Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLAT STEEL PRODUCT WITH A HIGH DEGREE OF AGING RESISTANCE, AND METHOD FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2019/016041
Kind Code:
A1
Abstract:
The invention relates to a coated flat steel product which is suitable for press hardening and which exhibits a particularly high degree of aging resistance and to a method for producing same. In addition to iron and unavoidable impurities, the steel of the flat steel product consists of (in weight percents) 0.10 - 0.4 % C, 0.05 - 0.5 % Si, 0.5 - 3.0 % Mn, 0.01 - 0.2 % Al, 0.005 - 1.0 % Cr, 0.001 - 0.2 % V, ≤ 0.1 % P, ≤ 0.05 % S, ≤ 0.02 % N, and optionally one or more of the elements "B, Ti, Nb, Ni, Cu, Mo, W" in the following percentages B: 0.0005 - 0.01 %, Ti: 0.001 - 0.1 %, Nb: 0.001 - 0.1 %, Ni: 0.01 - 0.4 %, Cu: 0.01 - 0.8 %, Mo: 0.002 - 1.0 %, W: 0.001 - 1.0 %. The flat steel product has a yield limit with a continuous curve or a yield limit with a difference between the upper yield limit value and the lower yield limit value of maximally 45 MPa and a uniform elongation Ag of at least 11.5%.

Inventors:
LINKE BERND (DE)
KÖYER MARIA (DE)
RUTHENBERG MANUELA (DE)
Application Number:
PCT/EP2018/068767
Publication Date:
January 24, 2019
Filing Date:
July 11, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSENKRUPP STEEL EUROPE AG (DE)
THYSSENKRUPP AG (DE)
International Classes:
C22C38/00; C21D8/02; C21D9/46; C22C38/02; C22C38/04; C22C38/06; C22C38/12; C22C38/24; C22C38/32; C23C2/12
Foreign References:
EP2631307A12013-08-28
EP2703511A12014-03-05
JP5387073B22014-01-15
JP2015113501A2015-06-22
EP2848709A12015-03-18
Attorney, Agent or Firm:
THYSSENKRUPP INTELLECTUAL PROPERTY GMBH (DE)
Download PDF:
Claims:
PATENTAN SP RÜ CH E

1. Für ein Presshärten geeignetes, beschichtetes Stahlflachprodukt, wobei der Stahl des Stahlflachprodukts neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) aus

C: 0,10-0,4%,

Si: 0,05 - 0,5 %,

Mn: 0,5-3,0%,

AI: 0,01 - 0,2 %,

Cr: 0,005- 1,0%

V: 0,001 -0,2%

P: < 0,1%,

S: < 0,05%,

N: < 0,02%, sowie optional einem oder mehreren der Elemente "B, Ti, Nb, Ni, Cu, Mo, W" in folgenden Gehalten

B: 0,0005 - 0,01 %

Ti: 0,001 -0,1%,

Nb: 0,001 -0,1%,

Ni: 0,01 - 0,4 %,

Cu: 0,01 - 0,8 %,

Mo: 0,002 - 1,0%,

W: 0,001 - 1,0% besteht.

2. Stahlflachprodukt nach Anspruch 1 dadurch gekennzeichnet, dass das Stahlflachprodukt eine Streckgrenze mit kontinuierlichem Verlauf (Rp0,2) oder eine Streckgrenze mit einer Differenz (ARe) zwischen oberem Streckgrenzenwert (ReH) und unterem Streckgrenzenwert (ReL) von höchstens 45 MPa aufweist.

3. Stahlflachprodukt nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass das Stahlflachprodukt eine Gleichmaßdehnung Ag von mindestens 11,5 % aufweist.

4. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Kohlenstoffgehalt des Stahls des Stahlflachprodukts höchstens 0,3 Gew.-% beträgt.

5. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Vanadium-Gehalt des Stahls des Stahlflachprodukts mindestens 0,002 Gew.-% beträgt.

6. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Vanadium-Gehalt des Stahls des Stahlflachprodukts höchstens 0,03 Gew.-% beträgt.

7. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass der Vanadium-Gehalt des Stahls des Stahlflachprodukts höchstens 0,009 Gew.-% beträgt.

8. Stahlflachprodukt nach einem der voranstehenden Ansprüche dadurch gekennzeichnet, dass es auf mindestens einer Seite einen Korrosionsschutzüberzug aufweist.

9. Stahlflachprodukt nach Anspruch 8 dadurch gekennzeichnet, dass der auf dem Stahlsubstrat aufliegende Korrosionsschutzüberzug 3 - 15 Gew.-% Silizium, bis zu 5 Gew.-% Eisen, bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen, und Rest Aluminium enthält.

10. Verfahren zum Herstellen eines für eine Warmumformung geeigneten Stahlflachprodukts umfassend folgende Arbeitsschritte: a) Zurverfügungstellen einer Bramme oder einer Dünnbramme, die aus (in Gew.-%) 0, 10 - 0,4 % C, 0,05 - 0,5 % Si, 0,5 - 3,0 % Mn, 0,01 - 0,2 % AI, 0,005 - 1 ,0 % Cr, 0,001 - 0,2 % V, < 0, 1 % P, < 0,05 % S, < 0,02 % N sowie optional einem oder mehreren der Elemente "B, Ti, Nb, Ni, Cu, Mo, W" in folgenden Gehalten B: 0,0005 - 0,01 °/o, Ti : 0,001 -0, 1 °/o, Nb: 0,001 - 0, 1 °/o, Ni: 0,01 - 0,4 %, Cu: 0,01 - 0,8 °/o, Mo: 0,002 - 1,0 %, W: 0,001 - 1,0 % und Rest Eisen und unvermeidbaren Verunreinigungen besteht; b) Durcherwärmen der Bramme oder Dünnbramme bei einer Temperatur (Tl) von 1100 - 1400 °C; c) optionales Vorwalzen der durcherwärmten Bramme oder Dünnbramme zu einem Zwischenprodukt mit einer Zwischenprodukttemperatur (T2) von 1000 - 1200 °C; d) Warmwalzen zu einem warmgewalzten Stahlflachprodukt, wobei die Endwalztemperatur (T3) 750 - 1000 °C beträgt; e) optionales Haspeln des warmgewalzten Stahlflachprodukts, wobei die Haspeltemperatur (T4) höchstens 700 °C beträgt; f) Entzundern des warmgewalzten Stahlflachprodukts; g) optionales Kaltwalzen des Stahlflachprodukts, wobei der Kaltwalzgrad mindestens 30 % beträgt; h) Glühen des Stahlflachprodukts bei einer Glühtemperatur (T5) von 650 - 900 °C; i) Abkühlen des Stahlflachprodukts auf eine Vorkühltemperatur (T6), welche 600 - 800 °C beträgt; j) Beschichten des Stahlflachprodukts mit einem Korrosionsschutzüberzug; k) Abkühlen des beschichteten Stahlflachprodukts auf Raumtemperatur, wobei die Abkühlung im Temperaturbereich zwischen 600 °C und 450 °C mit einer mittleren Abkühlrate (CR1) von höchstens 25 K/s und im Temperaturbereich zwischen 400 °C und 220 °C mit einer mittleren Abkühlrate (CR2) von höchstens 20 K/s erfolgt;

I) optionales Dressieren des beschichteten Stahlflachprodukts.

11. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass die Glühtemperatur (T5) in Arbeitsschritt h) mindestens 720 °C beträgt.

12. Verfahren nach Anspruch 10 oder 11 dadurch gekennzeichnet, dass die mittlere Abkühlrate (CR1) zwischen 600 °C und 450 °C höchstens 18 K/s beträgt.

