Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUX PATH AND CORE LOSS REDUCTION ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/1994/029942
Kind Code:
A1
Abstract:
A flux path and core loss reduction assembly is provided. The assembly comprises a magnetizable peripheral rotor section (18) upon which armature windings (70e-84e) are disposed, isolated from the rest of the assembly by a non-magnetizable core (20). The assembly also comprises a magnetizable inner stator (24) section upon which armature windings are disposed (140e-148e), isolated from the rest of the assembly by a non-magnetizable enclosure (26). The assembly additionally comprises flux path reduction windings wound to reduce the magnetic flux paths created when the windings are electromagnetically activated by a current. The assembly further comprises a programmable control (220) for varying the rotor speed by varying the switching rate of stator winding polarity.

Inventors:
ELLZEY LUCIAN L JR
BUCKMAN JON E
Application Number:
PCT/US1994/006665
Publication Date:
December 22, 1994
Filing Date:
June 13, 1994
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ELLZEY ELECTRIC MOTOR CO INC (US)
International Classes:
H02K19/10; H02K29/08; (IPC1-7): H02K19/10; H02K29/08
Foreign References:
FR2445054A11980-07-18
US2328743A1943-09-07
US2547599A1951-04-03
Download PDF:
Claims:
CLAIMS
1. An electromagnetic flux path and core loss reduction assembly, comprising: a rotor having a first end and a second end, a non magnetizable core section and a magnetizable peripheral section wherein the magnetizable peripheral section forms a sidewall between the first end and the second end and wherein the non magnetizable core section is positioned to confine magnetic flux within the rotor to the magnetizable peripheral section; a rotor shaft connected to the non magnetizable core section of the rotor and extending a distance from at least one end of the rotor; and a stator at least partially encompassing the rotor and circumferentially positioned a distance from the rotor, the stator comprising a magnetizable section having an inner surface with a first end and a second end wherein the inner surface is adjacent the sidewall of the magnetizable peripheral section and wherein nonmagnetizable media is positioned to confine magnetic flux within the stator to the magnetizable inner section.
2. The assembly of claim 1, wherein the rotor shaft is constructed of a magnetizable material.
3. The assembly of claims 1 or 2 wherein the magnetizable peripheral section of the rotor further comprises a width, wherein the width multiplied by a factor of two is no less than onehalf the diameter of the rotor.
4. The assembly of any one of the preceding claims further comprising at least four rotor electromagnetic windings wound upon the magnetizable peripheral section of the rotor.
5. The assembly of any one of the preceding claims wherein the rotor further comprises a plurality of flux path reduction slots formed in the sidewall of the rotor and extending generally from the first end to the second end of the rotor, and additionally comprises a number of pole posts equivalent to the number of flux path reduction slots, the pole posts extending generally from one end of the rotor to the other end of the rotor and formed by the sidewall and the flux path reduction slots wherein the pole posts are interposed alternately with the flux path reduction slots.
6. The assembly of claim 5 wherein the rotor electromagnetic windings are lap wound on the rotor by way of the flux path reduction slots.
7. The assembly of claim 5 wherein the rotor electromagnetic windings further comprise rotor flux path reduction windings.
8. The assembly of claim 7 wherein the flux path reduction windings are wound about every other pole post and wherein each of the flux path reduction slots partially encompasses a portion of one flux path reduction winding.
9. The assembly of claim 7 wherein a first set of flux path reduction windings is wound about every other pole post and wherein a second set of flux path reduction windings is wound about the remaining pole posts wherein each of the flux path reduction slots partially encompasses a portion of one flux path reduction winding from the first set and further partially encompasses a portion of one flux path reduction winding from the second set.
10. The assembly of any one of the preceding claims further comprising at least four stator electromagnetic windings wound upon the inner section of the stator.
11. The assembly of any one of the preceding claims wherein the inner section further comprises a plurality of stator flux path reduction slots formed in the inner surface of the inner section of the stator and extending generally from the first end to the second end of the inner section, and additionally comprises a number of stator pole posts equivalent to the number of stator flux path reduction slots, the stator pole posts extending generally from the first end to the second end of the inner section and defined by the inner surface and the flux path reduction slots wherein the pole posts are interposed alternately with the flux path reduction slots.
12. The assembly of claim 11 wherein the stator electromagnetic windings are lap wound on the inner section by way of the stator flux path reduction slots.
13. The assembly of claim 11 wherein the stator electromagnetic windings further comprise stator flux path reduction windings.
14. The assembly of claim 13 wherein the flux path reduction windings are wound about every other pole post and wherein each of the flux path reduction slots partially encompasses a portion of one flux path reduction winding.
15. The assembly of claim 13 wherein a first set of flux path reduction windings is wound about every other pole post and wherein a second set of flux path reduction windings is wound about the remaining pole posts wherein each of the flux path reduction slots partially encompasses a portion of one flux path reduction winding from the first set and further partially encompasses a portion of one flux path reduction winding from the second set.
16. The assembly of any one of the preceding claims wherein the rotor is rotatably connected to the stator via a portion of the nonmagnetic enclosure.
17. The assembly of any one of the preceding claims wherein the magnetizable peripheral section is located about adjacent the nonmagnetizable core section.
18. The assembly of claim 1 wherein the magnetizable inner section is located about adjacent the nonmagnetizable enclosure.
19. The assembly of any one of the preceding claims further comprising a control, the control comprising: sensing means for sensing at least one magnetic pole and outputting a sensor signal; programmable control means for receiving the sensor signal and outputting a control signal having a first state and a second state; operational current means for receiving the control signal and outputting a drive current; and a current source for providing electric direct current to the sensing means, the programmable control means,, and the operational control means.
20. The control of claim 19 wherein the means for sensing the magnetic pole further comprises a Hall Effect sensor.
21. The control of claims 19 or 20 wherein the programmable control means further comprises: an embedded controller comprising a system clock, a microprocessor, and a control program, wherein the embedded controller receives the sensor signal, executes the control program, and outputs the control signal.
22. The control of any one of claims 19 21 wherein the control further comprises an acceleration switch for inputting an acceleration signal and a deceleration switch for inputting a deceleration signal to the programmable control means.
23. The control of any one of claims 19 22 wherein the operational control means further comprises: a delay module for receiving the first state and the second state of the control signal and for decoding the first state and the second state into Pchannel and N channel currents; a first half bridge wherein the first half bridge receives a portion of the Pchannel and Nchannel currents and alternately outputs a first Pchannel current and a first Nchannel current and; a second half bridge wherein the second half bridge receives a portion of the Pchannel and Nchannel currents and alternately outputs a second Pchannel current and a second Nchannel current.
24. The control of claim 23 wherein the operational current means further comprises a first amplifying means for receiving the first and second Pchannel currents and the first and second Nchannel currents and for outputting a first and second Pchannel current and a first and second Nchannel current.
25. The control of claim 24 wherein the operational current means further comprises a second amplifying means for receiving the first and second N and P channel currents and for outputting a first and second Pchannel drive current and a first and second Nchannel drive current.
Description:
FLUX PATH AND CORE LOSS REDUCTION ASSEMBLY

