Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUID DIRECTING ASSEMBLY FOR A VEHICLE
Document Type and Number:
WIPO Patent Application WO/2001/027450
Kind Code:
A1
Abstract:
A fluid directing assembly includes partitions which define fluid directing runners. The partitions extend from a first portion and include an engagement member extending therefrom. The engagement members (38) extend from the partitions such that an interference fit is formed between the first portion (22B) and a second portion (22C) of the module. The engagement members assure that fluid communication between runners adjacent the apertures formed by the separate portions is prevented.

Inventors:
CHAE DAVID JEUNGSUCK
NARAYAN KARTHIK
MURPHY KEVIN ARTHUR
Application Number:
PCT/CA2000/001170
Publication Date:
April 19, 2001
Filing Date:
October 05, 2000
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS CANADA LTD (CA)
International Classes:
F02B27/00; F02B27/02; F02D9/10; F02M35/10; F02M35/104; F02M35/108; F02M35/112; (IPC1-7): F02B27/02; F02M35/112
Foreign References:
US5715782A1998-02-10
EP0861977A21998-09-02
US5005535A1991-04-09
US5094194A1992-03-10
EP0848145A21998-06-17
GB2279035A1994-12-21
DE8914049U11990-02-01
USPP15891999P1999-10-12
Attorney, Agent or Firm:
MACRAE & CO. (Ontario K1P 5T4, CA)
Condon, Neil (Oldbury Bracknell, Berkshire RG 12 8FZ United Kingdom, GB)
Download PDF:
Claims:
CLAIMS What is claimed is:
1. A fluid directing assembly for a vehicle comprising: a first fluid directing portion including a first portion first aperture and a first portion second aperture separated by a first portion partition having an engagement member extending from said first portion partition; and a second fluid directing portion, said second fluid directing portion including a second portion first aperture and a second portion second aperture separated by a second portion partition, said second fluid directing portion matable with said first fluid directing portion such that said first portion first aperture is aligned with said second portion first aperture to form a first runner portion, said first portion second aperture alignable with said second portion second aperture to form a second runner portion, said engagement member engageable with said second portion partition to substantially seal said first runner portion from said second runner portion.
2. The assembly as recited in claim 1, wherein said engagement member is substantially square in crosssection.
3. The assembly as recited in claim 1, wherein said engagement member extends along a length of each of said first partitions.
4. The assembly as recited in claim 1, wherein said engagement members extend along a length of each of said first partitions.
5. The assembly as recited in claim 1, wherein said fluid directing assembly includes an air intake module.
6. The assembly as recited in claim 1, wherein said engagement member provides an interference fit between said engagement member and said second portion partition.
7. The assembly as recited in claim 1, wherein said engagement member includes a plurality of engagement members extending from each of said first portion partition.
8. A fluid directing assembly for a vehicle comprising : a first fluid directing portion including a first plurality of apertures and a first plurality of partitions which separate each of said first plurality of apertures, each of said first plurality of apertures having an engagement member extending therefrom; and a second fluid directing portion including a second plurality of apertures and a second plurality of partitions which separate each of said second plurality of apertures, said second fluid directing portion matable with said first fluid directing portion along a weld area such that said first plurality of apertures are aligned with said second plurality of apertures and said first plurality of partitions are aligned with said second plurality of partitions to form a plurality of runner portions, said engagement members engageable with said second plurality of partitions to separate each of said runner portions.
9. The assembly as recited in claim 8, wherein said plurality of runner portions define a first axis, said first plurality of partitions and said second plurality of partitions arranged substantially perpendicular to said first axis.
10. The assembly as recited in claim 8, further comprising a first longitudinal partition extending from said first portion substantially parallel to a first axis defined by said plurality of runner portions.
11. The assembly as recited in claim 10, wherein said first longitudinal partition includes a stepped surface.
12. The assembly as recited in claim 11, further comprising a second longitudinal partition alignable with said first longitudinal partition, said second longitudinal partition including an engagement member extending from said second portion to seal against said stepped surface.
13. The assembly as recited in claim 8, wherein said engagement member provides an interference fit between said engagement member and said second plurality of partitions.
14. A nonmetallic air intake module for a vehicle comprising: a first fluid directing portion including a first portion first aperture and a first portion second aperture separated by a first portion partition having an engagement member extending from said first portion partition; and a second fluid directing portion, said second fluid directing portion including a second portion first aperture and a second portion second aperture separated by a second portion partition, said second fluid directing portion matable with said first fluid directing portion along a weld area such that said first portion first aperture is aligned with said second portion first aperture to form a first runner portion, said first portion second aperture is aligned with said second portion second aperture to form a second runner portion, and said engagement member engages said second portion partition to substantially seal said first runner portion from said second runner portion.
15. The assembly as recited in claim 14, wherein said engagement member provides an interference fit between said engagement member and said second plurality of partitions.
16. The assembly as recited in claim 14, wherein said engagement member is substantially square in crosssection.
17. The assembly as recited in claim 14, wherein said engagement member extends along a length of each of said first partitions.
18. The assembly as recited in claim 14, wherein said engagement members extend along a length of each of said first partitions.
Description:
FLUID DIRECTING ASSEMBLY FOR A VEHICLE BACKGROUND OF THE INVENTION The present application claims priority to United States Provisional Patent Application Serial No. 60/158,919, filed October 12,1999.

