI 2 ,oo(HP0 3 )u(H 2 PO 3 )t x (H 2 O) s umfasst und u 2 bis 2,99 und t 2 bis 0,01 und s 0 bis 4 bedeutet

und/oder um Mischungen von Aluminiumphosphit der Formel (I) mit

schwerlöslichen Aluminiumsalzen und stickstofffreien Fremdionen, um

Mischungen von Aluminiumphosphit der Formel (III) mit Aluminiumsalzen, um Aluminiumphosphit [AI(H2P0 3 )3], um sekundäres Aluminiumphosphit [AI 2 (HPO 3 )3] , um basisches Aluminiumphosphit [AI(OH)(H 2 P0 3 ) 2 *2aq], um

Aluminiumphosphittetrahydrat [AI 2 (HPO 3 ) 3 * 4aq],um Aluminiumphosphonat, um AI^HPOaMOHM .e-Hexandiamin^ ^h O, um AI 2 (HPO 3 ) 3* xAI 2 0 3 * nH 2 0 mit x = 2,27 - 1 und/oder AI 4 H 6 P 16 0 18 .

Bevorzugt weist die Komponente C eine mittlere Teilchengröße von 0,2 bis

00 μιτι auf.

Bevorzugt handelt es sich bei dem verstärkenden Füllstoff um Glasfasern.

Bevorzugt handelt es sich bei der Komponente E um ein Derivat eines

aromatischen Di- oder Tri-carboxyl(ester)amids.

Besonders bevorzugt handelt es sich bei Komponente E um N,N'-bis-piperdinyl- 1 ,3-benzoldicarboxamid und/oder N,N'-bis(2,2,6,6-tetramethyl-4-piperdinyl)-1 ,3- benzoldicarboxamid. Bevorzugt handelt es sich bei den Phosphoniten (Komponente F) um solche der allgemeinen Struktur

R-[P(ORi) 2 ] m (IV),

R ein ein- oder mehrwertiger aliphatischer, aromatischer oder heteroaromatischer organischer Rest ist und

Ri eine Verbindung der Struktur (V)

ist oder die beiden Reste Ri eine verbrückende Gruppe der Struktur (VI) bilden

A direkter Bindung, O, S, C-i.C-is-Alkylen (linear oder verzweigt) oder Ci-C-is- Alkyliden (linear oder verzweigt),

in denen

R 2 unabhängig voneinander C-i-C- 12 -Alkyl (linear oder verzweigt), CrCi 2 -Alkoxy und/oder C 5 -Ci 2 -Cycloalkyl bedeuten und n 0 bis 5 sowie m 1 bis 4 bedeutet.

Bevorzugt handelt es sich bei der Komponente G um Alkali-, Erdalkali-,

Aluminium- und/oder Zinksalze von langkettigen Fettsäuren mit 14 bis 40 C-Atomen und/oder um Umsetzungsprodukte von langkettigen Fettsäuren mit 14 bis 40 C-Atomen mit mehrwertigen Alkoholen, wie Ethylenglykol, Glycerin, Trimethylolpropan und/oder Pentaerythrit. Die Erfindung betrifft auch einen dreidimensionalen Artikel umfassend die flammhemmende Polyamidzusammensetzung nach einem oder mehreren der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass es sich hierbei Formkörper, Spritzgussteile, Extrusionsmassen und -teile handelt. Überraschenderweise wurde gefunden, dass die erfindungsgemäßen

flammhemmenden Polyamidzusammensetzungen eine gute Flammschutzwirkung aufweisen kombiniert mit einer verbesserten thermischen und hydrolytischen Stabilität. Durch den Zusatz eines Carboxylesteramids wird die Verarbeitung verbessert. Der Polymerabbau wird verhindert bzw. sehr stark reduziert und es werden keine Formbeläge und keine Ausblühungen beobachtet. Die

erfindungsgemäßen flammhemmenden Polyamidzusammensetzungen zeigen zudem nur geringe Verfärbung bei der Verarbeitung in der Schmelze.

Als Komponente A enthalten die Zusammensetzungen erfindungsgemäß mindestens ein thermoplastisches Polyamid.

Unter thermoplastischen Polyamiden werden in Anlehnung an Hans

Domininghaus in "Die Kunststoffe und ihre Eigenschaften", 5. Auflage (1998), Seite 14, Polyamide verstanden, deren Molekülketten keine oder auch mehr oder weniger lange und in der Anzahl unterschiedliche Seitenverzweigungen

aufweisen, die in der Wärme erweichen und nahezu beliebig formbar sind.

Die erfindungsgemäß bevorzugten Polyamide können nach verschiedenen

Verfahren hergestellt und aus sehr unterschiedlichen Bausteinen synthetisiert werden und im speziellen Anwendungsfall allein oder in Kombination mit

Verarbeitungshilfsmitteln, Stabilisatoren oder auch polymeren Legierungspartnern, bevorzugt Elastomeren, zu Werkstoffen mit speziell eingestellten

Eigenschaftskombinationen ausgerüstet werden. Geeignet sind auch Blends mit Anteilen von anderen Polymeren, bevorzugt von Polyethylen, Polypropylen, ABS, wobei ggf. ein oder mehrere Kompatibilisatoren eingesetzt werden können. Die Eigenschaften der Polyamide lassen sich durch Zusatz von Elastomeren verbessern, z. B. im Hinblick auf die Schlagzähigkeit, insbesondere wenn es verstärkte Polyamide sind. Die Vielzahl der Kombinationsmöglichkeiten ermöglicht eine sehr große Zahl von Produkten mit unterschiedlichsten Eigenschaften.

