Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLOWABLE POLYESTERS WITH CARBODIIMIDE STABILIZERS
Document Type and Number:
WIPO Patent Application WO/2006/082201
Kind Code:
A1
Abstract:
Thermoplastistic moulding compounds, containing A) 10 98.9 wt. % of at least one thermoplastic polyester, B) 0.01 - 50 wt. % B1) of at least one highly or hyper branched polycarbonate with an OH-number of 1 - 600 mg KOH/g polycarbonate (according to DIN 53240, part 2), or B2) at least one highly or hyper branched polyester of the type known as AxBy wherein x = at least 1 .1 and y is at least 2.1 or the mixtures thereof C) 0.1 - 10 wt. % of at least one carbodiimide, D) 0 - 60 wt. % other additives, wherein the sum of the weight percentages of components A) - D) amounts to 100 %.

Inventors:
SCHERZER DIETRICH (DE)
BRUCHMANN BERND (DE)
EIPPER ANDREAS (DE)
HAEBERLE KARL (DE)
WEISS CARSTEN (SG)
LIESE MICHAELA (DE)
VOELKEL MARK (DE)
Application Number:
PCT/EP2006/050590
Publication Date:
August 10, 2006
Filing Date:
February 01, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF AG (DE)
SCHERZER DIETRICH (DE)
BRUCHMANN BERND (DE)
EIPPER ANDREAS (DE)
HAEBERLE KARL (DE)
WEISS CARSTEN (SG)
LIESE MICHAELA (DE)
VOELKEL MARK (DE)
International Classes:
C08L67/02; C08L69/00
Domestic Patent References:
WO2003093343A12003-11-13
Foreign References:
FR2856693A12004-12-31
US20040192857A12004-09-30
US6497959B12002-12-24
DE4307392C11994-04-21
US5621031A1997-04-15
Other References:
DATABASE WPI Section Ch Week 199231, Derwent World Patents Index; Class A21, AN 1992-256548, XP002379462
Attorney, Agent or Firm:
BASF AKTIENGESELLSCHAFT (Ludwigshafen, DE)
Download PDF:
Claims:
Patentansprüche
1. Thermoplastische Formmassen, enthaltend A) 10 bis 98,9 Gew.% mindestens eines thermoplastischen Polyesters, B) 0,01 bis 50 Gew.% B1) mindestens eines hoch oder hyperverzweigten Polycarbonates mit einer OHZahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder B2) mindestens eines hoch oder hyperverzweigten Polyesters des Typs AxBy mit x mindestens 1 ,1 und y mindestens 2,1 oder deren Mischungen C) 0,1 bis 10 Gew.% mindestens eines Carbodiimides, D) 0 bis 60 Gew.% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.
2. Thermoplastische Formmassen nach Anspruch 1 , in denen die Komponente B1) ein Zahlenmittel des Molekulargewichtes Mn von 100 bis 15000 g/mol aufweist.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen die Komponente B1) eine Glasübergangstemperatur Tg von 800C bis 1400C aufweist.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente B1) eine Viskosität (mPas) bei 23°C (gemäß DIN 53019) von 50 bis 200000 aufweist.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente B2) ein Zahlenmittel des Molekulargewichts Mn von 300 bis 30000 g/mol aufweist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente B2) eine Glasübergangstemperatur T9 von 500C bis 140°C aufweist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, in denen die Komponente B2) eine OHZahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Po lyester aufweist.
8. Thermoplastische Formmassen nach den Ansprüchen 1 bis 7, in denen die Komponente B2) eine COOHZahl (gemäß DIN 53240) von 0 bis 600 mg KOH/g Polyester aufweist .
9. Thermoplastische Formmassen nach den Ansprüchen 1 bis 8, in denen die Komponente B2) wenigstens eine OHZahl oder COOHZahl größer 0 aufweist.
10. Thermoplastische Frommassen nach den Ansprüchen 1 bis 9, in denen das Verhältnis der Komponenten B1) : B2) von 1 :20 bis 20: 1 beträgt.
11. Thermoplastische Formmassen nach den Ansprüchen 1 bis 10, in denen die Komponente C) einen Katalysatorgehalt von 0,1 bis 200 ppm aufweist.
12. Thermoplastische Formmassen nach den Ansprüchen 1 bis 11 , in denen die Komponente C) ein Carbodiimid auf Basis von 2,4' MDI ist, welches bis zu 60 mol% Einheiten anderer Isocyanate enthalten kann.
13. Verwendung der thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 12 zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art.
14. Fasern, Folien und Formkörper jeglicher Art erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 12.
Description:
Fließfähige Polyester mit Carbodiimid-Stabilisatoren

Beschreibung

Die Erfindung betrifft thermoplastische Formmassen, enthaltend

A) 10 bis 98,9 Gew.-% mindestens eines thermoplastischen Polyesters,

B) 0,01 bis 50 Gew.-%

B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates mit einer OH- Zahl von 1 bis 600 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2), oder B2) mindestens eines hoch- oder hyperverzweigten Polyesters des Typs A x B y mit x mindestens 1 ,1 und y mindestens 2,1 oder deren Mischungen

C) 0,1 bis 10 Gew.-% mindestens eines Carbodiimides, D) 0 bis 60 Gew.-% weiterer Zusatzstoffe,

wobei die Summe der Gewichtsprozente der Komponenten A) bis D) 100 % ergibt.

Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Formmassen zur Herstellung von Fasern, Folien und Formkörpern sowie die hierbei erhältlichen Formkörper aller Art.

Carbodiimide als Stabilisatoren sind bekannt, siehe beispielsweise DE-A-10 351 534.8.

Zur Verbesserung der Fließfähigkeit werden üblicherweise zu Thermoplasten niedermolekulare Additive zugegeben. Die Wirkung derartiger Additive ist jedoch stark beschränkt, da z.B. die Abnahme der mechanischen Eigenschaften bei Erhöhung der Zugabemenge des Additivs nicht mehr tolerierbar ist.

Dendritische Polymere mit perfekt symmetrischer Struktur, sogenannte Dendrimere, lassen sich ausgehend von einem zentralen Molekül durch kontrollierte schrittweise Verknüpfung von jeweils zwei oder mehr di- oder mehrfunktionellen Monomeren mit jedem bereits gebundenen Monomer herstellen. Dabei wächst mit jedem Verknüpfungsschritt die Zahl der Monomerendgruppen (und damit der Verknüpfungen) expo- nentiell an, und man erhält Polymere mit baumartigen Strukturen, im Idealfall kugelförmig, deren Äste jeweils exakt dieselbe Anzahl von Monomereinheiten enthalten. Aufgrund dieser perfekten Struktur sind die Polymereigenschaften vorteilhaft, beispielsweise beobachtet man eine überraschend geringe Viskosität und eine hohe Reaktivität aufgrund der hohen Anzahl funktioneller Gruppen an der Kugeloberfläche. Allerdings wird die Herstellung dadurch aufwändig, dass bei jedem Verknüpfungsschritt Schutzgruppen eingeführt und wieder entfernt werden müssen und Reinigungsoperationen erforderlich sind, weshalb man Dendrimere üblicherweise nur im Labormaßstab herstellt.

Jedoch kann man mit großtechnischen Verfahren einfach hochverzweigte bzw. hyperverzweigte Polymere herstellen. Sie weisen neben perfekten dendritischen Strukturen auch lineare Polymerketten und ungleiche Polymeräste auf, was jedoch die Polymerei- genschaften verglichen zu denen der perfekten Dendrimere oft nicht wesentlich verschlechtert. Hyperverzweigte Polymere lassen sich über zwei Synthesewege herstellen, die als AB 2 und A x +B y bekannt sind. Darin stehen A x und B y für verschiedene Monomere und die Indices x und y für die Anzahl der funktionellen Gruppen, die in A bzw. B enthalten sind, also für die Funktionalität von A bzw. B. Beim AB 2 -Weg wird ein tri- funktionelles Monomer mit einer reaktiven Gruppe A und zwei reaktiven Gruppen B zu einem hoch- oder hyperverzweigten Polymer umgesetzt. Bei der A x und BySynthese, dargestellt am Beispiel der A 2 +B 3 -Synthese, setzt man ein difunktionelles Monomer A 2 mit einem trifunktionellen Monomer B 3 um. Dabei entsteht zunächst ein 1 :1-Addukt aus A und B mit im Mittel einer funktionellen Gruppe A und zwei funktionellen Gruppen B, das dann ebenfalls zu einem hoch- oder hyperverzweigten Polymer reagieren kann.

Aus der WO-97/45474 sind Thermoplastzusammensetzungen bekannt, welche dendrimere Polyester als AB 2 -Molekül enthalten. Hierbei reagiert ein mehrfunktioneller Alkohol als Kernmolekül mit Dimethylpropionsäure als AB 2 -Molekül zu einem dendri- meren Polyester. Dieser enthält nur OH-Funktionalitäten am Ende der Kette. Nachteilig an diesen Mischungen ist die hohe Glastemperatur der dendrimeren Polyester, die vergleichsweise aufwändige Herstellung und vor allem die schlechte Löslichkeit der Dendrimere in der Polyestermatrix.

Gemäß der Lehre der DE-A 101 32 928 führt die Einarbeitung derartiger Verzweiger mittels Konfektionierung und Nachkondensation in fester Phase zu einer Verbesserung der Mechanik (Molekulargewichtsaufbau). Nachteilig an der beschriebenen Verfahrensvariante ist die lange Herstellzeit sowie bereits oben aufgeführten nachteiligen Eigenschaften.

In den DE 102004 005652.8 und DE 102004 005657.9 wurden bereits neue Additive zur Fließverbesserung für Polyester vorgeschlagen.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, thermoplastische Polyes- ter-Formmassen zur Verfügung zu stellen, welche eine gute Fließfähigkeit und gleichzeitig gute mechanische Eigenschaften aufweisen. Insbesondere soll das Additiv (oder die Additivkombination) nicht ausblühen oder zu Formbelag neigen.

Als Komponente (A) enthalten die erfindungsgemäßen Formmassen 10 bis 98,9, be- vorzugt 30 bis 97 und insbesondere 30 bis 95 Gew.-% mindestens eines thermoplastischen Polyesters.

Allgemein werden Polyester A) auf Basis von aromatischen Dicarbonsäuren und einer aliphatischen oder aromatischen Dihydroxyverbindung verwendet.

Eine erste Gruppe bevorzugter Polyester sind Polyalkylenterephthalate, insbesondere solche mit 2 bis 10 C-Atomen im Alkoholteil.

Derartige Polyalkylenterephthalate sind an sich bekannt und in der Literatur beschrieben. Sie enthalten einen aromatischen Ring in der Hauptkette, der von der aromatischen Dicarbonsäure stammt. Der aromatische Ring kann auch substituiert sein, z.B. durch Halogen wie Chlor und Brom oder durch d-C 4 -Alkylgruppen wie Methyl-, Ethyl-, i- bzw. n-Propyl- und n-, i- bzw. t-Butylgruppen.

Diese Polyalkylenterephthalate können durch Umsetzung von aromatischen Dicarbonsäuren, deren Estern oder anderen esterbildenden Derivaten mit aliphatischen Di- hydroxyverbindungen in an sich bekannter Weise hergestellt werden.

Als bevorzugte Dicarbonsäuren sind 2,6-Naphthalindicarbonsäure, Terephthalsäure und Isophthalsäure oder deren Mischungen zu nennen. Bis zu 30 mol-%, vorzugsweise nicht mehr als 10 mol-% der aromatischen Dicarbonsäuren können durch aliphatische oder cycloaliphatische Dicarbonsäuren wie Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäuren und Cyclohexandicarbonsäuren ersetzt werden.

Von den aliphatischen Dihydroxyverbindungen werden Diole mit 2 bis 6 Kohlenstoffatomen, insbesondere 1 ,2-Ethandiol, 1 ,3-Propandiol, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,4-Hexandiol, 1 ,4-Cyclohexandiol, 1 ,4-Cyclohexandimethanol und Neopentylglykol oder deren Mischungen bevorzugt.

Als besonders bevorzugte Polyester (A) sind Polyalkylenterephthalate, die sich von Alkandiolen mit 2 bis 6 C-Atomen ableiten, zu nennen. Von diesen werden insbesonde- re Polyethylenterephthalat, Polypropylenterephthalat und Polybutylenterephthalat oder deren Mischungen bevorzugt. Weiterhin bevorzugt sind PET und/oder PBT, welche bis zu 1 Gew.-%, vorzugsweise bis zu 0,75 Gew.-% 1 ,6-Hexandiol und/oder 2-Methyl-1 ,5- Pentandiol als weitere Monomereinheiten enthalten.

Die Viskositätszahl der Polyester (A) liegt im allgemeinen im Bereich von 50 bis 220, vorzugsweise von 80 bis 160 (gemessen in einer 0,5 gew.-%igen Lösung in einem Phenol/o-Dichlorbenzolgemisch (Gew.-Verh. 1 :1 bei 25 0 C) gemäß ISO 1628.

Insbesondere bevorzugt sind Polyester, deren Carboxylendgruppengehalt bis zu 100 mval/kg, bevorzugt bis zu 50 mval/kg und insbesondere bis zu 40 mval/kg Polyester beträgt. Derartige Polyester können beispielsweise nach dem Verfahren der

DE-A 44 01 055 hergestellt werden. Der Carboxylendgruppengehalt wird üblicherweise durch Titrationsverfahren (z.B. Potentiometrie) bestimmt.

Insbesondere bevorzugte Formmassen enthalten als Komponente A) eine Mischung aus Polyestem, welche verschieden von PBT sind, wie beispielsweise Polyethylen- terephthalat (PET). Der Anteil z.B. des Polyethylenterephthalates beträgt vorzugsweise in der Mischung bis zu 50, insbesondere 10 bis 35 Gew.-%, bezogen auf 100 Gew.-% A).

Weiterhin ist es vorteilhaft PET Rezyklate (auch scrap-PET genannt) gegebenenfalls in Mischung mit Polyalkylenterephthalaten wie PBT einzusetzen.

Unter Rezyklaten versteht man im allgemeinen:

1) sog. Post Industrial Rezyklat: hierbei handelt es sich um Produktionsabfälle bei der Polykondensation oder bei der Verarbeitung z.B. Angüsse bei der Spritzgussverarbeitung, Anfahrware bei der Spritzgussverarbeitung oder Extrusion oder Randabschnitte von extrudierten Platten oder Folien.

