Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLEXIBLE PAYLOAD CONTROL IN DATA-OPTIMIZED COMMUNICATION SYSTEMS
Document Type and Number:
WIPO Patent Application WO/2007/098458
Kind Code:
A3
Abstract:
An access terminal (AT) and a data-optimized cellular communication radio network (RN) negotiate a set of packet sizes for use on a reverse link between the AT and the RN. The negotiated set of packet sizes may differ from the default set of packet sizes defined in an existing standard, such as 1xEV-DO Revisions A and B. The packet sizes in the negotiated set may be tailored to provide a good fit with an application transmitting data on the reverse link, such as a voice encoder of a voice over Internet Protocol (VoIP) application. The AT and the RN communicate using the negotiated set of packet sizes. The packet sizes of the negotiated set may be mapped to the same reverse rate indicator (RRI) channel codewords as are defined in systems operating under the standard. Packing efficiency is thus increased, and higher capacity for delay-sensitive applications is achieved.

Inventors:
ATTAR RASHID AHMED AKBAR (US)
BHUSHAN NAGA (US)
Application Number:
PCT/US2007/062455
Publication Date:
February 14, 2008
Filing Date:
February 21, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUALCOMM INC (US)
ATTAR RASHID AHMED AKBAR (US)
BHUSHAN NAGA (US)
International Classes:
H04L5/14; H04B1/707; H04J13/00
Domestic Patent References:
WO2004114549A12004-12-29
Foreign References:
JP2000270024A2000-09-29
US20040022203A12004-02-05
EP1513304A22005-03-09
Other References:
See also references of EP 1987623A2
Attorney, Agent or Firm:
OGROD, Gregory, D. (5775 Morehouse DriveSan Diego, California, US)
Download PDF:
Claims:

CLAIMS

1. A method of communicating data on a reverse link between a wireless access terminal and a radio network, the method comprising: determining one or more desired air interface packet sizes for the reverse link based on one or more parameters; determining a desired set of air interface packet sizes for the reverse link, the desired set comprising each desired air interface packet size of said one or more desired air interface packet sixes; transmitting to the radio network a request to use the desired set for data traffic on the reverse link; in response to the step of transmitting to the radio network the request, receiving a negotiated set of air interface packet sizes to be used for the data traffic on the reverse link; and communicating the data traffic on the reverse link using the negotiated set,

2. The method of claim I, wherein: the negotiated set is generated by the radio network based at least in part on the desired set; and the step of communicating comprises sending from the wireless access terminal to the radio network a plurality of reverse link traffic packets and a plurality of indications of size of the reverse link traffic packets, each indication of the plurality of indications being associated with a different reverse link, traffic packet of tbe plurality of reverse link traffic packets, said each indication determining the size of the reverse link traffic packet, associated with said each indication, said each indication being selected from the negotiated set,, at least one indication of the plurality of indications corresponding to a packet size not included in a default set of reverse link traffic packet sbes of the radio network.

3. The method of claim 2, wherein said one or more parameters comprise a preference of an application of the wireless access terminal.

4. The method of claim 3 t wherein number of entries in the desired set is equal to number of entries in the default set.

5. The method of ciaim 4, wherein the number of entries in the negotiated set is equal to number of entries in the default set.

6. The method of claim 3, wherein the negotiated set is identical to the desired set.

7. The method of claim 3. wherein the negotiated set is different from the default set.

8. The method of claim 7. wherein the radio network services at least one access terminal using the default set.

9. The method of claim 3, xvherem the application comprises a voice over Internet Protocol (YoIP) application, and the preference comprises voice encoder packet stee of the VoJP application.

10. The method of claim 2, wherein said eacli indication is transmitted as a codeword on. a reverse rate indicator (RRI) channel.

11. A wireless access terminal for communicating with a base transceiver station of a radio network, the wireless access terminal comprising: a receiver configured to receive forward link transmissions from the base transceiver station; a transmitter configured to send reverse link transmissions to the base transceiver station; a memory storing program code; and a controller coupled to the receiver, transmitter, and the memory, wherein the controller is configured to execute the program code to cause the wireless access terminal to perform steps comprising:

based on one or more parameters, determining one or more desired air interface packet sizes for the reverse link; determining a desired set of air interface packet, sizes for the reverse link, the desired set comprising each desired air interface packet size of said one or more desired air interface packet sizes; transmitting to the radio network a request to use the desired set for data trafSc on the reverse link; and in response to the step of transmitting, receiving a negotiated set of ak interface packet, sizes to be used for the data traffic on the reverse link.

12. The wireless access terminal of claim I L wherein the controller is further configured to execute the program code to cause the wireless access terminal to send to the radio network a plurality of reverse link traffic packets and a plurality of indications of size of the reverse link traffic packets, each indication of the plurality of indications being associated with a different reverse link traffic packet of the plurality of reverse link traffic packets, said each, indication determining the st^e of the reverse link traffic packet associated with said each indication, said each indication being selected from the negotiated set.

13. The wireless access terminal of claim 12, wherein the program code further comprises an application, and said one or more parameters comprise a preference of the application.

14. The wireless access terminal of claim 13, wherein number of entries in the desired set is equal to number of entries in a default set of reverse link trøfϋe packet sizes of the radio network, and at least one indication of the plurality of indications corresponds to a packet size not included In the default set.