Zur Herstellung von Polyamiden sind eine Vielzahl von Verfahrensweisen bekannt geworden, wobei je nach gewünschtem Endprodukt unterschiedliche

Monomerbausteine, verschiedene Kettenregler zur Einstellung eines angestrebten Molekulargewichtes oder auch Monomere mit reaktiven Gruppen für später beabsichtigte Nachbehandlungen eingesetzt werden.

Die technisch relevanten Verfahren zur Herstellung von Polyamiden laufen meist über die Polykondensation in der Schmelze. In diesem Rahmen wird auch die hydrolytische Polymerisation von Lactamen als Polykondensation verstanden.

Bevorzugt als Komponente A einzusetzende Polyamide sind teilkristalline

Polyamide, die ausgehend von Diaminen und Dicarbonsäuren und/oder Lactamen mit wenigstens 5 Ringgliedern oder entsprechenden Aminosäuren hergestellt werden können.

Als Edukte kommen aliphatische und/oder aromatische Dicarbonsäuren, bevorzugt Adipinsäure, 2,2,4- und 2,4,4-Trimethyladipinsäure, Azelainsäure, Sebazinsäure, Isophthalsäure, Terephthalsäure, aliphatische und/oder

aromatische Diamine, bevorzugt Tetramethylendiamin, Hexamethylendiamin, 1 ,9-Nonandiamin, 2,2,4- und 2,4,4-Trimethylhexamethylendiamin, die isomeren Diaminodicyclohexylmethane, Diaminodicyclohexylpropane, Bis- aminomethylcyclohexan, Phenylendiamine, Xylylendiamine, Aminocarbonsäuren, bevorzugt Aminocapronsäure oder die entsprechenden Lactame in Betracht.

Copolyamide aus mehreren der genannten Monomeren sind eingeschlossen. Besonders bevorzugt werden Caprolactame, ganz besonders bevorzugt wird

[epsilon]-Caprolactam eingesetzt. Besonders geeignet sind weiterhin die meisten auf PA6, PA66 und anderen aliphatischen oder/und aromatischen Polyamiden bzw. Copolyamiden

basierenden Compounds, bei denen auf eine Polyamidgruppe in der Polymerkette 3 bis 1 Methylengruppen kommen.

Bevorzugt handelt es sich bei den Polyamiden und Copolyamiden um Polyamid 12, Polyamid 4, Polyamid 4,6, Polyamid 6, Polyamid 6,6, Polyamid 6,9, Polyamid 6,10, Polyamid 6,12, Polyamid 6,66, Polyamid 7,7, Polyamid 8,8, Polyamid 9,9, Polyamid 10,9, Polyamid 10,10, Polyamid 11 , Polyamid 12, usw. Diese sind z. B unter den Handelsnamen Nylon ® , Fa. DuPont, Ultramid ® , Fa. BASF, Akulon ® K122, Fa. DSM, Zytel ® 7301 , Fa. DuPont; Durethan ® B 29, Fa. Bayer und

Grillamid ® , Fa. Ems Chemie bekannt.

Bevorzugt geeignet sind auch aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z. B. Poly-2,4,4-trimethylhexamethylen-terephthalamid oder Poly-m- phenylenisophthalamid, Blockcopolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, lonomeren oder chemisch gebundenen oder gepfropften Elastomeren, oder mit Polyethern, wie z. B. mit

Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").

In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen

Zusammensetzungen neben dem erfindungsgemäß einzusetzenden

thermoplastischen Polyamid wenigstens ein weiteres thermoplastisches Polymer, besonders bevorzugt wenigstens ein anderes Polyamid.

Bevorzugt sind aliphatische Polyamide, insbesondere PA6 und PA66 und PA 6T/66 und PA 6T/6. Ganz besonders bevorzugt sind Mischungen aus Polyamid 66 und Polyamid 6 mit bevorzugt Polyamid 66 > 50 % und Polyamid 6 < 50 % und besonders bevorzugt Polyamid 6 < 25 %, jeweils bezogen auf die Gesamtmenge Polyamid.

Bevorzugt sind auch Blends aus Polyamid 66 und einem oder mehrerer teilaromatischer, amorpher Polyamide.

Den neben dem thermoplastischen Polyamid in einer bevorzugten

Ausführungsform zusätzlich einzusetzenden Polymeren können übliche Additive, insbesondere Entformungsmittel, Stabilisatoren und/oder Fließhilfsmittel in der Schmelze zugemischt oder auf der Oberfläche aufgebracht werden.

