Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUID CONDUIT WITH LAYERED AND PARTIAL COVERING MATERIAL THEREON
Document Type and Number:
WIPO Patent Application WO/2006/132790
Kind Code:
A2
Abstract:
A fluid conduit with layered and partial covering material thereon. The covering material is a multilayer fabric of varying selected deniers wrapped around the fluid conduit and includes at least one layer formed from an unstructured assemblage of fibers supported by an outer sheeting or grid mesh for the processing and treatment of fluids. The unstructured assemblage of fibers provides a large surface area whereon consequent biodegradation of the oils, greases and chemicals takes place permitting treated fluid to pass omni directionally through the unstructured assemblage of fibers and subsequently leach into the ground. The system generates bacteri quickly thereby enhancing system performance.

Inventors:
PRESBY DAVID W (US)
Application Number:
PCT/US2006/019718
Publication Date:
December 14, 2006
Filing Date:
May 23, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PRESBY DAVID W (US)
International Classes:
E02B11/00
Foreign References:
US6461078B12002-10-08
US52423800A2000-03-13
US5954451A1999-09-21
US99835197A1997-12-18
US5954451A1999-09-21
US5429752A1995-07-04
US3976578A1976-08-24
US4909665A1990-03-20
US5224832A1993-07-06
US4288321A1981-09-08
US4904113A1990-02-27
US4662778A1987-05-05
US5002427A1991-03-26
Other References:
See also references of EP 1888846A4
Attorney, Agent or Firm:
DISHONG, George, W. (40 Bryant Road Jaffrey, NH, US)
Download PDF:
Claims:
Claims

What is claimed is:

1. Conduit for treatment of fluid flowing therethrough, said conduit comprising: a conduit of material selected from the group of plastic or metallic material, and having a smooth inner surface and an outer surface of the type selected from the group of smooth, peaked and valleyed and corrugated form; an interior surface having a cross section, said cross section having a defining surface thereby defining an area having a geometric definition said geometric definition selected from the group of circular, rectangular, elliptical, spherical and triangular; an exterior surface substantially in-line with said interior surface; said exterior surface having attached thereto and configured thereon covering material, in partial form and a selected number of two (2) or more layers of covering material; said three or more layers having a first partial layer of covering material being adjaceni to said exterior surface in size less than the circumference dimension of said exterior surface; said first partial layer having upward-facing edges positioned along said conduit exteπor surface and spaced above a bottom line of said conduit, said upward-facing edges referenced as fluid overflow edge; said three or more layers having a second layer of covering material, said second layer being of material selected of fibrous/fiber fabric and fabric denier, specific for fluid treatment; and said three or more layers having a cover fabric covering substantially completely, said conduit for treatment and having a joining seam effective to seal said conduit from ambieni conditions of substance.

2. The conduit for treatment of fluid flowing therethrough according to claim 1 further comprising at least one more additional pair of partial layers, each layer of each of said additional pair of partial layer being partial layers having upward-facing edges positioned along said conduit exterior surface and said upward-facing edges being closer to said bottom line of said conduit than said upward-facing edge of said first partial layer.

3. The conduit for treatment of fluid flowing therethrough according to claim 1 wherein said conduit is of peaked and valleyed and corrugated form and has apertures therethrough from said external to said internal surface and skim tabs related to said apertures directed inwardly.

Description:

FLUID CONDUIT WITH LAYERED AND PARTIAL COVERING MATERIAL THEREON

BACKGROUND OF THE INVENTION

This Patent Application claims the benefit of United States Provisional Application Number 60/683,994 filed 05/24/2005; United States Patent Number 6,461,078; Issued October 08, 2002 for U.S. Utility Patent Application: Ser. No. 09/524,238; Filed Mar. 13, 2000 entitled as "PLASTIC SEWAGE PIPE" and also the benefit of United States Patent 5,954,451 ; Issued September 21, 1999 for U.S. Utility Patent Application: Ser. No.08/998 ,351; Filed 12/18/97 entitled as "A METHOD AND APPARATUS FOR USING MULTILA YER MATERIAL IN PROCESSING OF SEPTIC EFFLUENT AND WASTE WATER". The drawing figures, the method of use, the advantages and additional characteristics and the functionality of U.S. Patent Numbers 6,461,078 and 5,954,451 are included herein as referenced thereto.