15. The wireless access terminal of claim 14, wherein die number of entries in the negotiated set is equal to number of entries in the default, set.

16. The wireless access terminal of claim 13, wherein the negotiated set is identical to the desired set.

17. The wireless access terminal of ciaini 13, wherein the negotiated set is different from a default set of reverse link traffic packet sizes of the radio network.

18. The wireless access terminal of claim 13, wherein the application comprises a voice over Internet Protocol (VoJF) application, and the preference comprises voice encoder packet size of the VoIP application.

19. The wireless access terminal of claim 13,. wherein the controller is &ιther configured to execute the program code to cause the wireless access terminal to send the ijttdicatioiis as codewords on a reverse rate indicator (KRl) channel.

20. A machine-readable medium comprising instructions, the instructions, when executed by at least one processor of a. wireless access terminal for communicating with a base transceiver station of a radio network, cause the wireless access terminal to perform operations comprising: determining, based on one or more parameters, one or more desired air interface packet sizes for a reverse link between the wireless access terminal and the radio .network; determining a desired set of air interface packet, sizes for the reverse link, the desired set cαmprismg each, desired air interface packet size of said one or more desired air interface packet sues; transmitting to the radio network a request to use the desired set for data traffic on the reverse link; in response to the step of transmitting to the radio network the request, receiving a negotiated set. of air interface packet sizes to be used for the data traffic on the reverse link; and communicating the data traffic on the reverse link using the negotiated set.

21. The machine-readable medium of claim 20, wherein: the negotiated set is generated by the radio network based at least in part on the desired set; and the step of communicating comprises sending from the wireless access terminal to the radio network a plurality of reverse link, traffic packets and a plurality of indications of size of the reverse link traffic packets, each indication of the plurality of indications being associated with a different reverse link traffic packet of the plurality of reverse link traffic packets, said each indication determining the size of the reverse link traffic packet associated with said each indication, said each indication being selected from the negotiated set. at least one indication of the plurality of indications corresponding to a packet size not included in. the default set.

22. The machine-readable medium of claim 21, wherein said one or more parameters comprise a preference of an application of the wireless access terminal.

23. The machine-readable medium of claim 22, wherein the application comprises a voice over Internet Protocol (VoIP) application, and the preference comprises voice encoder packet size of the VoIP application.

24. The machine-readable medium of claim 22, wherein said each indication is transmitted as a codeword on a reverse rate indicator (RRl) channel.

25. A method of communicating data on. a reverse, link between a wireless access terminal and a radio network, the method comprising: determining a desired set. of air interface packet sizes for the reverse link, the desired set being different from a default set of air interface packet sizes of the radio network; step for negotiating a negotiated set of air interface packet sizes to be used for data traffic on the reverse link; and communicating the data traffic on the reverse link using the negotiated set.

26. A method of operating a data-optimized radio network, the radio network being configured to use a default set of packet sizes for data traffic on reverse links, the method comprising: receiving from a first wireless access terminal a desired set of packet sizes for data traffic on a first reverse link between the radio network and the first wireless access terminal, the desired set being different from the default set; determining a negotiated set of packet sizes for data traffic on the first reverse link; the step of determining being performed based at least in part on the desired set; transmitting to the first wireless access terminal the negotiated set; receiving on die first reverse link a plurality of first data traffic packets: and receiving from the first wireless access terminal a plurality of first indications of size of the first data traffic packets, each first indication of the plurality of first indications being associated with a different first data traffic -packet of the plurality of first data traffic packets, said each first indication determining the size of the first data traffic packet associated with said each first indication, said each first indication being selected from the negotiated set, at least one first indication of the plurality of first indications corresponding to a packet size not included in the default set.

27. The method of claim 26, further comprising: decoding said each tlrst data traffic packet in accordance with the first indication associated with said each first data traffic packet.

28. The method of claim 27, wherein the negotiated set is different from the default set.

29. The method of claim 27, wherein the step of receiving the plurality of indications comprises receiving said each indication as a codeword on a reverse rate indicator (RRI) channel .

30. The method of claim 27, further comprising; receiving on a second, reverse link a plurality of second data traffic packets from a second wireless access terminal ; antd

receiving from the second wireless access terminal a plurality of second indications of size of the second data traffic packets, each second indication of the plurality of second indications being associated with a different second data traffic packet of the plurality of second data traffic packets, said each second indication determining the size of the second data traffic packet associated with said each second indication, said each second indication, being selected from the default set

31. A method of operating a data-optimized radio network configured to use a default set of packet sizes for data traffic on reverse links, the method comprising: step for negotiating a negotiated set. of packet sizes for data traffic on a reverse link between the radio network and a wireless access terminal; transmitting to the wireless access terminal the negotiated set; receiving on the reverse link a plurality of data traffic packets; and receiving a plurality of indications of size of the data traffic packets, each indication of the plurality of indications being associated with a different data traffic packet of the plurality of data traffic packets, said each indication determining the sϊxe of the data traffic packet associated with said each indication, said each indication being selected from the negotiated set, at least one indication of the plurality of indications corresponding to a packet ύze not included in the default set.