Ausgangsstoffe für die thermoplastischen Polyamide der Komponente A können synthetisch z.B. aus petrochemischen Rohstoffen und/oder über chemische oder biochemische Prozesse aus nachwachsenden Rohstoffen hervorgegangen sein Es können auch andere hier nicht speziell erwähnte Flammschutzmittel oder Flammschutzmittelsynergisten zum Einsatz kommen. Insbesondere Stickstoffhaltige Flammschutzmittel wie Melamincyanurat, kondensiertes elamin (Meiern, Melon) oder Melaminphosphate und Melaminpolyphosphate können zugesetzt werden. Es können auch weitere Phosphorflammschutzmittel wie Arylphosphate, roter Phosphor oder Phosphazene verwendet werden. Ferner können Salze aliphatischer und aromatischer Sulfonsäuren und mineralische

Flammschutzadditive wie Aluminium- und/oder Magnesiumhydroxid, Ca-Mg- Carbonat-Hydrate (z.B. DE-A 4 236 122) eingesetzt werden. In Frage kommen auch Flammschutzmittelsynergisten aus der Gruppe der Sauerstoff- Stickstoff- oder schwefelhaltigen Metallverbindung, bevorzugt Zinkoxid, Zinkborat,

Zinkstannat, Zinkhydroxystannat, Zinksulfid, Molybdänoxid, Titandioxid,

Magnesiumoxid, Magnesiumcarbonat, Calciumcarbonat, Calciumoxid, Titannitrid, Bornitrid, Magnesiumnitrid, Zinknitrid, Zinkphosphat, Calciumphosphat,

Calciumborat, Magnesiumborat oder deren Mischungen.

Weitere bevorzugt geeignete Flammschutzadditive sind Kohlebildner, besonders bevorzugt Phenol-Formaldehydharze, Polycarbonate, Polyimide, Polysulfone, Polyethersulfone oder Polyetherketone sowie Antitropfmittel, insbesondere Tetrafluorethylenpolymerisate.

Die Flammschutzmittel können in Reinform, sowie über Masterbatche oder Kompaktate zugesetzt werden.

Bevorzugt handelt es sich bei Komponente B um das Aluminium- oder das Zinksalz der Diethylphosphinsäure. Bevorzugt bedeutet beim Aluminiumphosphit der Formel (I) q 0,01 bis 0, 1.

Bevorzugt bedeutet beim Aluminiumphosphit der Formel (II) z 0,15 bis 0,4;

y 2,80 bis 3; v 0,1 bis 0,4 und w 0,01 bis 0,1. Bevorzugt bedeutet beim Aluminiumphosphit der Formel (III) u 2,834 bis 2,99; t 0,332 bis 0,03 und s 0,01 bis 0,1.

Als Komponente D können die erfindungsgemäßen flammhemmenden

Polyamidzusammensetzungen in einer weiteren bevorzugten Ausführungsform mindestens einen Füllstoff oder Verstärkungsstoff enthalten.

Dabei können auch Mischungen aus zwei oder mehreren unterschiedlichen Füllstoffen und/oder Verstärkungsstoffen, bevorzugt auf Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren, nanoskalige Mineralien, besonders bevorzugt Montmorillonite oder Nano-Böhmit,

Magnesiumcarbonat, Kreide, Feldspat, Bariumsulfat, Glaskugeln und/oder faserförmige Füllstoffe und/oder Verstärkungsstoffen auf der Basis von

Kohlenstofffasern und/oder Glasfasern eingesetzt werden. Bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Glimmer, Silikat, Quarz, Titandioxid, Wollastonit, Kaolin, amorphe Kieselsäuren,

Magnesiumcarbonat, Kreide, Feldspat, Bariumsulfat und/oder Glasfasern eingesetzt. Besonders bevorzugt werden mineralische teilchenförmige Füllstoffe auf der Basis von Talk, Wollastonit, Kaolin und/oder Glasfasern eingesetzt, wobei Glasfasern ganz besonders bevorzugt sind.

Besonders bevorzugt werden ferner auch nadeiförmige mineralische Füllstoffe eingesetzt. Unter nadeiförmigen mineralischen Füllstoffen wird erfindungsgemäß ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Bevorzugt seien nadeiförmige Wollastonite genannt. Bevorzugt weist das Mineral eine Länge zu Durchmesser - Verhältnis von 2: 1 bis 35: 1 , besonders bevorzugt von 3: 1 bis 19: 1 , insbesondere bevorzugt von 4: 1 bis 12:1 auf. Die mittlere Teilchengröße der erfindungsgemäßen nadeiförmigen Mineralien liegt bevorzugt bei kleiner 20 μηι, besonders bevorzugt bei kleiner 15 [im,

insbesondere bevorzugt bei kleiner 10 Mm, bestimmt mit einem CILAS

Granulometer. Der Füllstoff und/oder Verstärkungsstoff kann in einer bevorzugten

Ausführungsform oberflächenmodifiziert sein, vorzugsweise mit einem

Haftvermittler bzw. Haftvermittlersystem, besonders bevorzugt auf Silanbasis. Die Vorbehandlung ist jedoch nicht unbedingt erforderlich. Insbesondere bei

Verwendung von Glasfasern können zusätzlich zu Silanen auch

Polymerdispersionen, Filmbildner, Verzweiger und/oder

Glasfaserverarbeitungshilfsmittel verwendet werden.