The present invention relates to a vehicle fluid directing assembly, and more particularly to an air intake manifold having partition engagement members which assure that each runner defines an independent consistent and optimized airflow path.

Various types of air induction components such as air induction manifolds, air filter assemblies and throttle bodies are used in the field of internal combustion engines.

Many known air induction components are presently manufactured of a non-metallic material such as nylon to simplify fabrication and reduce weight.

One of the major factors that influences engine performance as determined by the air intake manifold, is the air flow runner length and its sectional area in the air intake manifold. The best torque characteristic in low engine speed range can be obtained by having the air flow through long runner length with small sectional area, while the best torque in high speed range can be obtained by flow of air through short runner length and larger sectional area.

A non-metallic intake manifold having multiple portions may have mismatched areas due to normal manufacturing variations that allow internal air leakage (cross-flow) between airflow passages. This leakage affects the torque tuning for specific engine speed. Due to the complexity of the internal shapes and manufacturing variations, manifolds may not have consistent runners.

Accordingly, it is desirable to assure that the runners are consistently manufactured to minimize gaps and cross-flow to provide consistent characteristic in an intake manifold module.

SUMMARY OF THE INVENTION The present invention provides a vehicle fluid directing assembly such as an air intake manifold module formed of a multiple of fluid directing portions. Each portion mates with another portion at a weld area by known sonic welding or other attachment methods.

The module includes a multiple of runners. Apertures of the runners within a first portion align with second portion apertures when the portions are assembled together to form the module. Separating each of the first portion apertures from each of the other first portion apertures is a first portion partition. First portion partitions align with corresponding second portion partitions and first portion apertures align with second portion apertures.

Each of the partitions extending form the first portion preferably includes an engagement member extending therefrom. The engagement member extends from each partition such that an interference fit is formed between the first portion and the second portion. The engagement members assure that fluid communication between runners adjacent the apertures is prevented. The engagement member fills openings during the assembly process without impeding assembly to assure the modules are optimized by consistently sealing internal gaps.

BRIEF DESCRIPTION OF THE DRAWINGS The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows : Figure 1 is a general perspective view of a vehicle fluid directing assembly designed according to the present invention; Figure 2 is a sectional view illustrating alternate air flow paths taken along the line 2-2 in Figure 1 ; Figure 2A is an expanded view of an active system of the assembly of Figure 2; Figure 3 is an expanded top view of on portion of the assembly according to the present invention;

Figure 3 A is a sectional view of an engagement member taken along the line 3A- 3 A in Figure 3; Figure 3B is a sectional view of an engagement member taken along the line 3B- 3B in Figure 3; Figure 3C is an enlarged perspective view of the engagement member in Figure 3; and Figure 3D is an enlarged perspective view of the engagement member in Figure 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Figure 1 illustrates a vehicle fluid directing assembly 10 such as an air intake manifold module 10. The module 10 is preferably manufactured of a non-metallic material such as nylon, PET, LCP, PPC, PBT or various other plastics. The module 10 defines a multiple of runners 12. An intake port 14 typically communicates with a vehicle air induction system (illustrated schematically at 16) to communicate air into a plenum 18. From the plenum 18, the air is communicated through each runner 12 to an associated cylinder (illustrated schematically at 20) for compression and combustion.

Referring to Figure 2, a sectional view of the module 10 illustrates that the module 10 is preferably formed of a multiple of fluid directing portions 22A-22C typically due to the complexity of molding the module 20 as a single component. Each portion 22A-22C mates to another portion 22A-22C at a weld area 24 by known sonic welding or other attachment methods to form the final module 10.