2) Post Consumer Rezyklat: hierbei handelt es sich um Kunststoffartikel, die nach der Nutzung durch den Endverbraucher gesammelt und aufbereitet werden. Der mengenmäßig bei weitem dominierende Artikel sind blasgeformte PET Flaschen für Mineralwasser, Softdrinks und Säfte.

Beide Arten von Rezyklat können entweder als Mahlgut oder in Form von Granulat vorliegen. Im letzteren Fall werden die Rohrezyklate nach der Auftrennung und Reinigung in einem Extruder aufgeschmolzen und granuliert. Hierdurch wird meist das Handling, die Rieselfähigkeit und die Dosierbarkeit für weitere Verarbeitungsschritte erleichtert.

Sowohl granulierte als auch als Mahlgut vorliegende Rezyklate können zum Einsatz kommen, wobei die maximale Kantenlänge 10 mm, vorzugsweise kleiner e mm betragen sollte.

Aufgrund der hydrolytischen Spaltung von Polyestem bei der Verarbeitung (durch

Feuchtigkeitsspuren) empfiehlt es sich, das Rezyklat vorzutrocknen. Der Restfeuchtegehalt nach der Trocknung beträgt vorzugsweise <0,2 %, insbesondere <0,05 %.

Als weitere Gruppe sind voll aromatische Polyester zu nennen, die sich von aromati- sehen Dicarbonsäuren und aromatischen Dihydroxyverbindungen ableiten.

Als aromatische Dicarbonsäuren eignen sich die bereits bei den Polyalkylenterephtha- laten beschriebenen Verbindungen. Bevorzugt werden Mischungen aus 5 bis 100 mol-% Isophthalsäure und 0 bis 95 mol-% Terephthalsäure, insbesondere Mischungen von etwa 80 % Terephthalsäure mit 20 % Isophthalsäure bis etwa äquivalente Mischungen dieser beiden Säuren verwendet.

Die aromatischen Dihydroxyverbindungen haben vorzugsweise die allgemeine Formel

in der Z eine Alkylen- oder Cycloalkylengruppe mit bis zu 8 C-Atomen, eine Ary- lengruppe mit bis zu 12 C-Atomen, eine Carbonylgruppe, eine Sulfonylgruppe, ein Sauerstoff- oder Schwefelatom oder eine chemische Bindung darstellt und in der m den Wert 0 bis 2 hat. Die Verbindungen können an den Phenylengruppen auch CrC 6 Alkyl- oder Alkoxygruppen und Fluor, Chlor oder Brom als Substituenten tragen.

Als Stammkörper dieser Verbindungen seien beispielsweise

Dihydroxydiphenyl,

Di-(hydroxyphenyl)alkan, Di-(hydroxyphenyl)cycloalkan,

Di-(hydroxyphenyl)sulfid,

Di-(hydroxyphenyl)ether,

Di-(hydroxyphenyl)keton, di-(hydroxyphenyl)sulfoxid, α.α'-Di-^ydroxyphenylJ-dialkylbenzol,

Di-(hydroxyphenyl)sulfon, Di-(hydroxybenzoyl)benzol

Resorcin und

Hydrochinon sowie deren kernalkylierte oder kernhalogenierte Derivate genannt.

Von diesen werden

4,4'-Dihydroxydiphenyl, 2,4-Di-(4'-hydroxyphenyl)-2-methylbutan α,α'-Di-(4-hydroxyphenyl)-p-diisopropylbenzol, 2,2-Di-(3'-methyl-4'-hydroxyphenyl)propan und 2,2-Di-(3'-chlor-4'-hydroxyphenyl)propan,

sowie insbesondere

2,2-Di-(4'-hydroxyphenyl)propan 2,2-Di-(3',5-dichlordihydroxyphenyl)propan, 1 , 1 -Di-(4'-hydroxyphenyl)cyclohexan, 3,4'-Dihydroxybenzophenon, 4,4'-Dihydroxydiphenylsulfon und

2,2-Di(3',5'-dimethyl-4'-hydroxyphenyl)propan

oder deren Mischungen bevorzugt.

Selbstverständlich kann man auch Mischungen von Polyalkylenterephthalaten und vollaromatischen Polyestem einsetzen. Diese enthalten im allgemeinen 20 bis 98 Gew.-% des Polyalkylenterephthalates und 2 bis 80 Gew.-% des vollaromatischen Polyesters.

Selbstverständlich können auch Polyesterblockcopolymere wie Copolyetherester verwendet werden. Derartige Produkte sind an sich bekannt und in der Literatur, z.B. in der US_A 3 651 014, beschrieben. Auch im Handel sind entsprechende Produkte erhältlich, z.B. Hytrel® (DuPont).

Als Polyester sollen erfindungsgemäß auch halogenfreie Polycarbonate verstanden werden. Geeignete halogenfreie Polycarbonate sind beispielsweise solche auf Basis von Diphenolen der allgemeinen Formel

worin Q eine Einfachbindung, eine d- bis C 8 -Alkylen-, eine C 2 - bis C 3 -Alkyliden-, eine C 3 - bis Ce-Cycloalkylidengruppe, eine C 6 - bis Ci 2 -Arylengruppe sowie -O-, -S- oder -SO 2 - bedeutet und m eine ganze Zahl von 0 bis 2 ist.

Die Diphenole können an den Phenylenresten auch Substituenten haben wie C r bis C 6 -AIkVl oder d- bis C 6 -Alkoxy.

Bevorzugte Diphenole der Formel sind beispielsweise Hydrochinon, Resorcin, 4,4'- Dihydroxydiphenyl, 2,2-Bis-(4-hydroxyphenyl)-propan, 2,4-Bis-(4-hydroxyphenyl)-2- methylbutan, 1 ,1-Bis-(4-hydroxyphenyl)-cyclohexan. Besonders bevorzugt sind 2,2-Bis- (4-hydroxyphenyl)-propan und 1 ,1-Bis-(4-hydroxyphenyl)-cyclohexan, sowie 1 ,1-Bis-(4- hydroxyphenyl)-3,3,5-trimethylcyclohexan.

Sowohl Homopolycarbonate als auch Copolycarbonate sind als Komponente A geeignet, bevorzugt sind neben dem Bisphenol A-Homopolymerisat die Copolycarbonate von Bisphenol A.

Die geeigneten Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 mol-%, bezogen auf die Summe der eingesetzten Diphenole, an mindestens trifunktionellen Verbindungen, beispielsweise solchen mit drei oder mehr als drei phenolischen OH-Gruppen.

Als besonders geeignet haben sich Polycarbonate erwiesen, die relative Viskositäten η ι von 1 ,10 bis 1 ,50, insbesondere von 1 ,25 bis 1,40 aufweisen. Dies entspricht mittleren Molekulargewichten M w (Gewichtsmittelwert) von 10 000 bis 200 000, vorzugsweise von 20 000 bis 80 000 g/mol.

Die Diphenole der allgemeinen Formel sind an sich bekannt oder nach bekannten Verfahren herstellbar.

Die Herstellung der Polycarbonate kann beispielsweise durch Umsetzung der Diphenole mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Phosgen nach dem Verfahren in homogener Phase (dem sogenannten Pyridinverfahren) erfolgen, wobei das jeweils einzustellende Molekulargewicht in bekannter Weise durch eine entsprechende Menge an bekannten Kettenabbrechern erzielt wird. (Bezüglich polydiorganosi- loxanhaltigen Polycarbonaten siehe beispielsweise DE-OS 33 34 782).

Geeignete Kettenabbrecher sind beispielsweise Phenol, p-t-Butylphenol aber auch langkettige Alkylphenole wie 4-(1 ,3-Tetramethyl-butyl)-phenol, gemäß DE-OS 28 42 005 oder Monoalkylphenole oder Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten gemäß DE-A 35 06 472, wie p-Nonylphenyl, 3,5-di-t-Butylphenol, p-t-Octylphenol, p-Dodecylphenol, 2-(3,5-dimethyl-heptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol.

Halogenfreie Polycarbonate im Sinne der vorliegenden Erfindung bedeutet, dass die Polycarbonate aus halogenfreien Diphenolen, halogenfreien Kettenabbrechern und gegebenenfalls halogenfreien Verzweigern aufgebaut sind, wobei der Gehalt an unter- geordneten ppm-Mengen an verseifbarem Chlor, resultierend beispielsweise aus der Herstellung der Polycarbonate mit Phosgen nach dem Phasengrenzflächenverfahren, nicht als halogenhaltig im Sinne der Erfindung anzusehen ist. Derartige Polycarbonate mit ppm-Gehalten an verseifbarem Chlor sind halogenfreie Polycarbonate im Sinne vorliegender Erfindung.

Als weitere geeignete Komponenten A) seien amorphe Polyestercarbonate genannt, wobei Phosgen gegen aromatische Dicarbonsäureeinheiten wie Isophthalsäure

und/oder Terephthalsäureeinheiten, bei der Herstellung ersetzt wurde. Für nähere Einzelheiten sei an dieser Stelle auf die EP-A 711 810 verwiesen.

Weitere geeignete Copolycarbonate mit Cycloalkylresten als Monomereinheiten sind in der EP-A 365 916 beschrieben.

Weiterhin kann Bisphenol A durch Bisphenol TMC ersetzt werden. Derartige Polycar- bonate sind unter dem Warenzeichen APEC HT® der Firma Bayer erhältlich.

Als Komponente B) enthalten die erfindungsgemäßen Formmassen 0,01 bis 50, vorzugsweise 0,5 bis 20 und insbesondere 0,7 bis 10 Gew.-% B1) mindestens eines hoch- oder hyperverzweigten Polycarbonates, mit einer OH-Zahl von 1 bis 600, vorzugsweise 10 bis 550 und insbesondere von 50 bis 550 mg KOH/g Polycarbonat (gemäß DIN 53240, Teil 2) oder mindestens eines hyperverzweigten Polyesters als Komponen- te B2) oder deren Mischungen wie nachstehend erläutert wird.

Unter hyperverzweigten Polycarbonaten B1) werden im Rahmen dieser Erfindung un- vernetzte Makromoleküle mit Hydroxyl- und Carbonatgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite aus- gehend von einem Zentral molekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrimeren und hyperverzweigten Polymeren siehe auch PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.

Unter „hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro MoIe- kül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 - 95 % beträgt.

Unter „dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30.

Der Verzweigungsgrad DB (degree of branching) der betreffenden Stoffe ist definiert als

DB = — T + Z — x loo %,

T + Z + L

(wobei T die mittlere Anzahl der terminalen Monomereinheiten, Z die mittlere Anzahl der verzweigten Monomereinheiten und L die mittlere Anzahl der linearen Monomereinheiten in den Makromolekülen der jeweiligen Stoffe bedeuten).

Vorzugsweise weist die Komponente B1) ein Zahlenmittel des Molekulargewichtes M n von 100 bis 15000, vorzugsweise von 200 bis 12000 und insbesondere von 500 bis 10000 g/mol (GPC, Standard PMMA).

Die Glasübergangstemperatur Tg beträgt insbesondere von -80°C bis +140, vorzugs- weise von -60 bis 120 0 C (gemäß DSC, DIN 53765).

Insbesondere beträgt die Viskosität (mPas) bei 23°C (gemäß DIN 53019) von 50 bis 200000, insbesondere von 100 bis 150000 und ganz besonders bevorzugt von 200 bis 100000.

Die Komponente B1) ist vorzugsweise erhältlich durch ein Verfahren, welches mindestens die folgenden Schritte umfasst:

a) Umsetzung mindestens eines organischen Carbonats (A) der allgemeinen For- mel RO[(CO)] n OR mit mindestens einem aliphatischen, aliphatisch/aromatisch oder aromatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist, unter Eliminierung von Alkoholen ROH zu einem oder mehreren Kondensationsprodukten (K), wobei es sich bei Rjeweils unabhängig voreinander um einen ge- radkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromati- sehen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt, und wobei die Reste R auch unter Bildung eines Ringes miteinander verbunden sein können und n eine ganze Zahl zwischen 1 und 5 darstellt, oder

ab) Umsetzung von Phosgen, Diphosgen oder Triphosgen mit o.g. Alkohol (B) unter Chlorwasserstoffeliminierung

sowie

b) intermolekulare Umsetzung der Kondensationsprodukte (K) zu einem hochfunkti- onellen, hoch- oder hyperverzweigten Polycarbonat,

wobei das Mengenverhältnis der OH-Gruppen zu den Carbonaten im Reaktionsgemisch so gewählt wird, dass die Kondensationsprodukte (K) im Mittel entweder eine Carbonatgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonatgruppe aufweisen.

Als Ausgangsmaterial kann Phosgen, Diphosgen oder Triphosgen eingesetzt werden, wobei organische Carbonate bevorzugt sind.

Bei den Resten R der als Ausgangsmaterial eingesetzten organischen Carbonate (A) der allgemeinen Formel RO(CO)OR handelt es sich jeweils unabhängig voneinander um einen geradkettigen oder verzweigten aliphatischen, aromatisch/aliphatisch oder aromatischen Kohlenwasserstoffrest mit 1 bis 20 C-Atomen handelt. Die beiden Reste R können auch unter Bildung eines Ringes miteinander verbunden sein. Bevorzugt handelt es sich um einen aliphatischen Kohlenwasserstoffrest und besonders bevor- zugt um einen geradkettigen oder verzweigten Alkylrest mit 1 bis 5 C-Atomen, oder um einen substituierten oder unsubstituierten Phenylrest.

Insbesondere werden einfache Carbonate der Formel RO(CO) n OR eingesetzt; n beträgt vorzugsweise 1 bis 3, insbesondere 1.

Dialkyl- oder Diarylcarbonate können zum Beispiel hergestellt werden aus der Reaktion von aliphatischen, araliphatischen oder aromatischen Alkoholen, vorzugsweise Mono- alkoholen mit Phosgen. Weiterhin können sie auch über oxidative Carbonylierung der Alkohole oder Phenole mittels CO in Gegenwart von Edelmetallen, Sauerstoff oder NO x hergestellt werden. Zu Herstellmethoden von Diaryl- oder Dialkylcarbonaten siehe auch „Ullmann ' s Encyclopedia of Industrial Chemistry", 6th Edition, 2000 Electronic Release, Verlag Wiley-VCH.