FIELD OF THE INVENTION

This invention most generally relates to a fluid conduit with layered and partial covering material thereon and means and method for configuring with covering material, in partial form and layers, a covering of fluid conduit/conductors resulting in the creation of a novel and very effective, in functionality, of a fluid conduit/conductive system such as a septic pipe of smooth wall, of corrugated form, of any form of cross sectional configuration including circular. elliptical, rectangular, triangular or any other geometric shape any of which will and can provide for the flow of a fluid of forms such as septic flow fluid and the like. Included herein as a part of the invention is fluid conduits produced by the means and methods of this invneiton. Substantially, the fluid conduit system having incorporated therein and thereon the form and layers of covering created as a consequence of the means and method of configuring such conduii included as a feature of the invention. Such covering material most generally used but not totally limited to is a multilayer fabric of varying deniers for the processing and treatment of fluids whic h must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and particularly to the water table. More particularly the invention the partial and variable form of fluid conduit coating relates to the use of multilayer fabric, each layer being of selected denier, in combination with conduit/conductor, either smooth-walled or corrugated, used most likely in a drainage field or leaching system usually associated with a septic tank or system. At least one of the layers of the multilayer fabric are formed from an unstructured assemblage of fibers. The unstructured assemblage of fibers provides a large surface are a whereon consequent biodegradation of the oils, greases and chemicals takes place permitting treated fluid to pass omnidirectionally through the unstructured assemblage of fibers and subsequently leach into the ground. Most particularly the multilayer fabric of varying deniers

may be wrapped around a corrugated plastic pipe of the type well known in the field of drainage or leaching fields. Additionally, the fabric layers may be pretreated with chemicals, bacteria, and/or microbes such as known oil digesting microbes in order to particularize the use of the drainage and waste treatment created as a consequence of the invention in forming the consequential resulting fluid processing and treatment apparatus in the processing or treating o | fluids.

The invention has the particular objectives, features and advantages of: 1) Multiple layers of fabric; 2) Fabric layers of varying deniers; 3) Useful in wrapping corrugated plastic pipe: 4; With the selection of fabric, fabric properties such denier, thickness, retention quality such as hydrophobic or hydrophilic characteristic, specific fluid treatment objective can be met; 5) The multilayer fabric provides boundaries/interfaces and regions within which specifically chosen bacteria, chemicals, microbes and the like may be introduced to facilitate the biodegradation of specifically chosen undesirable materials; and 6) Improve performance over the currently known leach fields and currently known fluid conduits used for various forms of treatment of conducted fluid with the conduit.

Even more particularly, the invention is particularly useful in combination with the septic tank maze apparatus defined and described in Applicant' s U. S. PatentNo. 5,429,752 Issued July 04, 1995. The septic tank having such a maze incorporated therein has an outflow into a leach system of effluent or leachate which is substantially devoid of solids.

One of the most particular features of this newly disclosed invention is now described and disclosed.

Through testing of the Enviro-Septic® wastewater treatment system, surprisinglv Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C) - such portion being preferably less than one-half of the pipe circumference (< 1/2C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance - speed of performance was increased over prior art methods by a substantial of amount.

The extra layer of dense fabric not only helps to treat the effluent better but also helps to extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference Patent s of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped

on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial starup this new dense fabric layer will screen the effluent better, thereby causing the effluent to travel the whole length of the pipe quickly and uniformly. As the effluent passes through the dense fabric layer, the bacteria will reach a long-term acceptance rate faster and ethe effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent ι< ■ travel the whole length of the pipe it results in the spreading of the loading throughout, - a process that allows more air and better bacterial growth and action, during this process a second biomat forms on the inner surface of the outer fabric and now becomes the treatment surface. It is nol clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.

