Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLOW REACTOR FOR PHOTOCHEMICAL REACTIONS
Document Type and Number:
WIPO Patent Application WO/2018/165006
Kind Code:
A1
Abstract:
A flow reactor has a fluidic module with a first major outer surface. The module contains a fluid passage and has a transmittance through the first major outer surface to the fluid passage of at least 20% over a range of wavelengths. The reactor has an illumination module comprising one or more radiation sources, which can emit within the range, positioned within an enclosure. The enclosure has a back wall and a side wall and an opening opposite the back wall. An edge of the side wall surrounds the opening. The illumination module is positioned such that the opening of the illumination module faces the first major outer surface of the fluidic module. The side wall comprises a telescoping portion such that a distance from the back wall of the enclosure to the edge of the side wall is adjustable.

Inventors:
LOBET OLIVIER (FR)
HORN CLEMENS RUDOLF (FR)
Application Number:
PCT/US2018/020882
Publication Date:
September 13, 2018
Filing Date:
March 05, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CORNING INC (US)
LOBET OLIVIER (FR)
HORN CLEMENS RUDOLF (FR)
International Classes:
B01J19/00; B01J19/12
Domestic Patent References:
WO2016201221A12016-12-15
WO2011032900A22011-03-24
Foreign References:
EP2923754A12015-09-30
DE10341500A12005-03-31
Other References:
None
Attorney, Agent or Firm:
BEAN, Gregory V. (US)
Download PDF:
Claims:
What is claimed is:

1. A flow reactor (10), the reactor comprising:

at least a first fluidic module (20a), the first fluidic module (20a) having a planar form with first and second major outer surfaces (22a, 24a) of essentially planar form, on opposite sides of the module, the first and second major outer surfaces (22a, 24a) surrounded and connected by an edge surface (26a) of the module and separated by a thickness (t) of the module, the first fluidic module (20a) having therein one or more fluid passages (28a) for flowing a process fluid, the first fluidic module having a transmittance through the first major outer surface (22a) to at least one of the one or more fluid passages (28a) of at least 20% over a range of wavelengths;

at least a first illumination module (40a), the first illumination module (40a)

comprising one or more radiation sources (42a) which emit, at least in part, within the range of wavelengths, positioned within an enclosure (44a), the enclosure (44a) comprising a back wall (46a) and a side wall (48a) extending from the back wall (46a) of the enclosure (44a) in a direction non-parallel to the back wall (46a) of the enclosure, the enclosure (44a) having an opening (50a) opposite the back wall (46a), an edge (52a) of the side wall (48a) opposite the back wall (46a) surrounding the opening (50a), the edge (52a) lying essentially in a single plane, the first illumination module (40a) positioned such that the opening (50a) of the first illumination module (40a) faces the first major outer surface (22a) of the first fluidic module (20a);

wherein the side wall (48a) of the first illumination module (40a) comprises a telescoping portion (49a) such that a distance (Dl) from the back wall (46a) of the enclosure (44a) to the single plane of the edge (52a) of the side wall (48a) surrounding the opening (50a) is adjustable.

2. The flow reactor (10) according to claim 1 wherein the one or more radiation sources (42a) comprise one or more semiconductor emitters (43a).

3. The flow reactor (10) according to either of claims 1 and 2 wherein the back wall (46a) of the enclosure (44a) is generally planar and the side wall (48a) of the enclosure (44a) extends from the back wall (46a) in a direction essentially perpendicular to the back wall (46a).

4. The flow reactor (10) according to any of claims 1 through 3 wherein the distance (Dl) from the back wall (46a) of the enclosure (44a) to the single plane of the edge (52a) of the side wall (48a) surrounding the opening (50a), all of the first illumination module (20a), is sufficiently adjustable to bring the edge (52a) of the side wall (48a) of the first illumination module (20a) into contact with the first major outer surface (22a) of the first fluidic module (20a).