13. Verfahren nach einem der Ansprüche 10 bis 12 dadurch gekennzeichnet, dass die mittlere Abkühlrate (CR2) zwischen 400 °C und 220 °C höchstens 14 K/s beträgt.

14. Verfahren nach einem der Ansprüche 10 bis 13 dadurch gekennzeichnet, dass die mittlere Abkühlrate (CR2) zwischen 400 °C und 220 °C höchstens 9,5 K/s beträgt.

15. Verfahren nach einem der Ansprüche 10 bis 14 dadurch gekennzeichnet, dass das Schmelzenbad, das den auf das Stahlflachprodukt aufzubringenden Korrosionsschutz in flüssiger Form enthält, neben Aluminium 3 - 15 Gew.-% Silizium, bis zu 5 Gew.-% Eisen und bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen enthält, wobei die Summe der vorliegenden Bestandteile 100 Gew.-% beträgt.

Description:
Stahlflachprodukt mit guter Alterungsbeständigkeit und Verfahren zu seiner

Herstellung

Die Erfindung betrifft ein für ein Presshärten geeignetes beschichtetes Stahlflachprodukt, welches eine besonders gute Alterungsbeständigkeit aufweist, sowie ein Verfahren zu seiner Herstellung .

Wenn vorliegend von "Stahlflachprodukten" die Rede ist, so sind damit Stahlbänder, Stahlbleche oder daraus gewonnene Platinen und desgleichen gemeint. Unter Platinen werden in der Regel Blechtafeln verstanden, die komplexere Umrisse als die Stahlbänder oder Stahlbleche, aus denen sie hervorgehen, aufweisen können.

Im Karosseriebau werden Stähle eingesetzt, an die hohe Anforderungen hinsichtlich ihrer mechanischen Eigenschaften aber auch hinsichtlich ihres Verarbeitungsverhaltens gestellt werden. Ein Stahlflachprodukt, welches zu einem Stahlbauteil umgeformt wird, durchläuft verschiedene Fertigungsschritte. Unter anderem wird es kaltverformt. Dies kann zum Beispiel durch Richten, Schneiden oder Umformen geschehen . Ein gutes Kaltumformverhalten zeigt sich unter anderem in einer guten Maßhaltigkeit, Qualität der Schnittkanten und ebenmäßigere Oberfläche der kaltverformten Teile. Ein gutes Kaltumformverhalten wird durch Stähle mit einer niedrigen Streckgrenze und einer hohen Gleichmaßdehnung begünstigt. Als besonders günstig in der Verarbeitung erweisen sich dabei Stähle, deren Streckgrenze idealerweise kontinuierlich verläuft oder nur schwach ausgeprägt ist. Kontinuierlich verlaufende Streckgrenzen werden oftmals auch als Dehngrenzen bezeichnet.

Die Alterung von Stahl wird durch freien Kohlenstoff im Ferrit hervorgerufen . Bei Temperaturen von über 300°C ist die Löslichkeit von Kohlenstoff in Ferrit deutlich größer als bei Raumtemperatur, sodass sich ein gewisser freier Kohlenstoffgehalt einstellt. Temperaturen von über 300 °C werden in der Regel bei Beschichtungsprozessen wie zum Beispiel beim Schmelztauchbeschichten erreicht. Bei den für Beschichtungsprozesse typischen Temperatur- und Zeitverläufen kann somit Kohlenstoff im Stahl diffundieren . Der Anteil freien Kohlenstoffs bei Raumtemperatur ist dann deutlich größer als der Gleichgewichtsgehalt, da die Annäherung an das thermodynamische Gleichgewicht eine längere Zeitspanne benötigt, als während der auf die Beschichtung folgenden Abkühlung auf Raumtemperatur zur Verfügung stehen . Bei Raumtemperatur ist der Ferrit dann sehr stark mit Kohlenstoff übersättigt. Als interstitielles Legierungselement kann Kohlenstoff allerdings auch bei Raumtemperatur noch sehr langsam diffundieren und lagert sich an Fehlstellen, wie unter anderem auch an Versetzungen an . Dieses Phänomen wird auch als Alterung und die an den Fehlstellen angelagerten interstitiell gelösten Atome als Cottrell-Wolken bezeichnet. Die Versetzungen werden durch den Kohlenstoff blockiert, sodass sich eine ausgeprägte Streckgrenze ergibt, welche für eine Kaltumformung sehr unerwünscht ist. Unter anderem wird ein Richten des Stahlflachprodukts durch das diskontinuierliche Verformungsverhalten erschwert. Der erhöhte Verformungswiderstand führt zu einem erhöhten Werkzeugverschleiß beim Platinenbeschnitt und eine mögliche anschließende tiefziehende Kaltumformung führt zu einer unebenen, ungleichmäßigen Oberfläche. Insofern sollte eine Alterung des Stahls durch freien Kohlenstoff nach Möglichkeit verhindert oder zumindest abgemildert werden .

Aus EP 2848709 AI ist ein Stahlflachprodukt bekannt, das aus einem Stahl gebildet wird, der 0,2-0,5 Gew.-% C, 0,5-3,0 Gew.-% Mn, 0,002-0,004 Gew.-% B sowie optional eines oder mehrere Elemente der Gruppe "Si, Cr, AI, Ti" in folgenden Gehalten enthält: 0, 1-0,3 Gew.% Si, 0, 1-0,5 Gew.-% Cr, 0,02-0,05 Gew.-% AI, 0,025-0,04 Gew.-% Ti. Das Stahlflachprodukt wird mit einem Korrosionsschutzüberzug beschichtet, der aus einer Aluminium- Zink-Legierung gebildet ist. Das beschichtete Stahlflachprodukt ist zur Herstellung eines Bauteils mittels Presshärten vorgesehen. Entsprechend beschaffene Stahlflachprodukte sind nur in geringem Maße alterungsbeständig und weisen nach dem Beschichten und Altern eine stark ausgeprägte Streckgrenze auf.

Der Erfindung liegt die Aufgabe zu Grunde, ein für ein Presshärten geeignetes, beschichtetes Stahlflachprodukt mit einer guten Alterungsbeständigkeit sowie ein Verfahren zu dessen Herstellung zur Verfügung zu stellen .

Hinsichtlich des Stahlflachprodukts wird diese Aufgabe durch ein Stahlflachprodukt mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Stahlflachprodukts sind in den auf Anspruch 1 rückbezogenen Ansprüchen angegeben. Hinsichtlich des Verfahrens ist die Aufgabe durch ein Verfahren mit den in Anspruch 10 genannten Merkmalen gelöst. Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den auf Anspruch 10 rückbezogenen Ansprüchen angegeben. Der Stahl eines erfindungsgemäßen Stahlflachprodukts besteht neben Eisen und unvermeidbaren Verunreinigungen (in Gew.-%) aus 0, 10 - 0,4 % C, 0,05 - 0,5 % Si, 0,5 - 3,0 % Mn, 0,01 - 0,2 % AI, 0,005 - 1,0 % Cr, 0,001 - 0,2 % V, < 0, 1 % P, < 0,05 % S, < 0,02 % N sowie optional einem oder mehreren der Elemente "B, Ti, Nb, Ni, Cu, Mo, W" in folgenden Gehalten : B: 0,0005 - 0,01 %, Ti : 0,001 -0, 1 %, Nb: 0,001 - 0, 1 %, Ni : 0,01 - 0,4 %, Cu : 0,01 - 0,8 °/o, Mo: 0,002 - 1,0 °/o, W: 0,001 - 1 ,0 %.