This dense layer of fabric does not stop the penetration of effluent. It slows the effluend down and filters it better, allowing the bacteria to grow sooner and in greater numbers.

This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak enfironmenlal preformance in a much shorter period of time.

Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.

It has been discovered surprisingly that incorporating - i.e., adding a plurality (from 2 to "n" dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each. of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer - the layer which is m contact with the outer surface of the pipe - being preferably substantially about equal to about 1 /2 of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i .e. , over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive den^e layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the couse fiber layers. Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance- speed of performance was increased over prior art methods by a substantial of amount.

DESCRIPTION OF THE PRIOR ART

Suspended solids have plagued the septic system and waste water treatment industry more in the last ten (10) or more years than in previous years. The increase in the problem is due in part to the evolution and development of some of the modern day cleaners now make cleaning easier i n that they cause grease and oil to dissolve into the water. The major problem with the septic tank is that the suspended solids in passing through the tank neither cool nor make contact at a slow enough pace to separate from the water.

Lint and fuzz has also been an ongoing problem for the septic tank to control. This material stays suspended in the septic tank liquid and normally passes through, remaining suspended in the effluent which subsequently also causes problems in the leach system connected with the septic tank.

Septic tanks generally available do not effectively provide for the removal, in a manner which does not effect the cost and the performance characteristics of the septic treatment system. of suspended solids that are typically found in septic tank liquid. It is important that the amount or " suspended solids that leave the treatment tank be minimal so as not to adversely affect the subsequent treatment of the waste water/effluent. A leach field, for example, is adversely effected because the suspended solids will clog receiving layer and also adversely affect the absorption characteristics of the leach bed.

Currently there are designs and equipment that attempt the removal of the suspended sol icK All of those known to the inventor of the now patented precipitation apparatus defined in U .S . Patent No. 5,429,752 have failed to address the problem in an efficient manner because all the efforts attempt to "filter" the liquid. Filtration creates an additional set of problems. The filters can quickly become plugged slowing down or completely blocking the flow through of the liquid through the treatment tank. The filters are expensive and are costly to maintain. Applicant ' s patented precipitation apparatus greatly reduces the level of suspended solids exiting the treatment tank and entering the leach system.

It would be advantageous to have a treatment system which would include a leach system which would, more efficiently and effectively process the leachate or effluent from the septic tank or precipitation apparatus. The obvious consequences of such an improved fluid conducting conduit structure for use within a drainage field, would be longer life, less area needed to handle a specific amount of outflow of liquid and a cleaner and safer treated liquid returning to the environment. The improved fluid conducting conduit structure defined and claimed herein provides these advantages without a large increase in cost, does not require any additional

maintenance and, in fact, requires less maintenance, is incorporatable into standard treatment designs and configurations, would be easily installed as new or replacements into existing and in- place leach fields and would provide flexibility to incorporate a variety of specially designed use- to result in a custom system based upon special or specific needs within the treatment system.

There is nothing currently available which satisfies these needs and objectives. However, the invention disclosed herein does meet all of these objectives.

The following patents relate to the technology of the present invention but none of them meets the objects of the disclosed and claimed improved system in a manner like that of the instant invention. Additionally none are as effective and as efficient as the instant improved conduit system.

U.S. Patent 3,976,578 to Beane discloses a protective sleeve for corrugated drainage tubes. The protective sleeve is a continuous tubular sleeve of knit fabric material which is slipped over one or more sections of corrugated flexible drainage pipe and acts as a filter to keep rocks. dirt, mud, pieces of clay, and the like from clogging the openings in the corrugated drainage pipe while allowing the water to pass through. Disclosed is a knit fabric preferably formed by lock stitches and is inherently elastic.

U.S. Patent 4,909,665 to Caouette discloses a fabric wrapped corrugated structure. The fabric wrapping comprises an outer fabric combined with a grid mesh separation element. It i.s disclosed that the fabric may be of the woven or non-woven type and that the fabric may be bonded to the grid mesh. Further, Caouette discloses that the grid mesh may take many different forms as long as one set of cross members or other members such as dimples on a planar structure or fibrous material provides some separation of the fabric above the peaks of the corrugated pipe.