5. The flow reactor (10) according to any of claims 1 through 4, further comprising a first reflector (70a), positioned on, or facing, the second maj or outer surface (24a) of the first fluidic module (20a) so as to reflect such radiation as may pass outward through the second major outer surface (24a) of the first fluidic module (20a) back toward the second major outer surface (24a) of the first fluidic module (20a).

6. The flow reactor (10) according to claim 5 further comprising a second fluidic module (20b) and a second illumination module (40c) and a second reflector (70b).

7. The flow reactor (10) according to any of claims 1 through 4, further comprising at least a second illumination module (40b) with the second illumination module (40b) positioned such that an opening (50b) of the second illumination module (40b) faces the second major outer surface (24a) of the first fluidic module (20a).

8. The flow reactor (10) according to claim 7 wherein a distance (D2) from a back wall (46b) of an enclosure (44b) of the second illumination module (40b) to a plane containing an edge (52b) of a side wall (48b) of the second illumination module (40b) is sufficiently adjustable to bring the edge (52b) of the side wall (48b) of the second illumination module (40b) into contact with the second maj or outer surface (24a) of the first fluidic module (20a).

9. The flow reactor (10) according to either of claims 7 and 8 further comprising a second fluidic module (20b) and third and fourth illumination modules (40c, 40d).

10. The flow reactor (10) according to any of claims 7-9 wherein the first and second fluidic modules (20a, 20b) are supported on a first mounting structure (30) and the first, second, third, and fourth illumination modules (40a. 40b, 40c, 40d) are supported on a second mounting structure (60) and wherein at least one of the first and second mounting structures (30, 60) is moveable relative to the other so as to simultaneously position the first fluidic module (20a) between the first and second illumination modules (40a, 40b) and the second fluidic module (20b) between the third and fourth illumination modules (40c, 40d).

11. The flow reactor (10) according to any of claims 1-10 wherein the range of

wavelengths comprises the range from 340 to 600 nm.

12. The flow reactor (10) according to any of claims 1-1 1 further comprising a gas

delivery structure (100) for providing a dry or relatively dry gas or gas mixture (103) to at least a gas -containing volume (106) bordered by at least a portion of the first maj or outer surface (22a) of the first fluidic module (20a), so as to be able to prevent or reduce attenuation or blocking of radiation from the first illumination module, by condensation and/or deposition on the first maj or outer surface (22a), during operation of the first fluidic module (20a) at low temperatures.

13. The flow reactor (10) according to claim 12 wherein the gas-containing volume (106) is formed by the enclosure (44a).

14. The flow reactor (10) according to any of claims 1-13 wherein the sidewall (48a) of the first illumination module (40a) has an exterior and an interior surface (54, 56), and the interior surface (54) has at least 80% reflectivity of one or more wavelengths within the range of wavelengths.

15. The flow reactor (10) according to any of claims 1-13 wherein the sidewall (48a) of the first illumination module (40a) has an exterior and an interior surface (54, 56), and the interior surface (56) has at least 90% reflectivity of one or more wavelengths within the range of wavelengths.

16. The flow reactor (10) according to any of claims 1-15 wherein the first fluidic module (20a), viewed from the first major outer surface (22a) thereof, has a first area (80a) on the first major outer surface (22 a) overlying an interior volume (90 a) of the module (20a) containing a relatively dense packing of the one or more fluid passages (28a) for flowing a process fluid and a second area (82a) overlying an interior volume (92a) of the module (20a) having none, or a relatively spaced-apart arrangement, of the one or more fluid passages (28a) for flowing a process fluid, and wherein the opening of the first illumination module (40a) has a shape corresponding to a perimeter of the first area.