Wenn vorliegend Angaben zu Legierungsgehalten und Zusammensetzungen gemacht werden, beziehen sich diese auf das Gewicht beziehungsweise die Masse, sofern nichts anderes ausdrücklich angegeben ist.

Kohlenstoff wirkt in erfindungsgemäßen Stahlflachprodukten verzögernd auf die Bildung von Ferrit und Bainit. Gleichzeitig wird Austenit stabilisiert und die Ac3-Temperatur verringert. Der Kohlenstoffgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist auf 0, 10 und 0,4 Gew.-% beschränkt. Ein Kohlenstoffgehalt von mindestens 0, 10 Gew.-% ist erforderlich, um die Härtbarkeit des Stahlflachprodukts und die Zugfestigkeit des pressgehärteten Produkts mindestens 1000 MPa zu gewährleisten. Soll ein höheres Festigkeitsniveau angestrebt werden, so werden bevorzugt C-Gehalte von mindestens 0, 15 Gew.-% eingestellt. Wird der C-Gehalt weiter angehoben auf werte von mindestens 0, 19 Gew.-%, insbesondere mindestens 0,205 Gew.-%, so kann überdies die Härtbarkeit verbessert werden, sodass das Stahlflachprodukt eine sehr gute Kombination aus Härtbarkeit und Festigkeit aufweist. Kohlenstoffgehalte größer 0,4 Gew.-% wirken sich jedoch nachteilig auf die mechanischen Eigenschaften des Stahlflachprodukts aus, da C-Gehalte größer 0,4 Gew.-% während des Presshärtens die Bildung spröden Martensits fördern. Durch hohe C-Gehalte kann darüber hinaus die Schweißbarkeit negativ beeinflusst werden . Um die Schweißbarkeit zu verbessern, kann der Kohlenstoffgehalt bevorzugt auf höchstens 0,3 Gew.-% eingestellt werden . Bei C- Gehalten von höchstens 0,25 Gew.-%, insbesondere höchstens 0,235 Gew.-% kann die Schweißbarkeit nochmals deutlich verbessert und zusätzlich ein gutes Verhältnis von Kraftaufnahme und maximalem Biegewinkel im Biegeversuch nach VDA238-100 im pressgehärteten Zustand erreicht werden.

Silizium wird zur weiteren Erhöhung der Härtbarkeit des Stahlflachprodukts sowie der Festigkeit des pressgehärteten Produkts über Mischkristallverfestigung verwendet. Silizium ermöglicht außerdem den Einsatz von Ferro-Silizio-Mangan als Legierungsmittel, was sich be- günstigend auf die Produktionskosten auswirkt. Ab einem Si-Gehalt von 0,05 Gew.-% stellt sich bereits ein Härtungseffekt ein. Ab einem Si-Gehalt von mindestens 0, 15 Gew.-%, insbesondere mindestens 0,20 Gew.-% tritt ein signifikanter Anstieg der Festigkeit auf. Si- Gehalte oberhalb von 0,5 Gew.-% wirken sich nachteilig auf das Beschichtungsverhalten aus, insbesondere bei Al-basierten Beschichtungen. Si-Gehalte von höchstens 0,4 Gew.-%, insbesondere höchstens 0,30 Gew.-% werden bevorzugt eingestellt, um die Oberflächenqualität des beschichteten Stahlflachprodukts zu verbessern.

Mangan wirkt als härtendes Element, indem es die Ferrit- und die Bainitbildung stark verzögert. Bei Mangangehalten kleiner 0,5 Gew.-% werden während des Presshärtens selbst bei sehr schnellen Abkühlgeschwindigkeiten Ferrit und Bainit gebildet, was vermieden werden sollte. Mn-Gehalte von mindestens 0,9 Gew.-%, insbesondere mindestens 1, 10 Gew.-%, sind bevorzugt, wenn ein martensitisches Gefüge insbesondere in Bereichen größerer Umformung gewährleistet werden soll. Mangangehalte von mehr als 3,0 Gew.-% wirken sich nachteilig auf die Verarbeitungseigenschaften aus, weshalb der Mn-Gehalt erfindungsgemäßer Stahlflachprodukte auf höchstens 3,0 Gew.-% beschränkt ist. Vor allem die Schweißbarkeit ist stark eingeschränkt, weshalb der Mn-Gehalt bevorzugt auf höchstens 1,6 Gew.-% und insbesondere auf 1 ,30 Gew.-% beschränkt ist. Mangangehalte kleiner oder gleich 1 ,6 Gew. -% werden darüber hinaus auch aus ökonomischen Gründen bevorzugt.

Aluminium wird als Desoxidationsmittel zur Abbindung von Sauerstoff eingesetzt. Zudem hemmt Aluminium die Zementitbildung . Zur sicheren Abbindung von Sauerstoff werden mindestens 0,01 Gew.-%, insbesondere mindestens 0,02 Gew.-%, Aluminium im Stahl benötigt. Da allerdings auch die Ac3-Temperatur deutlich mit steigendem AI-Legierungsgehalt nach oben verschoben wird, ist der AI-Gehalt auf 0,2 Gew.-% begrenzt. Ab einem Gehalt von 0,2 Gew.-% behindert AI die Umwandlung in den Austenit vor dem Presshärten zu stark, sodass die Austenitisierung nicht mehr zeit- und energieeffizient durchgeführt werden kann . Für übliche Ofentemperaturen zwischen 850 und 950°C, welche zum Austeni- tisieren vor dem Presshärten eingestellt werden, wird bevorzugt ein AI-Gehalt von höchstens 0, 1 Gew.-%, insbesondere höchstens 0,05 Gew.-% eingestellt, um den Stahl vollständig zu austenitisieren.

Chrom wird dem Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,005 - 1,0 Gew.-% zugegeben . Chrom beeinflusst die Härtbarkeit des Stahlflachprodukts, indem es die diffusive Umwandlung während des Presshärtens verlangsamt. Chrom wirkt in erfindungsgemäßen Stahlflachprodukten ab einem Gehalt von 0,005 Gew.-% günstig auf die Härtbarkeit, wobei ein Cr-Gehalt von mindestens 0, 1 Gew.-%, insbesondere mindestens 0, 18 Gew.-% für eine sichere Prozessführung, vor allem zur Verhinderung der Bainitbildung, bevorzugt wird. Enthält der Stahl mehr als 1 ,0 Gew.-% Chrom, so verschlechtert sich das Beschichtungsverhalten . Um eine gute Oberflächenqualität zu erhalten, kann der Cr-Gehalt bevorzugt auf höchstens 0,4 Gew.-%, insbesondere auf höchstens 0,28 Gew.-%, begrenzt sein.

Chrom ist ein Karbidbildner und senkt als solcher den Anteil an im Stahlflachprodukt vorhandenem gelöstem Kohlenstoff. Dies trifft vor allem bei einer langsamen Abkühlung des Stahlflachprodukts mit Abkühlraten von höchstens 25 K/s oder höchstens 20 K/s zu, wie sie während des Abkühlens des beschichteten Stahlflachprodukts auf Raumtemperatur im Temperaturbereich zwischen 600 °C und 450 °C oder im Temperaturbereich zwischen 400 °C und 220 °C erfolgt. Die durch Chrom abgebundenen Kohlenstoffatome diffundieren nicht zu Versetzungen und blockieren diese nicht, sodass die Bildung einer ausgeprägten Streckgrenze reduziert oder ganz unterdrückt ist. Der Cr-Gehalt ist dabei so gewählt, dass bei Durchführung eines Beschichtungsprozesses vor dem Beschichten nur wenig Kohlenstoff durch Chrom abgebunden wird und die Bildung von Chromkarbiden vor allem während der nach dem Beschichten erfolgenden Abkühlung erfolgt. Die Chromkarbide stellen bevorzugte Keimstellen für andere Ausscheidungen wie zum Beispiel Vanadiumkarbide dar und umgekehrt. Dies führt zu einer schnelleren Abbindung des noch freien Kohlenstoffs, sodass die Bildung einer ausgeprägten Streckgrenze weiter reduziert oder ganz unterdrückt ist.