Beispiele geeigneter Carbonate umfassen aliphatische, aromatisch/aliphatische oder aromatische Carbonate wie Ethylencarbonat, 1 ,2- oder 1 ,3-Propylencarbonat, Diphe- nylcarbonat, Ditolylcarbonat, Dixylylcarbonat, Dinaphthylcarbonat, Ethylphenylcarbo- nat, Dibenzylcarbonat, Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutyl- carbonat, Diisobutylcarbonat, Dipentylcarbonat, Dihexylcarbonat, Dicyclohexylcarbo- nat, Diheptylcarbonat, Dioctylcarbonat, Didecylcarbonat oder Didodecylcarbonat.

Beispiele für Carbonate, bei denen n größer 1 ist, umfassen Dialkyldicarbonate, wie Di(-t-butyl)dicarbonat oder Dialkyltricarbonate wie Di(-t-butyltricarbonat).

Bevorzugt werden aliphatische Carbonate eingesetzt, insbesondere solche, bei denen die Reste 1 bis 5 C-Atome umfassen, wie zum Beispiel Dimethylcarbonat, Diethylcarbonat, Dipropylcarbonat, Dibutylcarbonat oder Diisobutylcarbonat.

Die organischen Carbonate werden mit mindestens einem aliphatischen Alkohol (B), welcher mindestens 3 OH-Gruppen aufweist oder Gemischen zweier oder mehrerer verschiedener Alkohole umgesetzt.

Beispiele für Verbindungen mit mindestens drei OH-Gruppen umfassen Glycerin, Tn- methylolmethan, Trimethylolethan, Trimethylolpropan, 1 ,2,4-Butantriol, Tris(hydroxy- methyl)amin, Tris(hydroxyethyl)amin, Tris(hydroxypropyl)amin, Pentaerythrit, Diglyce- rin, Triglycerin, Polyglycerine, Tris(hydroxymethyl)isocyanurat, Tris(hydroxyethyl)iso- cyanurat, Phloroglucinol, Trihydroxytoluol, Trihydroxydimethylbenzol, Phloroglucide, Hexahydroxybenzol, 1 ,3,5-Benzoltrimethanol, 1 ,1 ,1 -Tris(4'-hydroxy-phenyl)methan, 1 ,1 ,1-Tris(4'-hydroxyphenyl)ethan, Bis(tri-methylolpropan) oder Zucker, wie zum Beispiel Glucose, tri- oder höherfunktionelle Polyetherole auf Basis tri- oder höherfunktio- neller Alkohole und Ethylenoxid, Propylenoxid oder Butylenoxid, oder Poly-esterole. Dabei sind Glycerin, Trimethylolethan, Trimethylolpropan, 1,2,4-Butan-triol, Pentaerythrit, sowie deren Polyetherole auf Basis von Ethylenoxid oder Propylenoxid besonders bevorzugt.

Diese mehrfunktionellen Alkohole können auch in Mischung mit difunktionellen Alkoho- len (B ' ) eingesetzt werden, mit der Maßgabe, dass die mittlere OH-Funktionalität aller eingesetzten Alkohole zusammen größer als 2 ist. Beispiele geeigneter Verbindungen mit zwei OH-Gruppen umfassen Ethylenglykol, Diethylenglykol, Triethylenglykol, 1 ,2- und 1 ,3-Propandiol, Dipropylenglykol, Tripropylenglykol, Neopentylglykol, 1 ,2-, 1 ,3- und 1 ,4-Butandiol, 1 ,2-, 1 ,3- und 1 ,5-Pentandiol, Hexandiol, Cyclopentandiol, Cyclohexan- diol, Cyclohexandimethanol, Bis(4-Hydroxycyclohexyl)methan, Bis(4-Hydroxycyclo- hexyl)ethan, 2,2-Bis(4-Hydroxycyclohexyl)propan, 1 , 1 '-Bis(4-Hydroxyphenyl)-3,3-5- trimethylcyclohexan, Resorcin, Hydrochinon, 4,4'-Dihydroxyphenyl, Bis-(4-Bis(hydroxy- phenyl)sulfid, Bis(4-Hydroxyphenyl)sulfon, Bis(hydroxymethyl)benzol, Bis(hydroxy- methyl)toluol, Bis(p-hydroxyphenyl)methan, Bis(p-hydroxyphenyl)ethan, 2,2-Bis(p- hydroxyphenyl)propan, 1 ,1-Bis(p-hydroxyphenyl)cyclohexan, Dihydroxybenzophenon, difunktionelle Polyetherpolyole auf Basis Ethylenoxid, Propylenoxid, Butylenoxid oder deren Gemische, Polytetrahydrofuran, Polycaprolacton oder Polyesterole auf Basis von Diolen und Dicarbonsäuren.

Die Diole dienen zur Feineinstellung der Eigenschaften des Polycarbonates. Falls difunktionelle Alkohole eingesetzt werden, wird das Verhältnis von difunktionellen Alkoholen B') zu den mindestens trifunktionellen Alkoholen (B) vom Fachmann je nach den gewünschten Eigenschaften des Polycarbonates festgelegt. Im Regelfalle beträgt die Menge des oder der Alkohole (B') 0 bis 39,9 mol-% bezüglich der Gesamtmenge aller Alkohole (B) und (B') zusammen. Bevorzugt beträgt die Menge 0 bis 35 mol-%, besonders bevorzugt 0 bis 25 mol-% und ganz besonders bevorzugt 0 bis 10 mol-%.

Die Reaktion von Phosgen, Diphosgen oder Triphosgen mit dem Alkohol oder Alkoholgemisch erfolgt in der Regel unter Eliminierung von Chlorwasserstoff, die Reaktion der Carbonate mit dem Alkohol oder Alkoholgemisch zum erfindungsgemäßen hochfunkti- onellen hochverzweigten Polycarbonat erfolgt unter Eliminierung des monofunktionellen Alkohols oder Phenols aus dem Carbonat-Molekül.

Die nach dem erfindungsgemäßen Verfahren gebildeten hochfunktionellen hochverzweigten Polycarbonate sind nach der Reaktion, also ohne weitere Modifikation, mit Hydroxylgruppen und/oder mit Carbonatgruppen terminiert. Sie lösen sich gut in ver- schiedenen Lösemitteln, zum Beispiel in Wasser, Alkoholen, wie Methanol, Ethanol, Butanol, Alkohol/Wasser-Mischungen, Aceton, 2-Butanon, Essigester, Butylacetat, Methoxypropylacetat, Methoxyethylacetat, Tetrahydrofuran, Dimethylformamid, Di- methylacetamid, N-Methylpyrrolidon, Ethylencarbonat oder Propylencarbonat.

Unter einem hochfunktionellen Polycarbonat ist im Rahmen dieser Erfindung ein Produkt zu verstehen, das neben den Carbonatgruppen, die das Polymergerüst bilden, end- oder seitenständig weiterhin mindestens drei, bevorzugt mindestens sechs, mehr bevorzugt mindestens zehn funktionelle Gruppen aufweist. Bei den funktionellen Gruppen handelt es sich um Carbonatgruppen und/oder um OH-Gruppen. Die Anzahl der end- oder seitenständigen funktionellen Gruppen ist prinzipiell nach oben nicht beschränkt, jedoch können Produkte mit sehr hoher Anzahl funktioneller Gruppen unerwünschte Eigenschaften, wie beispielsweise hohe Viskosität oder schlechte Löslichkeit, aufweisen. Die hochfunktionellen Polycarbonate der vorliegenden Erfindung weisen zumeist nicht mehr als 500 end- oder seitenständige funktionelle Gruppen, bevor- zugt nicht mehr als 100 end oder seitenständige funktionelle Gruppen auf.

Bei der Herstellung der hochfunktionellen Polycarbonate B1) ist es notwendig, das Verhältnis von den OH-Gruppen enthaltenden Verbindungen zu Phosgen oder Carbo- nat so einzustellen, dass das resultierende einfachste Kondensationsprodukt (im weite- ren Kondensationsprodukt (K) genannt) im Mittel entweder eine Carbonatgruppe oder Carbamoylgruppe und mehr als eine OH-Gruppe oder eine OH-Gruppe und mehr als eine Carbonatgruppe oder Carbamoylgruppe enthält. Die einfachste Struktur des Kondensationsproduktes (K) aus einem Carbonat (A) und einem Di- oder Polyalkohol (B) ergibt dabei die Anordnung XY n oder Y n X, wobei X eine Carbonatgruppe, Y eine Hydroxyl-Gruppe und n in der Regel eine Zahl zwischen 1 und 6, vorzugsweise zwischen 1 und 4, besonders bevorzugt zwischen 1 und 3 darstellt. Die reaktive Gruppe, die dabei als einzelne Gruppe resultiert, wird im folgenden generell „fokale Gruppe" genannt.

Liegt beispielsweise bei der Herstellung des einfachsten Kondensationsproduktes (K) aus einem Carbonat und einem zweiwertigen Alkohol das Umsetzungsverhältnis bei 1 :1, so resultiert im Mittel ein Molekül des Typs XY, veranschaulicht durch die allgemeine Formel 1.

1

Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem dreiwertigen Alkohol bei einem Umsetzungsverhältnis von 1 : 1 resultiert im Mittel ein Molekül des Typs XY 2 , veranschaulicht durch die allgemeine Formel 2. Fokale Gruppe ist hier eine Carbonatgruppe.

Bei der Herstellung des Kondensationsproduktes (K) aus einem Carbonat und einem vierwertigen Alkohol ebenfalls mit dem Umsetzungsverhältnis 1 : 1 resultiert im Mittel ein Molekül des Typs XY 3 , veranschaulicht durch die allgemeine Formel 3. Fokale Gruppe ist hier eine Carbonatgruppe.

In den Formeln 1 bis 3 hat R die eingangs definierte Bedeutung und R 1 steht für einen aliphatischen oder aromatischen Rest.

Weiterhin kann die Herstellung des Kondensationsprodukts (K) zum Beispiel auch aus einem Carbonat und einem dreiwertigen Alkohol, veranschaulicht durch die allgemeine Formel 4, erfolgen, wobei das Umsetzungsverhältnis bei molar 2:1 liegt. Hier resultiert im Mittel ein Molekül des Typs X 2 Y, fokale Gruppe ist hier eine OH-Gruppe. In der Formel 4 haben R und R 1 die gleiche Bedeutung wie in den Formeln 1 bis 3.

Werden zu den Komponenten zusätzlich difunktionelle Verbindungen, z.B. ein Dicar- bonat oder ein Diol gegeben, so bewirkt dies eine Verlängerung der Ketten, wie beispielsweise in der allgemeinen Formel 5 veranschaulicht. Es resultiert wieder im Mittel ein Molekül des Typs XY 2 , fokale Gruppe ist eine Carbonatgruppe.

In Formel 5 bedeutet R 2 einen organischen, bevorzugt aliphatischen Rest, R und R 1 sind wie vorstehend beschrieben definiert.

Es können auch mehrere Kondensationsprodukte (K) zur Synthese eingesetzt werden. Hierbei können einerseits mehrere Alkohole beziehungsweise mehrere Carbonate eingesetzt werden. Weiterhin lassen sich durch die Wahl des Verhältnisses der eingesetzten Alkohole und der Carbonate bzw. der Phosgene Mischungen verschiedener Kondensationsprodukte unterschiedlicher Struktur erhalten. Dies sei am Beispiel der Umsetzung eines Carbonates mit einem dreiwertigen Alkohol beispielhaft erläutert. Setzt man die Ausgangsprodukte im Verhältnis 1 :1 ein, wie in (II) dargestellt, so erhält man ein Molekül XY 2 . Setzt man die Ausgangsprodukte im Verhältnis 2:1 ein, wie in (IV) dargestellt, so erhält man ein Molekül X 2 Y. Bei einem Verhältnis zwischen 1 :1 und 2:1 erhält man eine Mischung von Molekülen XY 2 und X 2 Y.

Die beispielhaft in den Formeln 1 - 5 beschriebenen einfachen Kondensationsprodukte (K) reagieren erfindungsgemäß bevorzugt intermolekular unter Bildung von hochfunkti- onellen Polykondensationsprodukten, im folgenden Polykondensationsprodukte (P) genannt. Die Umsetzung zum Kondensationsprodukt (K) und zum Polykondensations- produkt (P) erfolgt üblicherweise bei einer Temperatur von 0 bis 250 °C, bevorzugt bei 60 bis 160 0 C in Substanz oder in Lösung. Dabei können allgemein alle Lösungsmittel verwendet werden, die gegenüber den jeweiligen Edukten inert sind. Bevorzugt verwendet werden organische Lösungsmittel, wie zum Beispiel Decan, Dodecan, Benzol, Toluol, Chlorbenzol, XyIoI, Dimethylformamid, Dimethylacetamid oder Solventnaphtha.

In einer bevorzugten Ausführungsform wird die Kondensationsreaktion in Substanz durchgeführt. Der bei der Reaktion freiwerdende monofunktionelle Alkohol ROH oder das Phenol, kann zur Beschleunigung der Reaktion destillativ, gegebenenfalls bei vermindertem Druck, aus dem Reaktionsgleichgewicht entfernt werden.

Falls Abdestillieren vorgesehen ist, ist es regelmäßig empfehlenswert, solche Carbonate einzusetzen, welche bei der Umsetzung Alkohole ROH mit einem Siedepunkt von weniger als 140°C freisetzen.

Zur Beschleunigung der Reaktion können auch Katalysatoren oder Katalysatorgemi- sehe zugegeben werden. Geeignete Katalysatoren sind Verbindungen, die zum Ver- esterungs- oder Umesterungsreaktionen katalysieren, zum Beispiel Alkalihydroxide, Alkalicarbonate, Alkalihydrogencarbonate, vorzugsweise des Natriums, Kaliums oder

Cäsiums, tertiäre Amine, Guanidine, Ammoniumverbindungen, Phosphoniumverbin- dungen, Aluminium-, Zinn-, Zink, Titan-, Zirkon- oder Wismut-organische Verbindungen, weiterhin sogenannte Doppelmetallcyanid (DMC)-Katalysatoren, wie zum Beispiel in der DE 10138216 oder in der DE 10147712 beschrieben.