Die erfindungsgemäß ganz besonders bevorzugt als Komponente D

einzusetzenden Glasfasern, die im Allgemeinen einen Faserdurchmesser zwischen 7 und 18 μιτι, bevorzugt zwischen 9 und 15 [im haben, werden als

Endlosfasern oder als geschnittene oder gemahlene Glasfasern zugesetzt. Diese Fasern können mit einem geeigneten Schlichtesystem und einem Haftvermittler bzw. Haftvermittlersystem, bevorzugt auf Silanbasis, ausgerüstet sein. Die erfindungsgemäßen Zusammensetzungen können noch weitere Additive enthalten. Bevorzugte Additive im Sinne der vorliegenden Erfindung sind

Antioxdantien, UV-Stabilisatoren, Gammastrahlenstabilisatoren,

Hydrolysestabilisatoren, Antistatika, Emulgatoren, Nukleierungsmittel, Weichmacher, Verarbeitungshilfsmittel, Schlagzähmodifikatoren Farbstoffe und Pigmente. Die Additive können alleine oder in Mischung bzw. in Form von

Masterbatchen eingesetzt werden. Geeignete Antioxidantien sind beispielsweise alkylierte Monophenole, z. B. 2,6-Di- tert-butyl-4-methylphenol; Alkylthiomethylphenole, z. B. 2,4-Di-octylthiomethyl-6- tert-butylphenol; Hydrochinone und alkylierte Hydrochinone, z. B. 2,6-Di-tert-butyl- 4-methoxyphenol; Tocopherole, z. B. α-Tocopherol, ß-Tocopherol, γ-Tocopherol, δ-Tocopherol und Mischungen davon (Vitamin E); Hydroxylierte Thiodiphenylether, z. B. 2,2'-Thio-bis(6-tert-butyl-4-methylphenol) 2,2'-Thio-bis(4-octylphenol), 4,4'-Thio-bis-(6-tert-butyl-3-methylphenol), 4,4'-Thio-bis-(6-tert-butyl-2- methylphenol), 4,4'-Thio-bis-(3,6-di-sec.-amylphenol), 4,4'-Bis-(2,6-di-methyl-4- hydroxyphenyl)-disulfid; Alkyliden-Bisphenole, z. B. 2,2'-Methylen-bis-(6-tert-butyl- 4-methylphenol; O-, N- und S-Benzylverbindungen, z. B. 3,5,3',5'-Tetra-tert-butyl- 4,4'-dihydroxydi-benzylether; Hydroxybenzylierte Malonate, z. B. Dioctadecyl-2,2- bis-(3,5-di-tert-butyl-2-hydrorybenzyl)-malonat; Hydroxybenzyl-Aromaten, z. B. ,3,5-Tris-(3,5-di-tert-buty)-4-hydroxybenzyl)-2,4,6-trimethy lbenzo1 , 1 ,4-Bis-(3,5- di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzot 2,4,6-Tris-(3,5-di-tert- buryl-4-hydroxybenzyl)-phenol; Triazinverbindungen, z. B. 2,4-Bis-octylmercapto- 6(3,5-di-tert-butyl-4-hydroxyanilino)-1 ,3,5-triazin; Benzylphosphonate, z. B.

Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat; Acylaminophenole,

4-Hydroxylaurin-säureamid, 4-Hydroxystearinsäureanilid, N-(3,5-di-tert-butyl-4- hydroxyphenyl)-carbaminsäureoctylester; Ester der ß-(3.5-Di-tert-butyl-4- hydroxyphenyl)-propionsäure mit ein- oder mehr-wertigen Alkoholen; Ester der ß-(5-tert-Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder

mehrwertigen Alkoholen; Ester der ß-(3,5-Dicyclohexyl-4-hydroxyphenyl)- propionsäure mit ein- oder mehr-wertigen Alkoholen; Ester der 3,5-Di-tert-butyl-4- hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen; Amide der ß-(3,5- Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie z. B. N,N'-Bis-(3,5-di-tert-butyl4- hydroxyphenylpropionyl)-hexamethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)-trimethylendiamin, N,N'-Bis-(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)-hydrazin. Besonders bevorzugt werden sterisch gehinderte Phenole alleine oder in

Kombination mit Phosphiten eingesetzt, wobei die Verwendung von N,N'-Bis[3- (3',5'-di-tert-butyl-4'-hydroxyphenyl)propionyl]hexamethylen ediamin (z.B. Irganox 5 098 der Fa. BASF SE, Ludwigshafen. Deutschland) ganz besonders bevorzugt ist.

Geeignete UV-Absorber und Lichtschutzmittel sind beispielsweise 2-(2'-Hydroxy- phenyl)-benzotriazole, wie z. B. 2-(2'-Hydroxy-5'-methylphenyl)-benzotriazol; 2-Hydroxybenzophenone, wie z. B. das 4-Hydroxy, 4-Methoxy, 4-Octoxy,

4-Decyloxy-, 4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4-Trihydroxy-, 2'-Hydroxy-4,4'- dimethoxy-Derivat;

Ester von gegebenenfalls substituierten Benzoesäuren, wie z. B. 4-tert-Butyl- phenylsalicylat, Phenylsalicylat, Octylphenyl-salicylat, Dibenzoylresorcin, Bis-(4- tert-butylbenzoyl)-resorcin, Benzoylresorcin, 3,5-Di-tert-butyl-4- hydroxybenzoesäure-2,4-di-tert-butylphenylester, 3,5-Di-tert-butyl-4- hydroxybenzoesäurehexadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure- octadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoe-säure-2-methyl-4,6-di-ter t- butylphenylester; Acrylate, wie z. B. a-Cyan-ß,ß-diphenylacrylsäure-ethylester bzw. -isooctylester, α-Carbomethoxy-zimtsäuremethylester, a-Cyano-ß-methyl-p- methoxy-zimtsäuremethyl-ester bzw. -butylester, a-Carbomethoxy-p-methoxy- zimtsäuremethylester, N-(ß-Carbo-methoxy-ß-cyanovinyl)-2-methyl-indolin.