Vanadium (V) kommt im Stahl eines erfindungsgemäßen Stahlflachprodukts eine besondere Bedeutung zu. Vanadium ist ein sehr kohlenstoffaffines Element. Wenn Vanadium frei, das heißt in ungebundenem oder gelöstem Zustand, vorliegt, kann es übersättigt gelösten Kohlenstoff in Form von Karbiden oder Clustern binden oder zumindest seine Diffusionsgeschwindigkeit verringern. Entscheidend ist dabei, dass V in gelöstem Zustand vorliegt. Überraschenderweise haben sich insbesondere sehr geringe V-Gehalte als besonders günstig für die Alterungsbeständigkeit erwiesen. Bei höheren V-Gehalten können sich schon bei höheren Temperaturen größere Vanadiumkarbide bilden, welche sich dann bei Temperaturen von 650-900°C, welche typisch für Durchlaufglühen von Schmelztauch- beschichtungsanlagen sind, nicht mehr auflösen . Schon kleinste Mengen Vanadium von 0,001 Gew.-% können bereits freien Kohlenstoff bei der Anlagerung an Versetzungen behindern. Ab einem V-Gehalt von 0,2 Gew.-% tritt keine Verbesserung der Alterungsbeständigkeit mehr durch Vanadium auf. Die alterungshemmende Wirkung von Vanadium ist bei Gehalten bis zu 0,009 Gew.-% besonders ausgeprägt, wobei sich ein maximaler Effekt ab einem bevorzugten Gehalt von 0,002 Gew.-% einstellt. Um die alterungshemmende Wirkung von Vanadium besonders sicher zu nutzen, kann der Vanadiumgehalt in einer bevorzugten Ausführung auf höchstens 0,004 Gew.-%, insbesondere auf höchstens 0,003 Gew.-% eingeschränkt werden . Bei Gehalten größer 0,009 Gew.-% bilden sich vermehrt Vanadiumkarbide. Vanadiumkarbide können ab einem Vanadiumgehalt im Stahl von 0,009 Gew.-% nicht bei Temperaturen von 700 bis 900 °C, welche zum Beispiel typisch für Glühtemperaturen in einer Schmelztauchbeschichtungsanlage sind, aufgelöst werden. Mit zunehmendem Vanadiumgehalt steht nicht unweigerlich mehr freies Vanadium zur Verfügung, da die Ausscheidungskinetik von Vanadiumkarbiden immer weiter beschleunigt wird, sodass die Vanadiumkarbide zwar größer und stabiler werden, der Anteil gelösten Vanadiums aber nicht weiter zunimmt. Dieser Effekt tritt insbesondere bei Gehalten von mehr als 0,030 Gew.-% auf, weshalb der Gehalt bevorzugt auf Werte von höchstens 0,030 Gew.- % eingestellt wird . Da Vanadium neben der Verringerung von Alterungseffekten auch zur Steigerung der Festigkeit durch Ausscheidungsverfestigung beiträgt, können höhere Gehalte von bis zu 0,2 Gew.-% bevorzugt zur Festigkeitssteigerung eingestellt werden. Der Vanadiumgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist zum einen aus Kostengründen auf höchstens 0,2 Gew.-% beschränkt. Zum anderen bewirken höhere Gehalte keine wesentliche Verbesserung der mechanischen Eigenschaften .

Phosphor (P) und Schwefel (S) sind Elemente, die als Verunreinigungen durch Eisenerz in den Stahl eingeschleppt werden und nicht vollständig im großtechnischen Stahlwerksprozess beseitigt werden können. Der P-Gehalt und der S-Gehalt sollten so gering wie möglich gehalten werden, da sich die mechanischen Eigenschaften wie zum Beispiel die Kerbschlagarbeit mit zunehmendem P-Gehalt bzw. S-Gehalt verschlechtern. Ab P-Gehalten von 0, 1 Gew.-% tritt zudem eine zunehmende Versprödung des Martensits auf, weshalb der P-Gehalt eines erfindungsgemäßen Stahlflachprodukts auf höchstens 0, 1 Gew.-%, insbesondere höchstens 0,02 Gew.-%, begrenzt ist. Der S-Gehalt eines erfindungsgemäßen Stahlflachprodukts ist auf höchstens 0,05 Gew.-%, insbesondere höchstens 0,003 Gew.-%, begrenzt. Stickstoff (N) ist aufgrund des Stahlfertigungsprozesses in geringen Mengen im Stahl vorhanden. Der N-Gehalt ist möglichst gering zu halten und sollte höchstens 0,02 Gew.-% betragen. Insbesondere bei Legierungen, die Bor enthalten, ist Stickstoff schädlich, da es durch die Bildung von Bornitriden den umwandlungsverzögernden Effekt von Bor verhindert, weshalb der Stickstoffgehalt in diesem Fall bevorzugt höchstens 0,01 Gew.-%, insbesondere höchstens 0,007 Gew.-%, betragen sollte.

Bor, Titan, Niob, Nickel, Kupfer, Molybdän und Wolfram können dem Stahl eines erfindungsgemäßen Stahlflachprodukts jeweils einzeln oder in Kombination miteinander optional hinzulegiert werden.

Bor kann optional hinzulegiert werden, um die Härtbarkeit des Stahlflachprodukts zu verbessern, indem auf den Austenitkorngrenzen angelagerte Boratome oder Borausscheidungen die Korngrenzenenergie verringern, wodurch die Nukleation von Ferrit während des Presshärtens unterdrückt wird. Ein deutlicher Effekt auf die Härtbarkeit tritt bei Gehalten von mindestens 0,0005 Gew.-%, insbesondere mindestens 0,0020 Gew.-% auf. Bei Gehalten über 0,01 Gew.-% bilden sich hingegen vermehrt Borkarbide, Bornitride oder Bornitro- karbide, welche wiederum bevorzugte Keimstellen für die Nukleation von Ferrit darstellen und den härtenden Effekt wieder absenken . Aus diesem Grund wird der Borgehalt auf höchstens 0,01 Gew.-%, insbesondere höchstens 0,0035 Gew.-% beschränkt. Bei einer Zulegierung von Bor wird bevorzugt auch Titan zur Abbindung von Stickstoff hinzulegiert. Der Ti-Gehalt sollte in diesem Fall bevorzugt mindestens das 3,42-fache des Gehalts an Stickstoff betragen.