Vorzugsweise werden Kaliumhydroxid, Kaliumcarbonat, Kaliumhydrogencarbonat, Di- azabicyclooctan (DABCO), Diazabicyclononen (DBN), Diazabicycloundecen (DBU), Imidazole, wie Imidazol, 1-Methylimidazol oder 1 ,2-Dimethylimidazol, Titantetrabutylat, Titantetraisopropylat, Dibutylzinnoxid, Dibutylzinn-dilaurat, Zinndioctoat, Zirkonacetyl- acetonat oder Gemische davon eingesetzt.

Die Zugabe des Katalysators erfolgt im allgemeinen in einer Menge von 50 bis 10000, bevorzugt von 100 bis 5000 Gew. ppm bezogen auf die Menge des eingesetzten Alkohols oder Alkoholgemisches.

Ferner ist es auch möglich, sowohl durch Zugabe des geeigneten Katalysators, als auch durch Wahl einer geeigneten Temperatur die intermolekulare Polykondensations- reaktion zu steuern. Weiterhin lässt sich über die Zusammensetzung der Ausgangskomponenten und über die Verweilzeit das mittlere Molekulargewicht des Polymeren (P) einstellen.

Die Kondensationsprodukte (K) bzw. die Polykondensationsprodukte (P), die bei erhöhter Temperatur hergestellt wurden, sind bei Raumtemperatur üblicherweise über einen längeren Zeitraum stabil.

Aufgrund der Beschaffenheit der Kondensationsprodukte (K) ist es möglich, dass aus der Kondensationsreaktion Polykondensationsprodukte (P) mit unterschiedlichen Strukturen resultieren können, die Verzweigungen, aber keine Vernetzungen aufweisen. Ferner weisen die Polykondensationsprodukte (P) im Idealfall entweder eine Car- bonatgruppe als fokale Gruppe und mehr als zwei OH-Gruppen oder aber eine OH- Gruppe als fokale Gruppe und mehr als zwei Carbonatgruppen auf. Die Anzahl der reaktiven Gruppen ergibt sich dabei aus der Beschaffenheit der eingesetzten Kondensationsprodukte (K) und dem Polykondensationsgrad.

Beispielsweise kann ein Kondensationsprodukt (K) gemäß der allgemeinen Formel 2 durch dreifache intermolekulare Kondensation zu zwei verschiedenen Polykondensati- onsprodukten (P), die in den allgemeinen Formeln 6 und 7 wiedergegeben werden, reagieren.

In Formel 6 und 7 sind R und R 1 wie vorstehend definiert.

Zum Abbruch der intermolekularen Polykondensationsreaktion gibt es verschiedene Möglichkeiten. Beispielsweise kann die Temperatur auf einen Bereich abgesenkt werden, in dem die Reaktion zum Stillstand kommt und das Produkt (K) oder das Polykon- densationsprodukt (P) lagerstabil ist.

Weiterhin kann man den Katalysator deaktivieren, bei basischen z.B. durch Zugabe von Lewissäuren oder Protonensäuren.

In einer weiteren Ausführungsform kann, sobald aufgrund der intermolekularen Reaktion des Kondensationsproduktes (K) ein Polykondensationsprodukt (P) mit gewünsch- ten Polykondensationsgrad vorliegt, dem Produkt (P) zum Abbruch der Reaktion ein Produkt mit gegenüber der fokalen Gruppe von (P) reaktiven Gruppen zugesetzt werden. So kann bei einer Carbonatgruppe als fokaler Gruppe zum Beispiel ein Mono-, Dioder Polyamin zugegeben werden. Bei einer Hydroxylgruppe als fokaler Gruppe kann dem Produkt (P) beispielsweise ein Mono-, Di- oder Polyisocyanat, eine Epoxydgrup- pen enthaltende Verbindung oder ein mit OH-Gruppen reaktives Säurederivat zugegeben werden.

Die Herstellung der erfindungsgemäßen hochfunktionellen Polycarbonate erfolgt zumeist in einem Druckbereich von 0,1 mbar bis 20 bar, bevorzugt bei 1 mbar bis 5 bar, in Reaktoren oder Reaktorkaskaden, die im Batchbetrieb, halbkontinuierlich oder kontinuierlich betrieben werden.

Durch die vorgenannte Einstellung der Reaktionsbedingungen und gegebenenfalls durch die Wahl des geeigneten Lösemittels können die erfindungsgemäßen Produkte nach der Herstellung ohne weitere Reinigung weiterverarbeitet werden.

In einer weiteren bevorzugten Ausführungsform wird das Produkt gestrippt, das heißt, von niedermolekularen, flüchtigen Verbindungen befreit. Dazu kann nach Erreichen des gewünschten Umsatzgrades der Katalysator optional deaktiviert und die niedermolekularen flüchtigen Bestandteile, z.B. Monoalkohole, Phenole, Carbonate, Chlorwas- serstoff oder leichtflüchtige oligomere oder cyclische Verbindungen destillativ, gegebenenfalls unter Einleitung eines Gases, vorzugsweise Stickstoff, Kohlendioxid oder Luft, gegebenenfalls bei vermindertem Druck, entfernt werden.

In einer weiteren bevorzugten Ausführungsform können die erfindungsgemäßen PoIy- carbonate neben den bereits durch die Reaktion erhaltenden funktionellen Gruppen weitere funktionelle Gruppen erhalten. Die Funktionalisierung kann dabei während des Molekulargewichtsaufbaus oder auch nachträglich, d.h. nach Beendigung der eigentlichen Polykondensation erfolgen.

Gibt man vor oder während des Molekulargewichtsaufbaus Komponenten zu, die neben Hydroxyl- oder Carbonatgruppen weitere funktionelle Gruppen oder funktionelle Elemente besitzen, so erhält man ein Polycarbonat-Polymer mit statistisch verteilten von den Carbonat- oder Hydroxylgruppen verschiedenen Funktionalitäten.

Derartige Effekte lassen sich zum Beispiel durch Zusatz von Verbindungen während der Polykondensation erzielen, die neben Hydroxylgruppen, Carbonatgruppen oder Carbamoylgruppen weitere funktionelle Gruppen oder funktionelle Elemente, wie Mer- captogruppen, primäre, sekundäre oder tertiäre Aminogruppen, Ethergruppen, Derivate von Carbonsäuren, Derivate von Sulfonsäuren, Derivate von Phosphonsäuren, Si- langruppen, Siloxangruppen, Arylreste oder langkettige Alkylreste tragen. Zur Modifikation mittels Carbamat-Gruppen lassen sich beispielsweise Ethanolamin, Propanolamin, Isopropanolamin, 2-(Butylamino)ethanol, 2-(Cyclohexylamino)ethanol, 2-Amino-1- butanol, 2-(2 ' -Amino-ethoxy)ethanol oder höhere Alkoxylierungsprodukte des Ammoniaks, 4-Hydroxy-piperidin, 1-Hydroxyethylpiperazin, Diethanolamin, Dipropanolamin, Diisopropanol-amin, Tris(hydroxymethyl)aminomethan, Tris(hydroxyethyl)amino- methan, Ethylen-diamin, Propylendiamin, Hexamethylendiamin oder Isophorondiamin verwenden.

Für die Modifikation mit Mercaptogruppen lässt sich zum Beispiel Mercaptoethanol einsetzten. Tertiäre Aminogruppen lassen sich zum Beispiel durch Einbau von N-Me- thyldiethanolamin, N-Methyldipropanolamin oder N,N-Dimethylethanolamin erzeugen. Ethergruppen können zum Beispiel durch Einkondensation von di- oder höherfunktio-

nellen Polyetherolen generiert werden. Durch Reaktion mit langkettigen Alkandiolen lassen sich langkettige Alkylreste einbringen, die Reaktion mit Alkyl- oder Aryldiisocya- naten generiert Alkyl-, Aryl- und Urethangruppen oder Harnstoffgruppen aufweisende Polycarbonate.

Durch Zugabe von Dicarbonsäuren, Tricarbonsäuren, z.B. Terephthalsäure- dimethylester oder Tricarbonsäureester lassen sich Estergruppen erzeugen.

Eine nachträgliche Funktionalisierung kann man erhalten, indem das erhaltene hoch- funktionelle, hoch- oder hyperverzweigte Polycarbonat in einem zusätzlichen Verfahrensschritt (Schritt c)) mit einem geeigneten Funktionalisierungsreagenz, welches mit den OH- und/oder Carbonat-Gruppen oder Carbamoylgruppen des Polycarbonates reagieren kann, umsetzt.

Hydroxylgruppen enthaltende hochfunktionelle, hoch oder hyperverzweigte Polycarbonate können zum Beispiel durch Zugabe von Säuregruppen- oder Isocyanatgruppen enthaltenden Molekülen modifiziert werden. Beispielsweise lassen sich Säuregruppen enthaltende Polycarbonate durch Umsetzung mit Anhydridgruppen enthaltenden Verbindungen erhalten.

Weiterhin können Hydroxylgruppen enthaltende hochfunktionelle Polycarbonate auch durch Umsetzung mit Alkylenoxiden, zum Beispiel Ethylenoxid, Propylenoxid oder Bu- tylenoxid, in hochfunktionelle Polycarbonat-Polyetherpolyole überführt werden.

Ein großer Vorteil des Verfahren liegt in seiner Wirtschaftlichkeit. Sowohl die Umsetzung zu einem Kondensationsprodukt (K) oder Polykondensationsprodukt (P) als auch die Reaktion von (K) oder (P) zu Polycarbonaten mit anderen funktionellen Gruppen oder Elementen kann in einer Reaktionsvorrichtung erfolgen, was technisch und wirtschaftlich vorteilhaft ist.

Als Komponente B2) können die erfindungsgemäßen Formmassen mindestens eines hyperverzweigten Polyesters des Typs A x B y enthalten, wobei

x mindestens 1 ,1 vorzugsweise mindestens 1,3, insbesondere mindestens 2 y mindestens 2,1 , vorzugsweise mindestens 2,5, insbesondere mindestens 3

beträgt.

Selbstverständlich können als Einheiten A bzw. B auch Mischungen eingesetzt wer- den.

Unter einem Polyester des Typs A x B y versteht man ein Kondensat, das sich aus einem x-funktionellen Molekül A und einem y-funktionellen Molekül B aufbaut. Beispielsweise sei genannt ein Polyester aus Adipinsäure als Molekül A (x = 2) und Glycerin als Molekül B (y = 3).

Unter hyperverzweigten Polyestern B2) werden im Rahmen dieser Erfindung unver- netzte Makromoleküle mit Hydroxyl- und Carboxylgruppen verstanden, die sowohl strukturell als auch molekular uneinheitlich sind. Sie können auf der einen Seite ausgehend von einem Zentralmolekül analog zu Dendrimeren, jedoch mit uneinheitlicher Kettenlänge der Äste aufgebaut sein. Sie können auf der anderen Seite auch linear, mit funktionellen Seitengruppen, aufgebaut sein oder aber, als Kombination der beiden Extreme, lineare und verzweigte Molekülteile aufweisen. Zur Definition von dendrimeren und hyperverzweigten Polymeren siehe auch PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und H. Frey et al., Chem. Eur. J. 2000, 6, No. 14, 2499.

Unter „hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad (Degree of Branching, DB), dass heißt die mittlere Anzahl dendritischer Verknüpfungen plus mittlere Anzahl der Endgruppen pro Molekül, 10 bis 99.9 %, bevorzugt 20 bis 99 %, besonders bevorzugt 20 - 95 % beträgt. Unter „dendrimer" wird im Zusammenhang mit der vorliegenden Erfindung verstanden, dass der Verzweigungsgrad 99,9 - 100% beträgt. Zur Definition des „Degree of Branching" siehe H. Frey et al., Acta Polym. 1997, 48, 30 und vorstehend unter B1) aufgeführte Formel.

Die Komponente B2) weist vorzugsweise ein M n von 300 bis 30 000, insbesondere von 400 bis 25000 und ganz besonders von 500 bis 20000 g/mol auf, bestimmt mittels GPC, Standard PMMA, Laufmittel Dimethylacetamid.

Vorzugsweise weist B2) eine OH-Zahl von 0 bis 600, vorzugsweise 1 bis 500, insbe- sondere von 20 bis 500 mg KOH/g Polyester gemäß DIN 53240 auf sowie bevorzugt eine COOH-Zahl von 0 bis 600, vorzugsweise von 1 bis 500 und insbesondere von 2 bis 500 mg KOH/g Polyester.

Die T 9 beträgt vorzugsweise von -50°C bis 140°C und insbesondere von -50 bis 100°C (mittels DSC, nach DIN 53765).

Insbesondere solche Komponenten B2) sind bevorzugt, in denen mindestens eine OH- bzw. COOH-Zahl größer 0, vorzugsweise größer 0,1 und insbesondere größer 0,5 ist.

Insbesondere durch die nachfolgend beschriebenen Verfahren ist die erfindungsgemäße Komponente B2) erhältlich, u.z. indem man

(a) eine oder mehrere Dicarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren mindestens trifunktionellen Alkoholen

oder

(b) eine oder mehrere Tricarbonsäuren oder höhere Polycarbonsäuren oder eines oder mehrere Derivate derselben mit einem oder mehreren Diolen

in Gegenwart eines Lösemittels und optional in Gegenwart eines anorganischen, me- tallorganischen oder niedermolekularen organischen Katalysators oder eines Enzyms umsetzt. Die Umsetzung im Lösungsmittel ist die bevorzugte Herstellmethode.

Hochfunktionelle hyperverzweigte Polyester B2) im Sinne der vorliegenden Erfindung sind molekular und strukturell uneinheitlich. Sie unterscheiden sich durch ihre moleku- lare Uneinheitlichkeit von Dendrimeren und sind daher mit erheblich geringerem Aufwand herzustellen.