FIELD OF THE INVENTION

The present invention relates to electromechanical devices, and more particularly to electromechanical devices having rotors and stators constructed to reduce the flux paths associated with electromagnetic windings in order to reduce path or core loss.

SUMMARY OF THE INVENTION

Electromechanical devices, such as electric motors, traditionally have had an efficiency of less than thirty percent. One reason for this is that they have had long flux paths relative to the number of turns of wire per electromagnetic winding (such as an armature winding) which has resulted in the production of a low magnetizing force relative to the power used to provide the magnetizing force.

For a given wire size and number of turns of winding wire, the present invention reduces the magnetic flux path, which has the effect of increasing the efficiency of electromagnetic devices, such as motors or generators, having four or more magnetic poles.

Magnetizing force (using sinusoidal wave forms) is proportional to current flow and turns of wire in the winding, and is inversely proportional to the flux path length of the magnet or electromagnet, as shown by the formula:

where H is the magnetizing force in Amperes per meter, N is the number of winding turns, I is the current in Amperes, and 1 is the magnetic flux path in length in meters.

By reducing the flux path length, the present invention acts to increase H for a given amperage or number of winding turns, or to maintain H with a reduced amperage level or number of winding turns, resulting in increased efficiency.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a side cutaway diagrammatic view of an electric motor constructed in accordance with one embodiment of the present invention. Figure 2 is a front cutaway view of the motor shown in Figure 1.

Figure 3 is a left perspective view of an enclosure constructed in accordance with the present invention.

Figure 4 is a left perspective view of a stator constructed in accordance with the present invention.

Figure 5 is a perspective view of the stator shown in Figure 4 disposed within two of the enclosures shown in Figure 3.

Figure 6 is an end view of a rotor constructed in accordance with the present invention, showing a polarity of flux path reduction slots and pole posts formed in the magnetizable peripheral section of the rotor.

Figure 7 is an end view of a rotor similar in construction to the rotor shown in Figure 6, but showing the disposition of four rotor flux path reduction windings on the rotor.

Figure 8 is a partial perspective view of the rotor shown in Figure 1 , showing two of the rotor flux path reduction windings wound on the rotor. Figure 9 is a schematic diagram of the rotor flux path reduction windings showing in Figure 7.

Figure 10 is an end view of a rotor constructed in exactly the same manner as the rotor shown in Figure 7, but having eight rotor flux path reduction windings disposed on the rotor.

Figure 11 is a schematic diagram of the rotor flux path reduction windings shown in Figure 10.

Figure 12 is an end view of the rotor shown in Figure 7 disposed within a stator assembly in accordance with the present invention.

Figure 13 is an end view of the rotor shown in Figure 10, disposed within a stator assembly in accordance with the present invention.

Figure 14 is a diagrammatic view of a control constructed in accordance with the present invention.

Figure 15 is a schematic diagram of a circuit embodying the control shown in Figure 14. Figure 16 is an exploded view of a flux path and core loss reduction assembly constructed in accordance with the present invention.

BRIEF DESCRIPTION OF THE TABLE

Table A is a Firmware listing.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Shown in Figure 1 is a diagrammatic view of an electromagnetic device, such as an electric motor or generator, incorporating one embodiment of a flux path and core loss reduction assembly, which is generally identified by the numeral 10. The assembly 10 includes a rotor 16 having a first end 17, a magnetizable peripheral section 18, a sidewall 19, a second end 21, and a core 20. In a preferred embodiment of the invention, the core 20 will be composed of a non-magnetizable material, such as aluminum. The assembly 10 also comprises a stator 22 comprising an inner section 24 having an inner surface 25, the inner section 24 being constructed of a magnetizable material, such as iron or iron laminates. The stator 22 further comprises an enclosure 26 and a case 28. The assembly 10 additionally comprises a rotor shaft 30 which pierces the rotor 16 and extends generally from the first end 17 and the second end 21 of the rotor 16. As shown in Figure 1, the rotor shaft 30 is supported by a shaft bearing assembly 32, which is in turn, connected to the case 28, and which allows the rotor shaft 30 to rotate freely within the stator 22.

In accordance with the invention, the core 20 of the rotor 16 is ordinarily comprised of a non-magnetizable material; however, if the core 20 is composed of a magnetizable material, such as iron, or if the core 20 is eliminated, the rotor shaft 30 must be composed of a non- magnetizable material, such as aluminum. In some embodiments of the invention, the rotor shaft will have a diameter which

is at least half as great as the diameter of the rotor 16. If the rotor 16 comprises a magnetizable peripheral section 18 and a non-magnetizable core section 20, the diameter of the core 20 is ordinarily at least half the diameter of the rotor 16. As shown in Figure 2, the diameter of the core section 20 and the rotor shaft 30, taken together, is greater than half the diameter of the rotor 16.