U.S. Patent 5,224,832 to Gonczy et al. discloses a multilayer insulation blanket used in heat transfer technology which can be wrapped around a structure. The Gonczy patent does noi disclose the use of multilayer fabrics of varying deniers and does not disclose the liquid permeability of the multilayer blanket.

U.S. Patent 4,288,321 to Beane discloses a drain tile and a pile fabric filter sleeve. The knit fabric of the '321 patent to Beane is provided over the drainage conduit to facilitate efficient liquid flow. The knit fabric is also impregnated with suitable chemical agents for counteracting anticipated chemical reaction particle intrusions. The knit fabric is further disclosed to be formed of stitches defining a ground and defining terry loops extending from the ground and being directed in a predetermined generally radial direction relative to the longitudinal axis of (lie drainage conduit.

U.S. Patent 4,904,113 to Goddard et al. discloses a highway edgedrain. The edgedrain comprises a tube inserted into a fabric sheath. The fabric sheath of the ' 113 patent is preferably o I " a nonwoven fabric and of a geotextile composition. The sheath acts a filter to prevent the passage of large particles or rocks into the tube. Further the sheath is disclosed as being made from a material of a single density.

U.S. Patent 4,662,778 to Dempsey discloses a drainage mat. Most significantly, the '778 patent discloses a drainage material with extended surface which is a two-layer composite of polyester non-woven filter fabric heat bonded to an expanded nylon non- woven matting such a*-

ENKADRAIN tin brand of three-dimensional composite.

U.S. Patent 5,002,427 to Kambe etal. discloses a hydrophobic material used for drainage of a culvert. The '427 patent discloses a textile or knit fabric having large and small mesh portions.

The patents noted herein provide considerable information regarding the developments that have taken place in this field of technology. Clearly the instant invention provides manv advantages over the prior art inventions noted above. Again it is noted that none of the prior art meets the objects of the multilayered fabric as used in septic and waste water treatment in a manner like that of the instant invention. None of them areas effective and as efficient as the instant combination of multilayered fabric and corrugated pipe combination for use in the management of effluent drainage systems.

Some particular aspects of interest for the multilayer fabric wrapped corrugated pipe invention are:

1. Longer life and no shadow effects;

2. Less masking;

3. More storage and breakdown area within the fabric layers;

4. Different grades of bacterial area;

5. Different interfaces for bacteria;

6. The division of different types of material;

7. Less clogging;

8. Septic use and floor drain use;

9. May be used over valley with any material that gives spacing and may also be used over smooth wall pipe;

10. May be used on incoming/outgoing liquids, that is the process would work for liquid moving from within to without the pipe or moving from without to within;

11. Any pretreatment of surface or subsurface fluids to include trapping collecting or dispersing fluids into and out of the ground;

12. Fabric may be pretreated with chemical, bacteria and/or combinations such pretreatment may be specific for applications such as oil-spill or the like;

13. Multi-layered fabrics and different deniers and different thicknesses may be combined again to achieve specific functions;

14. Treating liquids on the inside, trapping things inside - different fabrics exhibit retaining properties relative to specific materials and likewise different materials have varying treatment properties for different substances such as oil and effluent;

15. At all of the interfaces of the multilayered fabric and at the interface of the fabric wirh the conduit surface and the soil, fluids are being treated in a progressive manner resulting in a treated fluid having an acceptable standard of quality, and

16. May be used on corrugated or smooth-walled structures or any fluid-carrying structure that passes fluids through itself or through holes/slots/cuts over/ under/through/around.

By using multilayers one is able to have a medium for different types of bacteria to colled on and break down on as well as divide them by particle size. All prior systems have structures with members which are pressed tightly against the pipe itself, causing shadowing to take plaue where the fabric touches the pipe or the members. By using multilayers of fabrics starting with the very coarse denier working down to a fine denier, one is able to alleviated all of the shadowing effect which has never before been achieved. At the same time, larger particles are being sorted or separated from smaller particles, allowing the bacteria in the effluent to work more efficiently on these particles.