17. A flow reactor (10), the reactor comprising:

at least a first fluidic module (20a), the first fluidic module (20a) having a planar form with first and second major outer surfaces (22a, 24a) of essentially planar form, on opposite sides of the module, the first and second major outer surfaces (22a, 24a) surrounded and connected by an edge surface (26a) of the module and separated by a thickness (t) of the module, the first fluidic module (20a) having therein one or more fluid passages (28a) for flowing a process fluid, the first fluidic module having a transmittance through the first major outer surface (22a) to at least one of the one or more fluid passages (28a) of at least 20% over a range of wavelengths;

at least a first illumination module (40a), the first illumination module (40a)

comprising one or more radiation sources (42a) which emit, at least in part, within the range of wavelengths, positioned within an enclosure (44a), the enclosure (44a) comprising a back wall (46a) and a side wall (48a) extending from the back wall (46a) of the enclosure (44a) in a direction non-parallel to the back wall (46a) of the enclosure, the enclosure (44a) having an opening (50a) opposite the back wall (46a), an edge (52a) of the side wall (48a) opposite the back wall (46a) surrounding the opening (50a), the edge (52a) lying essentially in a single plane, the first illumination module (40a) positioned such that the opening (50a) of the first illumination module (40a) faces the first major outer surface (22a) of the first fluidic module (20a);

wherein the first fluidic module (20a), viewed from the first major outer surface (22a) thereof, has a first area (80a) on the first major outer surface (22a) overlying an interior volume (90a) of the module (20a) containing a relatively dense packing of the one or more fluid passages (28a) for flowing a process fluid and a second area (82a) overlying an interior volume (92a) of the module (20a) having none, or a relatively spaced-apart arrangement, of the one or more fluid passages (28a) for flowing a process fluid, and wherein the opening of the first illumination module (40a) has a shape corresponding to a perimeter of the first area.

Description:
FLOW REACTOR FOR PHOTOCHEMICAL REACTIONS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority under 35 U.S.C. § 119 of U. S. Provisional Application Serial No. 62/467243 filed on March 5, 2017, the content of which are relied upon and incorporated herein by reference in their entirety.

FIELD

[0002] The present disclosure relates to flow reactors and flow processes performed therewith, in particular to a modular, flexible, high-throughput and high-efficiency photochemical flow reactor system.

SUMMARY

According to one aspect of the present invention, a flow reactor comprises at least a first fluidic module (20a), the first fluidic module (20a) having a planar form with first and second major outer surfaces (22a, 24a) of essentially planar form, on opposite sides of the module, the first and second major outer surfaces (22a, 24a) surrounded and connected by an edge surface (26a) of the module and separated by a thickness (t) of the module, the first fluidic module (20a) having therein one or more fluid passages (28a) for flowing a process fluid, the first fluidic module having a transmittance through the first major outer surface (22a) to at least one of the one or more fluid passages (28a) of at least 20% over a range of wavelengths; at least a first illumination module (40a), the first illumination module (40a) comprising one or more radiation sources (42a) which emit, at least in part, within the range of wavelengths, positioned within an enclosure (44a), the enclosure (44a) comprising a back wall (46a) and a side wall (48a) extending from the back wall (46a) of the enclosure (44a) in a direction non-parallel to the back wall (46a) of the enclosure, the enclosure (44a) having an opening (50a) opposite the back wall (46a), an edge (52a) of the side wall (48a) opposite the back wall (46a) surrounding the opening (50a), the edge (52a) lying essentially in a single plane, the first illumination module (40a) positioned such that the opening (50a) of the first illumination module (40a) faces the first major outer surface (22a) of the first fluidic module (20a); wherein the side wall (48a) of the first illumination module (40a) comprises a telescoping portion (49a) such that a distance (Dl) from the back wall (46a) of the enclosure (44a) to the single plane of the edge (52a) of the side wall (48a) surrounding the opening (50a) is adjustable.

[0001] Other variations and specific advantages are discussed or will be apparent from the description below. The foregoing general description and the following detailed description represent specific embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Figure 1 is a partially schematic plan view of an embodiment of the present disclosure.

[0003] Figure 2 is perspective view of certain elements of an illumination module of the embodiment of Figure 1.

[0004] Figures 3 and 4 are perspective views of an illumination module of the embodiment of Figure 1 together with a fluidic module of the embodiment of Figure 1.