Titan (Ti) ist ein Mikrolegierungselement, welches optional hinzulegiert werden kann, um zur Kornfeinung beizutragen. Außerdem bildet Titan mit Stickstoff grobe Titannitride, weshalb der Ti-Gehalt vergleichsweise gering gehalten werden soll. Titan bindet Stickstoff ab und ermöglicht Bor so, seine stark ferrithemmende Wirkung zu entfalten . Für eine ausreichende Abbindung von Stickstoff wird mindestens das 3,42-fache des Stickstoffgehalts benötigt, wobei mindestens 0,001 Gew.-% Ti, bevorzugt mindestens 0,023 Gew.-% Ti, für eine ausreichende Verfügbarkeit hinzugegeben werden sollten . Ab 0, 1 Gew.-% Ti verschlechtert sich die Kaltwalzbarkeit und Rekristallisierbarkeit deutlich, weshalb größere Ti-Gehalte vermieden werden sollten. Um die Kaltwalzbarkeit zu verbessern, kann der Ti-Gehalt bevorzugt auf 0,038 Gew.-% beschränkt sein. Niob (Nb) kann optional hinzulegiert werden, um ab einem Gehalt von 0,001 Gew.-% zur Kornfeinung beizutragen. Allerdings verschlechtert Niob die Rekristallisierbarkeit des Stahls. Bei einem Nb-Gehalt von über 0, 1 Gew.-% lässt sich der Stahl nicht mehr in üblichen Durchlauföfen vor der Feuerbeschichtung rekristallisieren. Um das Risiko einer Verschlechterung der Rekristallisierbarkeit zu reduzieren, kann der Nb-Gehalt bevorzugt auf 0,003 Gew.- % beschränkt werden .

Kupfer (Cu) kann optional hinzulegiert werden, um bei Zugaben von mindestens 0,01 Gew.- % die Härtbarkeit zu erhöhen. Darüber hinaus verbessert Kupfer den Widerstand gegen atmosphärische Korrosion unbeschichteter Bleche oder Schnittkanten. Ab einem Gehalt von 0,8 Gew.-% verschlechtert sich die Warmwalzbarkeit aufgrund niedrigschmelzender Cu- Phasen an der Oberfläche deutlich, weshalb der Cu-Gehalt auf höchstens 0,8 Gew.-%, bevorzugt höchstens 0, 10 Gew.-% beschränkt ist.

Nickel (Ni) stabilisiert die austenitische Phase und kann optional hinzulegiert werden, um die Ac3-Temperatur zu verringern und die Bildung von Ferrit und Bainit zu unterdrücken. Nickel hat darüber hinaus einen positiven Einfluss auf die Warmwalzbarkeit, insbesondere, wenn der Stahl Kupfer enthält. Kupfer verschlechtert die Warmwalzbarkeit. Um dem negativen Einfluss von Kupfer auf die Warmwalzbarkeit entgegenzuwirken, können dem Stahl 0,01 Gew.-% Nickel hinzulegiert werden. Aus ökonomischen Gründen sollte der Nickelgehalt auf höchstens 0,4 Gew.-%, insbesondere höchstens 0, 10 Gew.-%, beschränkt bleiben.

Molybdän (Mo) kann zur Verbesserung der Prozessstabilität optional hinzugegeben werden, da es die Ferritbildung deutlich verlangsamt. Ab Gehalten von 0,002 Gew.-% bilden sich dynamisch Molybdän-Kohlenstoff Cluster bis hin zu ultrafeinen Molybdänkarbiden auf den Korngrenzen, welche die Beweglichkeit der Korngrenze und somit diffusive Phasenumwandlungen deutlich verlangsamen. Außerdem wird durch Molybdän die Korngrenzenenergie verringert, was die Nukleationsrate von Ferrit verringert. Aufgrund der hohen Kosten, welche mit einer Legierung von Molybdän verbunden sind, sollte der Gehalt höchstens 1,0 Gew.-%, bevorzugt höchstens 0, 1 Gew.-% betragen.

Wolfram (W) kann optional in Gehalten von 0,001 - 1,0 Gew.-% zur Verlangsamung der Ferritbildung hinzulegiert werden. Ein positiver Effekt auf die Härtbarkeit ergibt sich bereits bei W-Gehalten von mindestens 0,001 Gew.-%. Aus Kostengründen wird maximal 1 ,0 Gew.- % Wolfram hinzulegiert.

Ein erfindungsgemäßes Stahlflachprodukt weist nach dem Beschichten eine hohe Gleichmaßdehnung Ag von mindestens 11,5% auf. Die Streckgrenze eines erfindungsgemäßen Stahlflachprodukts weist einen kontinuierlichen Verlauf oder nur eine geringe Ausprägung auf. Kontinuierlicher Verlauf bedeutet im Sinne der Erfindung, dass keine ausgeprägte Streckgrenze vorliegt. Eine Streckgrenze mit kontinuierlichem Verlauf kann auch als Dehngrenze Rp0,2 bezeichnet werden. Unter einer Streckgrenze mit geringer Ausprägung wird vorliegend eine ausgeprägte Streckgrenze verstanden, bei welcher die Differenz ARe zwischen oberem Streckgrenzenwert ReH und unterem Streckgrenzenwert ReL höchstens 45 MPa beträgt. Es gilt:

ARe = (ReH - ReL) < 45 MPa mit ReH = obere Streckgrenze in MPa und ReL = untere Streckgrenze in M Pa .

Eine besonders gute Alterungsbeständigkeit lässt sich bei Stahlflachprodukten erzielen, für die die Differenz ARe höchstens 25 MPa beträgt.

Das erfindungsgemäße Verfahren zur Herstellung eines für ein Presshärten geeigneten beschichteten Stahlflachprodukts, welches eine besonders gute Alterungsbeständigkeit aufweist, umfasst folgende Arbeitsschritte: a) Zurverfügungstellen einer Bramme oder einer Dünnbramme, die aus (in Gew.-%) 0, 10 - 0,4 % C, 0,05 - 0,5 % Si, 0,5 - 3,0 % Mn, 0,01 - 0,2 % AI, 0,005 - 1,0 % Cr, 0,001 - 0,2 % V, < 0, 1 % P, < 0,05 % S, < 0,02 % N sowie optional einem oder mehreren der Elemente "B, Ti, Nb, Ni, Cu, Mo, W" in folgenden Gehalten B: 0,0005 - 0,01 %, Ti: 0,001 - 0, 1 °/o, Nb: 0,001 - 0, 1 °/o, Ni: 0,01 - 0,4 %, Cu: 0,01 - 0,8 °/o, Mo: 0,002 - 1,0 °/o, W: 0,001 - 1,0 % und Rest Eisen und unvermeidbaren Verunreinigungen besteht; b) Durcherwärmen der Bramme oder Dünnbramme bei einer Temperatur (TI) von 1100 - 1400 °C; c) optionales Vorwalzen der durch erwärmten Bramme oder Dünnbramme zu einem Zwischenprodukt mit einer Zwischenprodukttemperatur (T2) von 1000 - 1200 °C; d) Warmwalzen zu einem warmgewalzten Stahlflachprodukt, wobei die Endwalztemperatur (T3) 750 - 1000 °C beträgt; e) optionales Haspeln des warmgewalzten Stahlflachprodukts, wobei die Haspeltemperatur (T4) höchstens 700 °C beträgt; f) Entzundern des warmgewalzten Stahlflachprodukts; g) optionales Kaltwalzen des Stahlflachprodukts, wobei der Kaltwalzgrad mindestens 30 % beträgt; h) Glühen des Stahlflachprodukts bei einer Glühtemperatur (T5) von 650 - 900 °C; i) Abkühlen des Stahlflachprodukts auf eine Vorkühltemperatur (T6), welche 600 - 800 °C beträgt; j) Beschichten des Stahlflachprodukts mit einem Korrosionsschutzüberzug; k) Abkühlen des beschichteten Stahlflachprodukts auf Raumtemperatur, wobei die Abkühlung im Temperaturbereich zwischen 600 °C und 450 °C mit einer mittleren Abkühlrate (CR1) von höchstens 25 K/s und im Temperaturbereich zwischen 400 °C und 220 °C mit einer mittleren Abkühlrate (CR2) von höchstens 20 K/s erfolgt;

I) optionales Dressieren des beschichteten Stahlflachprodukts.