It should be noted that multilayered fabrics may be used with basically all chamber type systems such as for example infiltraters, contactors, bio-diffusers and with smooth-walled perforated pipe as well as corrugated plastic pipe. The multilayer fabric could be used inside of ii product known as ELJEN DRAIN to extend the life of the product.

Because of the fibers being used in multilayers the ability of the aerobic bacteria to work on the particles is increased due to the ability of the liquids to be wicked throughout the fabrics (due to capillary action) thereby inducing more air, which will also change the state of the nitrogen content and other chemicals within the effluent so they may change more readily into gas and escape from the soils to the atmosphere above. Within the multiple layers there will be more storage area for the fine suspended particles that frequently clog standard systems. Oils, grease and chemicals contained in the fluids to be treated and entering within the fluid conducting conduit structure are entrapped within at least one of the first layers and at least one additional layer ol fabric and particularly on the unstructured assemblage of fibers. The unstructured assemblage < i i fibers provides a large surface area whereon consequent biodegradation of said oils, greases and

chemicals takes place permitting treated fluid to pass omnidirectionally through the unstructured assemblage of fibers.

With the use of multilayers of fabrics it is possible that one can set up systems which would handle garage floor drain wastes by allowing the bacteria action to take place in the first few layers, the oil to be trapped on other layers, and the water to pass through the final layei s. then returned back to the clean soils. The floor drain fluid would be directed to a treatment bed or field similar to a leach field. In the treatment field would be conduit having means for allowing the passage of the floor drain fluid outwardly of the conduit and subsequently into the multilayer fabric wrapped around or at least covering the conduit. The fabric may be specially treated to process the particular drain fluid in order to place it in condition to be returned to the earth.

The INFILTRATOR tm brand of leaching structure, with the MICRO-LEACHING

CHAMBERS 1111 brand of wall perforations is a chamber device used in leaching systems and is considered herein as a conduit. This form of conduit directs fluid flow even though it is somewhat similar to a semicircular cross section of a length perforated corrugated pipe . That i s t< < say, if perforated corrugated pipe was halved along its axis, and the halves were laid in trenches with the opening of the half downwardly directed, a conduit similar to this brand of leachine conduit would result. Multilayer fabric having the characteristics previously noted, placed ovvi this device will result in improved performance. Further, the multilayer fabric placed across the downwardly directed open portion would likewise improve the performance of the leaching system.

The use of multilayer fabric would also permit cleaning of water coming into a pipe so that it could be possible to take water that has been contaminated (areas of contaminated soil) and pa.^ it through the mulilayers and have bacterial growth on the outer surface and have cleaner water u^ it goes in the system. It would be effective in the removal of oils, greases and other chemicals, Fn the application where fluid to be treated is entering the conduit or pipe, the layer of fabric in contact with the pipe may have a denier lower in value which is finer than the denier of the adjacent additional/outer layer of the multilayer fabric. Where there are more than two (2) layers, ii is important to note that each additional layer has a denier different from each additional layer adjacent thereto. In other words, where fluid is moving from inside to outside, the first layer will be more coarse than the coarseness of the next layer. Another layer over the next layer need only have a level of coarseness different than that of the next layer. Further, if yet another layer was added, it is only necessary that the coarseness of that layer be different from the layers adjacent.

It should be noted that the use of such fabrics with any kind of septic system or drainage system will result in improved performance. By allowing multiple layers of bacteria to form

around the interior of the different layers, one can ultimately reduce the amount of necessary leach area surface that is needed for the system to operate properly. On most septic systems there is only one bacterial interface surface. By doing multiple layers of fabrics one not only maintains the initial surface area which is the soil interface with the fabric, but bacterial growth will take place on the multiple layers. For each layer on which bacteria grow, the amount of leach area surface needed to do the job is significantly reduced.