[0005] .

[0006] Figure 5 is a schematic diagram illustrating certain aspects of the structure of a fluidic module useful in the embodiment of Figure 1.

[0007] Figure 6 is a plan view of certain fluid passages of a fluidic module useful in the embodiment of Figure 1.

DETAILED DESCRIPTION

[0008] Figure 1 is a partially schematic plan view of a flow reactor (10) comprising at least a first fluidic module (20a). The first fluidic module (20a) having first and second major outer surfaces (22a, 24a) of essentially planar form, on opposite sides of the module, the first and second major outer surfaces (22a, 24a) surrounded and connected by an edge surface (26a) of the module and separated by a thickness (t) of the module.

[0009] The first fluidic module (20a) has therein one or more fluid passages for flowing a process fluid. Desirably, the first fluidic module 20a comprises three layers as shown schematically in Figure 5. A process fluid layer 21a is desirably positioned between first and second thermal control fluid layers 23a, 25a for best thermal control of relatively highly exothermic or endothermic reactions, for example. Only one or even no thermal control layers may be used in alternative embodiments, however.

[00010] Figure 6 shows a plan view of one or more fluid passages (28a) within the first fluidic module 20a, within the process fluid layer (21a). [00011] The first fluidic module 20a is desirably formed completely or at least principally of glass, transparent ceramic or glass-ceramic, but may also be formed of other transmisssive materials, such that the first fluidic module has a transmittance through the first major outer surface (22a) to at least one of the one or more fluid passages (28a) of at least 20% over at least some range of wavelengths, desirably over at least some range of wavelengths within the larger range of 300 to 800 nm.

[00012] Referring again to Figure 1, the flow reactor (10) further comprises at least a first illumination module (40a). A perspective view of an embodiment of the first illumination module (40a) is shown in Figure 2.

[00013] With reference to Figure 2, the first illumination module (40a) comprises one or more radiation sources (42a) which emit, at least in part, within the range of wavelengths mentioned above, so as to be able to transmit radiation into the one or more fluid passages (28a). The one or more radiation sources (42a) desirably take the form of a plurality of semiconductor emitters (43a).

[00014] The one or more radiation sources (42a) or the plurality of semiconductor emitters (43a) is positioned within an enclosure (44a) comprising a back wall (46a) and a side wall (48a) extending from the back wall (46a). The side wall (48a) extends from the back wall (46a) of the enclosure (44a) in a direction non-parallel to the back wall (46a) of the enclosure. In some embodiments as in the embodiment shown in Figure 2, the back wall (46a) is generally planar. Also in some embodiments, and as in the embodiment shown in Figure 2, the side wall (48a) extends from the back wall (46a) in a direction essentially perpendicular to the back wall (46a). The enclosure (44a) has an opening (50a) opposite the back wall (46a). An edge (52a) (shown as a heavier black line in Figure 2) of the side wall (48a) opposite the back wall (46a) surrounds the opening (50a). The edge (52a) lies essentially in a single plane.

[00015] Referring again to Figure 1, the first illumination module (40a) is positioned such that the opening (50a) of the first illumination module (40a) faces the first major outer surface (22a) of the first fluidic module (20a).

[00016] As shown in Figures 1 , 3, and 4, the side wall (48a) of the first illumination module (40a) comprises a telescoping portion (49a) such that a distance (Dl) from the back wall (46a) of the enclosure (44a) to the single plane of the edge (52a) of the side wall (48a) surrounding the opening (50a) is adjustable. This allows for a lower level of stray radiation and can also allow for easy assembly together of several illumination modules and several fluidic modules simultaneously, without danger of scratching the surfaces of the fluidic modules, thereby marring the tranmissive qualities of the surfaces and possibly weakening the fluidic modules. In some embodiments which are presently preferred, the distance (Dl) from the back wall (46a) of the enclosure (44a) to the single plane of the edge (52a) of the side wall (48a) surrounding the opening (50a), of the first illumination module (20a), is sufficiently adjustable to bring the edge (52a) of the side wall (48a) of the first illumination module (20a) into contact with the first major outer surface (22a) of the first fluidic module (20a), as seen in Figures 1 and 4.