Als Farbmittel werden bevorzugt anorganische Pigmente, insbesondere

Titandioxid, Ultramarinblau, Eisenoxid, Zinksulfid oder Ruß, weiterhin organische Pigmente, bevorzugt Phthalocyanine, Chinacridone, Perylene sowie Farbstoffe, bevorzugt Nigrosin und Anthrachinone eingesetzt werden.

Geeignete Polyamidstabilisatoren sind z. B. Kupfersalze in Kombination mit Jodiden und/oder Phosphorverbindungen und Salze des zweiwertigen Mangans.

Geeignete basische Co-Stabilisatoren sind Melamin, Polyvinylpyrrolidon,

Dicyandiamid, Triallylcyanurat, Harnstoff-Derivate, Hydrazin-Derivate, Amine, Polyamide, Polyurethane, Alkali- und Erdalkalisalze höherer Fettsäuren, beispielsweise Ca-Stearat, Zn-Stearat, Mg-Behenat, Mg-Stearat, Na-Ricinoleat, K-Palmitat, Antimonbrenzcatechinat oder Zinnbrenzcatechinat.

Geeignete Nukleierungsmittei sind z. B. 4-tert-Butylbenzoesäure, Adipinsäure und Diphenylessigsäure, Aluminiumoxid oder Siliziumdioxid sowie ganz besonders bevorzugt Talkum, wobei diese Aufzählung nicht abschließend ist.

Als Fließhilfsmittel werden bevorzugt Copolymerisate aus mindestens einem

-Olefin mit mindestens einem Methacrylsäu rester oder Acrylsäureester eines aliphatischen Alkohols eingesetzt. Besonders bevorzugt sind dabei

Copolymerisate, bei denen das oc-Olefin aus Ethen und/oder Propen aufgebaut ist und der Methacrylsäurester oder Acrylsäureester als Alkoholkomponente lineare oder verzweigte Alkylgruppen mit 6 bis 20 C-Atomen enthält. Ganz besonders bevorzugt ist Acrylsäure-(2-ethyl)-hexylester. Als Fließhilfsmittel erfindungsgemäß geeignete Copolymerisate zeichnen sich neben der Zusammensetzung auch durch das niedrige Molekulargewicht aus. Dementsprechend sind für die erfindungsgemäß vor thermischem Abbau zu bewahrenden Zusammensetzungen vor allem Copolymerisate geeignet, die einen MFI-Wert gemessen bei 190°C und einer Belastung von 2,16 kg von mindestens 100 g / 10 min, bevorzugt von mindestens 150 g / 10 min, besonders bevorzugt von mindestens 300 g / 10 min aufweisen. Der MFI (Melt-Flow-Index) dient zur Charakterisierung des Flusses einer Schmelze eines Thermoplasten und unterliegt den Normen ISO 1133 oder ASTM D 1238. Der MFI bzw. alle Angaben zum MFI im Rahmen der vorliegenden Erfindung beziehen sich bzw. wurden einheitlich nach ISO 1133 bei 190 °C und einem Prüfgewicht von 2,16 kg gemessen bzw. bestimmt.

Bevorzugt einzusetzende Weichmacher sind Phthalsäuredioctylester,

Phthalsäuredibenzylester, Phthalsäurebutylbenzylester, Kohlenwasserstofföle oder N-(n-Butyl)benzolsulfonamid.

Die vorliegende Erfindung betrifft aber auch Erzeugnisse, bevorzugt Fasern, Folien oder Formkörper, erhältlich aus den erfindungsgemäß beschriebenen Zusammensetzungen durch Spritzguss oder Extrusion. Geeignete Phosphinate (Komponente B) sind in der PCT/WO97/39053 beschrieben, auf die ausdrücklich Bezug genommen wird. Besonders bevorzugte Phosphinate sind Aluminium-, Calcium- und Zinkphosphinate.

Bevorzugte Salze der phosphorigen Säure (Komponente C) sind in Wasser unlösliche bzw. schwerlösliche Salze.

Besonders bevorzugte Salze der phosphorigen Säure sind das Aluminium-, das Calcium- und das Zinksalze

Besonders bevorzugt handelt es sich bei Komponente C um ein

Umsetzungsprodukt aus Phosphoriger Säure und einer Aluminiumverbindung. Bevorzugt sind Aluminiumphosphlte mit den CAS-Nummern 15099-32-8, 119103-85-4, 220689-59-8, 56287-23-1 , 156024-71-4, 71449-76-8 und

15099-32-8.

Bevorzugt haben die Aluminiumphosphlte Teilchengrößen von 0,2-100 μιη

Die Herstellung der bevorzugten Aluminiumphosphlte erfolgt durch Umsetzung einer Aluminiumquelle mit einer Phosphorquelle und wahlweise einem Templat in einem Lösungsmittel bei 20 - 200 °C während einer Zeitspanne bis zu 4 Tagen. Aluminiumquelle und Phosphorquelle werden dazu 1 - 4 h vermischt, unter hydrothermalen Bedingungen oder am Rückfluss erhitzt, abfiltriert, gewaschen und z. B. bei 110 °C getrocknet.