It is also important to note that with the use of the multilayer fabric liquids will be diffused/dispersed without channeling the liquids in a forced direction adding considerably to the life of any septic system.

SUMMARY OF THE INVENTION

This invention most generally relates to a device/apparatus for using a multilayer fabric of varying deniers for the processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and particularly to the water table.

One of the most particular features and objects of this newly disclosed invention is now describe and disclosed.

Through testing of the Enviro-Septic® wastewater treatment system, surprisingly Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C) - such portion being preferably less than one-half of the pipe circumference (< 1/2C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance - speed of performance was increased over prior art methods by a substantial of amount.

The extra layer of dense fabric not only helps to treat the effluent better but also helps to extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference Patents of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial starup this new dense fabric layer will screen the effluent better, thereby causing the effluent Io travel the whole length of the pipe quickly and uniformly. As the effluent passes through the

dense fabric layer, the bacteria will reach a long-term acceptance rate faster and ethe effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent to travel the whole length of the pipe it results in the spreading of the loading throughout, - a process that allows more air and better bacterial growth and action, during this process a second biomal forms on the inner surface of the outer fabric and now becomes the treatment surface. It is not clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.

This dense layer of fabric does not stop the penetration of effluent. It slows the effluent! down and filters it better, allowing the bacteria to grow sooner and in greater numbers.

This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak enfironmental preformance in a much shorter period of time.

Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.

It has been discovered surprisingly that incorporating - i.e., adding a plurality (from 2 to "n" dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer - the layer which is in contact with the outer surface of the pipe - being preferably substantially about equal to about 1/2 of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i.e., over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive dense layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the course fiber layers. Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance io be enhanced in quality of performance and in the speed of performance - speed of performance wa 1 - increased over prior art methods by a substantial of amount.

These and further objects of the present invention will become apparent to those skilled in the art to which this invention pertains and after a study of the present disclosure of the invention

BRIEF DESCRIPTION OF THE DRAWINGS

Include herewith in this Application is a serious of drawing figures. Included are two drawings identified as ENVIRO-SEPTIC ORIGINAL A and ENVIRO-SEPTIC NEW A and in association with the character of the operation of the invention there are figures identified as STAGE IA through STAGE 4A. Further included is a drawing identified as ENVIRO-SEPTIC NEW B . And in association with the character of the operation of the invention when there is a plurality of thick and/or dense fiber layers and a plurality of course fiber layers there are figures identified as STAGE IB through STAGE 4B.

Included herewith as a further identification of this invention, Applicant has provided forms of drawing figures identified as drawing figures 1 - 12 and having numerical identification of elements included thereon. Further, at least Figures 1 - 7 of Applicant's Patent Number 5,954,45 1 may be included but are included herewith only by reference thereto.

> Fig. 1. represents an ENVIRO-SEPTIC ORIGINAL A and is an illustration of the pipe having a random fiber and a plastic fiber wrapping of the pipe;

Fig. 2. represents a new form of ENVIRO-SEPTIC (NEW A) and is an illustration of the pipe having a random fiber and a plastic fiber wrapping of the pipe and one dense fiber on a portion of the pipe outer surface circumference;

Fig. 3. identified as "STAGE IA" is an illustration of the early stages of function of the pipe as illustrated in Fig. 2. ENVIRO-SEPTIC(NEW A) and shows effluent starting to build up on the new fabric layer reaching toward its maximum long-term acceptance rate;

Fig. 4. identified as "STAGE 2A" is an illustration of stages of function of the pipe as illustrated in Fig. 2. ENVIRO-SEPTIC (NEW A) and shows effluent has build up on the new- fabric layer reaching its maximum long-term acceptance rate;

Fig. 5. identified as "STAGE 3 A" is an illustration of further stages of function of the pipe as illustrated in Fig. 2. ENVIRO-SEPTIC (NEW A) and shows effluent has begun to overflow the new fabric layer;

Fig. 6. identified as "STAGE 4A" is an illustration of further stages of function of the pipe as illustrated in Fig. 2. ENVIRO-SEPTIC (NEW A) and shows the outer fabric reaching the maximum long term acceptance rate;