The non-magnetic core 20 operates to isolate the magnetizable section 18 from the rest of the rotor 16 and from the remainder of the assembly 10. This has the effect of reducing the flux path length of the rotor 16, which, in a conventional electromagnetic device, would be generally equivalent to the diameter of the rotor 16. It is understood that, in the assembly 10 shown in Figures 1 and 2, conventional electric windings are disposed on the stator 22 and the rotor 16. The stator 22 and the rotor 16 may be partially composed of rotor laminates and stator laminates, as are currently used in the art, however, the rotor 16 has a non-magnetizable core 20 and the stator 22 will comprise a magnetizable inner section 24 and a case 26 which, preferably, is also non-magnetizable, being constructed of aluminum, plastic, or other non-magnetizable material. For purposes of the present invention, it is understood that all electromagnetic devices referred to herein will have four or more electro-magnetic poles.

Figure 3 shows a preferred embodiment of a stator enclosure 26a constructed in accordance with the invention. The enclosure 26a comprises a shield ring 27a which is composed of a non-magnetizable material, such as aluminum, and a shell 29a, which can be composed of a magnetizable or nonmagnetizable material. The shell 29a is ordinarily constructed of steel.

Figure 4 shows a stator 22a, constructed in accordance with the present invention. The stator 22 comprises an inner section 24a comprised of a magnetizable material, such as iron or iron laminates. The inner section 24a has an inner surface 25a, which is formed into thirty-six flux path reduction slots, two of which have been designated by the numerals 34 and 36. Between each pair of reduction

slots is a pole post, one of which has been designated by the numeral 50. Insulation, such as insulation paper 31 is disposed in each of the flux path reduction slots to isolate a portion of the armature windings, such as armature winding 52, from a portion of the inner section 24a. The armature windings, such as armature winding 52, are constructed in accordance with the present invention and are explained in detail below.

Armature windings constructed in accordance with the present invention are also called herein "flux path reduction windings". Figure 4 shows a stator wound with eighteen armature windings, resulting in a thirty-six electromagnetic pole stator, but any even number of windings, providing at least four electromagnetic poles, can be used in other embodiments of the invention.

Figure 5 shows the stator enclosure 26a and a stator enclosure 26b, constructed exactly in the same manner as the stator enclosure 26d, connected to the stator 22a. The shield ring 27a of the enclosure 26a cooperates with the shield ring 27b of the enclosure 26b to magnetically isolate the inner section 24a of the stator 22a from the enclosure shells 29a and 29b.

Figure 6 shows a first end 17a of rotor 16a modified in accordance with the present invention. The rotor 16a consists of a non-magnetizable core section 20a, and a magnetizable peripheral section 18a, which preferably comprises iron or a magnetizable laminate. The invention additionally consists of a plurality of flux path reduction slots, three of which are denominated in the drawings as 34a, 36a and 38a. The flux path reduction slots are formed from the sidewall 19a of the rotor 16a and extend from a first end 17a to a second end 21a of the rotor 16a (second end 21a not shown) . Between each two flux path reduction slots, such as 34a and 36a, there is a pole post 50a. The pole post has sides 50a' and 50a'' which are defined by the flux path reduction slots 34a and 36a. The pole slots such as pole slots 50a and 52a, extend from the first side 17a of the rotor 16a to the second side 21a of the rotor 16a. As a result, the sidewall 19a is configured in a series of parallel grooves

which extend parallel to a rotor shaft 30a around the circumference of the rotor 16a.

Lap windings, as traditionally used in electromagnetic devices, can be wound upon the rotor 16a using the flux path reduction slots. The core section 20a provides sufficient isolation of the electromagnetic windings to provide a reduction in the flux path.

In some embodiments of the invention, the magnetic source on the stator or the rotor can be supplied by permanent magnets. In still other embodiments of the invention, the stator or the rotor can be constructed in a conventional manner, with the corresponding rotor or stator constructed in accordance with the present invention.

Additional efficiencies can be achieved by using flux path reduction windings in combination with the flux path reduction slots, the pole posts, and the non-magnetizable core. Shown in Figure 7 is an end view of rotor 16b, similar in construction to the rotor 16a. The rotor 16b includes a magnetizable peripheral section 18b, a non-magnetizable core 20b, pole slots 34b, 36b, 38b, 40b, 42b, 44b, 46b and 48b disposed between flux path reduction posts 50b, 52b, 54b, 56b, 58b, 60b, 62b and 64b. Disposed upon the rotor 16b are four flux path reduction windings 70b, 72b, 74b, 76b and 78b.

Flux path reduction winding 70b is wound upon pole post 52b, a portion of the winding 70b extending into flux path reduction slot 36b and an additional portion of winding 70b extending into flux path reduction slot 38b. Similarly, flux path reduction winding 72b is disposed on pole post 56b, and a portion of winding 72b is disposed in flux path reduction slot 40b, with an additional portion of winding 72b being disposed in flux path reduction slot 42b. Flux path reduction windings 74b and 76b are similarly disposed on the rotor 16b, with a winding-free pole post, such as pole post 54b, disposed between each two of the flux path reduction windings 70b, 72b, 74b, 76b.

Figure 8 is a partial perspective view of the rotor 16b shown in Figure 7, further showing the representative disposition of flux path reduction windings 76b and 78b on the rotor 16b.

Shown in Figure 9 is a schematic diagram of the flux path reduction windings 70b, 72b, 74b, and 76b disposed on the rotor 16b. The flux path reduction windings 70b, 72b, 74b, and 76b, are all wound from a wire 71b. It is understood that the wire 71b can be a multiple stranded or single stranded wire. The wire 71b is fed from the second end 21b of the rotor 16b through the flux path reduction slot 36b (not shown) around a side 52b' of the pole post 52b and down a side 52b" of the pole post 52b. The flux path reduction winding 70b is further wound around sides 52b' and 52b" of the pole post 52b for an appropriate number of turns, based on the design parameters of a particular electromagnetic device (three turns are shown in Figure 9) .