Zu den nach Variante (a) umsetzbaren Dicarbonsäuren gehören beispielsweise Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäu- re, Azelainsäure, Sebacinsäure, Undecan-α,ω-dicarbonsäure, Dodecan-α,ω-dicarbon- säure, eis- und trans-Cyclohexan-1 ,2-dicarbonsäure, eis- und trans-Cyclohexan-1 ,3-di- carbonsäure, eis- und trans-Cyclohexan-1 ,4-dicarbonsäure, eis- und trans-Cyclo- pentan-1 ,2-dicarbonsäure sowie eis- und trans-Cyclopentan-1 ,3-dicarbonsäure,

wobei die oben genannten Dicarbonsäuren substituiert sein können mit einem oder mehreren Resten, ausgewählt aus

d-Cio-Alkylgruppen, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2- Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,

C 3 -Ci 2 -Cycloalkylgruppen, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclo- hexyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclodode- cyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl;

Alkylengruppen wie Methylen oder Ethyliden oder

C 6 -Ci 4 -Arylgruppen wie beispielsweise Phenyl, 1-Naphthyl, 2-Naphthyl, 1-Anthryl, 2- Anthryl, 9-Anthryl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl und 9- Phenanthryl, bevorzugt Phenyl, 1-Naphthyl und 2-Naphthyl, besonders bevorzugt Phenyl.

Als beispielhafte Vertreter für substituierte Dicarbonsäuren seien genannt: 2- Methylmalonsäure, 2-Ethylmalonsäure, 2-Phenylmalonsäure, 2-Methylbemsteinsäure, 2-Ethylbemsteinsäure, 2-Phenyl bernsteinsäure, Itaconsäure, 3,3-Dimethylglutarsäure.

Weiterhin gehören zu den nach Variante (a) umsetzbaren Dicarbonsäuren ethylenisch ungesättigte Säuren wie beispielsweise Maleinsäure und Fumarsäure sowie aromatische Dicarbonsäuren wie beispielsweise Phthalsäure, Isophthalsäure oder Terephthal- säure.

Weiterhin lassen sich Gemische von zwei oder mehreren der vorgenannten Vertreter einsetzen.

Die Dicarbonsäuren lassen sich entweder als solche oder in Form von Derivaten ein- setzen.

Unter Derivaten werden bevorzugt verstanden

die betreffenden Anhydride in monomerer oder auch polymerer Form,

Mono- oder Dialkylester, bevorzugt Mono- oder Dimethylester oder die entsprechenden Mono- oder Diethylester, aber auch die von höheren Alkoholen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.-Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- und Dialkylester,

ferner Mono- und Divinylester sowie

gemischte Ester, bevorzugt Methylethylester.

Im Rahmen der bevorzugten Herstellung ist es auch möglich, ein Gemisch aus einer Dicarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Dicarbonsäuren einzusetzen.

Besonders bevorzugt setzt man Bernsteinsäure, Glutarsäure, Adipinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure oder deren Mono- oder Dimethylester ein. Ganz besonders bevorzugt setzt man Adipinsäure ein.

Als mindestens trifunktionelle Alkohole lassen sich beispielsweise umsetzen: Glycerin, Butan-1 ,2,4-triol, n-Pentan-1 ,2,5-triol, n-Pentan-1 ,3,5-triol, n-Hexan-1 ,2,6-triol, n-Hexan-1 ,2,5-triol, n-Hexan-1 ,3,6-triol, Trimethylolbutan, Trimethylolpropan oder Di- Trimethylolpropan, Trimethylolethan, Pentaerythritoder Dipentaerythrit; Zuckeralkohole

wie beispielsweise Mesoerythrit, Threitol, Sorbit, Mannit oder Gemische der vorstehenden mindestens trifunktionellen Alkohole. Bevorzugt verwendet man Glycerin, Tri- methylolpropan, Trimethylolethan und Pentaerythrit.

Nach Variante (b) umsetzbare Tricarbonsäuren oder Polycarbonsäuren sind beispielsweise 1 ,2,4-Benzoltricarbonsäure, 1 ,3,5-Benzoltricarbonsäure, 1 ,2,4,5-Benzoltetra- carbonsäure sowie Mellitsäure.

Tricarbonsäuren oder Polycarbonsäuren lassen sich in der erfindungsgemäßen Reak- tion entweder als solche oder aber in Form von Derivaten einsetzen.

Unter Derivaten werden bevorzugt verstanden

die betreffenden Anhydride in monomerer oder auch polymerer Form,

Mono-, Di- oder Trialkylester, bevorzugt Mono-, Di- oder Trimethylester oder die entsprechenden Mono-, Di- oder Triethylester, aber auch die von höheren Alkoholen wie beispielsweise n-Propanol, iso-Propanol, n-Butanol, Isobutanol, tert.- Butanol, n-Pentanol, n-Hexanol abgeleiteten Mono- Di- und Triester, ferner Mo- no-, Di- oder Trivinylester

sowie gemischte Methylethylester.

Im Rahmen der vorliegenden Erfindung ist es auch möglich, ein Gemisch aus einer Tn- oder Polycarbonsäure und einem oder mehreren ihrer Derivate einzusetzen. Gleichfalls ist es im Rahmen der vorliegenden Erfindung möglich, ein Gemisch mehrerer verschiedener Derivate von einer oder mehreren Tri- oder Polycarbonsäuren einzusetzen, um Komponente B2) zu erhalten.

Als Diole für Variante (b) der vorliegenden Erfindung verwendet man beispielsweise Ethylenglykol, Propan-1 ,2-diol, Propan-1 ,3-diol, Butan-1 ,2-diol, Butan-1 ,3-diol, Butan- 1 ,4-diol, Butan-2,3-diol, Pentan-1 ,2-diol, Pentan-1 ,3-diol, Pentan-1 ,4-diol, Pentan-1 ,5- diol, Pentan-2,3-diol, Pentan-2,4-diol, Hexan-1 ,2-diol, Hexan-1 ,3-diol, Hexan-1 ,4-diol, Hexan-1 ,5-diol, Hexan-1 ,6-diol, Hexan-2,5-diol, Heptan-1 ,2-diol 1 ,7-Heptandiol, 1 ,8- Octandiol, 1 ,2-Octandiol, 1 ,9-Nonandiol, 1 ,10-Decandiol, 1 ,2-Decandiol, 1 ,12-Do- decandiol, 1 ,2-Dodecandiol, 1 ,5-Hexadien-3,4-diol, Cyclopentandiole, Cyclohexandiole, Inositol und Derivate, (2)-Methyl-2,4-pentandiol, 2,4-Dimethyl-2,4-Pentandiol, 2-Ethyl- 1 ,3-hexandiol, 2,5-Dimethyl-2,5-hexandiol, 2,2,4-Trimethyl-1 ,3-pentandiol, Pinacol, Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tripropylenglykol, Polyethylenglyko- Ie HO(CH 2 CH 2 O) n -H oder Polypropylenglykole HO(CH[CH 3 ]CH 2 O) n -H oder Gemische von zwei oder mehr Vertretern der voranstehenden Verbindungen, wobei n eine ganze Zahl ist und n = 4 bis 25 beträgt. Dabei kann eine oder auch beide Hydroxylgruppen in

den vorstehend genannten Diolen auch durch SH-Gruppen substituiert werden. Bevorzugt sind Ethylenglykol, Propan-1 ,2-diol sowie Diethylenglykol, Triethylenglykol, Dipro- pylenglykol und Tripropylenglykol.

Das Molverhältnis der Moleküle A zu Molekülen B im A x By-Polyester bei den Varianten (a) und (b) beträgt 4:1 bis 1 :4, insbesondere 2:1 bis 1 :2.

Die nach Variante (a) des Verfahrens umgesetzten mindestens trifunktionellen Alkohole können Hydroxylgruppen jeweils gleicher Reaktivität aufweisen. Bevorzugt sind hier auch mindestens trifunktionelle Alkohole, deren OH-Gruppen zunächst gleich reaktiv sind, bei denen sich jedoch durch Reaktion mit mindestens einer Säuregruppe ein Reaktivitätsabfall, bedingt durch sterische oder elektronische Einflüsse, bei den restlichen OH-Gruppen induzieren lässt. Dies ist beispielsweise bei der Verwendung von Tri- methylolpropan oder Pentaerythrit der Fall.

Die nach Variante (a) umgesetzten mindestens trifunktionellen Alkohole können aber auch Hydroxylgruppen mit mindestens zwei chemisch unterschiedlichen Reaktivitäten aufweisen.

Die unterschiedliche Reaktivität der funktionellen Gruppen kann dabei entweder auf chemischen (z.B. primäre/sekundäre/tertiäre OH Gruppe) oder auf sterischen Ursachen beruhen.

Beispielsweise kann es sich bei dem Triol um ein Triol handeln, welches primäre und sekundäre Hydroxylgruppen aufweist, bevorzugtes Beispiel ist Glycerin.

Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (a) arbeitet man bevorzugt in Abwesenheit von Diolen und monofunktionellen Alkoholen.

Bei der Durchführung der erfindungsgemäßen Umsetzung nach Variante (b) arbeitet man bevorzugt in Abwesenheit von mono- oder Dicarbonsäuren.

Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Be- sonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, XyIoI als Isomerengemisch, Ethylbenzol, Chlorbenzol und Ortho- und meta-Dichlorbenzol. Weiterhin sind als Lösemittel in Abwesenheit von sauren Katalysatoren ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetra hydrofu ran und Ketone wie beispielsweise Methyl- ethylketon und Methylisobutylketon.

Die Menge an zugesetztem Lösemittel beträgt erfindungsgemäß mindestens

0,1 Gew.-%, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmate- rialien, bevorzugt mindestens 1 Gew.-% und besonders bevorzugt mindestens 10 Gew.-%. Man kann auch Überschüsse an Lösemittel, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, einsetzen, beispielsweise das 1 ,01- bis 10-fache. Lösemittel-Mengen von mehr als dem 100-fachen, bezogen auf die Masse an eingesetzten umzusetzenden Ausgangsmaterialien, sind nicht vorteilhaft, weil bei deutlich niedrigeren Konzentrationen der Reaktionspartner die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.

Zur Durchführung des erfindungsgemäß bevorzugten Verfahrens kann man in Gegenwart eines Wasser entziehenden Mittels als Additiv arbeiten, das man zu Beginn der Reaktion zusetzt. Geeignet sind beispielsweise Molekularsiebe, insbesondere Molekularsieb 4Ä, MgSO 4 und Na 2 SO 4 . Man kann auch während der Reaktion weiteres Was- ser entziehendes Mittel zufügen oder Wasser entziehendes Mittel durch frisches Wasser entziehendes Mittel ersetzen. Man kann auch während der Reaktion gebildetes Wasser bzw. Alkohol abdestillieren und beispielsweise einen Wasserabscheider einsetzen.

Man kann das Verfahren in Abwesenheit von sauren Katalysatoren durchführen. Vorzugsweise arbeitet man in Gegenwart eines sauren anorganischen, metallorganischen oder organischen Katalysators oder Gemischen aus mehreren sauren anorganischen, metallorganischen oder organischen Katalysatoren.

Als saure anorganische Katalysatoren im Sinne der vorliegenden Erfindung sind beispielsweise Schwefelsäure, Phosphorsäure, Phosphonsäure, hypophosphorige Säure, Aluminiumsulfathydrat, Alaun, saures Kieselgel (pH = 6, insbesondere = 5) und saures Aluminiumoxid zu nennen. Weiterhin sind beispielsweise Alumiumverbindungen der allgemeinen Formel AI(OR) 3 und Titanate der allgemeinen Formel Ti(OR) 4 als saure anorganische Katalysatoren einsetzbar, wobei die Reste R jeweils gleich oder verschieden sein können und unabhängig voneinander gewählt sind aus

d-Cio-Alkylresten, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso- Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1 ,2-Di- methylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, iso-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl oder n-Decyl,

C 3 -Ci 2 -Cycloalkylresten, beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohe- xyl, Cycloheptyl, Cyclooctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl.

Bevorzugt sind die Reste R in AI(OR) 3 bzw. Ti(OR) 4 jeweils gleich und gewählt aus Isopropyl oder 2-Ethylhexyl.

Bevorzugte saure metallorganische Katalysatoren sind beispielsweise gewählt aus Dialkylzinnoxiden R 2 SnO, wobei R wie oben stehend definiert ist. Ein besonders bevorzugter Vertreter für saure metallorganische Katalysatoren ist Di-n-butylzinnoxid, das als sogenanntes Oxo-Zinn kommerziell erhältlich ist, oder Di-n-butylzinndilaurat.

Bevorzugte saure organische Katalysatoren sind saure organische Verbindungen mit beispielsweise Phosphatgruppen, Sulfonsäuregruppen, Sulfatgruppen oder Phosphon- säuregruppen. Besonders bevorzugt sind Sulfonsäuren wie beispielsweise para-Toluol- sulfonsäure. Man kann auch saure lonentauscher als saure organische Katalysatoren einsetzen, beispielsweise Sulfonsäuregruppen-haltige Polystyrolharze, die mit etwa 2 mol-% Divinylbenzol vernetzt sind.

Man kann auch Kombinationen von zwei oder mehreren der vorgenannten Katalysatoren einsetzen. Auch ist es möglich, solche organische oder metallorganische oder auch anorganische Katalysatoren, die in Form diskreter Moleküle vorliegen, in immobilisierter Form einzusetzen.

Wünscht man saure anorganische, metallorganische oder organische Katalysatoren einzusetzen, so setzt man erfindungsgemäß 0,1 bis 10 Gew.-%, bevorzugt 0,2 bis 2 Gew.-% Katalysator ein.

Das erfindungsgemäße Verfahren wird unter Inertgasatmosphäre durchgeführt, das heißt beispielsweise unter Kohlendioxid, Stickstoff oder Edelgas, unter denen insbesondere Argon zu nennen ist.

Das erfindungsgemäße Verfahren wird bei Temperaturen von 60 bis 200°C durchge- führt. Vorzugsweise arbeitet man bei Temperaturen von 130 bis 180, insbesondere bis 150 0 C oder darunter. Besonders bevorzugt sind maximale Temperaturen bis 145°C, ganz besonders bevorzugt bis 135°C.

Die Druckbedingungen des erfindungsgemäßen Verfahrens sind an sich unkritisch. Man kann bei deutlich verringertem Druck arbeiten, beispielsweise bei 10 bis

500 mbar. Das erfindungsgemäße Verfahren kann auch bei Drucken oberhalb von 500 mbar durchgeführt werden. Bevorzugt ist aus Gründen der Einfachheit die Umsetzung bei Atmosphärendruck; möglich ist aber auch eine Durchführung bei leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drucken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphärendruck.

Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 10 Minuten bis 25 Stunden, bevorzugt 30 Minuten bis 10 Stunden und besonders bevorzugt eine bis 8 Stunden.

Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyester leicht isolieren, beispielsweise durch Abfiltrieren des Katalysators und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.

