Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUID PUMP
Document Type and Number:
WIPO Patent Application WO/2016/174164
Kind Code:
A1
Abstract:
The invention relates to a fluid pump (1), driven by means of an electric motor, which is coupled to a pump rotor of the fluid pump, wherein the electric motor is an axial-flux electric motor, the electric-motor rotor of which is also the pump rotor, and the pump rotor and the electric-motor rotor are accommodated in a common housing (2), in which the pump rotor and the electric-motor rotor rotate while integrated as combination rotor in a disk shape, wherein the common housing (2) has a fluid inlet and a fluid outlet (8, 15) to the combination rotor. The invention further relates to a production method for such a fluid pump.

Inventors:
BORNEMANN, Nils (Am Botten 7, Bonn, 53179, DE)
TILLER, Stefan (Am Thomaskreuzchen 26, Sankt Augustin, 53757, DE)
CASELLAS, Antonio (Kleiberg 10b, Siegburg, 53721, DE)
AYDIN, Ümit (Lavendelgarten 35, Wachtberg, 53343, DE)
Application Number:
EP2016/059549
Publication Date:
November 03, 2016
Filing Date:
April 28, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GKN SINTER METALS ENGINEERING GMBH (Krebsöge 10, Radevormwald, 42477, DE)
International Classes:
F04C2/10; F04C15/00
Domestic Patent References:
WO2006021616A12006-03-02
Foreign References:
USH001966H2001-06-05
US5145329A1992-09-08
DE102009042598A12011-03-24
JPH08134509A1996-05-28
DE102009042603A12011-03-24
Attorney, Agent or Firm:
KREUELS, Justus (KNH Patentanwälte Kahlhöfer Neumann Rößler Heine PartG mbB, Postfach 103363, Düsseldorf, 40024, DE)
Download PDF:
Claims:
Ansprüche

Fluidpumpe (1), angetrieben mit einem Elektromotor, der mit einem Pumpenrotor der Fluidpumpe gekoppelt ist, wobei der Elektromotor ein Axialfluss-Elektromotor ist, dessen Elektromotor-Rotor auch der

Pumpenrotor ist und der Pumpenrotor und der Elektromotor-Rotor in einem gemeinsamen Gehäuse (2) untergebracht sind, in dem der

Pumpenrotor und Elektromotor-Rotor scheibenformartig als

Kombinationsrotor (9) integriert sich dreht, wobei das gemeinsame Gehäuse (2) einen Fluidzu- und einen Fluidabfluss (8, 15) zu dem

Kombinationsrotor (9) aufweist.

Fluidpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von einer Drehachse des Kombinationsrotors (9), in einer radialen Richtung betrachtet, ein Pumpenraum (11) und axial zur

Drehachse ausgerichtete Magnete bzw. weichmagnetische Elemente des Elektromotors angeordnet sind.

Fluidpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Kombinationsrotor (9) eine Vielzahl an axial ausgerichteten Magneten bzw. weichmagnetische Elemente entlang eines Umfangs des

Kombinationsrotors (9) verteilt sind.

Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Stator des Elektromotors stirnseitig zu dem Kombinationsrotor (9) angeordnet ist, wobei zur Rotordrehachse achsparallel ausgerichtete Kerne (6) des Stators zumindest zum Teil ein weichmagnetisches Material aufweisen.

Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erster Stator des Axialflussmotors den

Kombinationsrotor an einer ersten Stirnseite und ein zweiter Stator des Axialflussmotors den Kombinationsrotor an einer zur ersten Stirnseite entgegengesetzten zweiten Stirnseite des gemeinsamen Gehäuses einrahmen.

Fluidpumpe (1) nach Anspruch 4 und 5, dadurch gekennzeichnet, dass Kerne (6) des ersten Stators und des zweiten Stators einander achsparallel zur Rotordrehachse genau gegenüber liegen.

Fluidpumpe (1) nach Anspruch 4 und 5, dadurch gekennzeichnet, dass Kerne (6) des ersten Stators und des zweiten Stators versetzt zueinander achsparallel zur Rotordrehachse gegenüber liegen.