Fig. 7. represents another new form of ENVIRO-SEPTIC (NEW B) and is an illustration of the pipe having a random fibers and a plastic fibers wrapping of lhe pipe and a plurality oi dense fiber on a portion of the pipe outer surface circumference and a plurality of random fiber covering such random number being 3 in this instance;

Fig. 8. identified as "STAGE IB" is an illustration of the early stages of funclion of the

pipe as illustrated in Fig. 7. ENVIRO-SEPTIC (NEW B) and shows effluent starting to build up on the first of the 3 new fabric layer reaching toward its maximum long-term acceptance rate;

Fig. 9. identified as "STAGE 2B" is an illustration of stages of function of the pipe as illustrated in Fig. 7. ENVIRO-SEPTIC (NEW B) and shows effluent has begun to overflow the first new fabric layer is building up on the second of the 3 new fabric layer;

Fig. 10. identified as "STAGE 3B" is an illustration of further stages of function of the pipe as illustrated in Fig. 7. ENVIRO-SEPTIC (NEW B) and shows effluent has begun io overflow the second of the 3 new fabric layer is building up on the third of the 3 new fabric layer effluent;

Fig. 11. identified as "STAGE 4B is an illustration of further stages of function of the pipe as illustrated in Fig. 7. ENVIRO-SEPTIC (NEW B) and shows effluent has begun to overflow the third of the 3 new fabric layer is building up on the outer fabric which will eventually be reaching the maximum long term acceptance rate; and

Figs. 12-20 are a plurality of drawings showing various configurations relative to form and layers of fabric materials so as to illustrate the use with alternative conduits.

DESCRIPTION OF TOE PREFERRED EMBODIMENTS

The following is a description of the preferred embodiment of the invention. It is clear that there may be variations in the size and the shape of the apparatus, in the materials used in the construction and in the orientation of the components. However, the main features are consistent and are;

1) Multiple layers of fabric rather than screens;

2) Fabric layers of varying deniers and/or thickness;

3) Useful in wrapping smooth-walled and corrugated plastic pipe;

4) With the selection of fabric and fabric denier, specific fluid treatment objectives can be met;

5) The multilayer fabric provides boundaries/interfaces and regions within winch specifically chosen bacteria, chemicals, microbes and the like may be introduced to facilitate the biodegradation of specifically chosen undesirable materials; and

6) Improve performance over the currently known leach fields.

7) One of the most particular features of this newly disclosed invention is now describe and disclosed.

Through testing of the Enviro-Septic® wastewater treatment system, surprisingly Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C) - such portion being preferably less than one-half of the pipe circumference (< 1/2C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow

very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance - speed of performance was increased over prior art methods by a substantial of amount.

The extra layer of dense fabric not only helps to treat the effluent better but also helps ro extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference Pateni s of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial starup this new dense fabric layer will screen the effluent better, thereby causing the effluent to travel the whole length of the pipe quickly and uniformly. As the effluent passes through the dense fabric layer, the bacteria will reach a long-term acceptance rate faster and ethe effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent to travel the whole length of the pipe it results in the spreading of the loading throughout, - a process that allows more air and better bacterial growth and action, during this process a second biomai forms on the inner surface of the outer fabric and now becomes the treatment surface. It is not clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.

This dense layer of fabric does not stop the penetration of effluent. It slows the effluent down and filters it better, allowing the bacteria to grow sooner and in greater numbers.

This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak enfironmental preformance in a much shorter period of time.

Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.

It has been discovered surprisingly that incorporating - i.e., adding a plurality (from 2 to "n" dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer - the layer which is in contact with the outer surface of the pipe - being preferably substantially about equal to about 1/2 of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i.e., over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense

layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive dense layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the course fiber layers. Applicantwas able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance Io be enhanced in quality of performance and in the speed of performance - speed of performance was increased over prior art methods by a substantial of amount.