Weiterhin kann die Komponente B2) in Gegenwart von Enzymen oder Zersetzungsprodukten von Enzymen hergestellt werden (gemäß DE-A 101 63163). Es gehören die erfindungsgemäß umgesetzten Dicarbonsäuren nicht zu den sauren organischen Katalysatoren im Sinne der vorliegenden Erfindung.

Bevorzugt ist die Verwendung von Lipasen oder Esterasen. Gut geeignete Lipasen und Esterasen sind Candida cylindracea, Candida lipolytica, Candida rugosa, Candida an- tarctica, Candida utilis, Chromobacterium viscosum, Geolrichum viscosum, Geotrichum candidum, Mucor javanicus, Mucor mihei, pig pancreas, Pseudomonas spp., pseudo- monas fluorescens, Pseudomonas cepacia, Rhizopus arrhizus, Rhizopus delemar, Rhizopus niveus, Rhizopus oryzae, Aspergillus niger, Penicillium roquefortii, Penicilli- um camembertii oder Esterase von Bacillus spp. und Bacillus thermoglucosidasius. Besonders bevorzugt ist Candida antarctica Lipase B. Die aufgeführten Enzyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Dänemark.

Bevorzugt setzt man das Enzym in immobilisierter Form ein, beispielsweise auf Kieselgel oder Lewatit®. Verfahren zur Immobilisierung von Enzymen sind an sich bekannt, beispielsweise aus Kurt Faber, „Biotransformations in organic chemistry", 3. Auflage 1997, Springer Verlag, Kapitel 3.2 „Immobilization" Seite 345-356. Immobilisierte En- zyme sind kommerziell erhältlich, beispielsweise bei Novozymes Biotech Inc., Dänemark.

Die Menge an immobilisiertem eingesetztem Enzym beträgt 0,1 bis 20 Gew.-%, insbesondere 10 bis 15 Gew.-%, bezogen auf die Masse der insgesamt eingesetzten umzu- setzenden Ausgangsmaterialien.

Das erfindungsgemäße Verfahren wird bei Temperaturen über 60°C durchgeführt. Vorzugsweise arbeitet man bei Temperaturen von 100°C oder darunter. Bevorzugt sind Temperaturen bis 80 0 C, ganz besonders bevorzugt von 62 bis 75°C und noch mehr bevorzugt von 65 bis 75°C.

Das erfindungsgemäße Verfahren wird in Gegenwart eines Lösemittels durchgeführt. Geeignet sind beispielsweise Kohlenwasserstoffe wie Paraffine oder Aromaten. Besonders geeignete Paraffine sind n-Heptan und Cyclohexan. Besonders geeignete Aromaten sind Toluol, ortho-Xylol, meta-Xylol, para-Xylol, XyIoI als Isomerengemisch, Ethylbenzol, Chlorbenzol und Ortho- und meta-Dichlorbenzol. Weiterhin sind ganz besonders geeignet: Ether wie beispielsweise Dioxan oder Tetrahydrofuran und Ketone wie beispielsweise Methylethylketon und Methyl isobutylketon.

Die Menge an zugesetztem Lösemittel beträgt mindestens 5 Gew.-Teile, bezogen auf die Masse der eingesetzten umzusetzenden Ausgangsmaterialien, bevorzugt mindestens 50 Gew.-Teile und besonders bevorzugt mindestens 100 Gew.-Teile. Mengen von über 10 000 Gew.-Teile Lösemittel sind nicht erwünscht, weil bei deutlich niedrigeren Konzentrationen die Reaktionsgeschwindigkeit deutlich nachlässt, was zu unwirtschaftlichen langen Umsetzungsdauern führt.

Das erfindungsgemäße Verfahren wird bei Drücken oberhalb von 500 mbar durchgeführt. Bevorzugt ist die Umsetzung bei Atmosphärendruck oder leicht erhöhtem Druck, beispielsweise bis 1200 mbar. Man kann auch unter deutlich erhöhtem Druck arbeiten, beispielsweise bei Drücken bis 10 bar. Bevorzugt ist die Umsetzung bei Atmosphären- druck.

Die Umsetzungsdauer des erfindungsgemäßen Verfahrens beträgt üblicherweise 4 Stunden bis 6 Tage, bevorzugt 5 Stunden bis 5 Tage und besonders bevorzugt 8 Stunden bis 4 Tage.

Nach beendeter Reaktion lassen sich die hochfunktionellen hyperverzweigten Polyester isolieren, beispielsweise durch Abfiltrieren des Enzyms und Einengen, wobei man das Einengen üblicherweise bei vermindertem Druck durchführt. Weitere gut geeignete Aufarbeitungsmethoden sind Ausfällen nach Zugabe von Wasser und anschließendes Waschen und Trocknen.

Die nach dem erfindungsgemäßen Verfahren erhältlichen hochfunktionellen, hyperverzweigten Polyester, zeichnen sich durch besonders geringe Anteile an Verfärbungen und Verharzungen aus. Zur Definition von hyperverzweigten Polymeren siehe auch: PJ. Flory, J. Am. Chem. Soc. 1952, 74, 2718 und A. Sunder et al., Chem. Eur. J. 2000, 6, No.1 , 1-8. Unter "hochfunktionell hyperverzweigt" wird im Zusammenhang mit der vorliegenden Erfindung jedoch verstanden, dass der Verzweigungsgrad (Degree of branching), das heißt die mittlere Anzahl von dendritischen Verknüpfungen plus die mittlere Anzahl von Endgruppen pro Molekül 10 - 99,9 %, bevorzugt 20 - 99 %, be- sonders bevorzugt 30 - 90 % beträgt (siehe dazu H. Frey et al. Acta Polym. 1997, 48, 30).

Die erfindungsgemäßen Polyester haben ein Molekulargewicht M w von 500 bis 50 000 g/rnol, bevorzugt 1000 bis 20 000, besonders bevorzugt 1000 bis 19 000. Die Polydispersität beträgt 1 ,2 bis 50, bevorzugt 1 ,4 bis 40, besonders bevorzugt 1 ,5 bis 30 und ganz besonders bevorzugt 1,5 bis 10. Sie sind üblicherweise gut löslich, d.h. man kann klare Lösungen mit bis zu 50 Gew.-%, in einigen Fällen sogar bis zu 80 Gew.-%, der erfindungsgemäßen Polyester in Tetrahydrofuran (THF), n-Butylacetat, Ethanol und zahlreichen anderen Lösemitteln darstellen, ohne dass mit bloßem Auge Gelpartikel detektierbar sind.

Die erfindungsgemäßen hochfunktionellen hyperverzweigten Polyester sind carboxy- terminiert, carboxy- und Hydroxylgruppen-terminiert und vorzugsweise Hydroxylgrup- pen-terminiert.

Die Verhältnisse der Komponenten B1) zu B2) betragen vorzugsweise von 1 : 20 bis 20 : 1, insbesondere von 1 : 15 bis 15 : 1 und ganz besonders von 1 : 5 bis 5 : 1 , wenn diese in Mischung eingesetzt werden.

Bei den eingesetzten hyperverzweigten Polycarbonaten B1) / Polyestem B2) handelt es sich um Nanopartikel. Die Größe der Partikel im Compound beträgt von 20 bis 500 nm, vorzugsweise 50 - 300 nm.

Derartige Compounds sind im Handel z.B. als Ultradur® high speed erhältlich.

Als Komponente C) enthalten die erfindungsgemäßen Formmassen 0,01 bis 10, vorzugsweise 0,5 bis 7 und insbesondere 1 bis 5 Gew.-% eines Carbodiimides, vorzugs- weise auf Basis von 2,4'-MDI (2,4'-Diisocyanatodiphenylmethan), welches bis zu

60 Mol-%, vorzugsweise bis zu 30 Mol-% Einheiten auf der Basis anderer Isocyanate enthalten kann.

Bevorzugt werden solche oligomeren Carbodiimide, welche aus 2,4'-MDI allein aufge- baut sind. Jedoch können auch bis zu 60 Mol-%, vorzugsweise bis zu 30 Mol-% mindestens eines weiteren zwei- oder mehrfunktionellen aromatischen Isocyanats eingesetzt werden. Auch solche Cooligomere haben noch gute anwendungstechnische Eigenschaften.

Als weitere Isocyanate kommen vornehmlich zweikernige Verbindungen wie 4,4'-Diiso- cyanatodiphenylmethan oder Naphthalin-1 ,5-diisocyanat sowie mehrkernige, höher- funktionelle Isocyanate, wie sie bei der Herstellung von 4,4'-Diisocyanatodiphenyl- methan anfallen, in Betracht. Der Anteil dieser höherfunktionellen Isocyanate liegt bevorzugt im Bereich von 0,5 bis 5 Gew.-%, bezogen auf die Mischung des 2,4'-MDI mit den anderen Diisocyanaten.

Bevorzugt werden oligomere Carbodiimide des mittleren Kondensationsgrades 2 bis 10, da diese sich in aller Regel besonders gut in die zu stabilisierenden Polyester einarbeiten lassen. Höherkondensierte Carbodiimide sind in der Regel fest und hochschmelzend und lassen sich daher weniger einfach mit den polymeren Polyester ho- mögen vermischen.

Da die oligomeren Carbodiimide aus den Komponenten noch freie Isocyanatgruppen tragen, sind sie nur bedingt lagerfähig und müssen daher schnell ihrem Verwendungszweck zugeführt werden. Bevorzugt werden deshalb im allgemeinen solche erfin- dungsgemäßen Verbindungen, deren Isocyanatgruppen mit einem Alkohol oder Amin unter Bildung von Urethan- bzw. Harnstoffgruppen abgesättigt sind.

Auf die chemische Natur der Alkohole und Amine kommt es hierbei weniger an, sofern sie keine reaktiven Gruppen wie beispielsweise Carboxylgruppen enthalten, was sich allerdings von selbst versteht. Allgemein werden Alkohole bevorzugt, und zwar C r bis Cis-Alkohole wie Methanol, Ethanol, Propanol, Butanol, Isopropanol, 2-Ethyl-hexanol und Dodekanol, wobei vor allem C 2 - bis C 8 -Alkanole in Betracht kommen.

Amine, vorzugsweise sekundäre Dialkylamine mit insgesamt 2 bis 12 C-Atomen, wie Diethylamin, Dipropylamin und Dibutylamin sind zwar auch geeignet, haben aber den Nachteil eines meist unangenehmen Geruchs, der die technisch aufwendige Entfernung von nicht umgesetzten Restmengen erforderlich macht.

Man kann die Oligokondensation der Isocyanate bei 40 bis 200 0 C durchführen. Ent- sprechende Verfahren werden von W. Neumann und P. Fischer, Angew. Chemie 74, 801 (1962) beschrieben, wobei sich die Mitverwendung von Katalysatoren empfiehlt. Als Katalysatoren besonders geeignet sind Phospholenoxide, wie 1-Methyl-1-phospha- 2-cyclopenten-1-oxid und 1-Methyl-1-phospha-3-cyclopenten-1-oxid. Die Umsetzung erfolgt zumeist bei einer Temperatur zwischen 40 und 200°C, vorzugsweise zwischen 80 und 200°C, besonders bevorzugt zwischen 100 und 180°C und insbesondere zwischen 120 und 180°C. Der Druck bei der Umsetzung liegt zumeist im Bereich zwischen 0,001 und 10 bar, vorzugsweise zwischen 0,001 und 1 bar, besonders bevorzugt zwischen 0,001 und 0,7 bar, und insbesondere zwischen 0,01 und 0,5 bar.

Durch die Wahl der Reaktionsbedingungen wie der Temperatur, der Katalysatorart und der Katalysatormenge sowie der Reaktionszeit kann der Fachmann in der üblichen Weise den Kondensationsgrad einstellen. Der Verlauf der Reaktion kann am einfachsten durch Bestimmung des NCO-Gehaltes verfolgt werden. Auch andere Parameter wie Viskositätsanstieg, Farbvertiefung oder CO 2 -Entwicklung kann man für den Ablauf und die Steuerung der Reaktion heranziehen.

Nach beendeter Kondensation setzt man, wie es sich aus den vorstehend genannten Gründen meistens empfiehlt, die freien Isocyanatgruppen mit einem Alkohol oder Amin um, indem man diese Komponente vorzugsweise in einem geringen Überschuss zum Kondensationsprodukt gibt, reagieren lässt und die Restmenge entweder unter ver- mindertem Druck abdestilliert oder im Produkt belässt.

In einer bevorzugten Ausführungsform kann man die erfindungsgemäßen Carbodiimi- de in der Weise herstellen, dass man zunächst bis zu 50 Mol-%, vorzugsweise bis 40 Mol-% der Isocyanatgruppen mit einem Alkohol oder Amin umsetzt und danach die Kondensationsreaktion vornimmt. Diese Verfahrensweise ist insbesondere dann bevorzugt, wenn das 2,4'-MDI im Gemisch mit anderen Diisocyanaten eingesetzt wird.

Da nach diesem Verfahren bei der Kondensation bereits monofunktionelle kettenabbrechende Verbindungen vorliegen, gestattet es die Einstellung eines relativ einheitli- chen Kondensationsgrades. Beträgt die Menge des Alkohols oder Amins beispielsweise 20 mol-%, bezogen auf die Menge aller Isocyanatgruppen, so errechnet sich hiervon ein mittlerer Kondensationsgrad von 5, der nach den bisherigen Beobachtungen auch etwa dem tatsächlichen Kondensationsgrad entspricht. Im Falle von 50 Mol-% erhält man theoretisch Dimere, und bei Alkohol- bzw. Aminmengen von über 50 Mol-% fallen neben dimeren Carbodiimiden auch die entsprechenden Bisurethane bzw. Bisharnstoffe der eingesetzten Diisocyanate an, die zwar nicht die an sich erwünschte Diimidfunktion aufweisen, aber die Einarbeitung der Carbodiimide in die plastischen Massen erleichtern.

Bevorzugte Komponenten C) sind erhältlich durch ein Verfahren zur Herstellung von Carbodiimiden durch Umsetzung von 2,4'-MDI in Gegenwart von Katalysatoren, wobei die Katalysatoren in einer Menge zwischen 0,1 und 200 ppm, vorzugsweise zwischen 0,1 und 100 ppm und insbesondere zwischen 1 und 80 ppm, jeweils bezogen auf sämtliche Einsatzstoffe des Verfahrens, eingesetzt werden, und die Katalysatoren nach der Herstellung der Carbodiimide im Produkt verbleiben.