In Arbeitsschritt a) wird ein entsprechend der erfindungsgemäß für das Stahlflachprodukt vorgegebenen Legierung zusammengesetztes Halbzeug zur Verfügung gestellt. Dies kann eine im konventionellen Brammenstrangguss oder im Dünnbrammenstrangguss erzeugte Bramme sein . In Arbeitsschritt b) wird das Halbzeug bei einer Temperatur (Tl) von 1100 - 1400 °C durcherwärmt. Sollte das Halbzeug nach dem Vergießen abgekühlt sein, so wird das Halbzeug zum Durcherwärmen zunächst auf 1100 - 1400 °C wiedererwärmt. Die Durcherwärmungstemperatur sollte mindestens 1100 °C betragen, um eine gute Verformbarkeit für den nachfolgenden Walzprozess sicherzustellen . Die Durcherwärmungstemperatur sollte nicht mehr als 1400 °C betragen, um Anteile schmelzflüssiger Phasen im Halbzeug zu vermeiden.

Im optionalen Arbeitsschritt c) wird das Halbzeug zu einem Zwischenprodukt vorgewalzt. Dünnbrammen werden üblicherweise keiner Vorwalzung unterzogen . Dickbrammen, die zu Warmbändern ausgewalzt werden sollen, können bei Bedarf einer Vorwalzung unterzogen werden. In diesem Fall sollte die Temperatur des Zwischenprodukts (T2) am Ende des Vorwalzens mindestens 1000 °C betragen, damit das Zwischenprodukt genügend Wärme für den nachfolgenden Arbeitsschritt des Fertigwalzens enthält. Hohe Walztemperaturen können jedoch auch ein Kornwachstum während des Walzvorgangs fördern, was sich nachteilig auf die mechanischen Eigenschaften des Stahlflachprodukts auswirkt. Um das Kornwachstum während des Walzvorgangs gering zu halten, soll die Temperatur des Zwischenprodukts am Ende des Vorwalzens nicht mehr als 1200 °C betragen .

In Arbeitsschritt d) wird die Bramme oder Dünnbramme oder, wenn Arbeitsschritt c) ausgeführt wurde, das Zwischenprodukt zu einem warmgewalzten Stahlflachprodukt gewalzt. Wurde Arbeitsschritt c) ausgeführt, so wird das Zwischenprodukt unmittelbar nach dem Vorwalzen fertiggewalzt. Typischerweise beginnt das Fertigwalzen spätestens 90 s nach dem Ende des Vorwalzens. Die Bramme, die Dünnbramme oder, wenn Arbeitsschritt c) ausgeführt wurde, das Zwischenprodukt werden bei einer Endwalztemperatur (T3) ausgewalzt. Die Endwalztemperatur, das heißt die Temperatur des fertig warmgewalzten Stahlflachprodukts am Ende des Warmwalzvorgangs, beträgt 750 - 1000 °C. Bei Endwalztemperaturen kleiner 750 °C nimmt die Menge an freiem Vanadium ab, da größere Mengen an Vanadiumkarbiden ausgeschieden werden . Die beim Fertigwalzen ausgeschiedenen Vanadiumkarbide sind sehr groß. Sie weisen typischerweise eine mittlere Korngröße von 30 nm oder mehr auf und werden in nachfolgenden Glühprozessen, wie sie zum Beispiel vor dem Schmelztauchbeschichten durchgeführt werden, nicht mehr aufgelöst. Die Endwalztemperatur ist auf Werte von höchstens 1000 °C begrenzt, um einer Vergröberung der Austenitkörner vorzubeugen . Außerdem sind Endwalztemperaturen von höchstens 1000 °C prozesstechnisch relevant zur Einstellung von Haspeltemperaturen (T4) kleiner 700°C.

Das Warmwalzen des Stahlflachprodukts kann als kontinuierliches Warmbandwalzen oder als reversierendes Walzen erfolgen. Arbeitsschritt e) sieht für den Fall des kontinuierlichen Warmbandwalzens ein optionales Haspeln des warmgewalzten Stahlflachprodukts vor. Dazu wird das Warmband nach dem Warmwalzen innerhalb von weniger als 50 s auf eine Haspeltemperatur (T4) abgekühlt. Als Kühlmedium kann hierfür beispielsweise Wasser, Luft oder eine Kombination aus beidem verwendet werden. Die Haspeltemperatur (T4) sollte höchstens 700 °C betragen, um die Bildung großer Vanadiumkarbide zu vermeiden . Die Haspeltemperatur ist prinzipiell nicht nach unten beschränkt. Allerdings haben sich Haspeltemperaturen von mindestens 500 °C als günstig für die Kaltwalzbarkeit erwiesen . Anschließend wird das gehaspelte Warmband in konventioneller Weise an Luft auf Raumtemperatur abgekühlt.

In Arbeitsschritt f) wird das warmgewalzte Stahlflachprodukt in konventioneller Weise durch Beizen oder durch eine andere geeignete Behandlung entzundert.

Das von Zunder gereinigte warmgewalzte Stahlflachprodukt kann vor der Glühbehandlung in Arbeitsschritt g) optional einem Kaltwalzen unterzogen werden, um beispielsweise höhere Anforderungen an die Dickentoleranzen des Stahlflachprodukts zu erfüllen. Der Kaltwalzgrad (KWG) sollte dabei mindestens 30 % betragen, um in das Stahlflachprodukt genügend Verformungsenergie für eine schnelle Rekristallisation einzubringen. Unter dem Kaltwalzgrad KWG wird dabei der Quotient aus der Dickenabnahme beim Kaltwalzen AdKW durch die Warmbanddicke d verstanden :

KWG = AdKW/d mit AdKW = Dickenabnahme beim Kaltwalzen in mm und d = Warmbanddicke in mm, wobei sich die Dickenabnahme AdKW aus der Differenz der Dicke des Stahlflachprodukts vor dem Kaltwalzen zur Dicke des Stahlflachprodukts nach dem Kaltwalzen ergibt. Beim Stahlflachprodukt vor dem Kaltwalzen handelt es sich üblicherweise um ein Warmband der Warmbanddicke d . Das Stahlflachprodukt nach dem Kaltwalzen wird üblicherweise auch als Kaltband bezeichnet. Der Kaltwalzgrad kann prinzipiell sehr hohe Werte von über 90 % an- nehmen. Allerdings haben sich Kaltwalzgrade von höchstens 80 % als günstig zur Vermeidung von Bandrissen erwiesen .

In Arbeitsschritt h) wird das Stahlflachprodukt einer Glühbehandlung bei Glühtemperaturen (T5) von 650 - 900 °C unterzogen. Dazu wird das Stahlflachprodukt zunächst innerhalb von 10 bis 120 s auf die Glühtemperatur erwärmt und dann 30 bis 600 s bei der Glühtemperatur gehalten . Die Glühtemperatur beträgt mindestens 650 °C, bevorzugt mindestens 720 °C, um Vanadium in Lösung zu halten . Thermodynamisch betrachtet scheidet sich bei V-Gehalten von 0,002 Gew.-% und Temperaturen oberhalb von 650 °C Vanadiumkarbid aus oder bereits gebildete Vanadiumkarbide lösen sich nicht mehr auf. Allerdings sind sehr feine Vanadiumkarbide aufgrund ihrer hohen Oberflächenenergie thermodynamisch instabil. Dieser Effekt wird in der vorliegenden Erfindung genutzt, um bei Temperaturen von 650 - 900 °C Vanadium in Lösung zu bringen oder bereits gelöstes Vanadium in Lösung zu halten, was sich positiv auf die Alterungsbeständigkeit des Stahlflachprodukts auswirkt. Bei Glühtemperaturen oberhalb von 900 °C wird keine Verbesserung der Alterungsbeständigkeit erreicht, weshalb die Glühtemperatur auch aus ökonomischen Gründen auf 900 °C beschränkt ist.

In Arbeitsschritt i) wird das Stahlflachprodukt nach dem Glühen auf eine Vorkühltemperatur (T6) abgekühlt, um es für die anschließende Beschichtungsbehandlung vorzubereiten. Die Vorkühltemperatur ist kleiner als die Glühtemperatur und wird auf die Temperatur des Beschichtungsbads abgestimmt. Die Vorkühltemperatur beträgt 600 - 800 °C, bevorzugt mindestens 640 °C, besonders bevorzugt höchstens 700 °C. Die Dauer der Abkühlung des geglühten Stahlflachprodukts von der Glühtemperatur T5 auf die Vorkühltemperatur T6 beträgt bevorzugt 10 - 180 s.

Das Stahlflachprodukt wird in Arbeitsschritt j) einer Beschichtungsbehandlung unterzogen . Die Beschichtungsbehandlung erfolgt bevorzugt mittels kontinuierlichem Schmelztauchbeschichten . Die Beschichtung kann nur auf einer Seite, auf beiden Seiten oder auf allen Seiten des Stahlflachprodukts aufgebracht werden. Die Beschichtungsbehandlung erfolgt bevorzugt als Schmelztauchbeschichtungsprozess, insbesondere als kontinuierlicher Prozess. Dabei kommt das Stahlflachprodukt üblicherweise auf allen Seiten mit dem Schmelzenbad in Kontakt, sodass es allseits beschichtet wird . Das Schmelzenbad, das die auf das Stahlflachprodukt aufzubringende Legierung in flüssiger Form enthält, weist typischerweise eine Temperatur (T7) von 640 - 720 °C auf. Als zum Beschichten alterungsbeständiger Stahlflachprodukte mit einem Korrosionsschutzüberzug besonders geeignet haben sich Legierungen auf Aluminiumbasis erwiesen . Das Schmelzenbad, das den auf das Stahlflachprodukt aufzubringenden Korrosionsschutzüberzug in flüssiger Form enthält, enthält typischerweise neben Aluminium 3 - 15 Gew.-% Silizium, bevorzugt 9 - 12 Gew.-% Silizium, bis zu 5 Gew.-% Eisen und bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen, wobei die Summe der vorliegenden Bestandteile 100 Gew.-% beträgt. Unvermeidbare Verunreinigungen können dabei beispielsweise unvermeidbare Anteile an Chrom, Mangan, Kalzium oder Zinn sein .

Nach der Beschichtungsbehandlung wird das beschichtete Stahlflachprodukt in Arbeitsschritt k) auf Raumtemperatur abgekühlt. Die Abkühlrate wird dabei derart eingestellt, dass ein möglichst großer Anteil übersättigt gelösten Kohlenstoffs durch Vanadium abgebunden werden kann . Darum soll die mittlere Abkühlrate (CRl) in einem Temperaturbereich, welcher optimal für die Ausscheidungskinetik von Vanadium ist, und welcher bei Stahlflachprodukten mit erfindungsgemäßer Zusammensetzung zwischen 600 °C und 450 °C liegt, höchstens 25 K/s, bevorzugt höchstens 18 K/s, besonders bevorzugt höchstens 12 K/s betragen .

Der Umfang, in welchem freier Kohlenstoff durch Vanadium abgebunden wird, nimmt zu, wenn die Abkühlung in einem Temperaturbereich zwischen 400 °C und 220 °C mit einer geringeren Abkühlrate erfolgt als im Temperaturbereich zwischen 600 °C und 450 °C. Die mittlere Abkühlrate (CR2) sollte deshalb zwischen 400 °C und 220 °C höchstens 20 K/s, bevorzugt 14 K/s, besonders bevorzugt höchstens 9,5 K/s betragen . Im Temperaturbereich zwischen 400 °C und 220 °C besitzt der freie Kohlenstoff des Stahlflachprodukts noch eine zur Rekombination mit Vanadium ausreichende Diffusionsgeschwindigkeit, was das Abbinden freien Kohlenstoffs begünstigt. Außerdem ist in diesem Temperaturbereich die Triebkraft für das Wachstum von Vanadiumkarbiden besonders hoch, wodurch ebenfalls freier Kohlenstoff gebunden wird. Dies gilt insbesondere für V-Gehalte von 0,002-0,009 Gew.-%.

Darüber hinaus ist im Temperaturbereich zwischen 400 °C und 220 °C die Triebkraft für die Bildung von Eisenkarbiden, welche bevorzugt an bereits vorhandenen Karbiden der Mikro- legierungselemente wie Vanadium, Niob oder Titan keimen, besonders hoch. Durch die Bildung von Eisenkarbiden wird ebenfalls freier Kohlenstoff gebunden, was sich günstig auf das Alterungsverhalten auswirkt. Im Temperaturbereich zwischen der Glühtemperatur und 600 °C, zwischen 450°C und 400°C sowie zwischen 220°C und Raumtemperatur hat die Abkühlrate keinen wesentlichen Einfluss auf die Alterungsbeständigkeit. Aus prozesstechnischen Gründen wird zwischen der Glühtemperatur und 600 °C sowie zwischen 450°C und 400°C bevorzugt eine mittlere Abkühlrate von höchstens 25 K/s und zwischen 220 °C und Raumtemperatur eine mittlere Abkühlrate von höchstens 20 K/s eingestellt. Aus ökonomischen Gründen beträgt die mittlere Abkühlrate bevorzugt in den einzelnen Temperaturbereichen jeweils mindestens 0, 1 K/s. Unter der mittleren Abkühlrate wird vorliegend die durchschnittliche Abkühlrate verstanden, die sich rein rechnerisch aus dem Quotienten der Temperaturdifferenz des betrachteten Abkühltemperaturbereichs durch die für die Abkühlung in diesem Temperaturbereich benötigte Zeit ergibt. Dies ist beispielsweise für eine Abkühlung von einer Temperatur TX auf eine Temperatur TY: (TX-TY)/At, wobei TX die Temperatur zu Beginn der Abkühlung in K, TY die Temperatur am Ende der Abkühlung in K und At die Dauer der Abkühlung von TX auf TY in s sind .

Prinzipiell kann die Abkühlung beliebig langsam durchgeführt werden, da der Anteil freien Kohlenstoffs kontinuierlich abnimmt, was die Alterungsneigung verbessert. Aufgrund technischer Gegebenheiten und aus wirtschaftlichen Gründen kann die Abkühlrate des gesamten Abkühlprozesses, das heißt der Abkühlung des beschichteten Stahlflachprodukts nach Austritt aus dem Beschichtungsbad bis zum Erreichen der Raumtemperatur, nach unten begrenzt werden auf werte von typischerweise mindestens 0, 1 K/s.

Ein nach erfolgter Abkühlung auf dem Stahlsubstrat aufliegender Korrosionsschutzüberzug enthält typischerweise 3 - 15 Gew.-% Silizium, bevorzugt 9 - 12 Gew.-% Silizium, besonders bevorzugt 9 - 10 Gew.-% Silizium, bis zu 5 Gew.-% Eisen, bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen und Rest Aluminium. Unvermeidbare Verunreinigungen können dabei beispielsweise unvermeidbare Anteile an Chrom, Mangan, Kalzium oder Zinn sein . Die Überzugszusammensetzung kann beispielsweise mit Hilfe der Glimmentladungsspektroskopie (GDOES) bestimmt werden .