The wire 71b is then fed on the end 21b past pole post 54b, whereupon the wire 71b is fed up side 56b' of pole post 56b, around pole post 56b and down side 56'' of pole post 56b and again up the side 56b' of pole post 56b, the winding in this example consisting of three turns, whereupon the pattern is repeated for the flux path reduction windings 74b and 76b. The effect of winding the flux path reduction windings 70b, 72b, 74b, and 76b in this manner, is to create magnetic flux paths which generally are confined to the area of each of the pole posts, 52b, 56b, 60b, and 64b.

Figure 10 shows a rotor 16c constructed in exactly the same manner as the rotor 16d shown in Figure 7, except the rotor 16c in Figure 10 has two sets of flux path reduction windings disposed thereon. A first set of flux path reduction windings 70c, 72c, 74c and 76c is disposed on pole posts 52c, 54c, 56c, 58c, and 62c, respectively. A second set of flux path reduction windings, 78c, 80c, 82c and 84c is disposed on pole slots 54c, 58c, 62c and 64c respectively.

As shown in Figure 11, the first set of flux path reduction windings is wound from a wire 71c, whereas the second set of flux path reduction windings is wound from a wire 79c. It is understood that the wires 71c and 79c can be single or multiple stranded wires. The first set of flux path reduction windings 70c, 72c, 74c, and 76c, are disposed upon the rotor 16c in exactly the same manner as the flux path reduction windings 70b, 72b, 74b, and 76b, are disposed on the

rotor 16b shown in Figure 7. Figure 10 shows the flux path reduction windings 78c, 80c, 82c, and 84c, disposed upon the pole posts 54c, 58c, 62c, and 50c in a similar manner, such that each of the pole posts in the rotor 16c has one flux path reduction winding disposed thereon.

In the embodiments of the invention shown in Figure 7 and Figure 10, the distance between pole posts such as the pole posts 52b and 54b in Figure 7, or the pole posts 52c and 54c in Figure 10, may be increased or decreased by varying the size of the flux path reduction slots, for example, slots 18b and 38b in Figure 7 or 18c and 38c in Figure 10. This will have the effect of moving the pole posts such as pole posts 52b and 54b in Figure 7, or pole posts 52c and 54c in Figure 10, closer together or farther apart. Moving the pole posts, such as pole posts 52c and 54c closer together will have the additional effect of increasing the magnetic attraction generated by a particular flux path reduction winding, and will also reduce the length of the magnetic flux path.

It is understood that the flux path reduction windings as shown in Figure 7 and Figure 10, will produce, when direct or alternating current is applied to them, via winding wire 71b, 71c or 79c, alternate magnetic poles such that the rotor 16b shown in Figure 7 will, at any moment, have two north poles alternating with two south poles, and the rotor 16c shown in Figure 10 will have, at any moment, four north poles alternating with four south poles. The use of electromagnetic windings to produce alternating north and south poles in electromechanical devices is well known to the art. Shown in Figure 11 is a schematic diagram of the flux-path reduction windings disposed on the rotor 16c shown in Figure 10. Flux path reduction windings 70c, 72c, 74c and 76c are wound in series with a wire 71c and are disposed on pole posts 52c, 56c, 60c and 64c, respectively. Flux path reduction windings 78c, 80c, 82c and 84c are wound in series with a wire 79c and are disposed on pole posts 78c, 80c, 82c and 84c.

The electromagnetic windings shown in Figures 9 and 11 are shown as series windings, but it is understood that the

windings can be parallel wound, or series-parallel wound in other embodiments.

Shown in Figure 12 is an assembly lOd constructed in accordance with the present invention. The assembly lOd includes a stator 22d generally encompassing a rotor 16d, the rotor 16d being constructed essentially the same as the rotor 16b shown in Figure 7. The stator 22d includes a stator enclosure 26d, which, in a preferred embodiment, will be composed of a non-magnetizable material, such as aluminum. The stator 22d also includes an inner section 24d, further comprising an inner surface 25d composed of a magnetizable material such as iron or iron laminates.

The inner surface 25d of the inner section 24d is formed into a polarity of stator flux path reduction slots, eight of such slots being shown in Figure 12 and designated by the numbers 102d, 104d, 106d, 108d, 110d, 112d, 114d, and 116d. The inner section 24d further comprises a polarity of pole posts. In addition, eight pole posts are shown, the pole posts being defined by the flux path reduction slots and bearing the numbers 118d, 120d, 122d, 124d, 126d, 128d, 130d, and 132d.

In this embodiment, the stator 22d also comprises four stator flux path reduction windings 134d, 136d, 138d, and 140d. The aforenumbered flux path reduction windings being wound on alternate stator pole posts in exactly the same manner as the rotor flux path reduction windings 70d, 72d, 74d, and 76d, are wound on alternate rotor pole posts.

The stator flux path reduction windings 134d, 136d, 138d, and 14Od, wound on the stator pole posts 12Od, 124d, 128d and 132d operate to reduce the electromagnetic flux paths in exactly the same manner as the rotor electromagnetic windings shown on rotor 16d.

Figure 13 shows an assembly lOe constructed in accordance with another embodiment of the present invention. A rotor 16e, constructed in generally the same manner as the rotor 16c shown in Figure 10, is disposed within a stator 22e. The stator 22e has an inner section 24e further comprising an inner surface 25e and composed of a magnetizable material, such as iron or iron laminates. The stator 22e further has

an enclosure 26e, which, in a preferred embodiment, is composed of a non-magnetizable material such as aluminum or plastic.

The inner surface 25e of the inner section 24e is formed into a polarity of stator flux path reduction slots, eight of the slots being shown in Figure 10, and designated by the numbers 102e, 104e, 106e, 108e, llOe, 112e, 114e and 116e. The inner section 24e further comprises a polarity of pole posts, defined by the flux path reduction slots and designated by the numbers 118e, 120e, 122e, 124e, 128e, 130e and 132e.

The stator 22e comprises a first set of stator flux path reduction windings 134e, 136e, 138e and 140e, wound on pole posts 120e, 124e, 128e and 132e, respectively. The stator 22e additionally comprises a second set of stator flux path reduction windings 142e, 144e, 146e, and 148e wound on pole posts 118e, 122e, 126e and 130e, respectively. The first set and second sets of stator flux path reduction windings are disposed upon the stator 22e in about the same manner as the first and second sets of rotor flux path reduction windings disposed on the rotor 16c shown in Figures 10 and 11.