Fluidpumpe (1) nach einem der vorhergehenden Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das gemeinsame Gehäuse (2) zumindest in einem Bereich zwischen dem rotierenden Kombinationsrotor (9) und den Kernen (6) des Stators ein amagnetisches Material aufweist.

Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Pumpenraum (11) im gemeinsamen Gehäuse (2) abgeschlossen ist und der Fluidzu- und/oder der Fluidabfluss (8, 15) zu dem Pumpenraum (11) bevorzugt axial entlang der Rotationsachse erfolgt, insbesondere bevorzugt durch den Elektromotor erfolgt.

10. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass der Kombinationsrotor (9) ein mitdrehendes Pumpenrad aufweist, wobei eine Welle des Kombinationsrotors (9) innerhalb des gemeinsamen Gehäuses (2) angeordnet und gelagert ist.

11. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Kombinationsrotor (9) sich um eine Drehachse in dem gemeinsamen Gehäuse (2) dreht, wobei auf der

Drehachse ein mitrotierendes Pumpenrad sitzt.

12. Fluidpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch

gekennzeichnet, dass ein erstes und ein zweites Ende der Welle bzw. der Drehachse des Kombinationsrotors (9) jeweils in dem gemeinsamen Gehäuse (2) enden.

13. Verfahren zum Herstellen einer Fluidpumpe (1), vorzugsweise einer

Fluidpumpe nach einem der Ansprüche 1 bis 12, mit den folgenden Schritten:

Herstellen eines Kombinationsrotors (9) als Pumpen- und ein

Elektromotor-Rotor in Scheibenbauart mit axialem Anordnen von Magneten bzw. weichmagnetischen Elementen im Kombinationsrotor (9),

Einsetzen des Kombinationsrotors (9) in einen Außenring,

Einsetzen einer Welle bzw. Achse, seitliches Anbringen von zumindest einer Seitenwand an den

Außenring zum fluiddichten Abdichten des Kombinationsrotors (9) unter Aufnahme eines Endes der Welle bzw. Achse in die Seitenwand, seitliches Anbringen von zumindest einem Stator eines Elektromotors an die Seitenwand zum Antrieb des Kombinationsrotors (9) in dem mittels zumindest Außenring und Seitenwand gebildeten gemeinsamen Gehäuses (2), wobei Kerne (6) des Stators achsparallel zur

Rotationsachse des Kombinationsrotors (9) angeordnet werden. 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Kerne (6) des Stators aus einem weichmagnetischen Material verpresst und hergestellt werden.

Description:
Fluidpumpe

Die vorliegende Erfindung betrifft eine Fluidpumpe, die mit einem Elektromotor angetrieben wird, wobei ein Pumpenrotor mit dem Elektromotor gekoppelt ist.

Aus der WO 2006/021616 AI ist eine Elektromaschine mit einem axialen Elektromotor hervorgehend. Zwischen zwei jeweils seitlich angeordneten Statoren ist ein Rotor der Elektromaschine angeordnet, der entlang seines Umfangs Leitelemente aufweist, die in einem nicht-ferromagnetischen Material des Rotors eingebettet sind.

Aufgabe der vorliegenden Erfindung ist es, eine besonders dichte Fluidmaschine zur Verfügung zu stellen, die unterschiedliche Medien, insbesondere auch aggressive Medien sicher transportieren kann.

Diese Aufgabe wird mit einer Fluidpumpe mit den Merkmalen des Anspruchs 1 und mit einem Verfahren mit den Merkmalen des Anspruchs 13 gelöst.