32. A base transceiver station of a data-optimized radio network, the radio network being configured to use a default set of packet sizes for data traffic on reverse links, the base transceiver station comprising: a receiver configured to receive data; a transmitter configured to transmit data; and a processor coupled to the receiver and to the transmitter, wherein the processor is configured to cause the base transceiver station to perform steps comprising: receiving from a first wireless access terminal a desired set of packet sizes for data traffic on a first reverse link between the base transceiver station and the first wireless access terminal, the desired set being different from the default set;

determining a negotiated set of packet sixes for the data traffic on the first reverse link, the step of determining being performed based at least in part on the desired set; transmitting to the first wireless access terminal the negotiated set,' receiving on the first reverse link a plurality of first data traffic packets; and receiving from the first wireless access terminal a plurality of first indications of size of the first data traffic packets, each first indication of the plurality of first indications being associated with a different first data traffic packet of the plurality of first data traffic packets, said each first indication determining the size of the first data traffic packet associated with said each first indication, said each first indication being selected from the negotiated set, at least one first indication of the plurality of first indications correspondi«g to a First entry in the negotiated set, the first entry not being included in the default set.

33. The base transceiver station of claim 32, wherein the processor is further configured to cause the base transceiver station to decode said each first data traffic packet in accordance with the first, indication associated with said each first data traffic packet.

34. The base transceiver station of claim 33, wherein the processor is further configured to cause the base transceiver station to perform steps comprising: receiving on a second reverse link a plurality of second data traffic packets from a second wireless access terminal; and receiving from the second wireless access terminal a plurality of second indications of size of the second data traffic packets, each second indication of the plurality of second indications being associated with a different second data traffic packet of the plurality of second data traffic packets, said each second indication determining the size of the second data traffic packet associated with said each, second indication, said each second indication being selected from the default set.

35. A machine-readable medium comprising instructions, the instructions, when executed by at least one processor of a base transceiver station of a data-optimized radio network configured to use a default set of packet sizes for data traffic on reverse links- cause the base transceiver station to perform operations comprising: receiving from a wireless access terminal a desired set of packet sizes for data traffic OK a reverse link between the base transceiver station and the wireless access terminal, the desired set being different from the default set; determining a negotiated set of packet sixes for the data traffic oa the reverse link, the step of determining being performed based at least in part on the desired set; transmitting to the wireless access terminal the negotiated set; receiving on the reverse link a plurality of data traffic packets; and receiving from the wireless access terminal a plurality of indications of size of the data traffic packets, each indication of the plurality of indications being associated with a different date traffic packet of the plurality of data traffic packets, said each indication determining the size of the data trafBc packet associated with said each indication, said each indication being selected from, the negotiated set at. least one indication of the plurality of indications corresponding to a packet ske not included in the default set.

Description:

FLEXIBLE PAYLOAD CONTROL IN DATA-OPTIMIZED

COMMUNICATION SYSTEMS

Claim of Priority under 35 ILS. C §115»

[ ' 0001] The present Application for Patent claims priority to CJ. S. Provisional Patent

Application. Serial Number 60/775,443, entitled "Wireless Communication System, aa.d Method," filed on February 21, 2006; the present Application for Patent also claims priority to ϋ.S. Provisional Patent Application Serial Number 60/775,6.93, entitled "DO Communication System and Method, "5 tiled on February 21, 2006. Each of these Provisional Patent Applications is assigned to the assignee of the present Application and is expressly incorporated by reference as if fully set forth herein, including all figures, tables, and claims.

BACKGROUND Field

[0002] The present invention relates generally to telecommunications, and, more specifically, the invention relates to cellular communication systems.

Background

[0003] A modern communication system is expected to provide reliable data transmission for a variety of applications, such as voice and data applications. In a point-to-multipoint communications context, known communication systems are based on frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and perhaps other multiple access communication schemes.

[0004] A CDMA system may be designed to support one or more CDMA, standards, such as O) the "TIA/EϊA-95 Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System" (this standard with its enhanced revisions A and B may be referred to as the "IS-95 standard"), (2) the "TIA/EϊA-98-C Recommended Minimum Standard for Dual-Mode Wideband Spread Spectrum Cellular Mobile Station" (the "IS-98 standard"), (3) the standard sponsored by a consortium named "3rd Generation. Partnership Project" (3 GPP) and embodied in a set

of documents known as the '"",W-CDMA standard/ 5 (4) the standard sponsored by a consortium named "3rd Generation Partnership Project 2" (3GPPZ) and embodied in a set. of documents- including "TR.-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems," the "C.S0005-A Upper Layer (Layer 3) Signaling Standard for ccfena20G0 Spread Spectrum Systems," and the "TIA/Ef A/JS-S56 cdma2000 High Rate Packet Data Air Interface Specification" (the iS cdnma2000 standard" collectively), (5) the IxEV-DO standard, aaid (6) certain other standards. The standards expressly listed above are incorporated by reference as if fully set forth herein, including annexes, appendices, and other attachments.

[0005| Data-optimized or "DO " " cellular communication, systems have been developed to satisfy the constantly increasing demand for wireless data services. As the name implies, DO systems are optimized for data transmission (as opposed to voice transmission), and Ia particular such systems are optimized for downlink ά&i& transmission. Data-optimized systems need not exclude uplink data transmission, or voice transmission in either direction. It should be noted that voice may also be transmitted as data, for example, in the case of voice over internet protocol (VoIP) transmissions.

[0006] In ceHuiar DO CDMA, systems, reverse fink data may be transmitted over the air interface using any one of a number of predefined packet sizes, for example, 128, 256, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288 bit sizes. Generally, the sizes correspond to different rates, although the use of incremental redundancy with Hybrid Automatic Repeat~reQuesf (HARQ) may affect the actual rates achieved in the field.