Bevorzugte erfindungsgemäße Carbodiimide weisen einen Gehalt an Carbodiimidisie- rungskatalysatoren von 0,1 bis 200 ppm auf, bevorzugt 0,1 bis 100 ppm.

Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 60, insbesondere bis zu 50 Gew.- % weitere Zusatzstoffe und Verarbeitungshilfsmittel enthalten.

Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 5, vorzugsweise 0,05 bis 3 und insbesondere 0,1 bis 2 Gew.-% mindestens eines Esters oder Amids gesättigter oder ungesättigter aliphatischer Carbonsäuren mit 10 bis 40, bevorzugt 16 bis 22 C-Atomen mit aliphatischen gesättigten Alkoholen oder Aminen mit 2 bis 40, vorzugsweise 2 bis 6 C-Atomen enthalten.

Die Carbonsäuren können 1- oder 2 -wertig sein. Als Beispiele seien Pelargonsäure, Palmitinsäure, Laurinsäure, Margarinsäure, Dodecandisäure, Behensäure und besonders bevorzugt Stearinsäure, Caprinsäure sowie Montansäure (Mischung von Fettsäu- ren mit 30 bis 40 C-Atomen) genannt.

Die aliphatischen Alkohole können 1- bis 4-wertig sein. Beispiele für Alkohole sind n- Butanol, n-Octanol, Stearylalkohol, Ethylenglykol, Propylenglykol, Neopentylglykol, Pentaerythrit, wobei Glycerin und Pentaerythrit bevorzugt sind.

Die aliphatischen Amine können 1- bis 3-wertig sein. Beispiele hierfür sind Stearylamin, Ethylendiamin, Propylendiamin, Hexamethylendiamin, Di(6-Aminohexyl)amin, wobei Ethylendiamin und Hexamethylendiamin besonders bevorzugt sind. Bevorzugte Ester oder Amide sind entsprechend Glycerindistearat, Glycerintristearat, Ethylendiamin- distearat, Glycerinmonopalmitrat, Glycerintrilaurat, Glycerinmonobehenat und Penta- erythrittetrastearat.

Es können auch Mischungen verschiedener Ester oder Amide oder Ester mit Amiden in Kombination eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.

Weitere übliche Zusatzstoffe D) sind beispielsweise in Mengen bis zu 40, vorzugsweise bis zu 30 Gew.-% kautschukelastische Polymerisate (oft auch als Schlagzähmodifier, Elastomere oder Kautschuke bezeichnet).

Ganz allgemein handelt es sich dabei um Copolymerisate die bevorzugt aus mindestens zwei der folgenden Monomeren aufgebaut sind: Ethylen, Propylen, Butadien, Isobuten, Isopren, Chloropren, Vinylacetat, Styrol, Acrylnitril und Acryl- bzw. Methacryl- säureester mit 1 bis 18 C-Atomen in der Alkoholkomponente.

Derartige Polymere werden z.B. in Houben-Weyl, Methoden der organischen Chemie, Bd. 14/1 (Georg-Thieme-Verlag, Stuttgart, 1961). Seiten 392 bis 406 und in der Monographie von CB. Bucknall, "Toughened Plastics" (Applied Science Publishers, London, 1977) beschrieben.

Im folgenden werden einige bevorzugte Arten solcher Elastomerer vorgestellt.

Bevorzugte Arten von solchen Elastomeren sind die sog. Ethylen-Propylen (EPM) bzw. Ethylen-Propylen-Dien-(EPDM)-Kautschuke.

EPM-Kautschuke haben im allgemeinen praktisch keine Doppelbindungen mehr, während EPDM-Kautschuke 1 bis 20 Doppelbindungen/100 C-Atome aufweisen können.

Als Dien-Monomere für EPDM-Kautschuke seien beispielsweise konjugierte Diene wie Isopren und Butadien, nicht-konjugierte Diene mit 5 bis 25 C-Atomen wie Penta-1 ,4- dien, Hexa-1 ,4-dien, Hexa-1 ,5-dien, 2,5-Dimethylhexa-1 ,5-dien und Octa-1 ,4-dien, cyc- lische Diene wie Cyclopentadien, Cyclohexadiene, Cyclooctadiene und Dicyclopenta- dien sowie Alkenylnorbomene wie 5-Ethyliden-2-norbomen, 5-Butyliden-2-norbomen, 2-Methallyl-5-norbomen, 2-lsopropenyl-5-norbornen und Tricyclodiene wie 3-Methyl- tricyclo(5.2.1.0 26 )-3,8-decadien oder deren Mischungen genannt. Bevorzugt werden Hexa-1 ,5-dien, 5-Ethylidennorbomen und Dicyclopentadien. Der Diengehalt der EPDM-Kautschuke beträgt vorzugsweise 0,5 bis 50, insbesondere 1 bis 8 Gew.-%, bezogen auf das Gesamtgewicht des Kautschuks.

EPM- bzw. EPDM-Kautschuke können vorzugsweise auch mit reaktiven Carbonsäuren oder deren Derivaten gepfropft sein. Hier seien z.B. Acrγlsäure, Methacrylsäure und deren Derivate, z.B. Glycidyl(meth)acrγlat, sowie Maleinsäureanhydrid genannt.

Eine weitere Gruppe bevorzugter Kautschuke sind Copolymere des Ethylens mit Acryl- säure und/oder Methacrylsäure und/oder den Estern dieser Säuren. Zusätzlich können die Kautschuke noch Dicarbonsäuren wie Maleinsäure und Fumarsäure oder Derivate dieser Säuren, z.B. Ester und Anhydride, und/oder Epoxy-Gruppen enthaltende Mo- nomere enthalten. Diese Dicarbonsäurederivate bzw. Epoxygruppen enthaltende Monomere werden vorzugsweise durch Zugabe von Dicarbonsäure- bzw. Epoxygruppen enthaltenden Monomeren der allgemeinen Formeln I oder Il oder IM oder IV zum Mo- nomerengemisch in den Kautschuk eingebaut

R 1 C(COOR 2 )=C(COOR 3 )R 4 (I)

R 4 R1 \

C C

(H)

OCk / CO

"0"

CHR 7 =CH (CH 2 ) m O

CH = CR 9 COO ( CH 2 ) D CH-CHR 8 (IV)

\ / O

wobei R 1 bis R 9 Wasserstoff oder Alkylgruppen mit 1 bis 6 C-Atomen darstellen und m eine ganze Zahl von 0 bis 20, g eine ganze Zahl von 0 bis 10 und p eine ganze Zahl von 0 bis 5 ist

Vorzugsweise bedeuten die Reste R 1 bis R 9 Wasserstoff, wobei m für 0 oder 1 und g für 1 steht. Die entsprechenden Verbindungen sind Maleinsäure, Fumarsäure, Maleinsäureanhydrid, Allylglycidylether und Vinylglycidylether.

Bevorzugte Verbindungen der Formeln I, Il und IV sind Maleinsäure, Maleinsäurean- hydrid und Epoxygruppen-enthaltende Ester der Acrylsäure und/oder Methacrylsäure, wie Glycidylacrylat, Glycidylmethacrylat und die Ester mit tertiären Alkoholen, wie t- Butylacrylat. Letztere weisen zwar keine freien Carboxylgruppen auf, kommen in ihrem Verhalten aber den freien Säuren nahe und werden deshalb als Monomere mit latenten Carboxylgruppen bezeichnet.

Vorteilhaft bestehen die Copolymeren aus 50 bis 98 Gew.-% Ethylen, 0,1 bis 20 Gew.-% Epoxygruppen enthaltenden Monomeren und/oder Methacrylsäure und/oder Säureanhydridgruppen enthaltenden Monomeren sowie der restlichen Menge an (Meth)acrylsäureestem.

Besonders bevorzugt sind Copolymerisate aus

50 bis 98, insbesondere 55 bis 95 Gew.-% Ethylen,

0,1 bis 40, insbesondere 0,3 bis 20 Gew.-% Glycidylacrylat und/oder Glycidylmethacrylat, (Meth)acrγlsäure und/oder Maleinsäureanhydrid, und

1 bis 45, insbesondere 10 bis 40 Gew.-% n-Butylacrylat und/oder 2-Ethylhexylacrylat.

Weitere bevorzugte Ester der Acryl- und/oder Methacrylsäure sind die Methyl-, Ethyl-, Propyl- und i- bzw. t-Butylester.

Daneben können auch Vinylester und Vinylether als Comonomere eingesetzt werden.

Die vorstehend beschriebenen Ethylencopolymeren können nach an sich bekannten Verfahren hergestellt werden, vorzugsweise durch statistische Copolymerisation unter hohem Druck und erhöhter Temperatur. Entsprechende Verfahren sind allgemein bekannt.

Bevorzugte Elastomere sind auch Emulsionspolymerisate, deren Herstellung z.B. bei Blackley in der Monographie "Emulsion Polymerization" beschrieben wird. Die verwendbaren Emulgatoren und Katalysatoren sind an sich bekannt.

Grundsätzlich können homogen aufgebaute Elastomere oder aber solche mit einem Schalenaufbau eingesetzt werden. Der schalenartige Aufbau wird durch die Zugabereihenfolge der einzelnen Monomeren bestimmt; auch die Morphologie der Polymeren wird von dieser Zugabereihenfolge beeinflusst.

Nur stellvertretend seien hier als Monomere für die Herstellung des Kautschukteils der Elastomeren Acrylate wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, entsprechende Methacrγlate, Butadien und Isopren sowie deren Mischungen genannt. Diese Monome- ren können mit weiteren Monomeren wie z.B. Styrol, Acrylnitril, Vinylethem und weiteren Acrylaten oder Methacrylaten wie Methylmethacrylat, Methylacrylat, Ethylacrylat und Propylacrylat copolymerisiert werden.

Die Weich- oder Kautschukphase (mit einer Glasübergangstemperatur von unter O 0 C) der Elastomeren kann den Kern, die äußere Hülle oder eine mittlere Schale (bei Elastomeren mit mehr als zweischaligem Aufbau) darstellen; bei mehrschaligen Elastomeren können auch mehrere Schalen aus einer Kautschukphase bestehen.

Sind neben der Kautschukphase noch eine oder mehrere Hartkomponenten (mit Glas- Übergangstemperaturen von mehr als 2O 0 C) am Aufbau des Elastomeren beteiligt, so werden diese im allgemeinen durch Polymerisation von Styrol, Acrylnitril, Methacryl- nitril, α-Methylstyrol, p-Methylstyrol, Acrylsäureestem und Methacrylsäureestern wie Methylacrylat, Ethylacrylat und Methylmethacrylat als Hauptmonomeren hergestellt. Daneben können auch hier geringere Anteile an weiteren Comonomeren eingesetzt werden.

In einigen Fällen hat es sich als vorteilhaft herausgestellt, Emulsionspolymerisate einzusetzen, die an der Oberfläche reaktive Gruppen aufweisen. Derartige Gruppen sind z.B. Epoxy-, Carboxyl-, latente Carboxyl-, Amino- oder Amidgruppen sowie funktionelle Gruppen, die durch Mitverwendung von Monomeren der allgemeinen Formel

R 10 R 11

CH 2 = C X N C R 12

O

eingeführt werden können,

wobei die Substituenten folgende Bedeutung haben können:

R 10 Wasserstoff oder eine d- bis C 4 -Alkylgruppe,

R 11 Wasserstoff, eine d- bis C 8 -Alkylgruppe oder eine Arylgruppe, insbesondere Phenyl,

R 12 Wasserstoff, eine C r bis do-Alkyl-, eine C 6 - bis Ci 2 -Arylgruppe oder -OR 13

R 13 eine C r bis C 8 -Alkyl- oder C 6 - bis C^-Arylgruppe, die gegebenenfalls mit O- oder N-haltigen Gruppen substituiert sein können,

X eine chemische Bindung, eine d- bis Cio-Alkylen- oder C 6 -Ci 2 -Arylengruppe oder

O

— C — Y

Y O-Z oder NH-Z und

Z eine Cr bis Cio-Alkylen- oder C 6 - bis Ci 2 -Arylengruppe.

Auch die in der EP-A 208 187 beschriebenen Pfropfmonomeren sind zur Einführung reaktiver Gruppen an der Oberfläche geeignet.

Als weitere Beispiele seien noch Acrylamid, Methacrylamid und substituierte Ester der Acrylsäure oder Methacrylsäure wie (N-t-Butylamino)-ethylmethacrylat, (N,N-Dimethyl- amino)ethylacrylat, (N,N-Dimethylamino)-methylacrylat und (N,N-Diethylamino)ethyl- acrylat genannt.

Weiterhin können die Teilchen der Kautschukphase auch vernetzt sein. Als Vernetzer wirkende Monomere sind beispielsweise Buta-1 ,3-dien, Divinylbenzol, Diallylphthalat und Dihydrodicyclopentadienylacrylat sowie die in der EP-A 50 265 beschriebenen Verbindungen.

Ferner können auch sogenannten pfropfvernetzende Monomere (graft-linking monomers) verwendet werden, d.h. Monomere mit zwei oder mehr polymerisierbaren Doppelbindungen, die bei der Polymerisation mit unterschiedlichen Geschwindigkeiten reagieren. Vorzugsweise werden solche Verbindungen verwendet, in denen mindestens eine reaktive Gruppe mit etwa gleicher Geschwindigkeit wie die übrigen Monomeren polymerisiert, während die andere reaktive Gruppe (oder reaktive Gruppen) z.B. deutlich langsamer polymerisiert (polymerisieren). Die unterschiedlichen Polymerisationsgeschwindigkeiten bringen einen bestimmten Anteil an ungesättigten Doppelbindungen im Kautschuk mit sich. Wird anschließend auf einen solchen Kautschuk eine weitere Phase aufgepfropft, so reagieren die im Kautschuk vorhandenen Doppelbindungen

zumindest teilweise mit den Pfropfmonomeren unter Ausbildung von chemischen Bindungen, d.h. die aufgepfropfte Phase ist zumindest teilweise über chemische Bindungen mit der Pfropfgrundlage verknüpft.