In the embodiments of the rotors shown in Figures 7, 8, 10, 12 and 13, and the stators 22 shown in Figures 12 and 13, it is understood that the rotors 16 and stators 22 have been represented to show the features of the present invention, and are otherwise constructed in accordance with the art. For example, insulation, such as insulation paper, is used in practice to line the flux path reduction slots, as shown in Figure 4. Figure 14 diagrammatically shows a control 212, to be used as part of a DC electric motor constructed in accordance with the present invention. The control 212 comprises a DC or DCP current source 214 which passes a DC or DCP current via current path 216 and via current transferring means, such as slip rings, to a rotor 16f. The rotor 16f shown in Figure 14 has electromagnetic armature windings disposed thereon to provide the "north" poles interposed between the "south" poles. Current is transferred from the

13

The AHALF and BHALF signals are outputted to an operational control means 338 comprising a delay module 340, a NAND module 344, and a NOR module 348, all manufactured by National Semiconductor (Part Nos.74LS175, 74LS00, and74LS02, respectively) . The delay module 338 receives a clock signal from the clock 320 via signal path 322b, and places a one microsecond delay on the AHALF signal and the BHALF signal, in order to prevent "shoot through" current effect in the full bridge amplifier 362 contained in the amplifying means 351. The delay module passes an AHALF signal via signal path 342a and a BHALF signal via signal path 342b, and outputs a delayed AHALF signal via signal path 343a and a delayed BHALF signal via signal path 343b. The AHALF/BHALF and delayed AHALF/BHALF signals are received by the NAND module 344 and the NOR module 348, where the AHALF and BHALF signals are compared with the delayed AHALF and BHALF signals.

The NAND module 344 outputs a P-Channel A signal via signal path 346a to predriver assembly 352a comprising a portion of the amplifying means 351. The NAND module 344 also outputs a P-Channel B signal via signal path 346b to a predriver assembly 352b comprising another portion of the amplifying means 351. The NOR module 348 outputs an N-Channel A signal via signal path 350a to the predriver assembly 352a and an N-Channel B signal via signal path 350b to the predriver assembly 352b.

The P-Channel A signal and the N-Channel A signal are output from a disabler 354a (manufactured by Texas Instruments, Part No. 75471) via signal path 356a and 356b, respectively. The P-Channel A and N-Channel A signals are amplified by transistor bridges 358a and 358b, respectively,which output a PA Out and an NA Out signal,via signal paths 356a and 356 to an amplifier and switching module 362, comprising a full bridge amplifier (Motorola Corporation ICEPACK, Part NO. MPM3002). The P-Channel B signal and the N-Channel B signal are output from a disabler 354b (manufactured by Texas Instruments, Part No. 75471) via signal path 360a and 360b, respectively. The P-Channel B and N-Channel B signals are amplified by transistor bridges 361a and 361b, respectively,

14 which output a PB Out and an NB Out signal,via signal paths 356a and 356 to the amplifier and switching module 362. The predriver assembly 352a is constructed in exactly the same manner as the predriver assembly 352b. The amplifier and switching module 362 is alternately activated by the PA Out/NB Out signals and by the PB/NA Out signals, whereupon the module 362 alternately outputs a drive current in a direction 368 on the drive paths 364 and 366, to the electromagnetic windings disposed on the stator and substantially simultaneously receives a return current in a direction 370 on the drive paths 366 and 364 from the electromagnetic windings disposed on the stator, as is explained below.

The circuit 310 also comprises a DC current source comprising a voltage regulator 368 manufactured by National Semiconductor, Part No. LM7805. The voltage regulator passes 9-18V current via current path 373 to the predriver assemblies 352a and 352b, and to the amplifying and switching module 362. the voltage regulator passes 5V operational current to the Hall Effect sensor 314, the clock 320, the voltage monitor 324, the embedded controller 318, the switches 328, 330, and 332, the delay module 340, the NAND module 344, the NOR module 348, and the predriver assemblies 352a and 352b, all via current path 372. Figure 16 shows an exploded view of a flux path and ' core loss reduction assembly 10a constructed in accordance with the present invention. The flux path and core loss reduction assembly 10a comprises a DC electric motor. The assembly 10a comprises a first end plate 402 having an aperture 403 and bearing assembly (not shown) sized to accommodate and rotatably support a rotor shaft 404. The first end plate 402 is connected to a periphery 406 of an enclosure 408 which comprises a shell 410 made of steel and a shield ring 412 made of aluminum. The enclosure 408 is connected to an end of a stator 430, the shield ring 412 acting to isolate a portion of the stator 430 from the shell 410 of the enclosure 406.

The rotor shaft 404 passes through a rotor 414 via an aperture 417, sized to immovably accommodate the rotor

The AHALF and BHALF signals are outputted to an operational control means 338 comprising a delay module 340, a NAND module 344, and a NOR module 348, all manufactured by National Semiconductor (Part Nos. 74LS175, 74LS00, and 74LS02, respectively) . The delay module 338 receives a clock signal from the clock 320 via signal path 322b, and places a one microsecond delay on the AHALF signal and the BHALF signal, in order to prevent "shoot through" current effect in the full bridge amplifier 362 contained in the amplifying means 351. The delay module passes an AHALF signal via signal path 342a and a BHALF signal via signal path 342b, and outputs a delayed AHALF signal via signal path 343a and a delayed BHALF signal via signal path 343b. The AHALF/BHALF and delayed AHALF/BHALF signals are received by the NAND module 344 and the NOR module 348, where the AHALF and BHALF signals are compared with the delayed AHALF and BHALF signals.

The NAND module 344 outputs a P-Channel A signal via signal path 346a to predriver assembly 352a comprising a portion of the amplifying means 351. The NAND module 344 also outputs a P-Channel B signal via signal path 346b to a predriver assembly 352b comprising another portion of the amplifying means 351. The NOR module 348 outputs an N-Channel A signal via signal path 350a to the predriver assembly 352a and an N-Channel B signal via signal path 350b to the predriver assembly 352b.