[00017] In one alternative embodiment, the flow reactor (10) according to any of the above description can further comprise a first reflector (70a), shown in Figures 3 and 4, positioned on (as shown), or merely facing, the second major outer surface (24a) of the first fluidic module (20a) so as to reflect such radiation as may pass outward through the second major outer surface (24a) of the first fluidic module (20a) back toward the second major outer surface (24a) of the first fluidic module (20a). (Reflector 70a is indicated by a dashed line in Figures 3 and 4 to emphasize its optional nature.) In embodiments where reflectors are used, the flow reactor (10) can comprise at least a second fluidic module (20b) and a second illumination module (40c) and a second reflector (70b) (as when the structures of Figures 3 and 4 are used together in a single flow reactor (10).

[00018] Rather than a reflector 70a on or facing the second major outer surface (24a), the flow reactor (10) as seen in Figure 1 desirably further comprises at least a second illumination module (40b) with the second illumination module (40b) positioned such that an opening (50b) of the second illumination module (40b) faces the second major outer surface (24a) of the first fluidic module (20a). Just as with the first illumination module (40a), so with the second (40b): a distance (D2) (shown on Figure 1 in this case) from a back wall (46b) of an enclosure (44b) of the second illumination module (40b) to a plane containing an edge (52b) of a side wall (48b) of the second illumination module (40b) is sufficiently adjustable to bring the edge (52b) of the side wall (48b) of the second illumination module (40b) into contact with the second major outer surface (24a) of the first fluidic module (20a).

[00019] As further shown in Figure 1, the flow reactor can further comprise at least a second fluidic module (20b) and at least third and fourth illumination modules (40c, 40d).

[00020] As an additional variation, in the flow reactor (10) according to any of the above descriptions and alternatives, the first and second fluidic modules (20a, 20b) can be supported on a first mounting structure (30) and the first, second, third, and fourth illumination modules (40a. 40b, 40c, 40d) can be supported on a second mounting structure (60), each shown schematically in Figure 1. In a presently preferred alternative embodiment, at least one of the first and second mounting structures (30, 60) is moveable relative to the other, so as to simultaneously position the first fluidic module (20a) between the first and second illumination modules (40a, 40b) and the second fluidic module (20b) between the third and fourth illumination modules (40c, 40d). This allows easy mounting and positioned of the fluid modules and the illumination modules while they are not interleaved, while also allowing simultaneous interleaving of the mounted fluidic and illumination modules.

[00021] According to one presently preferred alternative embodiment, the range of wavelengths to which the first fluidic module is transmissive as described above is the range from 340 to 600 nm.

[00022] According to another presently preferred alternative embodiment also shown in Figure 1 , the flow reactor (10) according to any of the above described variations or alternatives further comprises a gas delivery structure (100) for providing a dry or relatively dry gas or gas mixture (103) to at least a gas-containing volume bordered by at least a portion of the first major outer surface (22a) of the first fluidic module (20a) so as to be able to prevent or reduce attenuation or blocking of radiation from the first illumination module, by condensation and/or deposition on the first maj or outer surface (22a) during operation of the first fluidic module (20a) at low temperatures. The gas delivery structure (100) may be in the form of a conduit (101) leading to the reactor (10) from a gas source (104). The reactor (10) may include an enclosure (106) to facilitate delivery of the dry or relatively dry gas or gas mixture. The enclosure (106) for enclosing or containing the gas or gas mixture (103) may enclose all modules of the reactor (10) as shown in Figure 1 , or the enclosure (106) may be formed by the individual enclosures (44a) as show in Figure 2.

[00023] According to another presently preferred alternative embodiment, useful with any of the above described variations, the sidewall (48a) of the first illumination module (40a) has an exterior and an interior surface (54, 56) as indicated in Figure 2, and the interior surface (54) has at least 80%, desirably at least 90%, reflectivity of one or more wavelengths within the range of wavelengths to which the first fluidic module (20a) is transmissive.