Beispiele für solche pfropfvernetzende Monomere sind Allylgruppen enthaltende Monomere, insbesondere Allylester von ethylenisch ungesättigten Carbonsäuren wie AIIyI- acrylat, Allylmethacrylat, Diallylmaleat, Diallylfumarat, Diallylitaconat oder die entsprechenden Monoallylverbindungen dieser Dicarbonsäuren. Daneben gibt es eine Vielzahl weiterer geeigneter pfropfvernetzender Monomerer; für nähere Einzelheiten sei hier beispielsweise auf die US-PS 4 148 846 verwiesen.

Im allgemeinen beträgt der Anteil dieser vernetzenden Monomeren an dem schlagzäh modifizierenden Polymer bis zu 5 Gew.-%, vorzugsweise nicht mehr als 3 Gew.-%, bezogen auf das schlagzäh modifizierende Polymere.

Nachfolgend seien einige bevorzugte Emulsionspolymerisate aufgeführt. Zunächst sind hier Pfropfpolymerisate mit einem Kern und mindestens einer äußeren Schale zu nennen, die folgenden Aufbau haben:

Diese Pfropfpolymerisate, insbesondere ABS- und/oder ASA-Polymere in Mengen bis zu 40 Gew.-%, werden vorzugsweise zur Schlagzähmodifizierung von PBT, gegebenenfalls in Mischung mit bis zu 40 Gew.-% Polyethylenterephthalat eingesetzt. Entsprechende Blend-Produkte sind unter dem Warenzeichen UltradurOS (ehemals UltrablendOS der BASF AG) erhältlich.

Anstelle von Pfropfpolymerisaten mit einem mehrschal igen Aufbau können auch homogene, d.h. einschalige Elastomere aus Buta-1 ,3-dien, Isopren und n-Butylacrγlat oder deren Copolymeren eingesetzt werden. Auch diese Produkte können durch Mit- Verwendung von vernetzenden Monomeren oder Monomeren mit reaktiven Gruppen hergestellt werden.

Beispiele für bevorzugte Emulsionspolymerisate sind n-Butylacrylat/(Meth)acrylsäure- Copolymere, n-Butylacrylat/Glycidylacrylat- oder n-Butylacrylat/Glycidylmethacrylat- Copolymere, Pfropfpolymerisate mit einem inneren Kern aus n-Butylacrylat oder auf Butadienbasis und einer äußeren Hülle aus den vorstehend genannten Copolymeren und Copolymere von Ethylen mit Comonomeren, die reaktive Gruppen liefern.

Die beschriebenen Elastomere können auch nach anderen üblichen Verfahren, z.B. durch Suspensionspolymerisation, hergestellt werden.

Siliconkautschuke, wie in der DE-A 37 25 576, der EP-A 235 690, der DE-A 38 00 603 und der EP-A 319 290 beschrieben, sind ebenfalls bevorzugt.

Selbstverständlich können auch Mischungen der vorstehend aufgeführten Kautschuktypen eingesetzt werden.

Als faser- oder teilchenförmige Füllstoffe D) seien Kohlenstofffasern, Glasfasern, Glaskugeln, amorphe Kieselsäure, Asbest, Calciumsilicat, Calciummetasilicat, Magne- siumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen bis zu 50 Gew.-%, insbesondere bis zu 40 % eingesetzt werden.

Als bevorzugte faserförmige Füllstoffe seien Kohlenstofffasern, Aramid-Fasern und Kaliumtitanat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.

Mischungen von Glasfasern D) mit Komponente B) im Verhältnis von 1 : 100 bis 1 : 2 und bevorzugt von 1 : 10 bis 1 : 3 sind insbesondere bevorzugt.

Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit dem Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.

Geeignete Silanverbindungen sind solche der allgemeinen Formel

(X-(CH 2 ) n )^Si-(O-C m H 2m+1

in der die Substituenten folgende Bedeutung haben:

X NH 2 -, CH 2 -CH-, HO-,

\ / O

n eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4 m eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2 k eine ganze Zahl von 1 bis 3, bevorzugt 1

Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimetho- xysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten.

Die Silanverbindungen werden im allgemeinen in Mengen von 0,05 bis 5, vorzugswei- se 0,5 bis 1 ,5 und insbesondere 0,8 bis 1 Gew.-% (bezogen auf D) zur Oberflächenbe- schichtung eingesetzt.

Geeignet sind auch nadeiförmige mineralische Füllstoffe.

Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Beispiel sei nadeiförmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein UD- (Länge Durchmesser)-Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 11 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silan- Verbindungen vorbehandelt sein; die Vorbehandlung ist jedoch nicht unbedingt erforderlich.

Als weitere Füllstoffe seien Kaolin, calciniertes Kaolin, Wollastonit, Talkum und Kreide genannt.

Als Komponente D) können die erfindungsgemäßen thermoplastischen Formmassen übliche Verarbeitungshilfsmittel wie Stabilisatoren, Oxidationsverzögerer, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungs- mittel, Färbemittel wie Farbstoffe und Pigmente, Keimbildungsmittel, Weichmacher usw. enthalten.

Als Beispiele für Oxidationsverzögerer und Wärmestabilisatoren sind sterisch gehinderte Phenole und/oder Phosphite, Hydrochinone, aromatische sekundäre Amine wie Diphenylamine, verschiedene substituierte Vertreter dieser Gruppen und deren Mi-

schungen in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der thermoplastischen Formmassen genannt.

Als UV-Stabilisatoren, die im allgemeinen in Mengen bis zu 2 Gew.-%, bezogen auf die Formmasse, verwendet werden, seien verschiedene substituierte Resorcine, Salicyla- te, Benzotriazole und Benzophenone genannt.

Es können anorganische Pigmente, wie Titandioxid, Ultramarinblau, Eisenoxid und Ruß, weiterhin organische Pigmente, wie Phthalocyanine, Chinacridone, Perylene so- wie Farbstoffe, wie Nigrosin und Anthrachinone als Farbmittel zugesetzt werden.

Als Keimbildungsmittel können Natriumphenylphosphinat, Aluminiumoxid, Siliziumdioxid sowie bevorzugt Talkum eingesetzt werden.

Weitere Gleit- und Entformungsmittel werden üblicherweise in Mengen bis zu

1 Gew.-% eingesetzt. Es sind bevorzugt langkettige Fettsäuren (z.B. Stearinsäure oder Behensäure), deren Salze (z.B. Ca- oder Zn-Stearat) oder Montanwachse (Mischungen aus geradkettigen, gesättigten Carbonsäuren mit Kettenlängen von 28 bis 32 C-Atomen) sowie Ca- oder Na-Montanat sowie niedermolekulare Polyethylen- bzw. Polypropylenwachse.

Als Beispiele für Weichmacher seien Phthalsäuredioctylester, Phthalsäuredibenzyl- ester, Phthalsäurebutylbenzylester, Kohlenwasserstofföle, N-(n-Butyl)benzolsulfonamid genannt.

Die erfindungsgemäßen Formmassen können noch 0 bis 2 Gew.-% fluorhaltige Ethy- lenpolymerisate enthalten. Hierbei handelt es sich um Polymerisate des Ethylens mit einem Fluorgehalt von 55 bis 76 Gew.-%, vorzugsweise 70 bis 76 Gew.-%.

Beispiele hierfür sind Polytetrafluorethylen (PTFE), Tetrafluorethylenhexafluor- propylen-Copolymere oder Tetrafluorethylen-Copolymerisate mit kleineren Anteilen (in der Regel bis zu 50 Gew.-%) copolymerisierbarer ethylenisch ungesättigter Monomerer. Diese werden z.B. von Schildknecht in "Vinyl and Related Polymers", Wiley-Verlag, 1952, Seite 484 bis 494 und von Wall in "Fluorpolymers" (Wiley Interscience, 1972) beschrieben.

Diese fluorhaltigen Ethylenpolymerisate liegen homogen verteilt in den Formmassen vor und weisen bevorzugt eine Teilchengröße d 50 (Zahlenmittelwert) im Bereich von 0,05 bis 10 u m, insbesondere von 0,1 bis 5 μm auf. Diese geringen Teilchengrößen lassen sich besonders bevorzugt durch Verwendung von wässrigen Dispersionen von fluorhaltigen Ethylenpolymerisaten und deren Einarbeitung in eine Polyesterschmelze erzielen.

Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, in dem man die Ausgangskomponenten in üblichen Mischvorrichtungen wie Schneckenextrudern, Brabender-Mühlen oder Banbury-Mühlen mischt und anschließend extrudiert. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt hinzugegeben werden. Die Mischtemperaturen liegen in der Regel bei 230 bis 29O 0 C.

Nach einer weiteren bevorzugten Arbeitsweise können die Komponenten B) und C) sowie gegebenenfalls D) mit einem Präpolymeren gemischt, konfektioniert und granuliert werden. Das erhaltene Granulat wird in fester Phase anschließend unter Inertgas kontinuierlich oder diskontinuierlich bei einer Temperatur unterhalb des Schmelzpunktes der Komponente A) bis zur gewünschten Viskosität kondensiert.

Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine gute Fließfähigkeit bei gleichzeitig guter Mechanik aus.

Insbesondere ist die Verarbeitung der einzelnen Komponenten (ohne Verklumpung oder Verbackung) problemlos und in kurzen Zykluszeiten möglich, so dass insbesondere dünnwandige Bauteile als Anwendung in Frage kommen, wobei der Formbelag sehr gering ist.

Durch Transmissionselektronenmikroskopie wurde die Morphologie ausgewählter Compounds untersucht. Es zeigt sich eine gute Dispergierung der Partikel im Blend. Es wurden Partikelgrößen von 20 - 500 nm beobachtet. Das typische Ausblühen der Additive wurde minimiert.

Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art, insbesondere für Anwendungen als Hecker, Schalter, Gehäuseteile, Gehäusedeckel, Scheinwerferhintergrund (Bezel), Brausenkopf, Armaturen, Bügeleisen, Drehschalter, Herdknöpfe, Friteusendeckel, Türgriffe, (Rück-)spiegelgehäuse, (Heck-)scheiben- wischer, Lichtwellenleiterummantelungen.

Beispiele

Komponente A:

Polybutylenterephthalat mit einer Viskositätszahl VZ von 130 ml/g und einem Carboxy- lendgruppengehalt von 34 mval/kg (Ultradur® B 4500 der BASF AG) (VZ gemessen in 0,5 gew.-%iger Lösung aus Phenol/o-Dichlorbenzol, 1 :1-Mischung bei 25°C).

Herstellvorschrift für Polycarbonate B1

Allgemeine Arbeitsvorschrift:

In einem Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler und Innenthermometer wurde gemäß Tabelle 1 der mehrfunktionelle Alkohol äquimolar mit Diethylcar- bonat gemischt und 250 ppm Katalysator (bezogen auf die Menge an Alkohol) zugegeben. Die Mischung wurde anschließend unter Rühren auf 100 0 C, bei dem mit * gekennzeichneten Versuch auf 140°C erwärmt, und 2 h bei dieser Temperatur gerührt. Mit fortschreitender Reaktionsdauer reduzierte sich dabei die Temperatur des Reaktionsgemisches bedingt durch die einsetzende Siedekühlung des freigesetzten Monoal- kohols. Nun wurde der Rückflusskühler gegen einen absteigenden Kühler getauscht, Ethanol abdestilliert und die Temperatur des Reaktionsgemisches langsam bis auf 160 0 C erhöht.

Das abdestillierte Ethanol wurde in einem gekühlten Rundkolben gesammelt, ausgewogen und der Umsatz so gegenüber dem theoretisch möglichen Vollumsatz prozentual ermittelt (siehe Tabelle 1).

Die Reaktionsprodukte wurden anschließend per Gelpermeationschromatographie analysiert, Laufmittel war Dimethylacetamid, als Standard wurde Polymethylmethacry- lat (PMMA) verwendet.

Tabelle 1 :

Destillat Ethanol- Molekularmenge bez. auf gewicht VoI I umsatz M w Visk. 23°C OH-Zahl

Alkohol Katalysator FMol-%1 M n FmPasl rmα KOH/Ql

TMP x 1 ,2 PO K 2 CO 3 90 2136 7200 461

1446

TMP = Trimethylolpropan

PO = Propylenoxid

Komponente C: Synthese eines oligomeren Carbodiimids

600 g (2,4 mol) eines Gemisches aus gleichen Teilen von 2,4'-Diisocyanatodiphenyl- methan und 4,4'-Diisocyanatodiphenylmethan wurden in einem Rührkolben mit Ther- mometer und Tropftrichter auf 90 0 C erwärmt. Hierzu wurden 73,6 g (1 ,6 mol) Ethanol gegeben. Nach 60 Minuten war der NCO-Gehalt der Mischung auf 20,2 Gew.-% gefallen. Danach gab man 3,36 g einer 1 gew.-%igen Lösung einer Mischung von 1 -Methyl-

i-phospha-2-cyclopenten-i-oxid und i-Methyl-i-phospha-Scyclopenten-i-oxid in Chlorbenzol hinzu, legte einen Druck von 200 mbar an und erwärmte die Reaktionsmischung auf 150°C. Nach 105 Minuten hatte die Mischung einen NCO-Gehalt von 3,1 Gew.-% erreicht. Man ließ auf 125°C abkühlen und setzte die verbliebenen NCO- Gruppen durch Zugabe von 23 g (0,5 mol) Ethanol um. Das Produkt hatte einen Schmelzpunkt bei 112 bis116°C.

Komponente D: Glasfasern mit einer mittleren Dicke von 10 μm (epoxysilanisierte Schlichte)

Herstellung der Formmassen

Die Komponenten A) bis D) wurden auf einem Zweischneckenextruder bei 250 bis 260°C abgemischt und in ein Wasserbad extrudiert. Nach Granulierung und Trocknung wurden auf einer Spritzgussmaschine Prüfkörper gespritzt und geprüft.

Das Granulat wurde spritzgegossen in Schulterstäbe nach ISO 527-2 und ein Zugversuch durchgeführt. Des weiteren wurden Schlagzähigkeit nach ISO 179-2 bestimmt, Viskosität (Lösungsmittel für PBT nach DIN 53728 Phenol/1 ,2-Dichlorbenzol (1 :1) ISO 1628), MVR (ISO 1133) sowie das Fließverfahren getestet, der Flammschutz gemäß UL 94 bestimmt.

Die erfindungsgemäßen Zusammensetzungen und die Ergebnisse der Messungen sind der Tabelle zu entnehmen.

Tabelle: