Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FOOT COMPRESSION AND ELECTRICAL STIMULATION SYSTEM
Document Type and Number:
WIPO Patent Application WO/2013/025481
Kind Code:
A1
Abstract:
Systems configured to apply pressure to a foot and electrically stimulate muscles to contract in order to increase circulation and facilitate removal of metabolic waste, and related methods, are disclosed. One exemplary embodiment comprises an actuator that repeatedly compresses the bottom of a foot and an electrical muscle stimulator that repeatedly sends electrical pulses to a muscle to facilitate a muscle contraction. The system may also include a compression garment, such as a compression sock to be worn while undergoing both the repeated compression cycles and the repeated electrical pulses. The system may also include an item of footwear, wherein the actuator portion is partially or completely contained within the item of footwear. Additionally and/or alternatively, the electrical muscle stimulator may be partially or completely contained within the item of footwear.

Inventors:
MAYER MATTHEW J (US)
Application Number:
PCT/US2012/050290
Publication Date:
February 21, 2013
Filing Date:
August 10, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AVEX LLC (US)
MAYER MATTHEW J (US)
International Classes:
A61N1/32
Foreign References:
US20110166480A12011-07-07
US20040030270A12004-02-12
US6615080B12003-09-02
US20060142817A12006-06-29
US20080071202A12008-03-20
Attorney, Agent or Firm:
ASHCRAFT, Damon, J. (One Arizona Center400 East Van Buren Stree, Phoenix AZ, US)
Download PDF:
Claims:
CLAIMS

What is claimed is: 1. A compression and stimulation system, comprising:

an actuator portion comprising a pressure pad; and

an electrical stimulation portion comprising a pulse generator and at least two electrodes. 2. The system of claim 1 , wherein the pressure pad is non-bendable,

3. The system of claim 1 , further comprising an item of footwear,

4. The system of claim 3, wherein the actuator portion is completely contained within the item of footwear.

5. The sy stem of claim 4, wherein the footwear has a flexible sole.

6. The system of claim 1, further comprising a power supply, wherein the power supply supplies operational power to the actuator portion and to the electrical stimulation portion.

7. The system of claim 1 , further comprising a sensor operable to communicate with the actuator portion, wherein the sensor determines whether a user of the system is walking, and wherein, responsive to input from the sensor, the actuator portion is not activated when the user of the system is walking.

8. The system, of claim 7, wherein the actuator portion is configured to prevent extension of the pressure pad responsive to an indication that the actuator portion has been moved within a predetermined time period.

9. The system of claim 7, wherein the electrical stimulation portion is configured to prevent delivery of an electrical pulse from the at least two electrodes responsive to an indication that the electrical stimulation portion has been moved within a predetermined time period.

10. The system of claim 1, wherein the pressure pad extends a distance between 1 mm and 24 mm to generate an applied pressure of between 100 mml lg and 500 mniHg.

1 1. The system of claim 10, wherein the actuator portion extends the pressure pad from a fully retracted position to a fully extended position in a time between about 100 milliseconds and about 300 milliseconds.

12. The system of claim 3, wherein the actuator portion is removable from the item of footwear.

13. The system of claim 4, wherein the electrical stimulation portion is removable from the item of footwear.

14. A method of implementing athletic recovery in a person following exercise, the method comprising:

moving, via an actuator, a non-bendabie pressure pad a first time to bring the pressure pad into contact with a foot to compress a portion of the foot, wherein the pressure pad and the actuator are completely contained within a shoe;

moving, via the actuator, the pressure pad a second time to bring the pressure pad out of contact with the foot to allow the portion of the foot to at least partially refill with blood; moving, via the actuator, the pressure pad a third time to bring the pressure pad into contact with the foot to force at least a portion of the blood out of the portion of the foot; applying, via an electrical pulse generator, an electrical pulse to at least a portion of the leg coupled to the foot.

15. The method of claim 14, wherein the moving occurs during a time period between 10 minutes after exercise to 2 hours after exercise.

16. The method of claim 14, wherein the actuator moves the pressure pad responsive to

J inactivity of the foot for a predetermined time period.

17. The method of claim 14, wherein the electrical pulse generator applies an electrical pulse to at least a portion of the leg responsive to inactivity of the leg for a predetermined time period.

1 8. The method of claim 14, wherein the moving the pressure pad into contact with the foot results in at least one of increased peak venous velocity, augmentation of venous volum return, or augmentation of fibrinolysis,

19. The method of claim 14, wherein the applying the electrical pulse results in at least one of increased peak venous velocity, augmentation of venous volume return, or augmentation of fibrinolysis. 20, A method of treating a medical condition selected from a group comprising deep vein thrombosis, edema, restless leg syndrome, venous insufficiency, plantar fasciitis, or a wound, comprising:

moving, by a compression and stimulation system, a pressure pad a first time to bring the pressure pad into contact with a portion of a human body to compress the portion of the human body;

moving, by the compression and stimulation system, the pressure pad a second time to bring the pressure pad out of contact with the portion of a human body to al low the portion of the human body to at least partial iy refill with blood;

moving, by the compression and stimulation system, the pressure pad a third time to bring the pressure pad into contact with the portion of the human body to compress the portion of the human body: and

stimulating, by the compression and stimulation system, a muscle of the human body with an electrical pulse to cause the muscle to at least partially contract, 21 . The method of claim 21 , wherein the method achieves the identical effect of walking when a user is not walking.

22. A compression and stimulation system, comprising;

an item of footwear comprising a flexible sole for walking thereon;

an actuator portion comprising a pressure pad, the actuator portion completely contained within the item of footwear;

a compression garment coupled to the item of footwear; and

an electrical stimulation portion coupled to the compression garment, the electrical stimulation portion comprising a pulse generator and at least two electrodes.

23. The system of claim 21, further comprising a power supply electrically coupled to both the actuator portion and the electrical stimulation portion,

24. The system of claim 22, wherein the power supply is completely contained within the item of footwear. 25. The system of claim 21, wherein the pulse generator delivers an electrical pulse for application to a portion of a body by the at least two electrodes, the electrical pulse having a voltage of about 40 volts, an amplitude of about 90 miiliamps, a pulse width of about 400 microseconds, and a pulse rate of about 70 Hertz.

Description:
FOOT COMPRESSION AND ELECTRICAL STIMULATION SYSTEM

TECHNICAL FIELD

The present disclosure generally relates to systems and methods or creating a similar amount of blood flow to a part of the body, such as the legs and feet, as would be experienced during muscle contraction and movement, such as walking. To this end, the present disclosure generally relates to systems and methods for mechanically compressing an area of the body, such as the venous plexus region in the arch of the foot, and the superficial veins of the top of the foot to stimulate blood flow, while electrically stimulating the muscles proximate to the same area and surrounding areas, such as the calf and thigh.

BACKGROUND

Under normal circumstances, blood moves up the legs due to muscle contraction and general movement of the feet or legs, such as when walking, if a person is immobilized, unable to move regularly, or has poor circulation brought on by disease, the natural blood return mechanism is impaired, and circulatory problems such as ulcers, deep vein thrombosis, and pulmonary embolisms can occur,

To mitigate the problems caused by low mobility and poor circulation, it is desirable to enhance circulation through alternative means that attempt to mimic the effects of walking. Ideally, a device to enhance circulation would create the same amount of blood flow to the lower extremities as one would obtain via walking. One exemplary device is a device set forth in U.S. Patent Mo. 7,909,783. While this device significantly enhances circulation to stimulate the effects of walking, further enhancement of circulation to substantially replicate the effects of walking remains desirable.

SUMMARY

A compression and electrical stimulation system is configured to apply pressure to a foot and electrically stimulate the muscles of the same or surrounding areas (e.g., loot and leg) to contract, for example in order to increase circulation, in an exemplary embodiment, a system configured in accordance with principles of the present disclosure comprises an actuator portion comprising a retractable, non-bendabie pressure pad and an electrical muscle stimulator that may optionally be combined with a compression garment. Another exemplary embodiment further comprises an item of footwear, wherein the actuator portion is completely contained within the item of footwear. Similarly, in other exemplary embodiments, the electrical muscle stimulator is completely contained within an item of footwear.

in various exemplary embodiments, a compression and stimulation system configured in accordance with principles of the present disclosure may be utilized for one or more of athletic warm-up or recovery, the removal of metabolic waste, wound care and recovery, or the treatment of medical conditions including plantar fasciitis, restless leg syndrome, deep vein thrombosis, pulmonary embolism, venous insufficiency, and/or the like.

BRIEF DESCRIPTION OF THE. DRAWINGS

The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. The present disclosure, however, both as to organization and method of operation, may best be understood by reference to the following description taken in conjunction with the claims and the accompanying drawing figures, in which like parts may be referred to by like numerals:

FIG, 1 illustrates a compression and stimulation system in accordance with an exemplary embodiment;

FIG. 2A illustrates an actuator portion of a compression and stimulation system in accordance with an exemplary embodiment;

FIG. 2B illustrates an actuator portion of a compression and stimulation system with a battery detached in accordance with an exemplary embodiment;

FIG. 3 illustrates various components of an actuator portion of a compression and stimulation system in accordance with an exemplary embodiment;

FIGS. 4A through 4C illustrate various components of an actuator portion of a compression and stimulation system in accordance with an exemplary embodiment;

FIG. 5 illustrates a reader portion of a compression and stimulation system in accordance with an exem lary embodiment;

FIGS. 6A - 6D illustrate a compression and stimulation system in accordance with an exemplary embodiment;

FIG. 7 illustrates an exemplary compression and stimulation system coupled to a compression garment in accordance with an exemplary embodiment; and FIGS. 8A and 8B illustrate methods of using an exemplary compression and stimulation system in accordance with various exemplary embodiments.

DETAILED DESCRIPTION

Details of the present disclosure may be described herein in terms of various components and processing steps, it should be appreciated that such components and steps may be realized by any number of hardware and/or software components configured to perform the specified functions. For example, the system may employ various medical treatment devices, input and/or output elements and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices. In addition, details of the present disclosure may be practiced in any number of medical or treatment contexts, and exemplary embodiments relating to a compression and stimulation system, for example usable in connection with treatment of deep vein thrombosis, or in connection with athletic recovery, as described herein are merely a few of the exemplary applications. For example, the principles, features and methods discussed may be applied to any medical or other tissue or treatment application.

Further, the principles of the present disclosure are described herein with continued reference to a foot for purposes of explanation. However, such principles may also be applied to other parts of a body, for example when an improvement of circulation is desired.

Significant health benefits can be achieved by the addition of electrical stimulation to a compression and stimulation system. For example, health benefits comparable to or equal to the benefits arising from walking may be be achieved by combining a compression device with an electrical stimulation in accordance with principles of the present disclosure,

A foot compression and electrical stimulation system may be any system configured to deliver a reciprocating compressive force and electrical stimulation to a portion of a living organism, for example a human foot, calf, or thigh. With reference now to FIG, 1 , and in accordance with an exemplary embodiment, compression and stimulation system 100 comprises a tissue depressor l OOA and an electrical muscle stimulator 100B. Tissue depressor Ϊ 00Α is configured to deliver a reciprocating compressive force to a portion of a living organism, preferably a human foot. Electrical muscle stimulator I00B is configured to generate an electrical pulse to a portion of the living organism. In one exemplary embodiment, the electrical pulse is applied to the same or neighboring portions of the living organism as the portion receiving the compressive force delivered by tissue depressor 100 A. Moreover, compression and stimulation system 100 may be configured with any appropriate components and/or elements configured to deliver a reciprocating compressive force and an electrical pulse to a portion of a living organism.

In an exemplary embodiment, tissue depressor 100A comprises an actuator portion

1 10. In an exemplary embodiment, electrical muscle stimulator 100B comprises a pulse generator 130 coupled to at least two electrodes 131 and control electronics 1 19B. In an exemplary embodiment, actuator portion 1 10 may be responsive to communication with one or more of a reader portion 120, a computer, or an input 124 A.

With further reference now to FIGS. 2A-2B, 3, and 4A-4C, and in accordance with an exemplar)' embodiment, actuator portion 1 10 comprises depressor housing 1 11, pressure pad 1 12, pad top 1 13, motor 14, gearbox 1 15, output gears ί 16, main gears 1 1 7, slip clutch 1 18, control electronics 3 I9A, and weight sensor 125. Reader portion 120 comprises control box 121 , batteries 131 A (not shown in figures), display 123, and inputs 124A. In an exemplary embodiment not comprising a reader portion, actuator portion 1 10 may further comprise inputs 124A. In various other exemplary embodiments, certain components are not present for example slip clutch 1 18 and reader portion 120.

Actuator portion 1 10 may be any device, system, or structure configured to apply a compressive force to a foot. In an exemplary embodiment, actuator portion 1 10 is configured to be removably located in the sole area of an item of footwear 150 such as a shoe, sandal, or any other type of footwear product, in other exemplary embodiments, actuator portion 1 10 may be integrated into footwear 150. Actuator portion 1 10 may also be a stand-alone unit, for example a footrest.

In various exemplary embodiments, actuator portion 110 has an outer shape at least partially defined by a depressor housing 1 1 1 . Depressor housing 1 1 1 may be formed of metal, plastic, composite, or other suitable durable material. Depressor housing 1 1 1 is configured to enclose various portions of tissue depressor I00A. Depressor housing 1 1 1 may aiso be configured to house various portions of the electrical muscle stimulator 100B along with portions of the tissue depressor 1 0A, Actuator portion 1 10 may be configured to be entirely contained within and/or integrated into an item of footwear, for example, a shoe. Turning now to FIGS. 2A through 3, and in accordance with an exemplary embodiment, pressure pad 1 12 comprises a rigid or semi-rigid structure configured to press against a person's foot. In various exemplary embodiments, pressure pad 1 12 is extendabie and retractable. Moreover, pressure pad 1 12 may be rigid, semi-rigid, non-deformable, and/or non-bendable. Pressure pad 1 12 is coupled to main gears 1 17. Moreover, pressure pad 1 12 may be configured to be moved by and/or coupled to any suitable power transfer components.

Pressure pad 1 12 may be made of any suitable materials, tor example metal, plastic, composite, and/or the like. Moreover, pressure pad 1 12 may be comprised of any material suitable for transferring force to a person's foot. Pressure pad 1 12. may also be monolithic. Alternatively, pressure pad 1 12 may comprise two or more individual components, in certain exemplary embodiments, pressure pad 1 12 comprises a rigid main structure configured with a flexible pad top 1 1 3, for example a pad top 1 13 comprised of rubber, silicone, or other suitable material. Pad top 1 13 may be smooth, ridged, dimpled, patterned, and/or otherwise haped and/or textured, in this manner, pressure pad 1 12 may be configured to press against a person's foot while providing a desired level of cushioning, comfort, friction, and/or the like, for example due to pad top 1 13,

Pressure pad 1 12 can be any size to transfer a desired amount of force to a person's foot. According to an exemplary embodiment, pressure pad 1 12 applies force directly to the arch region of the foot. In various exemplary embodiments, pressure pad 1 12 comprises a contact surface area in the range of about 6 square centimeters to about 30 square centimeters. In various exemplary embodiments, pressure pad 1 12 comprises a contact surface area in the range of about 10 square centimeters to about 24 square centimeters, in other exemplary embodiments, pressure pad 1 12 comprises a contact surface area in the range of about 1 8 stjuare centimeters to about 23 square centimeters. However, pressure pad 1 1 2 may be configured with any appropriate dimensions, surfaces, angles, and/or components, as desired, in order to transfer force to a foot. For example, in certain exemplary embodiments wherein compression and stimulation system 100 is utilized in connection with athletic recovery, pressure pad 1 12 may be configured with a contact surface area substantially equal to the surface area of the bottom of a foot, for example a contact surface area in the range of between about 100 square centimeters to about 150 square centimeters. In various exemplary embodiments, pressure pad 1 12 further comprises a pressure sensor 125 configured to measure the pressure generated by pressure pad 1 12, The pressure sensor may communicate with control electronics 1 19A and/or other components of compression and stimulation system 100 in order to achieve a. desired level of pressure generated by pressure pad 1 12.

In accordance with an exemplary embodiment, pressure pad 1 12 may be kept in an extended position for a time between about 1 and 5 seconds. In various exemplary embodiments, pressure pad 1 12 is pressed against the venous plexus region of the foot for a time between approximately 1 and 5 seconds, and preferably closer to 2 seconds. When extended away from depressor housing 1 1 1 , pressure pad 1 12 presses against the venous plexus region of the foot. Pressure pad 1 12 compresses the veins both in the arch of the foot and across the top of the foot from approximately the metatarsal-phalangeal joints to the talus. However, principles of the present disclosure contemplate pressure pad 1 12 pressing against any desired site on a body and being kept in an extended position for any suitable time, for example to stimulate blood flow.

In an exemplary embodiment, pressure pad 1 12 is configured to extend and/or retract over a desired time period. In various exemplary embodiments, pressure pad 1 12 is configured to extend from a fully retracted position to a fully extended position in a time between about 0.1 second and about 1 second, and preferably between about 0.1 second and about 0.3 seconds. However, pressure pad 1 12 may be configured to extend and/or retract over any suitable time period. Moreover, variances in between individuals (e.g., the unique features of a foot such as height of arch, curvature of arch, width, length, and/or the like) may effect, the time period over which pressure pad is deployed.

in an exemplary embodiment, pressure pad 1 12 retracts so that it is flush or nearly flush with an outer surface of depressor housing i l l . Compression and relaxation is then followed by a period of non-compression to allow the veins to re-fi!! with blood. In various exemplary embodiments, pressure pad 1 12 is pressed against the venous plexus region of the foot and then retracted in regular intervals of between about 20 seconds to about 45 seconds, and preferably between 25 seconds to 35 seconds. However, pressure pad 1 12 may be pressed against the venous plexus region of the foot and then retracted in any suitable interval, for example to stimulate blood flow. For example, compression may be rapid in order to move blood through the veins of the lower leg at an elevated velocity and to release chemical compounds that reduce pain.

In various exemplary embodiments, switches may be employed to ensure that pressure pad 1 12 does not extend beyond a pressure threshold, such as between about 1 mmHg and 500 mmHg, and more preferably between about 300 mmHg and about 465 rnrnHg. In various exemplary embodiments, pressure pad 1 12 is extended with a force of between about 50 Newtons and about 1 1 5 Newton s, and more preferably between about 60 Newlons and about 100 Newtons, While various pressures and/or forces have been described herein, other pressures and/or forces can be applied and fall within the scope of the present disclosure. Moreover, switches and/or other devices may be placed at the locations of maximum and/or minimum extension of pressure pad 1 12 in order to ensure that motor 1 14 is appropriately shut off " at the end of travel.

While specific time ranges, sizes, pressures, movement distances, and the like have been described herein, these values are given purely for example. Various other time ranges, sizes, pressures, distances, and the like can be used and fail within the scope of the present disclosure. Any device configured to apply pressure to a person's foot as set forth herein is considered to fall within the scope of the present disclosure.

In accordance with an exemplary embodiment, switches and/or other appropriate mechanisms may be located at the maximum and/or minimum extensions of pressure pad 1 12 in order to prevent motor 1 14 from attempting to force pressure pad 1 12 beyond the end of travel. Such switches or other travel-limiting devices may be implemented mechanically, in hardware, in software, or any combination of the foregoing.

Motor 1 34 may be any component configured to generate mechanical force to move pressure pad 1 12. With reference now to F GS. 4 A through 4C, and in accordance with an exemplary embodiment, motor 1 14 comprises a rotary output shaft driving a pinion. Motor 1 14 may comprise any suitable motor, such as a brushiess direct current (DC) motor, a brushed DC motor, a coreiess DC motor, a linear DC motor, and/or the like. Moreover, any motor, actuator, micro-engine, or similar device presently known or adopted in the future to drive moving parts within actuator portion 1 10 falls within the scope of the present disclosure, In various other exemplar embodiments, motor 1 14 may be replaced with another suitable power generation mechanism capable of moving pressure pad 1 12, such as an artificial muscle, a piezoelectric materia!, a shape memory alloy, and/or the like. Motor

1 14 is coupled to gearbox 115.

With continued reference to FIGS, 4A through 4C, and in accordance with an exemplary embodiment, gearbox 1 15 comprises a mechanism configured to increase the mechanical advantage obtained by motor 1 14, for example a reduction gearbox. Gearbox

1 15 is coupled to motor 1 14 and to output gears 1 16. Output force from motor 1 14 is transferred through gearbox 1 15 in order to achieve an appropriate gear ratio for effectuating movement of pressure pad 1 12. Thus, gearbox 1 15 may have a fixed gear ratio. Alternatively, gearbox 1 15 may have a variable or adjustable gear ratio. Gearbox 1 15 may comprise any suitable ratio configured in any suitable matter to effectuate movement of pressure pad 3 12, Moreover, gearbox 1 15 may comprise any suitable components, configurations, ratios, mechanisms, and/or the like, as desired, in order to transfer output force from motor 1 14 to other components of actuator portion 1 10, for example output gears 1 16

Output gears 1 16 may comprise any mechanism configured to transfer force from gearbox 1 15 to main gears 1 17. Continuing to reference FIGS. 4A through 4C, in accordance with an exemplary embodiment, output gears 1 16 comprise metal, plastic, or other durable material Output gears 1 16 are coupled to gearbox i 1 5 and to main gears 1 i 7. Output force from motor 1 14 is transferred through gearbox 1 15 to output gears 1 16. Output gears 1 16 are further configured to interface with main gears 1 1 7, Moreover, output gears 1 16 may comprise any composition or configuration suitable to transfer force to main gear 1 12.

Main gears 1 17 may comprise any suitable component or structure configured to effectuate movement of pressure pad 1 12. As illustrated in FIGS. 4A through 4C, in an exemplary embodiment, one or more main gears 1 1 7 are coupled to pressure pad 1 12. Main gears 1 17 interface with output gear 1 10. As main gears 1 17 move in response to force transferred by output gears 1 16, pressure pad 1 12 is extended and/or retracted through its range of motion. In various exemplary embodiments, main gears 1 17 are configured to effectuate movement of pressure pad I I 2 a distance of between about I mm to about 24mm from a fully retracted to a fully extended position. In various other exemplary embodiments, main gears 1 17 are configured to effectuate movement of pressure pad Π 2 a distance of between about 12mm to about 24mm from a fully retracted to a fully extended position. Moreover, movement of pressure pad f 12 may vary based on an individual user. For example, pressure pad 1 12 may be extended a larger distance for a user having a higher foot arch, and a smaller distance for a user having a lower foot arch. Additionally, pressure pad 1 12 may be moved between a fully retracted and a partially extended position, for example if a desired pressure value is reached via partial extension of pressure pad 1 12. Pressure pad 1 12 may also move responsive to operation of slip clutch 1 1 8.

With reference to FIGS, 4A through 4C, slip clutch 1 18 may comprise any mechanism configured to prevent damage to motor 1 14 and/or injury to a person. For example, if a person applies excessive force or weight to their foot when pressure pad 1 12 is extended, slip clutch 1 18 allows pressure pad 1 12 to safely retract back towards depressor bousing 1 1 1. in an exemplary embodiment, slip clutch 1 18 is a friction clutch. Slip clutch 1 16 is configured to slip when excessive force is placed on pressure pad 1 12. in various exemplary embodiments, slip clutch 1 18 is configured to slip when the force on pressure pad 1 12 exceeds between about 130 Newtons to about 200 Newtons. in another exemplary embodiment, slip clutch 1 18 is configured to slip when the force on pressure pad 1 12 exceeds 155 Newtons. Moreover, slip clutch 1 18 may be configured to slip responsive to any suitable force in order to prevent damage to motor 1 14 or other components of actuator portion 1 10 and/or injury to a person.

With reference now to FIGS, 2A and 2B, in an exemplary embodiment, compression and stimulation system 100 may further comprise one or more indicators 126, indicators 126 may be loca table on actuator portion 1 10, reader portion 120, and/or pulse generator 130. Indicators 126 may comprise any components configured to receive input from a user and/or to deliver feedback to a user. For example, indicators 126 may comprise on/off buttons, lights, switches, and/or the like. In an exemplary embodiment, indicators 126 comprise a power button, a "high" foot compression setting light, a "low" foot compression setting light, a battery level warning light, and an error message light. Moreover, indicators 126 may comprise any suitable input and/or output components, as desired.

With reference to FIG. 4B, in accordance with an exemplary embodiment, weight sensor 125 is provided within depressor housing i l l . Weight sensor 120 comprises any suitable sensor configured to detect weight applied to depressor housing 1 1 1. When weight sensor 125 detects a suitable amount of weight, such as 25 pounds or more, control electronics 1 19A may infer that the person is walking or otherwise putting pressure on actuator portion i i O, Moreover, any appropriate weight may be utilized, and thus falls within the scope of the present disclosure. Accordingly, control electronics 1 19A. 1 19B may implement a delay in activating compression and stimulation system 100 to ensure pressure pad 1 12 is not extended or pulse generator 130 does not generate a pulse,

In various exemplary embodiments, compression and stimulation system 100 may comprise various sensors, for example pressure sensors, weight sensors, strain gauges, accelerometers, motion sensors and/or the like, in one embodiment, actuator portion 110 and/or reader portion 120 may utilize one or more sensors for monitoring and/or control of compression and stimulation system 100. For example, in certain exemplary embodiments it may be desirable to prevent extension of pressure pad 1 12 or the generation of an electrical pulse when a person is walking or applying body weight to actuator portion 1 10, Thus, control electronics 1 19A, 1 19B may prevent extension of pressure pad 1 12 or generation of an electrical pulse, for example, in response to sensor input indicating a person is walking (e.g., aecelerometer readings, weight sensor readings, motion sensor readings, and/or the like).

In various exemplary embodiments, compression and stimulation system 100 may be configured to be turned "on" when a user is seated and/or recumbent, and configured to be turned to a "standby" mode when a user is standing and/or walking. n an exemplary embodiment, control electronics 1 19A, 1 19B may prevent operation of compression and stimulation system 100 unless the sensor reports to controi electronics I 19A, 1 19B that the person utilizing compression and stimulation system 100 has been seated or otherwise stationary or recumbent for a suitable period of time, e.g. between 2 and 10 minutes.

With reference now to FIGS. 1 and 5, and in accordance with an exemplary embodiment, tissue depressor 100A comprises a reader portion 120 configured to facilitate communication with and/or control other components of compression and stimulation system 100. such as actuator portion 1 10 and/or electrical muscle stimulator 100B. Reader portion 120 may comprise any suitable components, circuitry, displays, indicators, and/or the like, as desired. For example, reader portion 120 may be configured with a control box 121 comprising metal, plastic, composite, or other durable material suitable to contain various components of reader portion 120. In an exemplary embodiment, reader portion 120 is coupled to actuator portion 1 10 or electrical muscle stimulator 100B via a cable, for example an electrical cable suitable to carry current to drive motor 1 14, carry digital signals, carry analog signals, and/or the like, in other exemplary embodiments, reader portion 120 communicates wireiessly with other components actuator portion 1 10 or electrical muscle stimulator 100B, for example via a suitable communication protocol (e.g., IEEE 802.15.4; IEEE 802.15.1 -2002 and/or IEEE 802.15.1-2005 (Bluetooth™); IEEE 802.1 1, IEEE 1451 , ISA 100.1 la; and/or the like). In these exemplary embodiments, reader portion 120 and the other components of compression and stimulation system 100 in communication with reader portion 120 may further comprise transceivers, receivers, transmitters and/or similar wireless technology.

With reference now to FIG. 5, and in accordance with an exemplary embodiment, reader portion 120 further comprises a display 123 configured for presenting information to a user. In an exemplary embodiment, display 123 comprises a liquid crystal display (LCD). In other exemplary embodiments, display 123 comprises light emitting diodes (LEDs). In still other exemplary embodiments, display 123 comprises visual and audio communication devices such as speakers, alarms, and/or other similar monitoring and/or feedback components. Moreover, display 123 may also comprise audible or tactile feedback components. Display 123 is configured to provide feedback, for example to a user of compression and stimulation system 100, or a medical practitioner. Moreover, display 123 may comprise any suitable components configured to provide information to a user of compression and stimulation system 100 or a medical practitioner. In accordance with exemplary embodiments, reader portion 120 may also comprise one or more batteries 122 (not shown in figures) as described herein.

With continued reference to FIG. 5, inputs 124A and/or 124B (collectively, "inputs 124") may comprise any components configured to allow a user to control operation of compression and stimulation system 100. in an exemplary embodiment, inputs 124 aiiovv a user to turn compression and stimulation system 100 on and off. inputs 124 may also allow a user to adjust operating parameters of both the tissue depressor 100A and the electrical muscle stimulator 100B. Parameters for tissue depressor 100A may include, for example, the interval of extension of pressure pad 112, the force with which pressure pad 1 12 is extended, the maximum pressure applied by pressure pad 1 12. various time intervals to have pressure pad 1 12 in an extended or retracted position, and/or the like. Parameters for electrical muscle stimulator i OOB may include, for example, voltage, current, pulse amplitude, wave form, pulse frequency, pulse duration, pulse intervals, stimulation duration, and/or tine like. Further, inputs 124 may allow retrieval of data, such as system usage records. Data may be stored in actuator portion 1 10 and/or electrical muscle stimulator 100B, for example in control electronics Π9Α, 1 19B, as well as in reader portion 120, as desired,

In an exemplary embodiment, inputs 124 comprise electronic buttons, switches, or similar devices. In other exemplary embodiments, inputs 124 comprise a communications port, for example a Universal Serial Bus (USB) port. Further, inputs 124 may comprise variable pressure control switches with corresponding indicator lights, inputs 124 may also comprise variable speed control switches with corresponding indicator lights, on/off switches, pressure switches, click wheels, trackballs, d-pads, and/or the like, Moreover, inputs 124 may comprise any suitable components configured to allow a user to control operation of compression and stimulation system 100.

Referring again to FIG. 1 , electrical muscle stimulator 100B may comprise an input 12.4B, control electronics 1 19B, an electrical pulse generator 130, and at least two electrodes 131 configured to generate an electrical pulse to a portion of a living organism suitable for any therapeutic use, preferably for generating muscle contraction. An electrical pulse may be generated according to a variety of operating parameters. Such parameters may include voltage, current, pulse amplitude, wave form, puise frequency, pulse duration, pulse intervals, duty cycle and stimulation duration. It will be appreciated that operating parameters may suitably be varied, for example in order to achieve a desired treatment outcome.

In various exemplary embodiments, electrical pulse generator 130 is configured to generate electrical pulses for delivery to a portion of a body, for example a leg. Electrical pulse generator 230 may be configured to generate electrical pulses on a single channel; moreover, electrical puise generator 1 30 may be configured to generate electrical pulses on multiple channels (for example, four channels), including simultaneously. The electrical pulses generated on a particular channel may be similar to electrical pulses generated on another channel; additionally, the pulses on a particular channel may differ from the pulses on another channel, for example with respect to voltage, amplitude, pulse width, puise rate, and/or the like,

In various exemplary embodiments, for example wherein compression and stimulation system 100 is utilized in connection with active recover}', electrical pulse generator 130 is configured to generate an eiectricai output having a symmetrical biphasic waveform, Eiectricai pulse generator 130 may be configured to deliver an electrical pu!se having an output voltage of between about 40 volts peak to peak and about 50 volts peak to peak in connection with a load of about 500 Ohms, Eiectricai pulse generator 130 may be configured to deliver an eiectricai pulse having amplitude of between about 80 niifliamps and about 100 mi 31 tamps in connection with a load of about 500 Ohms. Electrical pulse generator 130 may be configured to generate an electrical pulse having a pulse width of between about 200 microseconds and about 450 microseconds. Electrical pulse generator 130 may be configured to generate an electrical pulse having a pulse rate of between about 1 Hertz and about 150 Hertz, In an exemplary embodiment, eiectricai pulse generator 130 is configured to generate an electrical pulse having a symmetrica! biphasic waveform, a voltage of about 45 volts peak to peak, an amplitude of about 90 milliamps, a pulse width of about 400 microseconds, and a pulse rate of about 70 Hertz. In these exemplary embodiments, eiectricai pulse generator 130 may be configured to allow compression and stimulation system 100 to be configured with a contraction time of between about 1 second and about 60 seconds (often, about 10 seconds), a relaxation time of between about 0 seconds and about 60 seconds (often, about 15 seconds), and a ramp up / rairsp down time of between about 1 seconds and about 9 seconds (often, about 2 seconds).

In certain exemplary embodiments, for example wherein compression and stimulation system 100 is utilized in connection with "Russian stimulation", electrical puise generator 130 is configured to generate an electrical output having a symmetrica! biphasic waveform. Electrical pulse generator 130 may be configured to deliver an eiectricai pulse having an output voltage of between about 40 volts peak to peak and about 50 volts peak to peak in connection with a load of about 500 Ohms. Electrical pu!se generator 130 may be configured to deliver an eiectricai pulse having amplitude of between about 80 milliamps and about 100 miiiiamps in connection with a load of about 500 Ohms. Electrical pulse generator 130 may be configured to generate an eiectricai pulse having a pulse width of about 200 microseconds. Eiectricai pulse generator 130 may be configured to generate an eiectricai pulse having a pulse rate of between about 2300 Hertz and about 2700 Hertz, In an exemplary embodiment, electrical pulse generator 130 is configured to generate an electrical pulse having a symmetrical biphasic waveform, a voltage of about 45 voits peak to peak, an amplitude of about 90 milliamps, a puise width of about 400 microseconds, a pulse rate of about 2500 Hertz on two channels, and a pulse rate of about 2550 Hertz on two channels, in these exemplary embodiments, electrical pu!se generator 130 may be configured to allow compression and stimulation system 100 to be configured with a contraction time of between about 1 second and about 60 seconds (often, about 10 seconds), a relaxation time of between about 0 seconds and about 60 seconds (often, about 15 seconds), and a ramp up / ramp down time of between about 1 seconds and about 9 seconds (often, about 2 seconds).

In certain exemplary embodiments wherein compression and stimulation .system 100 is utilized in an interferential mode, electrical pulse generator 130 is configured to generate an electrical output having a true sine wave waveform. Electrical pulse generator 130 may be configured to deliver an electrical pulse having an output voltage of between about 36 volts peak to peak and about 44 volts peak to peak in connection with a load of about 500 Ohms. Electrical puise generator 130 may be configured to deliver an electrical pulse having amplitude of between about 72 milliamps and about 88 milliamps in connection with a load of about 500 Ohms. Electrical pulse generator 130 may be configured to generate an electrical pulse having a pulse width of about 300 microseconds. Electrical pulse generator 130 may be configured to generate an electrical pulse having a puise rate of between about 1 Hertz and about. 150 Hertz, In an exemplary embodiment electrical pulse generator 130 is configured to generate an electrical pulse having a true sine wave waveform, a voltage of about 40 volts peak to peak, an amplitude of about 80 milliamps, a pulse width of about 100 microseconds, and a pulse rate of variable from between about 1 Hertz and about 150 Hertz.

In various exemplar}' embodiments, input 124B comprises any component or configuration that enables a user to interface with the electrical muscle stimulator 10GB in order to define, redefine, or adjust pulse parameters. For example, input 124B may comprise a series of input buttons connected to control electronics 1 39B configured to transmit instructions thereto. In other embodiments, input 124B may comprise a touch screen or a computer configured to transmit instructions to control electronics 1 19B. In an exemplary embodiment, input 124B may also enable a user or medical practitioner to select pre-defined stimulation programs or create and save stimulation programs.

in various exemplary embodiments, control electronics 119B comprise any component or configuration capable of transmitting instructions to a pulse generator 130 based on instructions received from input 124B. Control electronics 1 19B may comprise a central processor and a memory, Control electronics 1 19B may also be configured to transmit instructions to reader portion 120 or alternatively to function as a reader portion 120 and transmit instructions to the actuator portion 3. 10. In an exemplary embodiment comprising shoe 150, control electronics 1 19B and shoe 150 may be configured such that control electronics 1 19B can be housed within the sole of shoe 150, or otherwise fully contained within or integrated with shoe 1 50. Additional structure, features and function of control electronics 1 1 B are described below.

In various exemplary embodiments, an electric pulse generator 130 comprises any component or configuration capable of receiving instructions from control electronics 1 1 B, generating an electrical pulse per the instructions received from control electronics 1 19B, and transmitting the pulse to electrode 131. For example, pulse generator 130 may comprise an electronic oscillator and amplifier. Other components may also include a regulator, filter, rectifier, and transformer. In an exemplary embodiment comprising a shoe 150, electric pulse generator 130 may be iocatable within the sole along with actuator portion 1 10, but embodiments wherein the electric pulse generator 130 is not integrated into a shoe is also contemplated.

Electrode 131 comprises any conductor or medium by which an electric current is conducted configured to contact a living organism, preferably in the leg and foot region, such that an electric pulse will travel from the pulse generator 130 to the living organism. For example, electrode 131 may comprise a lead 132 to conduct an electrical pulse from pulse generator 130, to a metal contact electrically connected to lead 132, and an electrically-conducting paste or gel. In certain exemplary embodiments, compression and stimulation system 100 comprises a metal connector 133 or snap, so leads 132 cart detach and reattach to a metal contact so that the metal contact can be disposable and lead 1.32 can be reused.

In accordance with an exemplary embodiment, an electrical muscle stimulator 100B may be powered by any suitably power supply and be configured to connect to a power supply. For example, electrical muscle stimulator 100B may comprise a power input conneetabSe to a power outlet. Alternatively, electrical muscle stimulator 100B may comprise a battery housing configured to receive a battery (not shown in figures). The types of batteries 140 as described herein may be used to power electrical muscle stimulator 100B. in an exemplary embodiment, batteries 140 used to provide power to electrical muscle stimulator 100B may be the same batteries used to power tissue depressor 100A.

In various exemplary embodiments, compression and stimulation system 100 may be at least partially operated, controlled, and/or activated by one or more electronic circuits, for example control electronics 1 19A, 119B. in accordance with an exemplary embodiment, control electronics 1 19A, 1 19B and/or an associated software subsystem comprise components configured to at least partially control operation of tissue depressor 100A and electrical muscle stimulator 100B, For example, control electronics 1 19A, 1 19B may comprise integrated circuits, discrete electrical components, printed circuit boards, and/or the like, and/or combinations of the same. Control electronics 1 19A, 119B may further comprise clocks or other timing circuitry. Control electronics 1 19A, 119B may also comprise data logging circuitry, for example volatile or non-volatile memories and the like, to store data, such as data regarding operation and functioning of tissue depressor 100 A and electrical muscle stimulator 100B. Moreover, a software subsystem may be pre- programmed and communicate with control electronics .1 19 A, 1 19B in order to adjust various variables of both tissue depressor 100A and electrical muscle stimulator iOOB, for example the pulse parameters, pressure pad parameters, and coordination of the two.

Control electronics 1 19A, 119B may be configured to store data related to compression and stimulation system 100. For example, in various exemplary embodiments, control electronics 1 19A, 1 19B may record if compression and stimulation system 100 is mounted to the foot of a person and active, if compression and stimulation system 100 is mounted to the foot of a person and inactive, if compression and stimulation system 100 is not mounted to the foot of a person and compression and stimulation system 100 is inactive, and/or the like and/or combinations of the same.

Further, control electronics 1 19A, 1 19B may record the duration compression and stimulation system 100 is active, the number of compression or stimulation cycles performed, the parameters under which the cycles where performed by compression and stimulation system 100, and so forth, Moreover, control electronics 1 19A, 1 19B may further comprise circuitry configured to enable data stored in control electronics 1 19A, 1 29B to be retrieved for analysis, deleted, compacted, encrypted, and/or the like.

With continued reference to FIGS. 2A and 2B, in accordance with an exemplary embodiment, compression and stimulation system 100 further comprises at least one removable battery. The battery may comprise electrochemical cells suitable to provide power for the various components of compression and stimulation system 100, such as actuator portion 1 10, reader portion 120, and electrical pulse generator 130, Battery may be rechargeable, but may also be single-use. Batteries may comprise alkaline, nickel-metal hydride, lithium-ion, lithium-polymer, and/or other battery configurations suitable for powering actuator portion 1 10. Moreover, the battery may comprise any suitable chemistry, form factor, voltage, and/or capacity suitable to provide power to compression and stimulation system 100. As illustrated, battery may be decoupled from main body 102, for example to facilitate recharging of the battery, as desired. Alternatively, the battery may recharge by connecting to a power supply via a cable without having to decouple the battery from main body 102,

In accordance with an exemplary embodiment, control electronics 1 19 A may monitor the pressure applied by pressure pad 1 12 when pressure pad 1 12 is being extended or is in a fully extended state. For example, control electronics 1 19 A may monitor the current drawn by motor 1 14 and calculate the applied pressure. Alternatively, a pressure sensor may detect the applied pressure and report this value to control electronics 1 19A and/or an associated software subsystem.

in accordance with an exemplary embodiment, control electronics 1 19B may monitor the operating current, operating voltage, and/or leakage current to ensure proper and safe function of electrical muscle stimulator 100B.

Turning now to FIGS. 6A - 6D, in various exemplary embodiments compression and stimulation system 100 may be configured with various power transmission components, gearings, controls, and/or the like, in an exemplary embodiment, compression and stimulation system 100 comprises depressor housing i l l , pressure pad 1 12, pad top 1 13, motor 1 14, gears 109, slip clutch i 16, and control electronics 1 19. Gears 109 may comprise any suitable number of and/or configuration of power transmission components configured to transfer power from motor 106 to pressure pad 1 12, for example spur gears, bevel gears, worm gears, and/or the like.

In various exemplary embodiments, compression and stimulation system 100 may be entirely self-contained; stated another way, compression and stimulation system 100 may be configured as a stand-alone unit wherein all components necessary for operation of compression and stimulation system 100 are contained within and/or physically coupled to depressor housing 1 1 3 , and a separate reader portion 120 is not utilized.

In various exemplary embodiments, with reference to FIG. 7, compression, and stimulation system 100 may be coupled to, utilized with, and/or integrated with a compression garment, for example a compression sock 160, Compression sock 160 may be configured to work in a complementary manner with compression and stimulation system 100, for example in order to treat and/or prevent deep vein thrombosis, to facilitate athletic recovery, and/or the like. In certain exemplary exemplary embodiments, electrode 131 and/or other components of compression and stimulation system 100 may be integrated into compression sock 160. In an exemplary embodiment, a compression sock 160 may be re!easab!y coupled to a shoe 150 via one or more of zippers, snaps, straps, buttons, hooks, hook and loop fasteners, and/or the like. In other exemplary embodiments, compression sock 160 may be permanently coupled to a shoe 150, for example via gluing, stitching, and/or the like,

Compression sock 160 may comprise any suitable flexible material and may be configured with any suitable dimensions, shapes, curves, stitching, and/or the like, as desired, in order to at least partially receive and/or compress a portion of a limb, For example, compression sock 160 may be configured with any suitable level of compression, for example from between about 5 mm!-Ig to about 50 mmHg, Also, a compression sock 160 may be configured as knee-high, as thigh-high, as pantyhose, and/or in any other suitable configuration. A compression sock 160 may also be configured to locate one or more electrodes 131 in a desired location on a leg, for exampie in order to facilitate stimulation of muscles of the lower leg, muscles of the upper leg, arid/or the like.

In certain exemplary embodiments, compression and stimulation system 100 is configured for use in, complementar to, and/or as a substitute for low-intensity physical exertion after a workout. Stated another way, compression and stimulation system 100 is configured to facilitate "athletic recovery," or the augmentation of blood flow in the body's venous system to deliver nutrients to the muscles while simultaneously removing lactic acid and metabolic waste, After a workout, it has been found that a person may recover more quickly from the after-effects of exercise (for example, accumulation of lactates in the muscle and/or blood) via low-intensity physical exertion rather than via complete rest. The increased blood circulation attendant to low-intensity physical exertion facilitates the removal of cellular metabolic waste and lactic acid from muscle and the reduction of lactate levels in the bloodstream. Additionally, physical exertion can facilitate facilitating opening the capillary bed to enable remedial hydration and/or efficient nutrient transfer, in contrast, post-workout periods of immobility, for example either sitting or recumbent, do little 5 physiologically to promote athletic recovery. Lowered venous peak velocity and reduced circulation closes the capillaries and locks lactic acid in place, which influences swelling and muscle soreness. Moreover, sitting with hips and knees in flexion, with bends of 60 to 90 degrees in the knees and hips, can kink the arterial blood supply and venous return, elevating the risk of edema stasis, toxin storage, and nutrient deficiency.

S O Therefore, by promoting blood circulation, compression and stimulation system 100 may be utilized to achieve similar benefits as those obtained via low-intensity physical exertion. For example, compression and stimulation system 100 may be utilized to achieve augmentation of peak venous velocity, augmentation of venous volume return, and/or augmentation of fibrinolysis. Additionally, the increased venous outflow evacuates cellular

15 metabolic waste products and reduces excess fluid trapped in the soft tissues of the lower leg, thereby promoting arterial inflow to the vacated capillary bed. Lower leg edema and other significant risk factors are reduced and/or eliminated. Stated another way, via use of compression and stimulation system 100, a person may achieve similar results as those achieved via low aerobic activity such as walking but without actually walking. The user 0 achieves augmented venous outflow despite being in a seated and/or recumbent position.

In an exemplary embodiment, compression and stimulation system 100 may be used by a person as part of a "cool down" process during the "golden hour" - approximately the first 60 minutes immediately after a workout. in other exemplary embodiments, compression and stimulation system 100 may be used during a predetermined period after a 5 workoui, for example between immediately after a workout to about 12 hours after a workout. Compression and stimulation system 100 may be utilized after a workout for a suitable duration, for example a duration of between about 10 minutes to about 2 hours, in order to assist in athletic recovery. While residual cellular metabolic waste can take several days to flush from the soft tissues, this process can be greatly accelerated via use of 0 compression and stimulation system 100 after a workout. To facilitate use of compression and stimulation system 100 as part of an athletic recovery program, compression and stimulation system 100 or components thereof may be integrated into athletic footwear intended for use during a workout, Moreover, compression and stimulation system 100 or components thereof may also be integrated into specialized post-exercise footwear.

Compression and stimulation system 100 may be utilized on a regular schedule by a person, for example as part of a pre-workout warmup, a post-workout cooldown, and/or on days when no workout is scheduled. By increasing blood flow, compression and stimulation system 100 can facilitate improved muscle readiness prior to exercise, quicker post-exercise recovery, and/or improved circulation on days absent strenuous exercise. In particular, compression and stimulation system 100 may be desirably utilized by athletes subsequent to athletic events in order to facilitate faster recovery.

in an exemplary embodiment, actuator portion 1 10 is configured to repeatedly compress the venous plexus region of the foot as discussed herein, During actuating activity, electrical muscle stimulator 130 is configured to repeatedly transmit electrical pulses to the musculature surrounding or nearby to enable muscle contraction and help remove ceiiular metabolic waste. Electrical pulses may be generated without regard to the compression cycle of the actuator portion 1 10; alternatively, compression and stimulation system 100 may be programmed to coordinate the relative timing of compression cycle with the electrical pulse cycle. For example, compression and stimulation system 1 00 may be programmed to only generate an electrical pulse or multiple electrical pulses when pressure pad is in an extended position, Alternatively, compression and stimulation system 100 may be prograramed to iransmit an electrical pulse or multiple electrical pulses only during the intervals when pressure pad is retracted. Any number of schedules, protocols, and/or approaches integrating dynamic compression and electrical stimulation are considered to fail within the scope of the present disclosure.

In another exemplary embodiment, compression and stimulation system 100 is configured to compress the venous plexus region of the foot and provide electrical muscle stimulation to surrounding muscle only when the wearer of the footwear is not walking or applying weight to the footwear, in this exemplary embodiment, actuator portion 1 10 may be utilized for pre-workout warmup, post-workout cooldown, and/or the like, without the need for a change of footwear.

Turning now to FIG, 8A, in accordance with an exemplary embodiment a method 810 for generally enhancing circulation and/or implementing athletic recovery in a person following exercise comprises moving a pressure pad into contact with a foot (step 81 1 ), moving a pressure pad out of contact with the foot (step 812), applying an electrical pulse to lower leg muscles (step 813) and moving the pressure pad into contact with the foot (step 81 1). The pressure pad may be repeatedly moved as described above in order to facilitate blood flow. With reference to FIG. 8B, in accordance with an exemplary embodiment a method 820 also for enhancing circulation and/or implementing athletic recovery following exercise comprises placing a compression garment on a region of the body to be treated, such as the foot and calf (step 821), moving a pressur pad into contact with a foot (step 81 1), moving a pressure pad out of contact with the foot (step 812), applying an electrical pulse to lower leg muscles (step 813) and moving the pressure pad into contact with the foot (step 81 1), and repeating the steps 812 to 813 to 81 1.

Other exemplary embodiments may comprise utilizing compression and stimulation system 100 prior to an athletic event, participating in the athletic event, and utilizing compression and stimulation system 100 subsequent to the athletic event. Each of these steps may comprise any suitable use of compression and stimulation system 100, for example method 810 or 820. Moreover, these steps may be performed at any suitable time prior to and/or subsequent to the athletic event, and compression and stimulation system 100 may be utilized for any desired length of time (for example, 1.5 minutes, 30 minutes, one hour, and/or the like). Moreover, compression and stimulation system 100 may be utilized for a length of time specified by a physician.

In various exemplary embodiments, compression and stimulation system 100 is configured for use by individuals who are in fixed, standing, and/or sitting positions for extended periods of time, for example office workers, pregnant women, passengers on Song- haui airline flights in excess of four hours, individuals in wheelchairs, service workers whose positions require standing, hospital patients, and/or the like. By improving blood flow in the lower extremities and legs, compression and stimulation system 100 can reduce the negative health impacts associated with extended standing, extended sitting, and/or reduced mobility or immobility of a portion of the body. Moreover, compression and stimulation system 100 may be configured for use in connection with the removal of metabolic waste, wound care and recovery, or the treatment of medical conditions including plantar fasciitis, restless leg syndrome, deep vein thrombosis, pulmonary embolism, and venous insufficiency. in various exemplary embodiments, with reference now to FIG. 9, compression and stimulation system 100 may be utilized in connection with treatment of plantar fasciitis. In these embodiments, activation of compression and stimulation system 100 is not primarily directed to increasing circulation and/or vascularity (though these results may be present); rather, activation of compression and stimulation system 100 is directed to stretching, massaging, and/or otherwise treating the plantar fascia and/or the surrounding tissue and components of the foot. In an exemplary embodiment, compression and stimulation system 100 is utilized to stretch the plantar fascia via extension of pressure pad 1 12 and/or via delivery of an electrical pulse by electric stimulator 100B.

In an exemplary embodiment, in connection with a method 910 for treating plantar fasciitis, pressure pad 1 12 is extended into contact with a foot in order to stretch the plantar fascia. Pressure pad 1 12 may be placed in contact with a foot (step 91 1 ) for a desired period of time in order to stretch the plantar fascia. In accordance with an exemplary embodiment, when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about 1 mmHg and 250 mmHg against the person's foot. Further, pressure pad 1 12 may be extended with a force between about 25 Newtons and 80 Newtons in certain exemplary embodiments. Pressure pad 1 12 may be kept in an extended position for a time between about 3 second and about 6 seconds. Pressure pad 1 12 is then retracted (step 912). Pressure pad 1 12 may then be re-extended (step 913 ), such as after a delay of between about 10 and 60 seconds. However, other time frames can be used, and ail suitable time frames are thought to fall within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the lower leg muscles, the top of the foot, the bottom of the foot, and/or the like (step 914).

In various exemplary embodiments, when utilized for treatment of plantar fasciitis, compression and stimulation system 100 may be utilized any suitable number of times in a day. in an exemplary embodiment, compression and stimulation system 100 is used tor treatment of plantar fasciitis once a day. In another exemplary embodiment, compression and stimulation system 100 is used for treatment of plantar fasciitis twice a day. Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, and/or on any other suitable time schedule, as desired.

99 . ίη various exemplary embodiments, when utilized for treatment of plantar fasciitis, compression and stimulation system 100 may be utilized for any suitable duration, in an exemplary embodiment, compression and stimulation system 1 00 is used tor treatment of plantar fasciitis for about 30 minutes at a time. In another exemplary embodiment, compression and stimulation system 100 is used for treatment of plantar fasciitis for about one hour at a time. Moreover, compression and stimulation system 100 may be used for between about fifteen minutes and about eight hours at a time, and/or for any other suitable duration, as desired.

Turning now to FIG. 10, in various exemplary embodiments, compression and stimulation system 100 may be utilized in connection with treatment of deep vein thrombosis and/or prevention of pulmonary embolism, in these embodiments, activation of compression and stimulation system 100 may be primarily directed to increasing venous peak velocity. Additionally, improved circulation and/or vascularity may be achieved. In an exemplary embodiment, compression and stimulation system 100 is utilized to increase venous peak velocity via extension of pressure pad 1 12 and/or via delivery of an electrical pulse by electric stimulator 100B,

In an exemplary embodiment, in connection with a method 1010 tor treatment of deep vein thrombosis and/or prevention of pulmonary embolism, pressure pad 1 12 is extended into contact with a foot in order to force blood through the venous plexus. Pressure pad 1 12 may be placed in contact with a foot (step 101 V) for a desired period of time in order to force blood through the venous plexus, in accordance with an exemplary embodiment when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about 1 mmBg and 500 mml g against the person's foot. Further, pressure pad 1 12 may be extended with a force between about 50 Newtons and 125 Newton s in certain exemplary embodiments. Pressure pad 112 may be kept in an extended position for a time between about 1 and 3 seconds. Pressure pad 1 .12 is then retracted (step 1012). Pressure pad 1 12 may then be re-extended (step 1013), such as after a delay of between about 20 and 40 seconds. However, other time frames can be used, and all suitable time frames are thought to fall within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the upper leg muscles, the lower leg muscles, the top of the foot, the bottom of the foot, and/or the like (step 3014). In various exemplary embodiments, in connection with a method 1010 for treatment of deep vein thrombosis and/or prevention of pulmonary embolism, extension of pressure pad i 12 is configured to raise the peak femoral venous velocity in a patient via compression of the venous plexus. In an exemplary embodiment, compression of the venous plexus via extension of pressure pad 1 12, either together with or independent of deliver of an electrical pulse to a portion of the body, results in peak femoral venous velocity in excess of 30 centimeters per second (cm/s). In another exemplary embodiment, compression of the venous plexus via extension of pressure pad 1 12, either together with or independent of delivery of an eiectricai pulse to a portion of the body, results in peak femoral venous velocity in excess of 40 cm/s, in another exemplary embodiment, compression of the venous plexus via extension of pressure pad 1 12, either together with or independent of delivery of an electrical pulse to a portion of the body, results in peak femoral venous velocity in excess of 45 cm/s, Moreover, compression and stimulation system 100 may be utilized to compress the venous plexus (and/or deliver an eiectricai pulse to a portion of the body) in order to achieve any suitable peak femoral venous velocity in a patient, and the foregoing examples are by way of illustration and not of limitation.

in various exemplary embodiments, when utilized for treatment of deep vein thrombosis and/or prevention of pulmonary emboiism, compression and stimulation system 100 may be utilized any suitable number of times in a day. in an exemplary embodiment, compression and stimulation system 100 is used for treatment of treatment of deep vein thrombosis and/or prevention of pulmonary emboiism once a day. In another exemplary embodiment, compression and stimulation system 100 is used for treatment of deep vein thrombosis and/or prevention of pulmonary embolism twice a day. Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, continuously, and/or on any other suitable time schedule, as desired.

in various exemplary embodiments, when utilized for treatment of deep vein thrombosis and/or prevention of pulmonary embolism, compression and stimulation system 100 may be utilized for any suitable duration. In an exemplary embodiment, compression and stimulation system 100 is used 24 hours a day. In another exemplary embodiment, compression and stimulation system 100 is used for treatment of deep vein thrombosis and/or prevention of pulmonary embolism for about 12 hours at a time. Moreover, compression and stimulation system 100 may be used for between about three hours and about 6 hours at a time, and/or for any other .suitable duration, as desired.

Turning now to FIG. 1 1 , in various exemplary embodiments, compression and stimulation system 1 00 may be utilized in connection with treatment of restless leg syndrome. In thes embodiments, use of compression and stimulation system 100 may be directed to increasing blood flow in the foot and/or leg, stimulation of nerves in the foot and/or leg, and/or the like. Additionally, improved circulation and/or vascularity may be achieved. In an exemplary embodiment, compression and stimulation system 1 00 is utilized to stimulate the foot via extension of pressure pad 1 12 and/or stimulate a portion of the body via delivery of an electrical pulse by electric stimulator 1 G0B.

in an exemplary embodiment, in connection with a method 1 1 10 for treating restless leg syndrome, pressure pad 1 12 is extended into contact with a foot in order to stimulate the foot. Pressure pad 1 12 may be placed in contact with a foot (step 1 1 1 1 ) for a desired period of time in order to stimulate the foot. In accordance with an exemplary embodiment, when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about 1 mmHg and 300 mmHg against the person's foot. Further, pressure pad 1 12 may be extended with a force between about 25 Newtons and 75 Newtons in certain exemplary- embodiments. Pressure pad 1 12 may be kept in an extended position for a time between about 1 and 3 seconds. Pressure pad 1 12 is then retracted (step 1 1 12). Pressure pad 1 12 may then be re-extended (step 1 1 13), such as after a delay of between about 20 and 30 seconds. However, other time frames can be used, and all suitable time frames are thought to fall within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the upper leg muscles, the lower leg muscles, the top of the foot, the bottom of the foot, and/or the like (step 1 1 14).

in various exemplary embodiments, when utilized for treatment of restless leg syndrome, compression and stimulation system 100 may be utilized any suitable number of times in a day. in an exemplary embodiment, compression and stimulation system 100 is used for treatment of restless leg syndrome once a day, for example between about 1 hour and about 3 hours before retiring to bed. In another exemplary embodiment, compression and stimulation system 100 is used for treatment of restless leg syndrome twice a day, for example within about i hour and about 3 hours of arising in the morning, and between about 1 hour and about 3 hours before retiring to bed, Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, and/or on any other suitable time schedule, as desired. In certain exemplary embodiments, compression and stimulation system 100 may be utilized on an "as-needed" basis to treat symptoms of restless leg syndrome in real-time as they are occurring.

In various exemplary embodiments, when utilized for treatment of restless leg syndrome, compression and stimulation system 100 may be utilized for any suitable duration, in an exemplary embodiment, compression and stimulation system 100 is used for treatment of restless leg syndroms for between about one hour and about three hours at a time. Moreover, compression and stimulation system 100 may be used for any other suitable duration, as desired.

Turning now to FIG. 12, in various exemplary embodiments, compression and stimulation system 100 may be utilized in connection with treatment of edema, in these embodiments, activation of compression and stimulation system 100 may be directed to increasing circulation and/or vascularity in a portion of a human body. In an exemplary embodiment, compression and stimulation system 100 is utilized to compress the venous plexus region of the foot via extension of pressure pad 1 12 and/or stimulate a portion of the body via delivery of an electrical pulse by electric stimulator 100B.

In an exemplary embodiment, in connection with a method 1210 for treating edema, pressure pad 1 12 is extended into contact with a foot in order to force blood from the venous plexus region of the foot. Pressure pad 1 12 may be placed in contact with a foot (step 121 1 ) for a desired period of time in order to force blood from the venous plexus. In accordance with an exemplary embodiment, when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about I rotnHg and 50(5 rnni Ig against the person's foot, Further, pressure pad 1 12 may be extended with a force between about 25 Newtons and 125 Newtons in certain exemplary embodiments. Pressure pad 1 12 may be kept in an extended position for a time between about 1 second and about 5 seconds, Pressure pad 1 12 is then retracted (step 1212) in order to allow the venous plexus to at least partially refill with blood. Pressure pad 1 12 may then be re-extended (step 1213) to force blood from the venous plexus, such as after a delay of between about 30 seconds and about 60 seconds, However, other time frames can be used, and all suitable time frames are thought to fail within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the upper leg muscles, the lower leg muscles, the top of the toot, the bottom of the foot, and/or the like (step 1214).