[0007] Some applications provide packets that do not -fall neatly into one of the predefined sizes. For example, a vocoder (voice encoder) of a VoIP telephony application may provide periodic packets of 300 bits. According to one approach, such situations may be handled by choosing a smallest predefined packet size that is still larger than die packet size provided by the application. For a 300-bit application packet sijze, a 5.12-bit, packet size may thus be selected cm the reverse link, of the air interlace. The larger size packet is then used to transmit at least a portion of two or more packets provided by the vocoder (or another application). This approach leads to additional delay, because of the necessity to wait to assemble multiple vocoder packets into a

single air Interface packet. The additional delay may be excessive for the quality of service (QoS) of the application. To avoid the additional delay, another approach fits one user application packet mio the larger size air interface packet, and stuffs the leftover bits in the larger size packet. This approach wastes the stuffed bits and thus causes a loss of spectral efficiency, increased interference, and decreased battery life. [0008] Therefore, there is a need in the art for methods aod apparatus that would improve packing efficiency and spectral efficiency on the reverse link. There is aiβo a need in the art for methods and apparatus that would improve reverse link efficiencies for delay-sensitive applications. There is a further need in the art for methods and apparatus that would improve reverse iiϊik efficiencies for delay-sensitive applications while at the same time maintaining backward compatibility with legacy access terminals, &nd minimizing or eliminating hardware changes to the radio network.

SUMMARY

[0009] Embodiments disclosed herein address the above stated needs by providing methods, apparatus, and machine-readable articles of manufacture for implementing a negotiation of a set of allowable data traffic packet sixes for a reverse link.

[0010] In an embodiment, a method is provided for communicating daia on a reverse

Jink between a wireless access terminal and a radio network, The .method includes the following steps: (J) determining one or more desired air interface packet sizes for the reverse link based 011 one or more parameters; (2) determining a desired set of air interface packet sizes for the reverse link, the desired set comprising each desired air interface packet size of said one or more desired air interface packet sizes; <3) transmitting to the radio network a request to use the desired set for data traffic on the reverse link; (4) in response to the step of transmitting to the radio network the request receiving a negotiated set of air interface packet sixes to be used for the data traffic oα the reverse link; and (5) communicating the data traffic on the reverse link using the negotiated set.

[0011] In an embodiment, a wireless access terminal for communicating with a base transceiver station of a radio network includes a receiver configured to receive forward link transmissions from the base transceiver station, and a transmitter configured to send reverse link traasmissJoas to the base transceiver, station, a memory storing program

code, and a controller coupled to the receiver, transmitter, and the memory. The controller is configured to execute the program, code to caxise the wireless access terminal to perform these steps: (1) based on one or more parameters, determining one or more desired air interface packet sues for the reverse link; (2) determining a desired set of air interface packet sizes for the reverse link, the desired set comprising each desired air interface packet size of said one or more desired air interface packet sizes; (3) transmitting to the radio network a request to use the desired set for data traffic on the reverse link; and (4) in response to the step of transmitting . , receiving a negotiated set of air interface packet sizes to be used for the data traffic on the reverse link.

{0012] In an embodiment, a .machine-readable medium has instructions embedded therein. When the instructions are executed by at least one processor of a wireless access terminal for communicating with a base transceiver station of a radio network, the instmctjotxs cause the wireless access terminal to perform the following operations: (1) determining, based on one or more parameters, one or more desired air interface packet sizes for a reverse link between the wireless access terminal arid the radio network; (2) detemutung a desired set of air interface packet sixes for the reverse link, the desired set comprising each desired air interface packet size of said one or more desired air interface packet sizes; (3) transmitting to the radio network a request, to use the desired set for data traffic on the reverse link; (4) it* response to die step of transmitting, receiving a negotiated set of air interface packet sizes to be used for the daia traffic on the reverse link; and (5) communicating the data traffic on ihe reverse link using the negotiated set.

{0013] In an embodiment, a .method is provided for communicating data on a reverse link between a wireless access terminal and a radio network. The method includes these steps: (i) determining a desired set of air interface packet sizes for the reverse link, the desired set being different from a default, set of air interface packet sizes of the radio network; (2) step for negotiating a negotiated set of air interface packet sizes to be used for data traffic on the reverse link; and (3) cottimurncatiiig the data traffic an the reverse link using the negotiated set.

[0014] ϊn. ant embodiment, a method is provided for operating a data-optimized radio network. The radio network is configured to «se a default sot of packet sixes for data traffic on reverse links- Tlie method includes (I) receiving from a wireless access

terminal a desired set of packet sixes for data traffic on a reverse link between the radio network and the wireless access terminal, the desired set beϊag different from the default set; (2) determining a negotiated set of packet sizes for data traffic on the reverse link, the step of determining being performed based at least in part on the desired set; (3) transmitting to the wireless access terminal the negotiated set; (4) receiving on the reverse link a plurality of data traffic packets; and (5) receiving from the wireless access terminal a plurality of Indications of size of the data traffic packet*. In accordance with this method, each indication of the plurality of indications is associated with a different data traffic packet of the plurality of data traffic packets, said each indication determines (corresponds to) the size of the data traffic packet associated with, said each indication, said each indication is selected from the negotiated set, and at least one indication of the plurality of indications corresponds to a packet size not included in the default set.