The P-Channel A signal and the N-Channel A signal are output from a disabler 354a (manufactured by Texas Instruments, Part No. 75471) via signal path 356a and 356b, respectively. The P-Channel A and N-Channel A signals are amplified by transistor bridges 358a and 358b, respectively,which output a PA Out and an NA Out signal,via signal paths 356a and 356 to an amplifier and switching module 362, comprising a full bridge amplifier (Motorola Corporation ICEPACK, Part No. MPM3002). The P-Channel B signal and the N-Channel B signal are output from a disabler 354b (manufactured by Texas Instruments, Part No. 75471) via signal path 360a and 360b, respectively. The P-Channel B and N-Channel B signals are amplified by transistor bridges 361a and 361b, respectively,

which output a PB Out and an NB Out signal,via signal paths 356a and 356 to the amplifier and switching module 362. The predriver assembly 352a is constructed in exactly the same manner as the predriver assembly 352b. The amplifier and switching module 362 is alternately activated by the PA Out/NB Out signals and by the PB/NA Out signals, whereupon the module 362 alternately outputs a drive current in a direction 368 on the drive paths 364 and 366, to the electromagnetic windings disposed on the stator and substantially simultaneously receives a return current in a direction 370 on the drive paths 366 and 364 from the electromagnetic windings disposed on the stator, as is explained below.

The circuit 310 also comprises a DC current source comprising a voltage regulator 368 manufactured by National Semiconductor, Part No. LM7805. The voltage regulator passes 9-18V current via current path 373 to the predriver assemblies 352a and 352b, and to the amplifying and switching module 362. the voltage regulator passes 5V operational current to the Hall Effect sensor 314, the clock 320, the voltage monitor 324, the embedded controller 318, the switches 328, 330, and 332, the delay module 340, the NAND module 344, the NOR module 348, and the predriver assemblies 352a and 352b, all via current path 372. Figure 16 shows an exploded view of a flux path and ' core loss reduction assembly 10a constructed in accordance with the present invention. The flux path and core loss reduction assembly 10a comprises a DC electric motor. The assembly 10a comprises a first end plate 402 having an aperture 403 and bearing assembly (not shown) sized to accommodate and rotatably support a rotor shaft 404. The first end plate 402 is connected to a periphery 406 of an enclosure 408 which comprises a shell 410 made of steel and a shield ring 412 made of aluminum. The enclosure 408 is connected to an end of a stator 430, the shield ring 412 acting to isolate a portion of the stator 430 from the shell 410 of the enclosure 406.

The rotor shaft 404 passes through a rotor 414 via an aperture 417, sized to immovably accommodate the rotor

shaft 404. The rotor shaft 404 is constructed of steel. The rotor shaft 404 is separated from a magnetizable peripheral section 419 of the rotor 414 by a core 416. The core 416 is constructed of aluminum. The rotor 414 further comprises thirty-six flux path reduction slots, two of the flux path reduction slots being designated by the numerals 422 and 424. Each pair of flux path reduction slots, such as slots 402 and 404, is separated by a pole post, such as the pole post 426. Alternate pole posts are wound with armature windings (flux path reduction windings) such as the winding designated by the numeral 428. Each of the reduction slots is lined with an insulation paper. One respective insulation paper has been designated by the numeral 429.

The flux path reduction windings disposed on the rotor 414, are constructed in generally the same manner as the flux path reduction windings shown in Figure 7. The rotor 414 is disposed within the stator 430.

The stator 430 comprises an inner section 432 configured into a plurality of flux path reduction slots such as the slots designated by the numerals 434 and 436. The inner section 432 additionally comprises a plurality of pole posts such as the pole post designated by the number 438. Armature windings, or flux path reduction windings, such as the winding designated by the numeral 440 are disposed on alternate pole posts, in generally the same manner as the flux path reduction windings are disposed on the stator shown in Figure 12. Each of the flux path reduction slots is lined with insulation paper. A representative insulation paper is designated by the numeral 441. A second enclosure 442 is connected, via a shield ring 444 to the stator 414. The shield ring 444, which is made of aluminum, acts to separate the stator 414 from the shell 446 of the enclosure 442. The shell 446 in this embodiment is made of steel. A current transfer assembly 448 is disposed generally within the shell 446 of the exclusive 442 adjacent the rotor 414 and connected to the shell 446. The current transfer assembly 448 comprises two floating carbon brushes or contacts 450a and 450b. The current transfer assembly also

comprises a Hall Effect sensor 452. The floating carbon contact 450a acts to transfer electrical power to the armature windings on the rotor 414, via a conductive slip ring 454 on the rotor shaft 404 and the contact 450b takes electric power from the armature windings on the rotor 414 via a slip ring 456 on the rotor shaft 404. A second end plate 458 is connected to the periphery 447 of the shell 446. The end plate 458 is pierced by an aperture 460 which contains bearing means (not shown) sized to movably accept and support a portion of the rotor shaft 404. The rotor shaft 404 extends a distance beyond the first end plate 402 and the second end plate 454, and the extended portion of the rotor shaft 404 can be additionally connected, via gears, belts, or other means, to a load. The assembly 10a further comprises a control, substantially similar to the control circuit 312 shown in Figure 15. The control is contained in an aluminum control box (not shown) which is mounted on the assembly 10a.

In operation, a DC electric current is passed via appropriate means to the current transfer assembly 448 and thereafter to the floating carbon contact 450a. Current travels from contact 450a to an armature wire, attached at one end to slip ring 454. The armature windings on the rotor 414 are wound from the armature wire. Current flows through the wire, thereby causing the windings to become polarized, creating a series of "north" and "south" alternating electromagnetic fields. A second end of the armature winding wire is additionally connected to the slip ring 456 and the current passes, via floating carbon contact 450b to additional connecting means which connect the floating carbon contact 452 with the control box.