In various exemplary embodiments, when utilized for treatment of edema, compression and stimulation system 100 may be utilized any suitable number of times in a day. In an exemplary embodiment compression and stimulation system 100 is used tor treatment of edema once a day. in another exemplary embodiment, compression and stimulation system 100 is used for treatment of edema twice a day. Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, and/or on any other suitable time schedule, as desired. In certain exemplary embodiments, compression and stimulation system 100 may be utilized on an "as-needed" basis to treat symptoms of edema in real-time, for example responsive to patient discomfort.

In various exemplary embodiments, when utilized for treatment of edema, compression and stimulation system 100 may be utilized for any suitable duration. In an exemplary embodiment, compression and stimulation system 100 is used for treatment of edema for between about, one hour and about eight hours at a time. Moreover, compression and stimulation system 100 may be used for any other suitable duration, as desired.

Turning now to FIG. 13, in various exemplary embodiments, compression and stimulation system 100 may be utilized in connection with treatment of venous insufficiency. In these embodiments, activation of compression and stimulation system 100 may be directed to increasing circulation, counteracting the effect of damaged valves in one or more veins, and/or the like. In an exemplary embodiment, compression and stimulation system 100 is utilized to compress the venous plexus region of the foot via extension of pressure pad 3 32 and/or stimulate a portion of the body via delivery of an electrical pulse by electric stimulator 100B.

in an exemplary embodiment, in connection with a method 1310 for treating venous insufficiency, pressure pad 1 12 is extended into contact with a foot in order to force blood from the venous plexus region of the foot. Pressure pad i 12 may be placed in contact with a foot (step 131 1 ) for a desired period of time in order to force blood from the venous plexus. in accordance with an exemplary embodiment, when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about 1 niniHg and 500 mral g against the person's foot. Further, pressure pad 1 12 may be extended with a force between about 25 Newtons and 125 Newtons in certain exemplary embodiments. Pressure pad 1 12 may be kept in an extended position for a time between about 1 second and about 5 seconds. Pressure pad 1 12 is then retracted (step 1312) in order to allow the venous plexus to at least partially refill with blood. Pressure pad 1 12 may then be re-extended (step 1313) to force blood from the venous plexus, such as after a delay of between about 30 seconds and about 60 seconds. However, other time frames can be used, and ail suitable time frames are thought to fall within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the upper leg muscles, the lower leg muscles, the top of the foot, the bottom of the foot, and/or the like (step 1314).

in various exemplary embodiments, when utilized for treatment of venous insufficiency, compression and stimulation system 100 may be utilized any suitable number of times in a day, in an exemplar embodiment, compression and stimulation system 100 is used for treatment of venous insufficiency once a day. in another exemplary embodiment, compression and stimulation system 100 is used for treatment of venous insufficiency twice a day. Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, and/or on any other suitable time schedule, as desired, in certain exemplary embodiments, compression and stimulation system 100 may be utilized on an "as-needed" basis to treat symptoms of venous insufficiency in real-time, for example responsive to patient discomfort.

In various exemplary embodiments, when utilized for treatment of venous insufficiency, compression and stimulation system 100 may be utilized for any suitable duration. In an exemplary embodiment, compression and stimulation system 100 is used for treatment of venous insufficiency for between about one hour and about twelve hours at a time. Moreover, compression and stimulation system 100 may be used for any other suitable duration, as desired.

Turning now to FIG. 14, in various exemplary embodiments, compression and stimulation system 100 may be utilized in connection with treatment, of wounds. In these embodiments, activation of compression and stimulation system 100 may be directed to increasing blood circulation and/or vascularity at and/or around a wound site. Moreover, in connection with wound care, use of compression and stimulation system 100 may be guided and/or governed by the circulatory capacit of the body in the region of a wound. Stated

^ another way, compression and stimulation system 100 may be configured to increase circulation in the region of a wound without exceeding the circulatory capacity of the region of the wound, in an exemplary embodiment, compression and stimulation system 100 is utilized io compress a portion of the body, for example the venous plexus region of the foot, via extension of pressure pad 1 12; additionally, compression and stimulation system 300 may be utilized to stimulate a portion of the body via delivery of an electrical pulse by electric stimulator 100B,

n an exemplary embodiment, in connection with a method 1410 for wound care, pressure pad 1 12 is extended into contact with a portion of a body, for example a foot, in order to force blood from the portion of the body and/or otherwise assist in "pumping" blood through a region of the body. Pressure pad 1 12 may be placed in contact with the body (step 1411) for a desired period of time in order to force blood therethrough. In accordance with an exemplary embodiment, when moved to the fully extended position, pressure pad 1 12 may generate a pressure between about 1 mmHg and 200 mraHg against the body. Further, pressure pad 1 12 may be extended with a force between about 12 New tons and 75 Newtons in certain exemplary embodiments. Pressure pad 1 12 may be kept in an extended position for a time between about 1 second and about 5 seconds. Pressure pad 1 12 is then retracted (step 1412) in order to allow the portion of the body to at least partially refill with blood. Pressure pad 1 12 may then be re-extended (step 1413) to force blood from the portion of the body, such as after a delay of between about 30 seconds and about 60 seconds, However, other time frames can be used, and all suitable time frames are thought to fall within the scope of the present disclosure. During either extension or retraction of pressure pad 1 12, an electrical pulse may be applied to a portion of the body, for example the upper arm muscles, the lower arm muscles, the upper leg muscles, the lower leg muscles, the top of the foot, the bottom of the foot, and/or the like (step 1414).

In various exemplary embodiments, when utilized for wound care, compression and stimulation system 100 may be utilized any suitable number of times in a day, i an exemplar;/ embodiment, compression and stimulation system 100 is used for wound care once a day. In another exemplary embodiment compression and stimulation system 100 is used for wound care twice a day. Moreover, compression and stimulation system 100 may also be used more than twice a day, on alternating days, and/or on any other suitable time schedule, as desired. In certain exemplary embodiments, compression and stimulation system 100 may be utilized on a continuous basis to provide a steadily elevated !evel of circulation in the region of a wound,

In various exemplary embodiments, when utilized for wound care, compression and stimulation system 100 may be utilized for any suitable duration. In an exemplary embodiment, compression and stimulation system 100 is used for wound care for between about one hour and about twenty-four hours at a time, Moreover, compression and stimulation system 100 may be used for any other suitable duration, as desired.

It will be appreciated that various steps of the foregoing methods, for example extending a pressure pad into contact with a portion of the body, removing a pressure pad from contact with a portion of the body, applying an electrical stimulation to a portion of the body, and so forth, may be repeated as suitable in order achieve a desired outcome.

The present disclosure has been described above with reference to various exemplary embodiments. However, those skilled in the art will recognize thai changes and modifications may be made to the exemplary embodiments without departing from the scope of the present disclosure. For example, the various operational steps, as well as the components for carrying out the operational steps, may be implemented in alternate ways depending upon the particular application or in consideration of any number of cost functions associated with the operation of the system, e.g., one or more of the steps may be deleted, modified, or combined with other steps. Further, it should be noted that while the methods and systems for compression described above are suitable for use on the foot, similar approaches may be used on the hand, calf, or other areas of the body. These and other changes or modifications are intended to be included within the scope of the present disclosure.

Moreover, as will be appreciated by one of ordinary skill In the art, principles of the present disclosure may be reflected in a computer program product on a tangible computer- readable storage medium having computer-readable program code means embodied in the storage medium. Any suitable computer-readable storage medium may be utilized, including magnetic storage devices (hard disks, floppy disks, and the like), optical storage devices (CD-ROMs, DVDs, Blu-Ray discs, and the like), flash memory, and/or the like. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions that execute on the computer or other programmable data processing apparatus create means for implementing the functions. These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the function specified. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer- impjemented process such that the instructions which execute on the computer or other programmable apparatus provide steps tor implementing the functions specified.

In the foregoing specification, the disclosure has been described with reference to various embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present disclosure as set forth in the claims below. Accordingly, the specification is to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of the present disclosure. Likewise, benefits, other advantages, and solutions to problems have been described above with regard to various embodiments. However, benefits, advantages, solutions to problems, and any elemeni(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims.

As used herein, the terms "comprises," "comprising," or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus, Also, as used herein, the terms "coupled," "coupling," or any other variation thereof, are intended to cover a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection. Further, when language similar to "at least one of A, B, or C" is used in the claims, the phrase is intended to mean any of the following: (1 ) at least one of A; (2) at least one of B; (3) at least one of C; (4) at least one of A and at least one of B; (5) at least one of B and at least one of C; (6) at least one of A and at least one of C; or (7) at least one of A, at least one of B, and at least one of C.