[0015] Xn an embodiment, a method is provided for operating a data-optimized radio network configured to use a default set of packet sizes for data traffic on reverse links. The method includes (t) step for negotiating a negotiated set of packet sizes for data traffic on a reverse link between the radio network and a wireless access terminal; (2) transmitting to tlie wireless access terminal the negotiated set; (3) receiving on the reverse link a plurality of data traffic packets; and {4} receiving a plurality of indications of size of the data traffic packets. In accordance with this method, each indication of the plurality of indications is associated with a different data traffic packet of the plurality of data traffic packets, said each indication determines the size of the data traffic packet associated with said each indication, said each indication is selected from the negotiated set. and at least one indication of the plurality of indications corresponds to a packet size not included in the default set.

[0016] Io an embodiment, a base transceiver station of a data-optimized radio network is provided. The radio network is configured to use a default set of packet sizes for data traffic on reverse links. The base transceiver station includes a receiver configured to receive data, a transmitter configured to transmit data ' &nά a processor coupled to the receiver and to the transmitter. The processor is configured to ' cause the base transceiver station to perform the following steps: (1.) receiving from a wireiess access terminal a desired set of packet, sizes for data traffic on a reverse link between the base transceiver station and the wireless access terminal,, the desired set being different from

the default set; (2) determining a negotiated set of packet sizes for the data traffic on the reverse link, the step of determining being performed based at least in part on the desired set; (3) transmitting to the wireless access terminal the negotiated set; (4) receiving on the reverse link a plurality of data traffic packets; and (5) receiving from the wireless access terminal a plurality of indications of size of the data traffic packets, each indication of the plurality of indications being associated with a different data traffic packet of the plurality of data traffic packets, said each indication determining the $iz& of the data traffic packet associated with said each indication, said each indication being selected from the negotiated set, at least one indication of the plurality of indications corresponding to an entry in the negotiated set, the entry not being included in the default set.

[0017] ϊa an embodiment., a. machine-readable medium has instructions embedded therein. The instructions may be executed by at least o«e processor of a base transceiver station of a data-optimized radio network. The radio network is configured to use a default set of packet sizes for data trafSc on reverse links. The instructions cause the base transceiver station to perform the following operations; (1) receiving from a wireless access terminal a desired set of packet sizes for data traffic on a reverse link between the base transceiver station and the wireless access terminal, the desired set being different from the default set; (2) determining a negotiated set of packet, sizes for the data traffic oti the reverse link, the step of determining being performed based at least in part on the desired set; (3) transmitting to the wireless access terminal the negotiated set; (4) receiving on the reverse link a plural ity of data traffic packets; and <J5) receiving from the wireless access terminal a plurality of indications of size of the data traffic packets, each indication of the plurality of indications being associated with a different data traffic packet of the plurality of data traffic packets, said each indication determining the size of the data traffic packet associated with said each indication, said each indication being selected from the negotiated set at least one indication of the plurality of indications corresponding to a packet size not included in the default set.

[0018] These and other embodiments and aspects of the present invention will be better understood with reference to the following description, drawings, and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FlG. 1 illustrates selected components of a. CDMA data-optimized cellular communication system configured in accordance with an embodiment of the present invention; and [0020} FIG. 2 illustrates selected steps of a process for negotiating a set. of allowable packet sizes on a reverse link of the system, in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

[0021] In this document, the words "embodiment," iS variant," and similar expressions are used to refer to particular apparatus, process, or article of manufacture, and not necessarily to the same apparatus, process, or article of manufacture. Thus, "one embodiment ' ' (or a similar expression) used in one place or context can refer to a particular apparatus, process, or article of manufacture; the same or a similar expression in a different place can refer to a different apparatus, process, or article of manufacture. The expression "alternative embodiment" and similar phrases are used to indicate one of a number of different possible embodiments. The number of possible embodiments is not necessarily limited to two or any other quantity.

[0022| The word "exemplary * " is used herein to mean "serving as an example, instance, or illustration:" Any embodiment or variant, described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over oilier embodiments or variants. All of the embodiments and variants described in this description are exemplary embodiments and variants provided to enable persons skilled in the art to make or use the invention, and not to limit the scope of legal protection afforded the invention.

The word " ' "traffic" generally refers to pay load or user traffic, such as data other than air interface control information and pilots. For reverse link, data traffic is generally generated by an application, such a vocoder of a VoϊP application.

[0023] An access terminal, also referred to as AT 1 subscriber station, user equipment,

UE, mobile terminal * or MT, may be mobile or stationary, and may communicate with one or more base transceiver stations. An access terminal may be any of a number of types of devices, including but. not limited to PC card, external or internal modem,

wireless telephone, and personal digital assistant (PDA) with wireless communication capability. An access terminal transmits and receives data packets to or from a radio network controller through one or more base transceiver stations.

|0024| Base transceiver stations and base station controllers are parts of a network called radio network. RN, access network, and AN. A radio network may be a UTRAN or UMTS Terrestrial Radio Access Network. The radio network may transport data packets between multiple access terminals. The radio network may be further connected to additional networks outside the radio network, such as a corporate intranet, the Internet a conventional public switched telephone network (PSTNX or another radio network, and may transport data and voice packets between each access terminal and such outside networks. Depending on conventions and on the specific implementations, a base transceiver station may be referred to by other names, including Node-B, base station system (BSSX and simply base station. Similarly, a base station controller may be referred to by other names, including radio network controller, RNC, controller, mobile switching center, or serving GPRS support node.