In one disclosed embodiment, an active system 26 locates a movable valve 27 (also illustrated in Figure 2A) within each runner 12. The moveable valve 27 tunes the length of the runner 12 to define an optimal air flow path in response to predefined inputs from a controller (illustrated schematically at 28). When the active system 26 is closed, the air (illustrated by solid arrows A) flows from the plenum 18 along a relatively longer path to the cylinder 20. When the active system 26 is open, the air (illustrated by phantom arrows A) passes through the active system 26 to flow from the plenum 18 along a relatively shorter path to the cylinder 20. It should be understood that other fluid directing assemblies including non-active assemblies which includes a runner passing through a plurality of components would benefit from the present invention.

Referring to Figure 3, a top view of a first fluid directing portion 22B is illustrated. The weld areas 24 are preferably located around an outer perimeter area of each portion 22, however, other areas may be provided. Each runner 12 defines a first portion 22B aperture 30,30'due to the separation of the module 10 into a plurality of portions 22A-22C. Apertures 30,30'are portions of the longer (aperture 30) or shorter (aperture 30') air flow path (Figure 2A) within a single runner 12. The apertures 30,30' are defined in the first portion 22B to align with second portion 22C apertures 32,32' (Figure 3A) when the portions 22B and 22C are assembled together. Apertures 30,30' define a first axis 31,31'. It should be understood that other modules formed of a plurality of portions in which a runner passes through each portion would benefit from the present invention.

Separating each of the first portion apertures 30, 30'from each of the other first portion apertures 30,30'respectively is a first portion partition 34,34'. Preferably, the partitions 34,34'are located substantially perpendicular to the first axis 31,31'. First portion 22B partitions 34,34'align with corresponding second portion 22C partitions 36, 36'when the portions 22b, 22C are assembled (Figure 3A and 3B). The partitions 34, 34', 36,36'thus separate each runner 12 when the portions 22 are assembled.

Each of the partitions 34,34', extending form the first portion 22B includes an engagement member 38 extending therefrom. The engagement members 38 are preferably substantially square in cross-section and extend along the length of the partition 34 (Figure 3C). By minimizing the cross-sectional area of the engagement members, a smaller relatively compliant engagement surface is provided relative to the relatively larger partitions 34,34'. The engagement member 38 extends from the partition, 34,34'such that an interference fit is formed between the first portion 22B and the second portion 22C. Typically, the partitions 34,34', 36,36'are not welded together as the portions 22 are fixed together only in weld areas 24.

A first portion 22B longitudinal partition 37 aligns with a second portion 22C longitudinal partition 39 when the portions 22B, 22C are assembled (Figure 3D).

Preferably the longitudinal portion 37 is preferably located substantially parallel to the first axis 31.

Referring to Figure 3A, the partition 34 ofthe first portion 22B and the partition 36 of the second portion 22C are preferably designed to be in mating engagement when

the first portion 22B and the second portion 22C are welded together in the weld areas 24 (Figure 2A). However, in some instances due to tolerances in the molding process the partitions 34 and partitions 36 may not be in contact. The engagement member 38 extends from the partition 34 to assure that there is contact between the engagement member 38 of the first partitions 34 of the first portion 22B with the partitions 36 of the second portion 22C. Accordingly, the engagement member 38 assures that fluid communication between runners 12 adjacent apertures 30 is prevented. In other words, the runners 12 will not cross-leak in the vicinity of apertures 30 when the module 10 is assembled.

Referring to Figure 3B, the engagement member 38'extends from the partition 34'to assure that there is contact between the engagement member 38'of the first partitions 34'of the first portion 22B with the partitions 36'of the second portion 22C.

Accordingly, the engagement member 38'assures that fluid communication between runners 12 adjacent apertures 30'is prevented. In other words, the runners 12 will not cross-leak in the vicinity of apertures 30'when the module 10 is assembled.

Referring to Figure 3D, the first portion 22B longitudinal partition 37 is alignable with the second portion 22C longitudinal partition 39 when the portions 22B, 22C are assembled. The longitudinal partition 37 includes a substantially step shaped surface 40 and the longitudinal partition 39 includes an engagement member 42. The engagement member 42 assures there is contact between the longitudinal partitions 37,39 by providing an interference fit between the longitudinal partitions 37,39. Portions 37,39 are typically not welded together as this area of the module 10 (Figure 2) is usually not accessible. The engagement member 42 assures that the plurality of apertures 34 in the first portion 22B which are in communication with corresponding plurality of apertures 36 in the second portion 22C will not be in fluid communication with the apertures 34' in the first portion 22B which are in fluid communication with the plurality of the apertures 36'in the second portion 22C. In other words, the longitudinal partitions 37, 39'assures the continuity of each runner 12.

The foregoing description is exemplary rather than limiting in nature. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications are possible that would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope of protection given for this invention.