Das beschichtete Stahlflachprodukt kann optional einem Dressieren mit einem Dressiergrad von bis zu 2% unterzogen werden, um die Oberflächenrauhigkeit des Stahlflachprodukts zu verbessern. Ein erfindungsgemäß erzeugtes Stahlflachprodukt ist für ein Presshärten geeignet und weist einen Korrosionsschutzüberzug, eine hohe Gleichmaßdehnung Ag von mindestens 11,5% sowie eine kontinuierliche Streckgrenze oder eine ausgeprägte Streckgrenze, bei welcher die Differenz zwischen der oberen und der unteren Streckgrenze höchstens 45 MPa beträgt, auf.

In einer bevorzugten Ausführung beträgt die kontinuierliche Streckgrenze beziehungsweise die untere Streckgrenze mindestens 380 M Pa, bevorzugt mindestens 400 MPa, insbesondere mehr als 400 MPa, und besonders bevorzugt mindestens 410 MPa und ganz besonders bevorzugt mindestens 420 MPa.

In einer weiteren bevorzugten Ausführung weist das Stahlflachprodukt eine Zugfestigkeit von mindestens 540 MPa, besonders bevorzugt mindestens 550 MPa und ganz besonders bevorzugt mindestens 560 MPa auf.

Im Folgenden wird die Erfindung anhand von Ausführungs-beispielen näher erläutert.

Zum Nachweis der Wirkung der Erfindung wurden mehrere Versuche durchgeführt. Dafür wurden Brammen mit den in Tabelle 1 angegebenen Zusammensetzungen mit einer Dicke von 200-280 mm und Breite von 1000-1200 mm erzeugt, in einem Stoßofen auf eine jeweilige Temperatur Tl aufgeheizt und zwischen 30 und 450 min auf Tl gehalten, bis die Temperatur Tl im Kern der Brammen erreicht war und die Brammen somit durcherwärmt waren. Die Herstellungsparameter sind in Tabelle 2 angegeben. Die Brammen wurden mit ihrer jeweiligen Durcherwärmungstemperatur Tl aus dem Stoßofen ausgetragen und einem Warmwalzen unterzogen . Die Versuche wurden als kontinuierliche Warmbandwalzung ausgeführt. Dazu wurden die Brammen zunächst zu einem Zwischenprodukt der Dicke 40 mm vorgewalzt, wobei die Zwischenprodukte, welche bei der Warmbandwalzung auch als Vorbänder bezeichnet werden können, am Ende der Vorwalzphase jeweils eine Zwischenprodukttemperatur T2 aufwiesen . Die Vorbänder wurden unmittelbar nach der Vorwalzung dem Fertigwalzen zugeführt, sodass die Zwischenprodukttemperatur T2 der Walzanfangstemperatur für die Fertigwalzphase entspricht. Die Vorbänder wurden zu Warmbänder mit einer Enddicke von 3-7 mm und den in Tabelle 2 angegebenen jeweiligen Endwalztemperaturen T3 ausgewalzt, auf die jeweilige Haspeltemperatur abgekühlt und bei den jeweiligen Haspeltemperaturen T4 zu Coils aufgewickelt und dann in ruhender Luft abgekühlt. Die Warmbänder wurden in konventioneller Weise mittels Beizen entzundert, bevor sie einem Kaltwalzen mit den in Tabelle 2 angegebenen Kaltwalzgraden unterzogen wurden. Die kaltgewalzten Stahlflachprodukte wurden in einem Durchlaufglühofen auf eine jeweilige Glühtemperatur T5 erwärmt und für jeweils 100 s auf Glühtemperatur gehalten, bevor sie mit einer Abkühlrate von 1 K/s auf ihre jeweilige Vorkühltemperatur T6 abgekühlt wurden. Die Kaltbänder wurden mit ihrer jeweiligen Vorkühltemperatur T6 durch ein schmelzflüssiges Beschichtungsbad der Temperatur T7 geführt. Die Zusammensetzung des Beschichtungs- bads war dabei folgende: 9 Gew.-% Si, 2,9 Gew.-% Fe, 87,8 Gew.-% Aluminium und Rest unvermeidbare Verunreinigungen . Nach dem Beschichten wurden die beschichteten Bänder auf konventionelle Weise abgeblasen, wodurch eine Auflage der Beschichtung von 150g/m 2 erzeugt wurde. Die Bänder wurden zunächst mit einer mittleren Abkühlrate von 10-15 K/s auf 600 °C abgekühlt. Im weiteren Abkühlverlauf zwischen 600 °C und 450 °C und zwischen 400 °C und 220 °C wurden die Bänder jeweils mit den in Tabelle 2 angegebenen Abkühlraten CR1 und CR2 abgekühlt. Zwischen 450 °C und 400 °C und unterhalb von 220 °C wurden die Bänder mit einer Abkühlrate von jeweils 5 - 15 K/s abgekühlt.

Nach dem Abkühlen auf Raumtemperatur wurden aus den abgekühlten Stahlbändern gemäß DIN EN ISO 6892-1 :2009-12 Proben quer zur Walzrichtung entnommen . Die Proben wurden gemäß DIN EN ISO 6892-1 :2009-12 einer Zugprüfung unterzogen . In Tabelle 3 sind die Ergebnisse der Zugprüfung angegeben . Im Rahmen der Zugprüfung wurden folgende Material kenn werte ermittelt: die Streckgrenzenart, welche mit Re für eine ausgeprägte Streckgrenze und mit Rp für eine kontinuierliche Streckgrenze bezeichnet ist, sowie bei einer kontinuierlichen Streckgrenze der Wert für die Dehngrenze Rp0,2, bei einer ausgeprägten Streckgrenze die Werte für die untere Streckgrenze ReL, die obere Streckgrenze ReH und die Differenz von oberer und unterer Streckgrenze ARe, die Zugfestigkeit Rm, die Gleichmaßdehnung Ag und die Bruchdehnung A80. Alle Proben weisen eine kontinuierliche Streckgrenze Rp oder eine nur geringfügig ausgeprägte Streckgrenze mit einem Unterschied ARe zwischen oberer und unterer Streckgrenze von höchstens 41 MPa und einer Gleichmaßdehnung Ag von mindestens 11,5 % auf. Dabei liegt für die Proben 8, 12 - 17, 19, 21, 22 und 24 eine kontinuierliche Streckgrenze Rp und für die Proben 1 - 7, 9 - 11, 18, 20 und 23 eine ausgeprägte Streckgrenze Re vor. Der in Tabelle 3 für die Proben 1 - 7, 9 - 11, 18, 20 und 23 mit ausgeprägter Streckgrenze angegebene Streckgrenzenwert ist der im Rahmen der Zugprüfung ermittelte Wert für die untere Streckgrenze ReL. Der in Tabelle 3 für die Proben 8, 12 - 17, 19, 21, 22 und 24 mit kontinuierlicher Streckgrenze angegebene Wert ist der im Rahmen der Zugprüfung ermittelte Wert für die Dehngrenze Rp0,2.

Rest Eisen und unvermeidbare Verunreinigungen. Angaben jeweils in Gew

Tabelle 1, Teil 1

Rest Eisen und unvermeidbare Verunreinigungen. Angaben jeweils in Gew

Tabelle 1. Teil 2

Tabelle 2, Teil 1

Tabelle 2, Teil 2

Rp=kontinuierliche Streckgrenze, Re= ausgeprägte Streckgrenze

Tabelle 5, Teil 1

Rp=kontinuierliche Streckgrenze, Re= ausgeprägte Streckgrenze

Tabelle 5, Teil 2