[0025] The scope of the invention extends to tbese and similar wireless communication system components.

[0026] FJG. 1 illustrates selected components of a communication network 100, which includes a radio network controller 1.10 coupled to wireless base transceiver stations 12OA, 120B, and !2OC. The base transceiver stations 120 communicate with access terminals I30A, 130B, 130C 1 and 130D through corresponding wireless connections MOA through 140E. Each of the wireless connections 140 represents both a forward link (from the BTS to the AT, also known as downlink) and a reverse- link (from the AT to the BTS, also known as uplink). The radio network controller 110 is coupled to a public switched telephone network 150 through a telephone switch 160, and to a packet switched network 170 through a packet data server node (PDSN) 180. Data interchange between various network elements, such as the radio network controller i lO and the packet data server node 180. may be implemented using any number of protocols, for example, the Internet Protocol (IP), an asynchronous transfer mode (ATM) protocol. Tl, BL frame relay, and. other protocols.

[0027] The radio network controller 1 10 and the base transceiver stations .120 are part of a data-optimized cellular CDMA radio network 101 , for example, a IxEV-DO radio

network, hi the illustrated embodiment, the radio network 101 provides both data communication services nnά cellular telephone services to the access terminals 130, In alternative embodiments, the radio network may provide only data services (including VoIP and similar packetized data-based voice communications).

[0025] Multiple or even all of the access terminals .130 may be in the same cell or site, or each access terminal .130 may be in a separate cell or site.

(0029} A typical access terminal, for example, the access terminal 130A, includes receiver circuitry 1.31, transmitter circuitry 132, encoder 133, decoder .134, equalizer 135, processor 136, and memory device 137. The receiver, transmitter, encoder, decoder, and equalizer are configured by the processor executing program code stored in the memory device. Each access terminal 130 is configured to communicate data using at least, one transmission protocol, such as the wireless packet transmission protocols described in the standards mentioned above, including IxEV-DO revisions A and B, with at least one of the access terminals 130 being further configured to negotiate a set of reverse link packet sizes in accordance with the variants described in. this document. The access terminals 130 communicate with the bast 1 transceiver stations ϊ20 via wireless connections 140A through 140E, as shown in FIG. L

[0030] Each of the base transceiver stations 120 includes one or more wireless receivers

(e.g., receiver 121 of the BTS 1.20A), one or more wireless transmitters (e.g., transmitter 122 of the BTS I20A), radio network controller interface (e.g., interface 123), a memory {e.g., memory 124), a processor (e.g., processor 12S) J and encoder/decoder circuitry (e.g., encoder/decoder circuitry 126). A receiver/transmitter pair and oilier components of each base, transceiver station are configured by the station's processor operating under control of the program code stored in the BTS 1 S memory, to establish forward and reverse links with the access terminals 130 in order to send packets to and receive packets from the access terminals 130. In the case of data services, for example, the base transceiver stations 120 may receive forward link data packets from the packet switched network 170 through the packet, data server node ISO and through the radio network controller I iO, and transmit these packets to the access terminals 130. The base transceiver stations 120 may receive reverse link data packets that originate at. the access terminals 130, and forward these packets to the packet switched network 170 through the radio network controller I iO and the packet data server node 1.80. Ih the

case of telephone (voice) services, the base transceiver stations 120 may receive forward link data packets from the telephone network 150 through the telephone switch 160 and through the radio network controller I iO 5 . and transmit these packets to the access terminals 130. Voice packets originating at the access terminals 130 may be received at. the base transceiver stations 120 and forwarded to the telephone network 150 via the radio network controller 1 ϊ0 and the telephone switch 160.

[0031] In some alternative embodiments, the transmitter, receiver, and other components of each BTS may each have separate processors.

[0032] The radio network controller HO includes an interface 111 to the base transceiver stations 120, an. interface 1 12 to the packet data server node I SO, and an interface 113 to the telephone switch 160. The interfaces 111, 112, and 113 operate under control of one or more processors 1.14 executing program code stored in one or more memory devices } 15.

[0033] The network 100 illustrated in FtG. 1 includes one public switched telephone network, one packet switched network, one base station controller, three base transceiver stations, and four access terminals. A person skilled in the art would recognize, after perusal of tins document, that alternative embodiments in accordance with aspects of the invention need not. be limited to any particular number of these components. For example, a lesser or a greater number of base transceiver stations, radio network controllers, and access terminals may be included in some embodiments. Furthermore, the communication network 100 may connect the access terminals 130 to one or more additional communication networks, for example, a second wireless communication network having a number of wireless access terminals.

[0034] ϊn an embodiment, one or more of the access terminals 130 {e.g., the terminal

130A) communicate with a base transceiver station 120 of the radio network (e.g., the BTS !20A). Trie radio network and one or more of the access terminals are configured to define and negotiate a set of air interface packet sizes at the time of connection setup. At the same time, none, one, or several of the access terminals may operate in accordance with, an existing (default, not negotiated) set of air interface packet sizes in accordance with one of the aforemeatiαned standards. In some variants, the set of negotiated packet sizes has the same number of size entries as the number of default packet size entries undsr one of the applicable air interface standards mentioned above.