Bevorzugte Aluminiumquellen sind Aluminiumisopropoxid, Aluminiumnitrat, Aluminiumchlorid, Aluminiumhydroxid (z. B. Pseudoböhmit).

Bevorzugte Phosphorquellen sind Phosphorige Säure, (saures)

Ammoniumphosphit, Alkaliphosphite oder Erdalkaliphosphite. Bevorzugte Alkaliphosphite sind Dinatriumphosphit, Dinatriumphosphithydrat, Trinatriumphosphit, Kaliumhydrogenphosphit

Bevorzugtes Dinatriumphosphithydrat ist ©Brüggolen H10 der Fa. Brüggemann.

Bevorzugte Template sind 1 ,6-Hexandiamin, Guanidincarbonat oder Ammoniak.

Bevorzugtes Erdalkaliphosphit ist Calciumphosphit. Das bevorzugte Verhältnis von Aluminium zu Phosphor zu Lösungsmittel ist dabei 1 : 1 : 3,7 bis 1 : 2,2 : 100 mol. Das Verhältnis von Aluminium zu Templat ist 1 : 0 bis 1 : 17 mol. Der bevorzugte pH-Wert der Reaktionslösung ist 3 bis 9.

Bevorzugtes Lösungsmittel ist Wasser. Besonders bevorzugt wird in der Anwendung das gleiche Salz der Phosphinsäure wie der phosphorigen Säure verwendet, also z. B. Aluminiumdialkylphosphinat zusammen mit Aluminiumphosphit oder Zinkdialkylphosphinat zusammen mit Zinkphosphit. Bevorzugt handelt es sich bei der Komponente G um Alkali-, Erdalkali-,

Aluminium- und/oder Zinksalze von langkettigen Fettsäuren mit 14 bis

40 C-Atomen und/oder um Umsetzungsprodukte von langkettigen Fettsäuren mit 14 bis 40 C-Atomen mit mehrwertigen Alkoholen, wie Ethylenglykol, Glycerin, Trimethylolpropan und/oder Pentaerythrit. Besonders bevorzugt handelt es sich um Aluminium-, Calcium- oder Zinkstearat oder Calciummontanat.

Als weitere Flammschutzmittel sind bevorzugt Arylphosphate, Phosphonate, Salze der Hypophosphorigen Säure sowie roter Phosphor geeignet. Bevorzugt sind bei den Phosphoniten die Reste

R C 4 -C 8 -Alkyl (linear oder verzweigt), C 4 -Cis-Alkylen (linear oder verzweigt), C5-Ci2-Cycloalkyl, C 5 -Ci2-Cycloalkylen, C 6 -C24-Aryl bzw. -Heteroaryl,

C6-C24- Arylen bzw. -Heteroarylen welche auch weiter substituiert sein können;

R 1 eine Verbindung der Struktur (V) oder (VI) mit

R 2 unabhängig voneinander Ci-C 8 -Alkyl (linear oder verzweigt), C Cs-Alkoxy, Cyclohexyl;

A direkte Bindung, O, CrC 8 -Alkylen (linear oder verzweigt), Ci-C 8 -Alkyliden

(linear oder verzweigt) und

n 0 bis 3

m 1 bis 3.

Besonders bevorzugt bei den Phosphoniten sind die Reste

R Cyclohexyl, Phenyl, Phenylen, Biphenyl und Biphenylen,

R 1 eine Verbindung der Struktur (V) oder (VI) mit

R 2 unabhängig voneinander C-i-C 8 -Alkyl (linear oder verzweigt), Ci-C 8 -Alkoxy, Cyclohexyl

A direkte Bindung, O, CrCe-Alkyliden (linear oder verzweigt) und

n 1 bis 3

m 1 oder 2 .

Weiterhin werden Gemische von Verbindungen gem. obiger Ansprüche in

Kombination mit Phosphiten der Formel (VII)

Ρ(0^) 3 (VII) beansprucht, wobei R 1 die oben angegebenen Bedeutungen hat.

Insbesondere bevorzugt sind Verbindungen, die, basierend auf obigen

Ansprüchen, durch eine Friedel-Crafts-Reaktion eines Aromaten oder

Heteroaromaten, wie Benzol, Biphenyl oder Diphenylether mit

Phosphortrihalogeniden, bevorzugt Phosphortrichlorid, in Gegenwart eines Friedel-Crafts-Katalysators wie Aluminiumchlorid, Zinkchlorid, Eisenchlorid etc. sowie nachfolgender Reaktion mit den der Strukturen (II) und (III) zugrundeliegenden Phenolen, hergestellt werden. Dabei werden ausdrücklich auch solche Gemische mit Phosphiten eingeschlossen, die nach der genannten Reaktionssequenz aus überschüssigem Phosphortrihalogenid und den vorstehend beschriebenen Phenolen entstehen.