In the control box, the current is processed, as was explained above, and the rotor movement signalled by the Hall Effect sensor 452 which is located on the current transfer assembly 448, the sensed signal also being outputted to the control box. The resulting power and control current is passed via an armature winding wire to the armature windings on the stator 430. Interposed between the armature windings and the control box is a current inverter (not shown) which,

upon receipt of control signals from the control box, alternately changes the direction of current flow through the windings disposed on the stator 430. This has the effect of alternately changing the polarity of the armature windings on the stator 430 from "south" to "north" and from "north" to "south".

The change in polarity of the stator windings has the effect of alternately attracting and repelling the windings on the rotor 414, thereby causing the rotor 414 to turn, in accordance with principles known to the art.

Changes may be made in the construction and the operation of the various components, elements and assemblies described herein and changes may be made in the steps or the sequence of steps of the methods described herein without departing from the spirit and scope of the invention as defined in the following claims.

TABLE A

THIS INTERRUPT OCCURS WHEN THE COUNTER REGISTER EQUALS THE OUTPUT COMPARE REGISTER. THIS OCCURS WHEN THE LOW WORD OF DELAY EQUALS THE OCR.

DISABLE OCR INTERRUPT

END

TIME EQUATES

THE FOLLOWING TIMES ARE BASED ON THE 68701 COUNTER RUNNING AT 1 MHZ ALSO, THE FOLLOWING TIMES ARE COUNTS PER PERIOD.

IDLE VELOCITY OF 3600 = 463 US

COUNT_50RPM 50 RPM COUNT 1000RPM 1000 RPM COUNT~2000RPM 2000 RPM COUNT_3000RPM 3000 RPM DEBOUNCE NUM MAX MAX NUMBER OF ACTIVE SWITCH

STATES

GAIN - VELOCITY REGULATION

IDLE_VEL_COUNT_10DOWN MIN VELOCITY TO REGULATE -10%

IDLE_VEL_COUNT_10UP MAX VELOCITY TO REGULATE +10%

IDLE_VEL_COUNT IDLE VELOCITY

Kl ADD OR SUB TO LAST DELAY

TO REGULATE VELOCITY

K2 UNIT TIME DELAY - VELOCITY

REGULATION

LEAD_COUNT_0RPM DELTA_COUNT - LEAD_COUNT =

DELTA_COUNT

LEAD_COUNT_5ORPM - LEAD_COUNT = DELAY_COUNT

LEAD_COUNT_1000RPM DELTA_COUNT - LEAD_COUNT = DELAY_COUNT

LEAD_COUNT_2000RPM DELTA_COUNT - LEAD_COUNT = DELAY_COUNT

LEAD_COUNT_300ORPM DELTA_COUNT - LEAD_COUNT = DELAY_COUNT

LEAD COUNT MAX MIN DELAY COUNT. MAXIMUM ADV ALLOWED BY VELOCITY CONTROL

PORT EQUATES

P1DDR

P2DDR

P3DDR

P4DDR

P1DR

P2DR

P3DR

P4DR

TCSR

CR

OCR

ICR

RCR

STACKPTR EQU $FF STACK POINTER

END

20

END

FALLING EDGE OF HALL SENSOR IS DETECTED

HALL ;CLR INT

;CLR INT - HIGH BYTE

OVERFLOW WHEN CR IS RESET

;RESET CR TO $FFF8

DETERMINE THE STATE EDGE OF NEXT HALL

LDAA P2DR

BITA #200000001

BNE :+l BRANCH IF BLACK

LDAA TCSR

ORA #200000010 ;LOOK FOR POS EDGE

STAA TCSR

BRA STORE_NEW_COUNT

LDAA TCSR

ANDA #%11111101 ;LOOK FOR NEG EDGE ;OR WHITE

STAA TCSR

STORE LARGEST NEW COUNT

STORE NEW COUNT

INDICATE THAT THE FIRST HALL SENSOR WAS RECEIVED

LDAA #1

STAA FIRST_HALL

RTI

TEST SECOND HALL SENSOR

TEST THE POLE CHANGE FLAG. IF CLR, THE POLES HAVE NOT COMPLIMENTED. DO SO AT THIS TIME

SECOND_HALL_TST TST SECOND_HALL

BNE FIND DELAY

INDICATE THAT THE FIRST HALL SENSOR WAS RECEIVED

LDAA #1

STAA SECOND HALL

FIND THE NEXT COMMUTATION PERIOD BY CALCULATING DELAY. COMMUTATION WILL OCCUR AT THE END OF THE DELAY TIME

IS DELTA IN IDLE RANGE?

FIND DELAY LDD #IDLE_VEL_COUNT_10DOWN ;MIN VELOCITY

SUBD NEW_COUNT+l

LDAA #0

SBCA NEW_COUNT

BLT CALC ACCEL DELAY BRANCH IF OUT OF RANGE

LDD NEW_COUNT+l

SUBD #IDLE_VEL_COUNT_10UP ;MAX VELOCITY

LDAA NEW_COUNT SBCA #0

BLT CALC ACCEL DELAY /BRANCH IF OUT OF RANGE

REGULATE THE VELOCITY BY ADDING OR SUBTRACTING K2 X G X ERR, WHERE / K2 - UNIT TIME DELAY G - GAIN ERR - DESIRED PERIOD COUNT - CURRENT PERIOD COUNT

REG VEL

/VELOCITY OK

/ VEL TO SLOW

VEL TO FAST

REGULATE THE VELOCITY BY ADDING OR SUBTRACTING Kl TO/FROM THE DELAY IF THE ERROR (NEW_COUNT - IDLE_VEL_COUNT) IS - OR + RESPECTIVELY

REG VEL

/VELOCITY OK

VEL TO SLOW

DO NOT DECREASE THE DELAY_COUNT BELOW DELAY_COUNT_MIN. THIS IS THE MAXIMUM ADVANCE ALLOWED TO VELOCITY REGULATE.