Vorteilhafte Weiterbildungen und Ausgestaltungen gehen aus den nachfolgenden Unteransprüchen, Beschreibung und Figuren hervor. Die einzelnen Merkmale einzelner Ausgestaltungen sind jedoch nicht auf diese beschränkt. Vielmehr können ein oder mehrerer Merkmale aus ein oder mehreren Ausgestaltungen mit ein oder mehreren Merkmalen einer anderen Ausgestaltung verknüpft werden. Des Weiteren ist die Formulierung der beiden unabhängigen Ansprüche jeweils ein erster Versuch, den Erfindungsgegenstand zu beschreiben. Die Erfindung selbst geht aus der gesamten Offenbarung hervor, weswegen auch ein oder mehrere Merkmale der unabhängigen Ansprüche ergänzt, ersetzt oder auch gestrichen werden können. Es wird eine Fluidpumpe vorgeschlagen, angetrieben mit einem Elektromotor, der mit einem Pumpenrotor der Fluidpumpe gekoppelt ist, wobei der Elektromotor ein Axialfluss-Elektromotor ist, dessen Elektromotor-Rotor auch der Pumpenrotor ist und der Pumpenrotor und der Elektromotor-Rotor in einem gemeinsamen

Gehäuse untergebracht sind, in dem der Pumpenrotor und der Elektromotor-Rotor scheibenformartig als Kombinationsrotor integriert sich dreht, wobei das gemeinsame Gehäuse einen Fluidzu- und einen Fluidabfluss zu dem

Kombinationsrotor aufweist.

Gemäß einer Weiterbildung ist vorgesehen, dass ausgehend von einer Drehachse des Kombinationsrotors, in einer radialen Richtung betrachtet, ein Pumpenraum und axial zur Drehachse ausgerichtete Magnete des Elektromotors angeordnet sind. Dieses erlaubt das Ausbilden von Feldlinien in axialer Richtung, so dass ein Drehmoment auf den Kombinationsrotor aufgeprägt werden kann.

Eine Ausgestaltung sieht vor, dass im Kombinationsrotor eine Vielzahl an axial ausgerichteten Magneten entlang eines Umfangs des Kombinationsrotors verteilt sind. Die Magnete können hierbei nahe an einem Außenumfang oder auch nahe an einem Innenumfang des Kombinationsrotors angeordnet sein. Alternativ zu den Magneten können auch weichmagnetische Elemente zum Einsatz kommen. Wird daher im Folgenden von Magneten gesprochen, gelten die diesbezüglichen Ausführungen ebenso für die Nutzung von weichmagnetischen Elementen, wie sie zum Beispiel bei einem Reluktanzmotor eingesetzt werden. Die Magnete bzw. weichmagnetischen Elemente können unterschiedliche Geometrien aufweisen. Sie können als zylindrische Scheiben geformt sein, als Kuchenteil-förmige Abschnitte oder in sonstiger Geometrie. Auch können diese einen geschlossenen Ring ergeben, der einen Teil des Kombinationsrotors bildet.

Beispielswiese ist vorgesehen, dass zumindest ein Stator des Elektromotors stirnseitig zu dem Kombinationsrotor angeordnet ist, wobei zur Rotordrehachse achsparallel ausgerichtete Kerne des Stators zumindest zum Teil ein

weichmagnetisches Material aufweisen. Eine Vielzahl an Kernen, bevorzugt mindestens fünf Kerne, sind um den Umfang verteilt axial ausgerichtet angeordnet. Bevorzugt ist es, dass ein erster Stator des Axialflussmotors den

Kombinationsrotor an einer ersten Stirnseite und ein zweiter Stator des

Axialflussmotors den Kombinationsrotor an einer zur ersten Stirnseite entgegengesetzten zweiten Stirnseite des gemeinsamen Gehäuses einrahmen. Dieses erlaubt einerseits eine besonders kompakte Bauform. Zum anderen erlaubt dieses auch die Erzeugung eines stärkeren Drehmoments.

Eine Weiterbildung sieht vor, dass Kerne des ersten Stators und des zweiten Stators einander achsparallel zur Rotordrehachse genau gegenüber liegen. Diese Anordnung hat zum Beispiel den Vorteil der direkten Verstärkung der jeweiligen wirkenden elektromagnetischen Kräfte.

Wiederum eine Ausgestaltung sieht vor, dass Kerne des ersten Stators und des zweiten Stators versetzt zueinander achsparallel zur Rotordrehachse gegenüber liegen. Auf diese Weise können zum Beispiel breiter axial um den Umfang verteilte Feldlinien erzeugt werden.

Bevorzugt ist es, wenn das gemeinsame Gehäuse zumindest in einem Bereich zwischen dem rotierenden Kombinationsrotor und den Kernen des Stators ein amagnetisches Material aufweist. Dadurch wird die notwendige Ausbildung des elektromagnetischen Feldes zur Erzeugung eines Drehmoments am

Kombinationsrotor nicht oder nur gering gestört.

Weiterhin ist es bevorzugt, dass ein Pumpenraum im gemeinsamen Gehäuse abgeschlossen ist und ein Fluidzu- und/oder ein Fluidabfluss zu dem Pumpenraum bevorzugt axial entlang der Rotationsachse erfolgt, insbesondere bevorzugt durch den Elektromotor erfolgt.

Beispielsweise kann vorgesehen sein, dass der Kombinationsrotor ein

mitdrehendes Pumpenrad aufweist, wobei eine Welle des Kombinationsrotors innerhalb des gemeinsamen Gehäuses angeordnet und gelagert ist. Eine Ausgestaltung sieht vor, dass der Kombinationsrotor sich um eine Drehachse in dem gemeinsamen Gehäuse dreht, wobei auf der Drehachse ein mitrotierendes Pumpenrad sitzt. Es können der Kombinationsrotor und das Pumpenrad die gleiche Drehachse aufweisen oder jeweils verschiedene, parallel zueinander angeordnete Drehachsen nutzen.

Eine weitere Ausgestaltung sieht wiederum vor, dass ein erstes und ein zweites Ende der Welle bzw. der Drehachse des Kombinationsrotors jeweils in dem gemeinsamen Gehäuse enden. Bevorzugt weist das gemeinsame Gehäuse nur statische Dichtungen auf, hingegen jedoch keine Dichtung aufgrund einer Relativbewegung zwischen einem feststehenden Teil des gemeinsamen Gehäuses und einem nach außen geführten, dazu bewegtem Bauteil. Vielmehr kann auf ein relativ zum gemeinsamen Gehäuse bewegliches Bauteil wie eine Welle verzichtet werden. Eine Achse für den Kombinationsrotor kann zum Beispiel zumindest an einer Seite aus dem gemeinsamen Gehäuse geführt werden. Soll ein aggressives Fluid mittels der Fluidpumpe gefördert werden, erlaubt zum Beispiel der Verzicht auf eine dynamisch beanspruchte Dichtung eine höhere Lebensdauer der Fluidpumpe.

Gemäß einem weiteren Gedanken der Erfindung, der zusammen mit der oben wie auch nachfolgend beschriebenen Fluidpumpe zum Einsatz kommt, wird ein Verfahren zum Herstellen einer Fluidpumpe mit den folgenden Schritten vorgeschlagen:

Herstellen eines Kombinationsrotors als Pumpen- und ein Elektromotor- Rotor in Scheibenbauart mit axialem Anordnen von Magneten bzw.

weichmagnetischen Elementen im Kombinationsrotor,

Einsetzen des Kombinationsrotors in einen Außenring,

Einsetzen einer Welle bzw. Achse,

seitliches Anbringen von zumindest einer Seitenwand an den Außenring zum fluiddichten Abdichten des Kombinationsrotors unter Aufnahme eines Endes der Welle bzw. Achse in die Seitenwand

seitliches Anbringen von zumindest einem Stator eines Elektromotors an die Seitenwand zum Antrieb des Kombinationsrotors in dem mittels zumindest Außenring und Seitenwand gebildeten gemeinsamen Gehäuses, wobei Kerne des Stators achsparallel zur Rotationsachse des

Kombinationsrotors angeordnet werden.

Eine Weiterbildung des Verfahrens sieht vor, dass die Kerne des Stators aus einem weichmagnetischen Material verpresst und hergestellt werden.

Es besteht die Möglichkeit, dass das gemeinsame Gehäuse auch mittels eines topfförmigen ersten Bauteils und einem darauf zu befestigendem Seitendeckel als zweitem Bauteil hergestellt wird. Dadurch kann in einem Boden des ersten Bauteils eine Lagerung für eine Welle des Kombinationsrotors vorgesehen, deren Gegenstück beispielsweise in dem Seitendeckel angeordnet ist. Vorzugsweise können Axiallager, aber auch Axial/Radiallager zum Einsatz kommen, insbesondere Wälzlager. Vorzugsweise werden Lager verwendet, die eine Lebensdauerschmierung aufweisen.

Die nachfolgenden Figuren zeigen in beispielhafter Weise verschiedene

Ausgestaltungen der Erfindung zur beispielhaften Darstellung, ohne dass damit die Erfindung beschränkt sein soll. Vielmehr können ein oder mehrere Merkmale aus einer Ausgestaltung mit anderen Merkmalen aus der Beschreibung wie auch aus den anderen Figuren zu weiteren Ausgestaltungen, auch nicht näher figürlich dargestellten Ausgestaltungen verknüpft werden. Es zeigen:

Fig. 1 eine beispielhafte Ausgestaltung einer Fluidpumpe,

Fig. 2 eine Innenansicht auf die Fluidpumpe aus Fig. 1,

Fig. 3 eine Schnittansicht der Fluidpumpe aus Fig. 1

Fig. 4 eine Schrägansicht auf einen Seitendeckel mit eingelassenen

Anschlussstutzen, Fig. 5 eine weitere Schrägansicht auf den Seitendeckel aus Fig. 4, und

Fig. 6 eine weitere Ausgestaltung einer Seitenabdeckung. Fig. 1 zeigt in einer ersten Ansicht eine Fluidpumpe 1 in einem

zusammengebauten Zustand. Ein Innengehäuse 2 ist mit einem ersten und einem zweiten Seitendeckel 3, 4 verbunden, vorzugsweise wiederholbar lösbar verbunden. Dieses kann zum Beispiel mittels Verschraubung durch Löcher 5 erfolgen. Diese sind um den Umfang herum verteilt, wodurch eine Abdichtung einer Pumpenkammer im Innengehäuse 2 ermöglicht wird. Der erste und der zweite Seitendeckel 3, 4 weisen Statorkerne 6 auf, die jeweils axial verlaufend zu einer Rotorachse im Inneren des Innengehäuses 2 ausgerichtet sind. Die

Statorkerne 6 sind jeweils umwickelt mit einer Wicklung, so dass ein

elektromagnetisches Feld erzeugt werden kann. Hierzu ist beispielsweise eine Platine auf einer Abdeckung 7 anordbar, mittels der eine Verschaltung der jeweiligen Wicklungen und Ansteuerung derselben ermöglicht wird. Über die Abdeckung 7 kann zentral zum Beispiel eine Flüssigkeit über eine Zuführung als Fluidzufluss 8 zentral zugeführt werden. Es besteht aber ebenfalls die

Möglichkeit, dass ein Fluid seitlich zu- bzw. abgeführt wird.

Fig. 2 zeigt in beispielhafter Ausgestaltung ein Innengehäuse 2 mit innen angeordnetem Kombinationsrotor 9. Der Kombinationsrotor dreht sich in dem Innengehäuse 2. Der Kombinationsrotor 9 kann Aussparungen 10 aufweisen, in die zum Beispiel Magnete bzw. weichmagnetische Elemente einsetzbar sind. In einem Innenraum des Kombinationsrotor 9 befindet sind ein Pumpenraum 11. In dem Pumpenraum befindet sich ein Gerotor 12. Anstelle eines Gerotors als Fluidpumpe kann auch eine Flügelradpumpe, eine Flügelzellenpumpe, ein P- Rotor, eine Rollenzellenpumpe, eine Drehschieberpumpe oder auch eine

Radialkolbenpumpe im Innengehäuse 2 angeordnet sein. Hierbei kann das jeweilige Pumpenrad entweder Bestandteil des Kombinationsrotors sein oder so wie bei dem dargestellten Gerotor auf einer Achse angeordnet sein und sich darum ebenfalls drehen.

Der Kombinationsrotor 9, der gleichzeitig auch der Rotor des Elektromotors ist, kann Permanentmagnete oder auch weichmagnetische Elemente zum Beispiel in den Aussparungen 10 aufweisen. So kann mit Permanentmagneten als Axialfluss- Elektromotor ein permanenterregter Synchron- oder bürstenloser

Gleichstrommotor, abgekürzt BLDC, gebildet werden, während beispielsweise mit weichmagnetischen Elementen ein Reluktanzmotor als Elektromotor in axialer Bauweise geschaffen werden kann. Ein Stator, der hier wegen der Lage auf der Rückseite des dargestellten Innengehäuses 2 angeordnet ist, kann ein weichmagnetisches Material aufweisen, zum Beispiel ein Soft Magnetic

Composite, abgekürzt SMC, oder ein Kombination aus Elektroblechen und SMC.

Eine Innenumfangsfläche 13 des Innengehäuses 2 kann derart feinbearbeitet sein, dass es im Zusammenspiel mit einem Seitendeckel eine Dichtung bildet. Die Innenumfangsfläche 13 kann jedoch auch eine zusätzliche Dichtung aufweisen, die mit einer komplementären Seite des Seitendeckels abdichtend

zusammenwirkt.

Fig. 3 zeigt eine Schnittansicht der Fluidpumpe 1 aus Fig. 1 in einer

Schnittansicht. Das Innengehäuse 2 zusammen mit den jeweiligem ersten und zweiten Seitendeckel 3, 4 bilden ein abgedichtetes, gemeinsames Gehäuse 14, in dem ein Pumpenrad mittels des Kombinationsrotors 9 angetrieben wird. Die Darstellung zeigt die scheibenartige Geometrie des Kombinationsrotors 9. Das gemeinsame Gehäuse 14 weist bei dieser Ausgestaltung den axial angeordneten Fluidzufluss 8 und einen gegenüber axial angeordneten Fluidabfluss 15 auf. Der Fluidzufluss 8 kann hierzu im zweiten Seitendeckel mittels seitlicher Aussparung ein Fluid zum Pumpenrad, in diesem Fall zum Gerotor führen. In dem ersten Seitendeckel 3 kann wiederum gegenüberliegend oder wie bei einigen

Pumpenarten versetzt hierzu der Fluidabfluss 15 in den Pumpenraum münden. Eine radiale Fluidführung ist ebenfalls möglich. Fig. 4 zeigt den zweiten Seitendeckel 4 aus Fig. 1 mit aufgesetzten

Anschlussstutzen 16 aus einer Seitenperspektive. Die Anschlussstutzen 16 erlauben zum Beispiel das Verschrauben bzw. Befestigen der so gebildeten Axialpumpe in einem Bauraum, zum Beispiel einem PKW-Motorraum. Fig. 5 zeigt den zweiten Seitendeckel 4 aus Fig. 1 in einer weiteren Perspektive. So sind zwei Mündungen 17 dargestellt, über die Fluid zum bzw. vom

Pumpenraum fließen kann. In einem Bereich des Seitendeckels, der den nichtdargestellten Statorkernen gegenüberliegt, ist als Material zumindest ein amagnetisches Material vorgesehen. Beispielswiese wird derjenige Bereich, der von dem Kombinationsrotor überstrichen wird, aus amagnetischem Material hergestellt. Bevorzugt ist das amagnetische Material auch elektrisch nichtleitend. So kann neben Keramik, Kunststoff auch ein amagnetisches Metall zum Einsatz kommen. Der Seitendeckelkann zum Beispiel als Spritzgußteil hergestellt werden oder auch als Sinterbauteil. So können auch verschiedene Materialien zum Einsatz kommen. Eine Ausgestaltung sieht vor, dass der Seitendeckel 4 zusammen mit den Statorkernen gemeinsam hergestellt wird. Hierzu kann ein Sinterverfahren zum Einsatz kommen, wie es zum Beispiel aus der DE 10 2009 042 598 AI und der JP H08-134509 A hervorgeht, auf die diesbezüglich im Rahmen der Offenbarung verwiesen wird. Während aus der DE 10 2009 042 598 AI und der JP H08- 134509 A hervorgehen, wie zum Beispiel gleiche oder auch unterschiedliche Sintermaterialien miteinander produziert werden können, geht aus der DE 10 2009 042 603 AI hervor, wie vorgefertigte Komponenten in ein zu sinterndes Bauteil genau eingebracht werden können. Letzteres ist zum Beispiel für die Herstellung des Stators mit beispielsweise vorgefertigten Statorkernen aus beispielswiese gesintertem Material möglich wie auch bei der Nutzung von Elektroblechen als weichmagnetische Elemente im Kombinationsrotor zur Herstellung eines Reluktanzmotors. Auch können Magnete auf diese Weise eingebracht werden, wobei diese aufgrund der Temperaturen beim Sintern vorzugsweise auch erst nach dem Sintern eingefügt werden.

Fig. 6 zeigt in beispielhafter Ausgestaltung eine zweite Version eines weiteren, dritten Seitendeckels 18. Der dritte Seitendeckel 18 weist beispielweise weichmagnetische Pole 19 auf, die vorzugsweise aus Soft Magnetic Composites hergestellt sind. Diese können zum Beispiel wie dargestellt bis zu einer

Oberfläche reichen und somit auch eine Berandung des Innengehäuses bilden. Ein derartiger Aufbau hat den Vorteil, dass der Seitendeckel ansonsten aus amagnetischem Metall hergestellt werden kann, zum Beispiel mittels eines Sinterprozesses aus metallischem Pulver.

Die vorgeschlagene Fluidpumpe kann in unterschiedlichen Anwendungsgebieten zum Einsatz gelangen. Es können Flüssigkeiten unterschiedlichster Art wie Newton'sche Fluide oder auch Bingham'sche Fluide wie auch Gase transportiert werden. Die Nutzung kann unterschiedlichste Bereiche umfassen wie die chemische Industrie, die Nahrungsmittelindustrie, die Nutzung in Maschinen und Anlagen oder auch im Fahrzeug-, Flugzeug- und Schifffahrtsbereich. Die Fluide können Laugen oder Säuren umfassen, korrosiv wirken, gekühlt oder erhitzt sein. Nur beispielhaft ohne abschließend zu sein, werden die folgenden Beispiele angeführt:

Ölpumpe bei einem Verbrennungsmotor; Umwälzpumpe, zum Beispiel bei einem Kühlkreislauf oder auch im Heizungsbereich; als Zirkulationspumpe, zum

Beispiel in Trinkwasseranlagen; Schmierstoffpumpe; als hydraulische

Kupplungsaktuator; bei der Kraftstoffförderung; bei der Einspritzanlage im Bereich des Common Rail bei der Benzin- oder auch Dieseldirekteinspritzung; als Klimakompressor; als Vakuumpumpe; als Servopumpe, zum Beispiel im Bereich der Lenkkraftunterstützung; bei der Bremskraftverstärkung; in Getrieben, insbesondere Automatikgetrieben zum Beispiel zur Kühlung, zum

Aufrechterhalten eines Drucks, als Absaugpumpe; im Bereich von Aquarien; bei PC- und Serverkühllungen wie zum Beispiel bei einer Wasserkühlung; in der Medizintechnik, zum Beispiel bei einem Dialysegerät, einer Infusionspumpe, einer Insulinpumpe; bei der Abgasnachbehandlung, zum Beispiel bei der Zugabe von Harnstoff; als Entlüftungspumpe; bei Bremskraftverstärkern, bei der

Befüllung von pneumatischen Aktuatoren; bei aktiven Fahrwerken; in Scheiben- bzw. Scheinwerferreinigungsanlagen; in Waschanlagen; als Tauchpumpe; als

Antriebspumpe in hydraulischen Maschinen; in einem Hybridantrieb zum Beispiel eines Fahrzeugs.