ϊ r or example, the number of packet s izes may be twelve or thirteen. In this way, each of the air interface packet ύz&s møy be mapped to the existing codewords associated with packet sizes on the reverse rate indicator (RRl) channel of a_i existing air interface standard.

[0035] It should be noted that in some variants fewer or m ore codewords than in the standard may also be defined and negotiated in some variants. For example, three u nused (iti the standard) RRl codewords may be mapped to additional packet sτ2e entries in the negotiated set. Moreover, the mapping of the entrie s in the negotiated set need not be such that the same size is mapped onto the same codeword under an existing air interface standard and the negotiated set of size entries. Given an existing standard's sizes as listed above (128, 256, 512, 768, 1024, 1536; 204S 5 3072, 4096, 6144, 8192, 1.2288), a new size of 300 bits may be used instead of 5.12, for example. The negotiated set may the n be as follows: 12$, 256, 300, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288. Given the sequence of RRI codewords in order of increasing packet sizes in the default (standard) set, the same sequence may be mapped in order t o the increasing packet sixes in the negotiated set set. The new 300-bit size is then .mapped to the RRl codeword used for the 512-bit size in the default set. TMs exemplary mapping is shown in Table 1 below, where RRI; represents an RRI codeword used to indicate a packet size, the coπespondirsg packet size of the RRIi codeword in the existing standard appears in the middle row (under RRIi) 5 and the corresponding packet size of the R-RIi in. the negotiated set appears in the bottom row (also m the same colu m n as RRf;). Thus, the middle row represents the default set, and the bottom row represents the negotiated set. Same convention applies to the other tables showing codeword mappings.

(0036| In the example shown in Table 1, some granularity was lost near the newly- added 300-bit size, because the ;? 12-bit default size has been replaced by the 300-bit size in the negotiated set. The packet size selection choice now jumps from 300 bits to 768 bits, a ratio of more than two &&ά one~half.

|0037J in accordance with another approach, the negotiated set may be as follows: 12S,

256, 300, 512. 768. 1024, 1536, 2048, 3072, 4096. 6144, 8192. Here, the 300~bit size was added between the 256- and 512-bit default sizes, displacing the ϊ2288-bit default size. This approach may be advantageous because an application requesting a 300-bit air interface packet size is more likely not to need a 12288-bit size than a 512-bit size, or any of the other packet sixes. The RRi codewords used Tor the 128- and 25ό~bit sizes may be the same, respectively, as the EtRI codewords for the default 128» and 256-bit sizes in existing standards/systems, and the RRJ codewords used for the default 512. 768, 1024, 1536, 2048. 3072, 4096, 6144. 8192, 12288 bit sizes may be mapped, m order, to RRI codewords υsed for the 300, 5 ϊ2, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192 bit packet sizes of the negotiated set. This exemplary mapping is shown in Table 2 below.

TABLE 2

[0038] In some variants the negotiated set substitutes a newly-defined packet size for the size most distant from the newly-defined packet size. Most distant in this context may be, for example, measured linearly (largest difference in the number of bits between the newly-defined size and the removed packet size), or logarithmically/geometrically (largest ratio in dBs between the two sizes).

[0039] In some variants, the RRI codewords used for the packet sizes of the negotiated set are mapped to the codewords corresponding to the same sizes within the default set of the existing standard, to the extent possible When replacing the 12288-bit size with

a 3Gϋ~bU sixe, for example, the RR-! codeword correspondence may be as in Table 3 below;

[0040] The advantage of this approach is that RRI mapping changes for only the number of the new packet sizes defined in the negotiated set of RL packet sizes. The example of table 3 also illustrates removal of the packet støe most distant to the newly- added packet size,

[0041 ] The set of packet sizes negotiated by the base transceiver station 120 and the access terminal 130 may substitute multiple or even all of the packet sizes in the default set of SLXϊ existing standard. Thus, multiple closely-spaced, n.α»-staτ)dard packet sizes may be present in the negotiated set. For example, an interval between adjacent packet sizes in the default set may be broken up into sub-iniervaJs by two or more newly- defined packet sizes of the negotiated set. The interval may be broken up into equal or substantially etpai (equal to the extent possible) sub-intervals. Table 4 below provides arx example of such variant, where an interval between 768 bits and 1024 bits is broken into three substantially equal sub-intervals of 85 bits, 86 bits, and SS bits.

[0042| The interval between ^on-adjacent packet sizes of an existing standard system msy also be similarly broken into sub-intervals. The may be equal or substantially equal, or spaced In a geometric proportion. Table 5 below illustrates a variant with equal suMnfervais between 3072 and 6144 packet sizes.

TABLE 5

[0043] The variants described above are exemplary. The negotiated set may have other packet size values. Indeed, all of the packet sizes may be negotiated and become different from the default packet size values used under an existing standard. Generally, the existing ItRl codewords may be assigned to the packet sizes in the negotiated set in any manner whatsoever, and the invention does not exclude using a fewer or a greater number of RRT codewords than the number of RRl codewords in the existing standard system. Some access terminals may communicate with the radio network after negotiating a set of packet sizes, while other access terminals may concurrently use the default packet size set of the existing standard. TΏ this way, one or more legacy access terminals may be served at the same time as one or more access terminals configured to negotiate the set of allowable reverse link packet sixes.

[0044] Turbo codes (e.g., R- 1/5) may be used in the radio network. The packet sizes that axe not exact powers of 2 may use a turbo interleaver parameter based on the next larger packet size that is a power of 2. A channel interleave? for smallest default payload larger than the payload to be transmitted may be employed, with a look-up table used to determine the exact packet sizes. If total transmit power to pilot power ratio (T2P) values are defined for the default packet sizes of the existing standard system, the T2P for the new (negotiated) payload packet sizes may be generated by linearly interpolating T2P values of the default payload packet sizes.

[0045] FlG. 2 illustrates an exemplary process 200 performed in the course of negotiating a set of packet skes for the reverse link between the access terminal and the radio network. The steps may be performed by an access terminal (e.g. ^ the AT 130A) and a base transceiver station (e.g., the BTS 120A).

[0046] Ai flow point.201, the access terminal is ready to begin the process.

[0047] At step 210, one or more desired values for packet sizes of the reverse link are determined In a variant, the access terminal receives the packet size valυe(s) from one or more user applications executing on the access terminal. For example, a vocoder of a VoIP telephony application may provide one or more packet sizes. The aρplicaiion(s) may have the value(s) stored, or determine the packet size value(s) dynamically, in response to current need, current configuration, and/or current QoS.

[0048] At step 220, the access terminal determines a complete set. of packet sizes to request from the radio network. For example, the access terminal may replace one or more default values of the existing standard with one or more values received from the applicatioa(s) as illustrated in the Tables and accompanying explanations above.

[0049] At step 230, the access terminal transmits to the radio network {e.g., to the BTS) a request to use the desired set on the reverse link. This may be done by using a previously unassigned codeword on one of the reverse link control channels.

[0050] Ai step 240, the radio network receives from the access terminal the desired set of packet size values.

[0051] At step 250, the radio network uses predefined criteria to generate its own set of packet, size values, based on the set of the desired values received from the access terminal. For example, the radio network may accept the values received from the access terminal. As another example, the radio network may substitute one or more different non-default or default values for the non-default values desired by the access terminal, based on some parameters), such as quality of service assigned to the application or the access terminal. In some variants, the radio network may also determine that the default set should be used notwithstanding the access termmaTs preference. In some variants, the radio network also maps the RRT codewords io the packet sizes * or changes the mapping of the RR.1 codewords to the packet sizes from that requested by the access terminal (if the access terminal requested a specific mapping in the step 230).

[0052] At step 260, the radio network transmits to the access terminal the set of packet siae values to be used on the reverse link. If the RRI mapping order has not been predefined, it may also be communicated to the access terminal, A downlink control channel may be used for this purpose.

[0053] At step 270, the radio network configures itself for receiving reverse link data from the access terminal using the set of packet size values/mappings to be used (instead of the default set). The set transmitted, from the radio network thus becomes the negotiated set. Note that if the radio network accepted the values received from the access terminal, the negotiated set is identical to the desired set.

[0054] At step 28O- the access terminal receives from the radio network the set of packet size values/mappings to be used.

[0055] At step 290, the access terminal configures itself for transmitting reverse link data using the negotiated set of packet size values/mappings (instead of the default set).

[0056] At step 295, the access terminal transmits reverse link data to the radio network using the negotiated set of packet size values/mappings. The transmitted packets may have one or more sizes that are not included in the default set of packet sixes. The process then terminates at flow point 299.

[0057] As illustrated in FIG. 2, the set of packet size values is negotiated with a single request from the access terminal and & single response from the access network, in some variants, however, multiple requests and responses may be used when the access network does not immediately accept the set desired by the access terminal. For example, the steps 220-260 may be repeated two or more times to arrive at a negotiated set of reverse link packet sizes, with the determination in the step 220 in second and later iterations being affected by the response of the radio network to the previously transmitted desired set.

[0058] RRI codeword mappings may also be negotiated in some variants, or the mappings may be predefined, for example, using a predetermined RRI codeword sequence in an ascending or descending packet size order.

[0059] Although steps and decisions of various methods may have been described serially in this disclosure, some of these steps and decisions may be performed by separate elements in conjunction or in parallel, asynchronously or synchronously, in a pipelined manner, or otherwise. There is no particular requirement that the steps and

decisions be performed in the same order in which this description lists them, except where explicitly so indicated, otherwise made clear from the context, or inherently required. It should be noted, however, that in selected variants the steps ami decisions are performed in the order described above. Furthermore, not. every illustrated step and decision may be required in every embodiment/variant in accordance with the invention, while some steps and decisions that have not been specifically illustrated may be desirable or necessary in some embodiments/variants in accordance with the invention.

[0060] Those of skill m the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that raay be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.

[0061| Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein røay be implemented as electronic hardware, computer software, or combinations of both. To show clearly this mterchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been, described above generally in terms of their functionality. Whether such functionality is implemented as hardware, software, or combination of hardware and software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a'departure from the scope of the present invention.

{0062] The various illustrative logical blocks, modxiles, and circuits described, in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FFGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but m the alternative, the processor may be any conventional processor, controller, .microcontroller, or state

machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

[0063] The steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known m the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. Jn the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an /VSIC. " The ASIC may reside in an access terminal Alternatively, the processor and the storage medium may reside as discrete components in an access terminal.

[ 0064] The previous description of the disclosed embodiments is provided to enable any person skilled m the art to make or use the present invention. Various raodifi cations to these embodiments will be readily apparent to those skilled in lhe art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.