Aus dieser Gruppe von Verbindungen sind wiederum die nachstehenden

Strukturen (VIII) und (IX) bevorzugt:

wobei n 0 oder 1 betragen kann und diese Gemische optional weiterh

Anteile der Verbindung (X) bzw. (XI) enthalten können:

Geeignet als Komponente G sind Ester oder Salze von langkettigen aliphatischen Carbonsäuren (Fettsäuren), die typischerweise Kettenlängen von C14 bis C 40 aufweisen. Bei den Estern handelt es sich um Umsetzungsprodukte der genannten Carbonsäuren mit gebräuchlichen mehrwertigen Alkoholen, wie z. B. Ethylenglykol, Glycerin, Trimethylolpropan oder Pentaerythrit. Als Salze der genannten Carbonsäuren kommen vor allem Alkali- oder Erdalkalisalze bzw. Aluminium- und Zinksalze in Betracht.

Bevorzugt handelt es sich bei der Komponente G um Ester oder Salze der Stearinsäure wie z. B. Glycerinmonostearat oder Calciumstearat. Bevorzugt handelt es sich bei der Komponente G um Umsetzungsprodukte von Montanwachssäuren mit Ethylenglykol.

Bevorzugt handelt es sich bei den Umsetzungsprodukten um eine Mischung aus Ethylenglykol-Mono-Montanwachssäureester, Ethylenglykol-Di- Montanwachssäureester, Montanwachssäuren und Ethylenglykol. Bevorzugt handelt es sich bei der Komponente G um Umsetzungsprodukte von Montanwachssäuren mit einem Calciumsalz. Besonders bevorzugt handelt es sich bei den Umsetzungsprodukten um eine Mischung aus 1 ,3-Budandiol-Mono-Montanwachssäureester, ,3-Budandiol-Di- Montanwachssäureester, Montanwachssäuren, 1 ,3-Butandiol, Caiciummontanat und dem Calciumsalz. Die vorgenannten Additive können in den verschiedensten Verfahrensschritten in den Kunststoff eingebracht werden. So ist es bei Polyamiden möglich, bereits zu Beginn oder am Ende der Polymerisation/Polykondensation oder in einem folgenden Compoundierprozess die Additive in die Polymerschmelze

einzumischen. Weiterhin gibt es Verarbeitungsprozesse bei denen die Additive erst später zugefügt werden. Dies wird insbesondere beim Einsatz von Pigmentoder Additivmasterbatches praktiziert. Außerdem besteht die Möglichkeit, insbesondere pulverförmige Additive auf das durch den Trocknungsprozess eventuell warme Polymergranulat aufzutrommeln. Die Erfindung betrifft schließlich auch ein Verfahren zur Herstellung von flammgeschützten Polymer-Formkörpern, dadurch gekennzeichnet, dass erfindungsgemäße flammgeschützte Polymer-Formmassen durch Spritzgießen (z. B. Spritzgießmaschine Typ Aarburg Allrounder) und Pressen,

Schaumspritzgießen, Gasinnendruck-Spritzgießen, Blasformen, Foliengießen, Kalandern, Laminieren oder Beschichten bei höheren Temperaturen zum flammgeschützten Polymer-Formkörper verarbeitet wird.

Zusätzlich können Carbodiimide enthalten sein. Beispiele

1. Eingesetzte Komponenten

Handelsübliche Polyamide (Komponente A):

Polyamid 6.6 (PA 6.6-GV): Ultramid ® A27 (Fa. BASF AG, D) Polyamid 6T/66: Zyter HTN FE 8200 (Fa. DuPont, USA)

Polyamid 6: Durethan ® B29 (Lanxess AG, D)

Polyamid 6T/6I (amorph): Grivory ® G21 , EMS Grivory, CH

Polyamid 610: Ultramid ® S, Fa. BASF AG, D

Flammschutzmittel (Komponente B):

Aluminiumsalz der Diethylphosphinsäure, im Folgenden als DEPAL bezeichnet

Flammschutzmittel (Komponente C):

Aluminiumsalz der Phosphorigen Säure, im Folgenden als PHOPAL bezeichnet

Vergleich: MPP, Melaminpolyphosphat, Melapur ® 200/70, Fa. BASF AG, D

Komponente D:

Glasfasern PPG HP 3610 10pm Durchmesser, 4,5 mm Länge (Fa. PPG, NL),

Aromatische di- oder tri-carboxylester bzw. -amide (Komponente E):

Nylostab ® S-EED (Fa. Clariant Produkte (Deutschland) GmbH, D)

( * Nylostab S-EED entspricht N,N ' -bis(2,2,6,6-tetramethyl-4-piperidyl)-1 ,3- benzoldicarboxamid)

Phosphonite (Komponente F):

Sandostab ® P-EPQ, Fa. Clariant Produkte (Deutschland) GmbH, D Wachskomponenten (Komponente G):

Licomont ® CaV 102 (Ca-Salz der Montanwachssäure), Fa. Clariant Produkte (Deutschland) GmbH, D

Licowax ® E (Ester der Montanwachssäure), Fa. Clariant Produkte (Deutschland) GmbH, D

2. Herstellung, Verarbeitung und Prüfung von flammhemmenden Polyamid- Formmassen Die Flammschutzmittelkomponenten wurden in dem in der Tabelle angegebenen Verhältnis mit dem Phosphonit, den Gleitmitteln und Stabilisatoren vermischt und über den Seiteneinzug eines Doppelschnecken-Extruders (Typ Leistritz ZSE 27/44D) bei Temperaturen von 260 - 310 °C in PA 6.6 bzw. bei 250 - 275 °C in PA 6 eingearbeitet. Die Glasfasern wurden über einen zweiten Seiteneinzug zugegeben. Der homogenisierte Polymerstrang wurde abgezogen, im Wasserbad gekühlt und anschließend granuliert.