The following is simply a description and disclosure of the use of the present invention resulting in the creation of pipe produced by the process and including various combinations and materials all of which are products produced by the process of this invention.

Fig. 12 shows a GEOFLOW pipe with a plastic grid mesh and channels with a pail ml covering of fiber and plastic grid mesh which will function very well in the process of removing the heaview more dense material from the effluent fluid and, further, start the bacteria development more quickly resulting in an improvement in the processing with a GEOFLOW system. The paituil layers can be created or designed in such a way that the inner one will cover less surface area and then can have more partial covering layers each a little more surface being covered so that when the first one overflows and runs into the second one it has to fully cover that surface with bacteria and particles beefore it will overflow and thus running into the next/adjacent one. This feature can also be seen on Figs. 18 and 19. It is important to note that there may be as many partial layers as needed i.e., as it takes to clean the water or liquids. Each layer of fiber could actually have a different denier and thickness and alternate in any fashion from thick to thin and back to thick This whole process will help the bacteria to come up to speed inside the fibers without being blocked as would or could otherwise happen and consequently the liquids are cleaned faster and more completely improving thereby the safety of the deposit into the environment.

Fig. 13 is similar to Fig. 12 but the pipe used is SIMPLE SEPTIC in form.

Figs. 14 and 15 shows ENVIRO-SEPTIC pipe with a random coarse fiber layer, a fabric layer, a plastic mesh layer and another fiber layer. This design could be altered, to better the processing of certain fluid, such as by having the fiber mesh or the plastic mesh layer in different locations and increasing the number of layers duplicating the arrangement of fabric types. Fig. 15 is a drawing of an original ENVIRO-SEPTIC pipe with a single layer of partial fabric between the pipe and random coarse fibers.

Fig. 16 shows a pipe veiy similar to what is considered an older form of pipe identified as an SB2 but again is added a fiber and plastic mesh in a prtial covering and then a final cover all the

way around the pipe.

Fig. 17 again shows an ENVERO-SEPTIC pipe with a partial layer of coarse random fibei and fabric covered with a second partial layer of a plastic grid mesh and fabric slightly wider wuh another layer of coarse random green fiber and fabric what is a little wider than that with is ove r 11 Finally, the entire pipe is covered with a wrapping that is the coarse random fibers and fabric. The partial coverings can alternate between a plastic grid mesh or coarse radom fibers or could be all ol " one type or the other type. Also one could use any kind of materials which could be used as a separation between the fabric layers. The layers of fabric can be any denier or thickness depending on what is necessary for the type of liquids being cleaned. These multiple layers when in operation will allow liquids to pass through all the layers. As the first partial layer becomes blocked from bacterial growth for the liquids pass-through rate slows down it will start to flow over into the second partial layer. As that layer blocks it will flow over into the third layer - and so on. When initially put into use the liquids will pass through all of the different layers growing a bacterial base in all of them. The screening of the different partial layers will protect the layers below it to allow it a longer life and better bacterial growth thereby protecting the environment. Again, it is important to note that this product produced by this method could be used to clean fluid other than effluent.

Fig. 18 simply first shows the liquid level flowing over the first partial layer and Fig. 19 shows the liquid livel flowing over the first and the second partial layers.

Fig. 20 is a simple representation of an ELJEN INDRAIN system, well known to those ol ordinary skill in the field of septic waste processing, simply being shown to illustrate use of this invention within the cavities of the covering thereby improving the efficiency and the environmental abilities of the basic ELJEN system. I.e., partial fabric layers are put between the plastic spacer^ and the original fabric, thereby better accomplishing the objective of the system.

In all of the above drawings it is further noted that the seams at the top can be either stitched, heat bonded or just overlapped.

It is thought that the present invention, the means and method and the conduits produced thereby and having included therewith a multilayer fabric of varying deniers for primarily the processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and many of its attendant advantages is understood from the foregoing description and it will be apparent that various changes may be made in the form, construction and arrangement of the parts thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form hereinbefore described being merely a preferred or exemplary embodiment thereof.