NOW FIND THE MINIMUM DELAY

LDD NEW_COUNT+l

SUBD #LEAD_COUNT_MAX

STD TEMP+1

LDAA NEW_COUNT

SBCA #0

STAA TEMP

IS CURRENT DELAY GREATER THAN MINIMUM DELAY

LDD DELAY_COUNT+l

SUBD TEMP+1

LDAA DELAY_COUNT

SBCA TEMP

BGE FIND DELAY END

APPLY MINIMUM DELAY

VEL TO FAST

DO NOT LET DELAY COUNT GO LARGER THAN NEW COUNT

LDD NEW_COUNT+l

SUBD DELAY_COUNT+l

LDAA NEW_COUNT

SBCA DELAY_COUNT

BGE FIND_DELAY_END

LDD NEW_COUNT+l /DON'T GO MORE THAN

STD DELAY_COUNT+l /NEW COUNT

LDAA NEW_COUNT

STAA DELAY_COUNT

BRA FIND DELAY END

DETERMINE THE MOTOR RPM RANGE.

RANGE RPM RANGE LEAD ANGLE

COUNT_50RPM 0-50 LEAD_COUNT_50

COUNT_1000RPM 51-1000 LEAD_COUNT_1000RPM

COUNT_2000RPM 1001-2000 LEAD_COUNT_200ORPM

COUNT_3000RPM 2001-3000 LEAD_COUNT_3000RPM

COUNT 4000RPM 3001-4000 LEAD COUNT 4000RPM

ADD THE DIFFERENCE - 400 TO THE COUNT JUST RECORDED

FIND DELAY END

/OVERFLOW WHEN CR IS RESET

ENABLE OUTPUT COMPARE INTERRUPT

LDAA TCSR

ORA #%00001000

STAA TCSR

RTI

COMPLEMENT THE POLARITY OF THE STATOR POLES

POLE COMPLIMENT

/BRANCH IF BLACK

CALC THE DELAY_COUNT BY SUBTRACTING THE LEAD_COUNT FROM THE NEW COUNT OF THE LAST STATE DURATION

CALC DELAY-COUNT LDD TEMP

SUBD NEW COUNT+1

{BRANCH IF IN RANGE

END

INITIALIZE

INIT PORT / CLR INT

/CLR OVERFLOW INT

/CLR OUTPUT COMPARE INT

/CLR INPUT CAPTURE INT

/BIT 3,4,5 INPUT,

/ REST OUTPUT

/ BIT 0 INPUT, REST OUTPUT

/ XFER ON POS EDGE / ENABLE OVERFLOW INT /DISABLE OUTPUT COMPARE INT /ENABLE INPUT CAPTURE INT /OUTPUT COMPARE NUMBER /WRITE OUTPUT COMPARE REG

/DISABLE OUTPUT DRIVERS

RUN AT POWER UP RESET AND ON A CLEAR

INIT VAR

STAA DOWN_DEBOUNCE_NUM STAA UP_DEBOUNCE_NUM RTS

UPDATES TO THE SOFTWARE

VERSION 1.0 - 4/1/93 JON BUCKMAN

THIS IS THE MAIN ROUTINE. IT INCORPORATES EQUATES AND A MONITOR LOOP.

DEFS INTERRUPTS,$FFF0

DEFS ROM,$F800 /PROGRAM STORAGE AREA

DEFS RWM,$80 /RWM

LIBRARY VARIABLES

LIB EQUATES. IB LIB GLOBALS.LIB

INTERRUPTS

SEG INTERRUPTS

DW $0,OVERFLOW,DELAY TIMER,HALL,$0,$0,$0,START

PROGRAM

******** START OF MAIN LOOP ********

SEG ROM

START SEI /SET INT MASK LDS #STACKPTR JSR INIT_PORT /INITIALIZE THE PORT(S) JSR INIT VAR /INITIALIZE VARIABLES JSR START_STATE /FINDS CORRECT STATE TO START CLI /CLEAR INT MASK

START MONITOR LOOP

EXAMINE INC VELOCITY SWITCH

BEGIN JSR VEL UP

EXAMINE DEC VELOCITY SWITCH

EXAMINE DISABLE SWITCH

JSR DISABLE_DRIVER JSR VEL_DOWN JMP BEGIN

******** END OF MAIN LOOP ********

LIBRARY ROUTINES

LIB DELAY_TIMER.LIB

LIB HALL.LIB

LIB INITIALIZE.LIB

LIB OVERFLOW.LIB

LIB STARTJ3TATE.LIB

LIB VELOCITY.LIB

LIB CONSTANTS.LIB

END

OVERFLOW INTERRUPT WHEN THE HIGH BYTE OF DELAY_COUNT IS TO BE DECREMENTED AND ICRH IS TO BE INCREMENTED

OVERFLOW LDAA TCSR / CLR INT

LDAA CR / CLR INT - HIGH BYTE

DEC SWITCH_COUNT

INC ICRH

END

I

J FIND THE CORRECT STATE TO START THE MOTOR BY EXAMINING P20 j OR HALL INPUT. j t

I

START STATE

{BRANCH IF BLACK

;LOO FOR POS EDGE ;O BLACK

;LOOK FOR NEG EDGE ;OR WHITE

END

INCREMENT OR DECREMENT THE VELOCITY

VEL UP

LDAA #DEBOUNCE_NUM_MAX STAA UP_DEBOUNCE_NUM CLR UP DEBOUNCED

VEL UP END RTS

VEL DOWN

/DOWN SWITCH

VEL DOWN END RTS

DISABLE DRIVER LDAA PIDR

BITA #%00100000 /DISABLE SWITCH

BNE :+l

DEC DISABLE_DEBOUNCE_NUM

BNE DISABLE_DRIVER_END

TST DISABLE_DEBOUNCED

BNE DISABLE_DRIVER_END

LDAA PIDR

ORA #%11000011

STAA PIDR /DISABLE DRIVERS

LDAA #1

STAA DISABLE_DEBOUNCED

STAA DISABLE /STOP FURTHER STATE CHG

BRA DISABLE DRIVER END

LDAA #DEBOUNCE_NUM_MAX STAA DISABLE_DEBOUNCE_NUM CLR DISABLE DEBOUNCED

DISABLE DRIVER END RTS

END