Nach ausreichender Trocknung wurden die Formmassen auf einer

Spritzgießmaschine (Typ Arburg 320 C Allrounder) bei Massetemperaturen von 250 bis 300 °C zu Prüfkörpern verarbeitet und anhand des UL 94-Tests

(Underwriter Laboratories) auf Flammwidrigkeit geprüft und klassifiziert.

Die Fließfähigkeit der Formmassen wurde durch Ermittlung des

Schmelzvolumenindex (MVR) bei 275 °C/2,16 kg bestimmt. Höhere MVR Werte bedeuten bessere Fließfähigkeit im Spritzgussprozess. Ein starker Anstieg des MVR-Wertes kann allerdings auch auf einen Polymerabbau hindeuten.

Sämtliche Versuche der jeweiligen Serie wurden, falls keine anderen Angaben gemacht wurden, aufgrund der Vergleichbarkeit unter identischen Bedingungen (Temperaturprogramme, Schneckengeometrien, Spritzgießparameter, etc.), durchgeführt.

Die Ergebnisse, in denen die Flammschutzmittel-Stabilisator-Mischungen gemäß der Erfindung eingesetzt wurden, sind in den Beispielen B1-B3 aufgelistet. Alle Mengen sind als Gew.-% angegeben und beziehen sich auf die Kunststoff- Formmasse einschließlich der Flammschutzmittel, Additive und

Verstärkungsstoffe. PA 66 GF 30 Versuchsergebnisse. V1-V3 sind Vergleichsbeispiele, B1 bis B3 erfindungsgemäße Polyamid Formmasse

* 14 Tage 100 % Feuchte 70 °C

Nur durch die erfindungsgemäße Kombination aus Polyamid, Glasfasern, DEPAL und PHOPAL werden Polyamid Formmassen erhalten, die die Brandklasse UL 94 V-0 bei 0,4 mm erreichen und gleichzeitig CTI 600 Volt, Schlagzähigkeit größer 60 kJ/m 2 , Kerbschlagzähigkeit größer 10 kJ/m 2 aufweisen, und keine

Verfärbungen und keine Ausblühungen zeigen. Durch den Zusatz von Polyamid 6 (Beispiel B2) und durch den Zusatz von Nylostab SEED (Beispiel B3) wird zudem eine bessere Fließfähigkeit (höherer MVR) und eine schönere Oberfläche erzeugt. Durch die Verwendung von DEPAL ohne PHOPAL (V1) wird kein V-0 erreicht, durch die Kombination von DEPAL mit MPP wird zwar V-0 erreicht, die Polyamid- Formmasse zeigt aber Verfärbungen und Ausblühungen. Ein CTI von 600V wird ebenfalls nicht erreicht. Tabelle 2: PA 6 GF 30 Versuchsergebnisse. V4-V6 sind Vergleichsbeispiele,

B4 bis B7 erfindungsgemäße Polyamid Formmasse

* 14 Tage 100 % Feuchte 70 °C Die Versuche in Polyamid 6 zeigen ein ähnliches Bild: nur die die

erfindungsgemäße Kombination von Polyamid 6 mit Glasfasern, DEPAL, PHOPAL und SEED werden Formmassen erhalten, die gleichzeitig UL 94 V-0 bei 0,4 mm, CTI 600V, keine Farbveränderungen und keine Ausblühungen, gute Fließfähigkeit und gute mechanische Werte aufweisen. Tabelle 3: Polyamid 66 / 6T/6I Blends und Polyamid 610

* 14 Tage 100 % Feuchte 70 °C Die Versuche in Polyamid 610 zeigen ein ähnliches Bild wie bei PA6 beobachtet: nur die die erfindungsgemäße Kombination von Polyamid 6 mit Glasfasern, DEPAL, PHOPAL und SEED werden Formmassen erhalten, die gleichzeitig UL 94 V-0 bei 0,4 mm, CTI 600V, keine Farbveränderungen und keine Ausblühungen, gute Fließfähigkeit und gute mechanische Werte aufweisen.

In dem Blend aus Polyamid 66 und einem amorphen, teilaromatischen Polyamid (6T/6I) wird mit DEPAL + MPP beginnende Zersetzung, erkennbar an sehr hohem MVR, beobachtet. Die erfindungsgemäße Kombination aus DEPAL und PHOPAL zeigt dagegen keine Zersetzung, UL 94 V-0 und CTI 600 V. Durch den Zusatz SEED kann die Fließfähigkeit und die Oberflächengüte verbessert werden.

Tabelle 4: PA6T/66 GF 30 Versuchsergebnisse.

* Zersetzung bei der Extrusion, keinen Polymerstrang erhalten

In Polyamid 6T/66 kann das System DEPAL + MPP nicht eingesetzt werden, es wird bereits bei der Compoundierung starke Zersetzung beobachtet. Der Polymerstrang schäumt auf, eine Granulierung ist nicht möglich. Das

erfindungsgemäße Polyamid mit DEPAL, PHOPAL und Glasfasern ist dagegen gut zu verarbeiten und erreicht

UL 94 V-0 und CTI 600 V. Auch hier kann durch den Zusatz von SEED die Fließfähigkeit und die Oberflächengüte verbessert werden.