[00024] According to another presently preferred alternative embodiment, useful with any of the above described variations, the first fluidic module (20a), illustrated in Figure 6, viewed from the first major outer surface (22a) thereof, has a first area (80a) on the first major outer surface (22a) overlying an interior volume (90a) of the module (20a) containing a relatively dense packing of the one or more fluid passages (28a) for flowing a process fluid (the area (80a) and the interior volume (90a) are represented by the area of Figure 6 bounded by the white dash-dot border and the dashed line L— below line L in the figure) and a second area (82a) overlying an interior volume (92a) of the module (20a) having none, or a relatively spaced-apart arrangement, of the one or more fluid passages (28a) for flowing a process fluid (the area (82a) and the interior volume (92a) are represented by the area of Figure 6 bounded by the white dash-dot-dot border and the dashed line L— above line L in the figure) and wherein the opening of the first illumination module (40a) has a shape corresponding to a perimeter of the first area (the area (80a). This allows the radiation from the first illumination module (40a) to be directed to the area and volume of the first fluidic module (20a) where it will have the most beneficial effect.

[00025] The methods and/or devices disclosed herein are generally useful in performing any process that involves mixing, separation, extraction, crystallization, precipitation, or otherwise processing fluids or mixtures of fluids, including multiphase mixtures of fluids— and including fluids or mixtures of fluids including multiphase mixtures of fluids that also contain solids— within a microstructure. The processing may include a physical process, a chemical reaction defined as a process that results in the interconversion of organic, inorganic, or both organic and inorganic species, and desirably includes a chemical, physical, or biological process or reaction favored in the presence of light, of whatever wavelength, i.e., photoreactions, whether photosensitized, photoinitiated (as in photo initiated radical reactions), photo activated, photocatalytic, photosynthetic, or other). . A non-limiting list of light-assisted or light-favored reactions of potential interest includes photoisomerizations, rearrangements, photoreductions, cyclizations, 2+2 cycloadditions, 4+2 cycloadditions, 4+4 cycloadditions, 1,3-dipolar cycloadditions, sigmatropic shifts (which could result in cyclisation), photooxidation, photocleavage of protecting groups or linkers,

photohalogenations (phtochlorinations, photobrominations), photosulfochlorinations, photosulfoxidations, photopolymerizations, photonitrosations, photodecarboxylations, photosynthesis of previtamin D, decomposition of azo-compounds, Norrish type reactions, Barton type reactions. Further, the following non-limiting list of reactions may be performed with the disclosed methods and/or devices: oxidation; reduction; substitution; elimination; addition; ligand exchange; metal exchange; and ion exchange. More specifically, reactions of any of the following non-limiting list may be performed with the disclosed methods and/or devices: polymerisation; alkylation; dealkylation; nitration; peroxidation; sulfoxidation; epoxidation; ammoxidation; hydrogenation; dehydrogenation; organometallic reactions; precious metal chemistry/ homogeneous catalyst reactions; carbonylation; thiocarbonylation; alkoxylation; halogenation; dehydrohalogenation; dehalogenation; hydroformylation;

carboxylation; decarboxylation; amination; arylation; peptide coupling; aldol condensation; cyclocondensation; dehydrocyclization; esterification; amidation; heterocyclic synthesis; dehydration; alcoholysis; hydrolysis; ammonolysis; etherification; enzymatic synthesis; ketalization; saponification; isomerisation; quaternization; formylation; phase transfer reactions; silylations; nitrile synthesis; phosphorylation; ozonolysis; azide chemistry;

metathesis; hydrosilylation; coupling reactions; and enzymatic reactions..

[00026] The foregoing description provides exemplary embodiments to facilitate an understanding of the nature and character of the claims. It will be apparent to those skilled in the art that various modifications to these embodiments can be made without departing from the spirit and scope of the appending claims.